JP4302175B2 - Damping damper - Google Patents

Damping damper Download PDF

Info

Publication number
JP4302175B2
JP4302175B2 JP2008149930A JP2008149930A JP4302175B2 JP 4302175 B2 JP4302175 B2 JP 4302175B2 JP 2008149930 A JP2008149930 A JP 2008149930A JP 2008149930 A JP2008149930 A JP 2008149930A JP 4302175 B2 JP4302175 B2 JP 4302175B2
Authority
JP
Japan
Prior art keywords
geq
plate
plate member
damping
heq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008149930A
Other languages
Japanese (ja)
Other versions
JP2009013775A (en
Inventor
好光 大橋
良成 河合
学 服部
栄治 幸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Fukuvi Chemical Industry Co Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Fukuvi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Fukuvi Chemical Industry Co Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2008149930A priority Critical patent/JP4302175B2/en
Publication of JP2009013775A publication Critical patent/JP2009013775A/en
Application granted granted Critical
Publication of JP4302175B2 publication Critical patent/JP4302175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、木造構造体に用いる制振ダンパに関するものである。   The present invention relates to a vibration damper used for a wooden structure.

従来から、木造家屋の耐震補強をきわめて簡単にかつ低コストで行えるようにした木造家屋の耐震補強構造において、木造家屋の軸組材どうしの接合部である仕口部に、二枚の変位板と変位板間の間隙に充填された粘弾性体とからなる粘弾性ダンパを取り付けて、粘弾性体のせん断変形により地震エネルギーが吸収されるようにしたものが知られている(例えば、特許文献1参照)。
特許第3667123号公報
Conventionally, in a seismic reinforcement structure for a wooden house that can be seismically strengthened for a wooden house very easily and at low cost, two displacement plates are attached to the joint that is the joint between the wooden frame members. A viscoelastic damper comprising a viscoelastic body filled in a gap between a displacement plate and a displacement plate is attached, and seismic energy is absorbed by shear deformation of the viscoelastic body (for example, patent document) 1).
Japanese Patent No. 3667123

ところで、上述の特許文献1のような従来のダンパは、柱と梁との接合部(仕口部)に取り付けることは可能であったが、例えば、柱と土台との接合部近傍には根太が配設されることがあるため、根太と干渉して取り付けられないという問題があった。   By the way, although the conventional damper like the above-mentioned patent document 1 was able to be attached to the junction (joint part) of a pillar and a beam, for example, a joist is near the junction of a pillar and a foundation. Since there is a case where it is disposed, there is a problem that it cannot be attached due to interference with joists.

そこで、この発明は、上述の事情を鑑みてなされたものであり、軸組材同士の接合部に確実に取り付けることができる制振ダンパを提供するものである。   Therefore, the present invention has been made in view of the above-described circumstances, and provides a vibration damper that can be reliably attached to a joint portion between shaft assemblies.

上記の課題を解決するために、請求項1に記載した発明は、木造構造体の軸組材同士の接合部近傍に設置する制振ダンパにおいて、一方の軸組材に固定して突設される第一板材と、他方の軸組材に固定して突設される第二板材と、前記第一板材と前記第二板材との間に充填され、前記第一板材と前記第二板材とを接合する弾性材料と、を備え、前記他方の軸組材と前記第一板材における前記一方の軸組材との第一取付部との間に第一の隙間が形成されるとともに、前記一方の軸組材と前記第二板材における前記他方の軸組材との第二取付部との間に第二の隙間が形成され、前記第一板材が、前記第一取付部から前記第二取付部に指向するように形成された鋼板製の板材で構成されるとともに、前記第二板材が、前記第二取付部から前記第一取付部に指向するように形成された鋼板製の板材で構成され、前記第一の隙間、前記第二の隙間、前記第一板材および前記第二板材とで構成される空間部が、少なくとも根太を挿通可能な大きさを有しており、前記弾性材料が、0℃〜40℃環境下、かつ、0.125≦γ(せん断歪)≦3.0の領域下において、Heq(等価粘性減衰定数(等価減衰定数))が、Heq>0.24であり、γ=3とγ=1のGeq(等価せん断弾性率)の比が、0.40≦{Geq ( γ =3.0) }/{Geq ( γ =1.0) }<0.60であり、前記弾性材料の減衰性能が、一定の温度条件下で、ある周波数を基準として、その変化率が、0.1〜20Hzの範囲で±50%以内であり、20℃でのGeqを基準として、0℃のときのGeq(t=0℃)と20℃のときのGeq(t=20℃)との比が、Geq(t=0℃)/Geq(t=20℃)≦2.0、かつ、40℃のときのGeq(t=40℃)と20℃のときのGeq(t=20℃)との比が、Geq(t=40℃)/Geq(t=20℃)≧0.5であり、限界変形時の変形量(歪み率)が、0℃〜40℃の範囲で、歪み率≧400%であり、経年相当年数60年において、HeqおよびGeqの変化率が、Heq(60年)/Heq(0年)>0.8、Geq(60年)/Geq(0年)<1.2の範囲であることを特徴としている。 In order to solve the above-mentioned problem, the invention described in claim 1 is provided in a vibration damping damper installed in the vicinity of a joint portion between the shaft assembly members of the wooden structure and fixedly projected to one of the shaft assembly members. The first plate member, the second plate member fixedly projecting to the other shaft assembly member, and the first plate member and the second plate member are filled between the first plate member and the second plate member. A first gap is formed between the other shaft assembly and the first attachment portion of the first plate in the first plate member, and the one A second gap is formed between the second plate member and the second mounting portion of the second plate member, and the first plate member extends from the first mounting portion to the second mounting portion. The second plate material is formed from the second mounting portion and the first take-off plate is formed of a steel plate material formed so as to face the portion. A space formed by the first gap, the second gap, the first plate, and the second plate is at least a joist. The elastic material has a size that can be inserted, and the elastic material is Heq (equivalent viscous damping constant) in an environment of 0 ° C. to 40 ° C. and 0.125 ≦ γ (shear strain) ≦ 3.0. (Equivalent damping constant)) is Heq> 0.24, and the ratio of Geq (equivalent shear modulus) between γ = 3 and γ = 1 is 0.40 ≦ {Geq ( γ = 3.0) } / {Geq ( γ = 1.0) } <0.60, and the damping performance of the elastic material is ± 50% within a range of 0.1 to 20 Hz with a rate of change based on a certain frequency under a constant temperature condition. Geq at 0 ° C. (t = 0 ° C.) and Geq at 20 ° C. (t = 20 ° C.) with reference to Geq at 20 ° C. The ratio of Geq (t = 0 ° C.) / Geq (t = 20 ° C.) ≦ 2.0 and Geq (t = 40 ° C.) when 40 ° C. and Geq (t = 20 ° C.) when 20 ° C. ) Is Geq (t = 40 ° C.) / Geq (t = 20 ° C.) ≧ 0.5, and the deformation amount (strain rate) at the time of limit deformation is in the range of 0 ° C. to 40 ° C. The rate ≧ 400%, and the change rate of Heq and Geq at the age equivalent to 60 years is Heq (60 years) / Heq (0 years)> 0.8, Geq (60 years) / Geq (0 years) < It is characterized by being in the range of 1.2 .

請求項2に記載した発明は、前記空間部に、前記接合部近傍における土台と基礎とを接合するためのアンカーボルトを配置可能に構成されていることを特徴としている。   The invention described in claim 2 is characterized in that an anchor bolt for joining a base and a foundation in the vicinity of the joint portion can be arranged in the space portion.

請求項1に記載した発明によれば、制振ダンパが第一板材および第二板材とそれらの間に充填された弾性材料とで構成されるため、軽量かつ小型化することができる。また、第一の隙間および第二の隙間を形成するように構成することで、制振ダンパを軸組材に取り付けた際に、中空の空間部が形成されるため、空間部に部材や部品を配置することができる。したがって、軸組材同士の接合部に確実に取り付けることができる効果がある。   According to the first aspect of the present invention, since the vibration damper is composed of the first plate member, the second plate member, and the elastic material filled between them, the weight and size can be reduced. In addition, by forming the first gap and the second gap, a hollow space portion is formed when the damping damper is attached to the shaft assembly material. Can be arranged. Therefore, there exists an effect which can be reliably attached to the junction part of shaft assembly materials.

また、第一板材と第二板材とが鋼板で形成されているため、強度を確保することができ、制振ダンパとして確実に耐震性能を確保することができる。また、第一板材および第二板材により、必要最小限の面積で軸組材同士に対して斜めに架設することができるため、材料を削減でき、低コストで耐震性向上に寄与する制振ダンパを製造することができる効果がある。さらに、第一板材および第二板材により軸組材同士に対して斜めに架設するため、第一板材と第二板材との接合面の面積を増減させることで、耐震強度を容易に調整することができる効果がある。   Moreover, since the 1st board | plate material and the 2nd board | plate material are formed with the steel plate, intensity | strength can be ensured and a seismic performance can be ensured reliably as a damping damper. In addition, the first plate and the second plate can be installed diagonally with respect to the shaft assembly with the minimum necessary area, so the material can be reduced, and the vibration damper that contributes to improved earthquake resistance at low cost. There is an effect that can be manufactured. Furthermore, since the first plate member and the second plate member are installed obliquely with respect to the shaft assembly members, the seismic strength can be easily adjusted by increasing or decreasing the area of the joint surface between the first plate member and the second plate member. There is an effect that can.

さらに、柱と土台との接合部に制振ダンパを取り付ける際に、根太が配置されていても根太と干渉することなく、取り付けることができる。したがって、軸組材同士の接合部に確実に取り付けることができる効果がある。
さらにまた、弾性材料に適切な材料を採用することにより、制振ダンパとしての所望の性能を確実に発揮することができる。
Furthermore, when the damping damper is attached to the joint between the pillar and the base, it can be attached without interfering with the joist even if the joist is arranged. Therefore, there exists an effect which can be reliably attached to the junction part of shaft assembly materials.
Furthermore, by adopting an appropriate material for the elastic material, it is possible to reliably exhibit the desired performance as the vibration damper.

請求項2に記載した発明によれば、柱と土台との接合部に制振ダンパを取り付ける際に、アンカーボルトが配置されていてもアンカーボルトと干渉することなく、取り付けることができる。したがって、軸組材同士の接合部に確実に取り付けることができる効果がある。   According to the second aspect of the present invention, when the damping damper is attached to the joint between the pillar and the base, it can be attached without interfering with the anchor bolt even if the anchor bolt is disposed. Therefore, there exists an effect which can be reliably attached to the junction part of shaft assembly materials.

次に、本発明の実施形態を図1〜図4に基づいて説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
図1〜図3に示すように、制振ダンパ10は、正面視において略台形に形成された第一板材11と、第一板材11と線対称の形状に形成された第二板材13と、第一板材11と第二板材13との間に充填され、第一板材11と第二板材13とを接合している弾性材料15とを備えている。
第一板材11は、例えばSS400などの鋼板で形成された板状部材である。第一板材11の平面部17は略台形状に形成されている。また、第一板材11は、平面部17の端部19において略直角に折曲し、さらに延設され、取付部21が形成されている。取付部21には、複数の貫通孔23が形成されており、ネジや釘などを挿通して軸組材に固定できるように構成されている。また、取付部21が形成されている側の反対側の端辺33は、その両端に形成される短辺43および長辺39に対して直角に交わるように形成されている。
Next, an embodiment of the present invention will be described with reference to FIGS. In each drawing used for the following description, the scale of each member is appropriately changed to make each member a recognizable size.
As shown in FIGS. 1 to 3, the vibration damper 10 includes a first plate member 11 formed in a substantially trapezoidal shape in a front view, a second plate member 13 formed in a line-symmetric shape with the first plate member 11, and An elastic material 15 filled between the first plate member 11 and the second plate member 13 and joining the first plate member 11 and the second plate member 13 is provided.
The 1st board | plate material 11 is a plate-shaped member formed with steel plates, such as SS400, for example. The flat portion 17 of the first plate member 11 is formed in a substantially trapezoidal shape. The first plate member 11 is bent at a substantially right angle at the end portion 19 of the flat portion 17 and further extended to form an attachment portion 21. A plurality of through holes 23 are formed in the attachment portion 21 and are configured so that screws and nails can be inserted and fixed to the shaft assembly. Further, the end side 33 opposite to the side on which the attachment portion 21 is formed is formed so as to intersect at right angles to the short side 43 and the long side 39 formed at both ends thereof.

第二板材13は、第一板材11と略同等の構成であり、例えばSS400などの鋼板で形成された板状部材である。第二板材13の平面部25は略台形状に形成されている。また、第二板材13は、平面部25の端部27において略直角に折曲し、さらに延設され、取付部29が形成されている。取付部29には、複数の貫通孔31が形成されており、ネジや釘などを挿通して軸組材に固定できるように構成されている。また、取付部29が形成されている側の反対側の端辺37は、その両端に形成される短辺45および長辺35に対して直角に交わるように形成されている。   The 2nd board | plate material 13 is a structure substantially the same as the 1st board | plate material 11, and is a plate-shaped member formed, for example with steel plates, such as SS400. The flat portion 25 of the second plate member 13 is formed in a substantially trapezoidal shape. The second plate member 13 is bent at a substantially right angle at the end portion 27 of the flat portion 25 and further extended to form an attachment portion 29. A plurality of through holes 31 are formed in the attachment portion 29, and are configured to be able to be inserted into screws and nails and fixed to the shaft assembly. Further, the end side 37 opposite to the side on which the attachment portion 29 is formed is formed so as to intersect at right angles to the short side 45 and the long side 35 formed at both ends thereof.

また、第一板材11の端辺33の長さと第二板材13の端辺37とは、略同一の長さを有している。さらに、第一板材11と第二板材13とは、第一板材11の短辺43と第二板材13の短辺45とが面一になるように配置され、かつ、第一板材11の長辺39と第二板材13の長辺35とが面一になるように配置されている。つまり、第一板材11と第二板材13とが重なり合っている接合面41は、略長方形(矩形)に形成されている。   Further, the length of the end side 33 of the first plate member 11 and the end side 37 of the second plate member 13 have substantially the same length. Further, the first plate member 11 and the second plate member 13 are arranged such that the short side 43 of the first plate member 11 and the short side 45 of the second plate member 13 are flush with each other, and the length of the first plate member 11 is long. The side 39 and the long side 35 of the second plate 13 are arranged so as to be flush with each other. That is, the joint surface 41 where the first plate member 11 and the second plate member 13 overlap each other is formed in a substantially rectangular (rectangular) shape.

さらに、第一板材11の取付部21における短辺43側の端部と第二板材13の取付部29が形成されている面との間には第一の隙間W1が形成され、第二板材13の取付部29における短辺45側の端部と第一板材11の取付部21が形成されている面との間には第二の隙間W2が形成されている。なお、第一の隙間W1と第二の隙間W2とで形成される領域が空間部50として構成されている。空間部50は、正面視において直角三角形状に構成されている。   Furthermore, a first gap W1 is formed between the end portion on the short side 43 side of the attachment portion 21 of the first plate member 11 and the surface on which the attachment portion 29 of the second plate member 13 is formed. A second gap W <b> 2 is formed between the end of the 13 attachment portions 29 on the short side 45 side and the surface on which the attachment portion 21 of the first plate 11 is formed. Note that a region formed by the first gap W <b> 1 and the second gap W <b> 2 is configured as a space portion 50. The space 50 is configured in a right triangle shape when viewed from the front.

そして、第一板材11と第二板材13との間には、弾性材料15が充填されている。弾性材料15は、例えば、アクリル系、シリコン系、アスファルト系、ゴム系などの高分子材料を原料とした材料またはそれらの複合材料で構成されている。弾性材料15により第一板材11と第二板材13とが接合されている。弾性材料15は、接合面41の略全面に充填されている。   An elastic material 15 is filled between the first plate member 11 and the second plate member 13. The elastic material 15 is made of, for example, a material made of a polymer material such as acrylic, silicon, asphalt, or rubber, or a composite material thereof. The first plate member 11 and the second plate member 13 are joined by the elastic material 15. The elastic material 15 is filled in substantially the entire bonding surface 41.

ここで、弾性材料15について詳細に説明する。
一般に、粘弾性体(弾性材料)は、振幅の増加に連れて剛性が増加して抵抗力が高くなる。振幅が大きくなるに連れて剛性が大きくなる性質を有する粘弾性体の場合、建物の加速度応答や各部応力の過大な上昇が生じる。したがって、制振ダンパ10用の粘弾性体としては、振幅が増加しても剛性の増加が頭打ちになる性質を有する粘弾性材料で形成されたものが好ましい。また、制振ダンパ10用の粘弾性体としては、交通振動などの環境振動から台風時の風揺れ、或いは、大地震に至るまでの幅広い振動領域で機能する必要があるため、歪み依存性は小さいことが好ましい。
Here, the elastic material 15 will be described in detail.
Generally, a viscoelastic body (elastic material) increases in rigidity and resistance as the amplitude increases. In the case of a viscoelastic body having the property that the rigidity increases as the amplitude increases, the acceleration response of the building and the excessive increase in stress of each part occur. Therefore, the viscoelastic body for the vibration damper 10 is preferably formed of a viscoelastic material having a property that the increase in rigidity reaches a peak even when the amplitude increases. In addition, the viscoelastic body for the vibration damper 10 must function in a wide range of vibrations ranging from environmental vibrations such as traffic vibrations to wind fluctuations during typhoons or large earthquakes. Small is preferable.

表1に示すように、本粘弾性体は、0.125≦γ(剪断歪)≦3.0の領域下において、Heq(等価粘性減衰定数(等価減衰定数))>0.24 と安定したエネルギー吸収能力を持ち、振幅が増加しても、γ=3とγ=1のGeq(等価剪断弾性率)の比が、0.40≦{Geq (γ=3.0)}/{Geq(γ=1.0)}<0.60と減少する。この比が、0.6を超えると、建物の加速度応答が上昇し、建物各部の部材に過大な応力負担が生じ、制振ダンパ10の最適化設計が難しくなる。また、この比が、0.4を下回ると、建物全体の剛性の一部を制振ダンパ10の剛性が負担する寄与が減り、建物部材のコストダウンが難しくなる。
ここで、Geq(等価剪断弾性率)=Keq/(S/D)で求められる。
なお、γは剪断歪であり、図5に示すように、粘弾性体の剪断変形量dを粘弾性体の厚さtで除したものである(γ=d/t)。また、Heq及びGeqは、粘弾性体を剪断変形させる正弦波加振を行い、その際の図6に示す履歴ループ(ヒステリシス曲線)を求め、次式に基づいて算出されるものである。
Heq=ΔW/2πW
W:剪断変形の弾性エネルギー(N・mm)(図6中の斜線部分の面積)
ΔW:剪断変形により吸収するエネルギーの合計(N・mm)(図6中の楕円部分の面積)
Geq=Keq/(S/D)=F/UBE/(S/D)
F:最大変位を与えるときの荷重(N)
BE:最大変位(mm)
S/D:試験体の形状係数(サンプル剪断面積/サンプル剪断隙間)
As shown in Table 1, the viscoelastic body was stable with Heq (equivalent viscous damping constant (equivalent damping constant))> 0.24 in the region of 0.125 ≦ γ (shear strain) ≦ 3.0. Even if it has energy absorption capability and the amplitude increases, the ratio of Geq (equivalent shear modulus) between γ = 3 and γ = 1 is 0.40 ≦ {Geq ( γ = 3.0) } / {Geq ( γ = 1.0) } <0.60. When this ratio exceeds 0.6, the acceleration response of the building increases, an excessive stress load is generated on the members of each part of the building, and the optimization design of the vibration damper 10 becomes difficult. Moreover, when this ratio is less than 0.4, the contribution of the rigidity of the vibration damper 10 to a part of the rigidity of the entire building is reduced, and it is difficult to reduce the cost of the building member.
Here, Geq (equivalent shear modulus) = Keq / (S / D).
Note that γ is a shear strain, and as shown in FIG. 5, the shear deformation amount d of the viscoelastic body is divided by the thickness t 1 of the viscoelastic body (γ = d / t 1 ). Further, Heq and Geq are calculated based on the following equations by performing a sinusoidal excitation for shear deformation of the viscoelastic body, obtaining a hysteresis loop (hysteresis curve) shown in FIG.
Heq = ΔW / 2πW
W: Elastic energy of shear deformation (N · mm) (area of hatched portion in FIG. 6)
ΔW: Total energy absorbed by shear deformation (N · mm) (area of ellipse in FIG. 6)
Geq = Keq / (S / D ) = F / U BE / (S / D)
F: Load when giving maximum displacement (N)
U BE : Maximum displacement (mm)
S / D: Shape factor of specimen (sample shear area / sample shear gap)

Figure 0004302175
Figure 0004302175

また、表2に示すように、一般的な粘弾性体は、振動周波数の増加に伴ってGeq(N/mm2)が著しく大きくなる。例えば、20℃では、振動周波数0.1Hzのときと2.0HzのときとではGeqの値が2〜3倍となる。交通振動の卓越周波数は通常4〜7Hzに分布し、地震動は0.1〜20Hz程度に分布するため、制振ダンパ10用の粘弾性体としては、より入力周波数分布領域が広範囲に及ぶ地震動に対して、剛性や減衰性能の点で比較的安定した性質を備えていることが好ましい。 Further, as shown in Table 2, in general viscoelastic bodies, Geq (N / mm 2 ) increases remarkably as the vibration frequency increases. For example, at 20 ° C., the value of Geq is two to three times when the vibration frequency is 0.1 Hz and 2.0 Hz. The prevailing frequency of traffic vibration is normally distributed in 4-7 Hz, and the seismic motion is distributed in the range of 0.1-20 Hz. Therefore, as a viscoelastic body for the vibration damper 10, the input frequency distribution region has a wide range of seismic motion. On the other hand, it is preferable to have relatively stable properties in terms of rigidity and damping performance.

一般的な粘弾性体の減衰性能は、概ねその剛性(ここでは、Geq)と減衰定数(ここではHeq)との積で表現することができる。
本粘弾性体は、一定の温度条件下で、この積の値が、ある周波数を基準として0.1〜20Hzの範囲で±50%以内となる。この範囲が±50%を超えると入力周波数分布領域が広範囲に及ぶ地震動(0.1〜20Hz程度の分布)に対して、剛性や減衰性能の点で安定した性質を発現することが難しい。
The damping performance of a general viscoelastic body can be generally expressed by the product of its rigidity (here, Geq) and a damping constant (here, Heq).
In the present viscoelastic body, the value of this product is within ± 50% within a range of 0.1 to 20 Hz with a certain frequency as a reference under a certain temperature condition. When this range exceeds ± 50%, it is difficult to develop a stable property in terms of rigidity and damping performance with respect to ground motion (distribution of about 0.1 to 20 Hz) over a wide input frequency distribution region.

Figure 0004302175
Figure 0004302175

また、表3に示すように、一般的な粘弾性体は、低温時に剛性が高くなり、高温時に剛性が低くなる。日本は一年を通じて気温の変化が大きく、制振ダンパ10用の粘弾性体としては、0〜40℃程度の温度範囲に対して、剛性や減衰性能の点で比較的安定した性質を備えていることが好ましい。
本粘弾性体は、20℃でのGeqを基準として、低温側は0℃のときのGeq(t=0℃)と20℃のときのGeq(t=20℃)との比が、Geq(t=0℃)/Geq(t=20℃)≦2.0 であり、且つ、高温側は40℃のときのGeq(t=40℃)と20℃のときのGeq(t=20℃)との比が、Geq(t=40℃)/Geq(t=20℃)≧0.5となる。
Further, as shown in Table 3, a general viscoelastic body has high rigidity at low temperatures and low rigidity at high temperatures. In Japan, the temperature changes greatly throughout the year, and the viscoelastic body for the damping damper 10 has relatively stable properties in terms of rigidity and damping performance in the temperature range of about 0 to 40 ° C. Preferably it is.
This viscoelastic body is based on Geq at 20 ° C., and the ratio of Geq (t = 0 ° C.) at 0 ° C. to Geq (t = 20 ° C.) at 20 ° C. t = 0 ° C.) / Geq (t = 20 ° C.) ≦ 2.0, and on the high temperature side, Geq at 40 ° C. (t = 40 ° C.) and Geq at 20 ° C. (t = 20 ° C.) The ratio becomes Geq (t = 40 ° C.) / Geq (t = 20 ° C.) ≧ 0.5.

また、建物を設計する際の剛性は、低温時に高くなる粘弾性体のGeq(t=0℃)に耐えうる剛性が必要である。ここで、Geq(t=0℃)/Geq(t=20℃)が、上記の2.0を越える場合は、建物の剛性が過大な設計となり大幅なコストアップとなる。また、Geq(t=40℃)/Geq(t=20℃)が、上記の0.5を下回る場合、40℃における減衰性能(剛性と減衰定数の積)が、小さくなり、安定した減衰性能を得ることが出来ない。このように温度によって、粘弾性体の剛性が大きく変化すると、建物への取り付け位置も内壁等の温度変化の少ない場所に限定され、設計の自由度も減る。  Moreover, the rigidity at the time of designing a building needs to be able to withstand the Geq (t = 0 ° C.) of the viscoelastic body that becomes high at low temperatures. Here, when Geq (t = 0 ° C.) / Geq (t = 20 ° C.) exceeds 2.0, the building has an excessively rigid design, resulting in a significant cost increase. In addition, when Geq (t = 40 ° C.) / Geq (t = 20 ° C.) is less than 0.5 above, the damping performance (product of rigidity and damping constant) at 40 ° C. becomes small, and stable damping performance Can not get. Thus, when the rigidity of the viscoelastic body largely changes depending on the temperature, the mounting position on the building is limited to a place where the temperature change is small, such as the inner wall, and the degree of freedom in design is reduced.

Figure 0004302175
Figure 0004302175

さらに、表4に示すように、一般的な粘弾性体は、建物の変形に追随し、安定した性能を発現するためには、0℃〜40℃の環境下、γ(剪断歪)≦3.0の領域下において、水平力の低下がないことが必要である。本粘弾性体は、限界変形時の変形量(歪み率)が、0℃〜40℃の範囲で、歪み率≧400%を発現する。歪率が400%を下回るような粘弾性体は、大地震時の建物変形に追随出来ず粘弾性体の破断が起こる。   Furthermore, as shown in Table 4, in order for a general viscoelastic body to follow the deformation of a building and express stable performance, γ (shear strain) ≦ 3 in an environment of 0 ° C. to 40 ° C. It is necessary that there is no reduction in horizontal force under the .0 region. The present viscoelastic body exhibits a strain rate ≧ 400% when the deformation amount (strain rate) at the limit deformation is in the range of 0 ° C. to 40 ° C. A viscoelastic body with a strain rate of less than 400% cannot follow the building deformation during a large earthquake and the viscoelastic body breaks.

Figure 0004302175
Figure 0004302175

そして、一般的に粘弾性体の経年変化は、表5に示すように、アレニウス則により得られた20℃での経年に相当する老化条件にて加熱促進劣化を行ったあと、粘弾性体の厚みに対して100%の正負の水平変位を、周波数0.1Hz、温度20℃の環境下で与え、Heq、Geqを求める。なお、アレニウス則から展開して得られる温度と時間の関係式は、下記で与えられる。
ln(L20/L)=(1/t20−1/t)・(Ea / R)
ここで、
20・・・20℃における老化時間(hr)
・・・任意の温度における老化時間(hr)
20・・・温度20℃
・・・任意の温度(℃)
Ea ・・・活性化エネルギー(粘弾性体材料固有の値)
R ・・・気体定数
以上より促進劣化試験条件:80℃×7日とした。
本粘弾性体の経年変化は、一般的な建物に求められる耐久年数に相当する。経年相当年数60年の促進劣化試験において、Heq、Geqの変化率が、Heq(60年)/Heq(0年)>0.8、Geq(60年)/Geq(0年)<1.2の範囲となり、経年相当年数60年を経過しても、充分に制振性能を保持している。しかしながら、Heq、Geqの変化率が、上記の範囲を外れる場合は、制振ダンパ10の機能が落ちているため、経年相当年数60年以前に交換が必要となる。
In general, the secular change of the viscoelastic body is, as shown in Table 5, after the heat-promoted deterioration under the aging conditions corresponding to the aging at 20 ° C. obtained by the Arrhenius law. A positive and negative horizontal displacement of 100% with respect to the thickness is given in an environment with a frequency of 0.1 Hz and a temperature of 20 ° C., and Heq and Geq are obtained. The relational expression between temperature and time obtained by developing from Arrhenius law is given below.
ln (L 20 / L S ) = (1 / t 20 −1 / t S ) · (Ea / R)
here,
L 20 : Aging time at 20 ° C. (hr)
L S・ ・ ・ Aging time at any temperature (hr)
t 20 ... temperature 20 ° C
t S ... Arbitrary temperature (° C)
Ea: Activation energy (value specific to viscoelastic material)
R: Gas constant From the above, accelerated deterioration test conditions: 80 ° C. × 7 days.
The secular change of this viscoelastic body corresponds to the durable years required for general buildings. In the accelerated deterioration test of 60 years equivalent to age, the change rates of Heq and Geq are Heq (60 years) / Heq (0 years)> 0.8, Geq (60 years) / Geq (0 years) <1.2 The vibration damping performance is sufficiently maintained even after 60 years of equivalent age. However, if the rate of change of Heq and Geq is outside the above range, the function of the damping damper 10 is degraded, so replacement is required before 60 years equivalent to age.

Figure 0004302175
Figure 0004302175

以上のように本制振ダンパ10に用いられる粘弾性体が、好ましい歪依存性、周波数依存性、温度依存性、限界性能、及び経年変化のいずれをも備え、これにより優れた制振性能を発現する。
これらの制振ダンパ10に用いられる粘弾性体は、特に、主鎖にC−C結合を有するポリマーからなる基材ゴムに、該基材ゴム100質量部に対して100〜150質量部のシリカと、該シリカの10〜30質量%のシラン化合物と、が添加されて架橋されたゴム組成物で形成されている。
なお、ゴム組成物(粘弾性体)は、上記各成分を、例えば密閉式混練機などを用いて混練することによって得られる。そして、制振ダンパ10に用いる場合には、例えば得られたゴム組成物をローラヘッド押出機などを用いてシート状に成形するとともに、成形したシートを所定の形状に打ち抜いた後、そのシートを所定の厚みを有するように複数枚積層した状態で、所定の型内で加熱して、例えば加硫成形することによって製造することができる。
As described above, the viscoelastic body used in the vibration damping damper 10 has preferable strain dependency, frequency dependency, temperature dependency, limit performance, and secular change, and thereby has excellent vibration suppression performance. To express.
The viscoelastic body used for these vibration dampers 10 is particularly a base rubber made of a polymer having a C—C bond in the main chain, and 100 to 150 parts by mass of silica with respect to 100 parts by mass of the base rubber. And 10-30 mass% silane compound of the silica is added to form a crosslinked rubber composition.
The rubber composition (viscoelastic body) is obtained by kneading the above components using, for example, a closed kneader. And when using it for the damping damper 10, for example, while shape | molding the obtained rubber composition into a sheet form using a roller head extruder etc., and stamping out the shape | molded sheet | seat in a predetermined shape, the sheet | seat is used. In a state where a plurality of layers are laminated so as to have a predetermined thickness, they can be manufactured by heating in a predetermined mold and performing, for example, vulcanization molding.

また、上述した各特性値の測定は、制振ゴム試験体を用いて実施した。この制振ゴム試験体は、例えば自己粘着性のものや一般的な接着剤を用いて一対の鋼板と接着することにより形成することができるが、接着への信頼性の観点から加硫接着により接合した。例えば、未加硫の制振ゴム(粘弾性体)を所定の形状を有するように押出した後、切断し、予備成形した状態で所定の型内で加熱して加硫成形するとともに、このプレス加硫と同時に加硫接着させることにより、制振ゴム試験体を製造した。
そして、製造した制振ゴム試験体を、(株)島津製作所製 EHF-EV020K2-040-1 A型サーボパルサー耐久試験機に、2個の試験体が鋼板を介して挟持されるようにセットし、上述のGeqなどの測定を実施した。
Moreover, the measurement of each characteristic value mentioned above was implemented using the damping rubber test body. This vibration-damping rubber specimen can be formed, for example, by bonding to a pair of steel plates using a self-adhesive material or a general adhesive, but from the viewpoint of reliability to bonding, Joined. For example, an unvulcanized vibration-damping rubber (viscoelastic body) is extruded to have a predetermined shape, then cut, preliminarily molded, heated in a predetermined mold, and vulcanized and molded. A vibration-damping rubber specimen was manufactured by vulcanization adhesion at the same time as vulcanization.
Then, set the manufactured vibration-damping rubber specimen on the EHF-EV020K2-040-1 A-type servo pulsar durability tester manufactured by Shimadzu Corporation so that the two specimens are sandwiched via the steel plate. Measurements such as Geq described above were performed.

次に、制振ダンパ10を木造構造体に設置した場合について、図4に基づいて説明する。
図4に示すように、木造構造体の1階床面の外周にはコンクリートなどで形成された図示しない基礎の上方に、木製の角材で構成された土台51が略水平に略全周に亘って設けられている。また、土台51の上方には適宜間隔をおいて略垂直方向に木製の角材で構成された柱53が立設されている。土台51と柱53とは互いの接合部55に形成された図示しない嵌合部を嵌め合わせることにより接合されている。
Next, the case where the damping damper 10 is installed in a wooden structure will be described with reference to FIG.
As shown in FIG. 4, a base 51 made of wooden squares extends substantially horizontally around the entire circumference of a first floor of the wooden structure above a foundation (not shown) formed of concrete or the like. Is provided. In addition, above the base 51, a pillar 53 made of wooden square material is erected in a substantially vertical direction at an appropriate interval. The base 51 and the pillar 53 are joined by fitting a fitting portion (not shown) formed in the joint portion 55 of each other.

また、1階床面を構成する図示しない大引や根太が略碁盤目状に適宜配設されている。根太57は、土台51上に端部が載置されるように配置される。ここで、図4に示すように、根太57の一部が、土台51と柱53との接合部55近傍に配置されている。   In addition, unillustrated large draws and joists constituting the first floor are appropriately arranged in a substantially grid pattern. The joists 57 are arranged such that the end portions are placed on the base 51. Here, as shown in FIG. 4, a part of the joist 57 is disposed in the vicinity of the joint portion 55 between the base 51 and the pillar 53.

上述のような構成の箇所に制振ダンパ10が設けられている。制振ダンパ10は、第一板材11の取付部21が土台51の上面59に接するように配置され、取付部21の貫通孔23に釘などを打ち込むことにより第一板材11と土台51とが接合されている。また、第二板材13の取付部29が柱53の表面61に接するように配置され、取付部29の貫通孔31に釘などを打ち込むことにより第二板材13と柱53とが接合されている。このように木造構造体に制振ダンパ10を簡単に取りつけることができる。このとき、制振ダンパ10は、土台51と柱53との間を斜めに架設するようになる。
また、制振ダンパ10を土台51と柱53との間を架設するように取り付けると、土台51、柱53および制振ダンパ10に囲われた位置に空間部50が位置するように構成される。
The vibration damper 10 is provided at the location having the above-described configuration. The vibration damper 10 is disposed so that the attachment portion 21 of the first plate member 11 is in contact with the upper surface 59 of the base 51, and the first plate member 11 and the base 51 are moved by driving a nail or the like into the through hole 23 of the attachment portion 21. It is joined. Further, the mounting portion 29 of the second plate member 13 is disposed so as to contact the surface 61 of the column 53, and the second plate member 13 and the column 53 are joined by driving a nail or the like into the through hole 31 of the mounting portion 29. . In this way, the vibration damper 10 can be easily attached to the wooden structure. At this time, the vibration damper 10 is installed between the base 51 and the pillar 53 obliquely.
Further, when the vibration damper 10 is attached so as to be installed between the base 51 and the pillar 53, the space portion 50 is configured to be located at a position surrounded by the base 51, the pillar 53, and the vibration damper 10. .

このとき、制振ダンパ10に形成された空間部50に根太57が位置しており、制振ダンパ10と根太57とが干渉することなく取り付けられている。
なお、柱53と図示しない梁との接合部など、軸組材同士の接合部にも同様に制振ダンパ10が適宜取り付けられている。
At this time, the joist 57 is located in the space 50 formed in the vibration damper 10, and the vibration damper 10 and the joist 57 are attached without interference.
In addition, the damping damper 10 is similarly attached suitably also to the junction part of shaft assemblies, such as the junction part of the pillar 53 and the beam which is not shown in figure.

また、土台51と基礎とを接合するには土台51の上面59から基礎に向かってアンカーボルト63を打設して接合する。このアンカーボルト63は木造構造体の1階外周に沿って適宜間隔を空けながら土台51側から基礎に向かって打設されている。アンカーボルト63を打設すると、その頭部が土台51の上面59から突出する。ここで、制振ダンパ10の空間部50内にアンカーボルト63が打設されても、アンカーボルト63の頭部が空間部50内に配置できるように構成されている。   Further, in order to join the base 51 and the foundation, anchor bolts 63 are driven from the upper surface 59 of the base 51 toward the foundation and joined. The anchor bolts 63 are driven from the base 51 side toward the foundation while being appropriately spaced along the outer periphery of the first floor of the wooden structure. When the anchor bolt 63 is driven, the head protrudes from the upper surface 59 of the base 51. Here, even if the anchor bolt 63 is driven in the space 50 of the vibration damper 10, the head of the anchor bolt 63 can be arranged in the space 50.

このような構成において、木造構造体を構成する土台51と柱53との接合部55は完全な剛構造にならないため、地震時などに接合部55近傍が変形する。
接合部55近傍が変形すると、制振ダンパ10の第一板材11と第二板材13とがその地震力を受けて、第一板材11の平面部17および第二板材13の平面部25が互いに相反する方向に回転し、これに伴って弾性材料15がせん断変形することにより、地震エネルギーが吸収され、結果として木造構造体の耐震強度を向上することができる。
In such a configuration, since the joint portion 55 between the base 51 and the pillar 53 constituting the wooden structure does not have a complete rigid structure, the vicinity of the joint portion 55 is deformed during an earthquake or the like.
When the vicinity of the joint portion 55 is deformed, the first plate member 11 and the second plate member 13 of the vibration damper 10 receive the seismic force, and the flat portion 17 of the first plate member 11 and the flat portion 25 of the second plate member 13 are mutually connected. When the elastic material 15 is sheared and deformed in the opposite directions, the seismic energy is absorbed, and as a result, the seismic strength of the wooden structure can be improved.

本実施形態によれば、木造構造体の軸組材同士の接合部近傍に設置する制振ダンパ10において、土台51に固定して突設される第一板材11と、柱53に固定して突設される第二板材13と、第一板材11と第二板材13との間に充填され、第一板材11と第二板材13とを接合する弾性材料15と、を備え、柱53と第一板材11の取付部21における短辺43側の端部との間に第一の隙間W1が形成されるとともに、土台51と第二板材13の取付部29における短辺43側の端部との間に第二の隙間W2が形成されるように構成した。   According to this embodiment, in the damping damper 10 installed in the vicinity of the joint part between the frame members of the wooden structure, the first plate member 11 that is fixedly projected to the base 51 and the column 53 is fixed. A second plate member 13 that is projected, and an elastic material 15 that is filled between the first plate member 11 and the second plate member 13 and that joins the first plate member 11 and the second plate member 13, and a column 53. A first gap W1 is formed between the attachment portion 21 of the first plate member 11 and the end portion on the short side 43 side, and the end portion on the short side 43 side of the base 51 and the attachment portion 29 of the second plate member 13 is formed. The second gap W2 is formed between the two.

このように構成したため、制振ダンパ10が第一板材11および第二板材13とそれらの間に充填された弾性材料15とで構成され、軽量かつ小型化することができる。また、第一の隙間W1および第二の隙間W2を形成するように構成することで、制振ダンパ10を土台51や柱53などの軸組材に取り付けた際に、中空の空間部50が形成されるため、空間部50に根太57などの部材や部品を配置することができる。したがって、土台51と柱53との接合部55などの軸組材同士の接合部に制振ダンパ10を確実に取り付けることができる。   Since it comprised in this way, the damping damper 10 is comprised by the elastic material 15 with which the 1st board | plate material 11 and the 2nd board | plate material 13 were filled between them, and it can reduce in weight and size. Further, by forming the first gap W1 and the second gap W2, the hollow space 50 is formed when the damping damper 10 is attached to the shaft assembly such as the base 51 and the column 53. Therefore, members such as joists 57 and parts can be arranged in the space 50. Therefore, the damping damper 10 can be reliably attached to the joint portion between the shaft assemblies such as the joint portion 55 between the base 51 and the column 53.

また、第一板材11を取付部21から取付部29に指向するように形成された鋼板製の板材で構成し、第二板材13を取付部29から取付部21に指向するように形成された鋼板製の板材で構成した。   Further, the first plate member 11 is formed of a steel plate member formed so as to be directed from the attachment portion 21 to the attachment portion 29, and the second plate member 13 is formed so as to be directed from the attachment portion 29 to the attachment portion 21. It comprised with the board | plate material made from a steel plate.

このように構成したため、第一板材11と第二板材13とが鋼板で形成され、強度を確保することができ、制振ダンパ10として確実に耐震性能を確保することができる。また、第一板材11および第二板材13により、必要最小限の面積で軸組材同士に対して斜めに架設することができるため、材料を削減でき、低コストで耐震性向上に寄与する制振ダンパ10を製造することができる。さらに、第一板材11および第二板材13により軸組材同士に対して斜めに架設するため、接合面41の面積を増減させることで、耐震強度を容易に調整することができる効果がある。   Since it comprised in this way, the 1st board | plate material 11 and the 2nd board | plate material 13 are formed with a steel plate, intensity | strength can be ensured and the seismic performance can be ensured reliably as the damping damper 10. FIG. In addition, since the first plate member 11 and the second plate member 13 can be installed obliquely with respect to the shaft assembly members with a necessary minimum area, the material can be reduced, and a system that contributes to improvement of earthquake resistance at low cost. The vibration damper 10 can be manufactured. Furthermore, since the first plate member 11 and the second plate member 13 are installed obliquely with respect to the shaft assembly members, the seismic strength can be easily adjusted by increasing or decreasing the area of the joint surface 41.

また、第一の隙間W1、第二の隙間W2、第一板材11および第二板材13で構成される空間部50が、少なくとも根太57を挿通可能な大きさを有するように構成した。   Further, the space 50 constituted by the first gap W 1, the second gap W 2, the first plate member 11, and the second plate member 13 is configured to have a size capable of inserting at least the joist 57.

このように構成したため、土台51と柱53との接合部55に制振ダンパ10を取り付ける際に、根太57が配置されていても根太57と干渉することなく、取り付けることができる。したがって、土台51と柱53との接合部55などの軸組材同士の接合部に確実に取り付けることができる。   Since it comprised in this way, when attaching the damping damper 10 to the junction part 55 of the base 51 and the pillar 53, even if the joist 57 is arrange | positioned, it can attach without interfering with the joist 57. Therefore, it can be reliably attached to the joint portion between the shaft assemblies such as the joint portion 55 between the base 51 and the column 53.

さらに、空間部50に、接合部55近傍における土台51と基礎とを接合するためのアンカーボルト63を配置可能に構成した。   Furthermore, the anchor bolt 63 for joining the base 51 and the foundation in the vicinity of the joint portion 55 can be disposed in the space portion 50.

このように構成したため、土台51と柱53との接合部55に制振ダンパ10を取り付ける際に、アンカーボルト63が配置されていてもアンカーボルト63と干渉することなく、取り付けることができる。したがって、土台51と柱53との接合部55などの軸組材同士の接合部に確実に取り付けることができる。   Since it comprised in this way, when attaching the damping damper 10 to the junction part 55 of the base 51 and the pillar 53, even if the anchor bolt 63 is arrange | positioned, it can attach without interfering with the anchor bolt 63. Therefore, it can be reliably attached to the joint portion between the shaft assemblies such as the joint portion 55 between the base 51 and the column 53.

上述の制振ダンパ10を用いた実施例について説明する。実施例の説明には、適宜図1〜図4を用いながら説明を行う。
第一板材11および第二板材12は、厚さ3.2mmのSS400からなる鋼板で形成した。それぞれの平面部17および25は、短辺240mm、長辺430mm、高さ92mmの大きさで形成した。それぞれの取付部21および29は、130mm×43mmの大きさで形成した。また、それぞれの貫通孔23および31はφ6mmの孔で形成され、それぞれ11個(6個+5個の2列)ずつ均等配置になるように形成した。
An embodiment using the above-described vibration damper 10 will be described. The embodiment will be described with reference to FIGS. 1 to 4 as appropriate.
The 1st board | plate material 11 and the 2nd board | plate material 12 were formed with the steel plate which consists of SS400 of thickness 3.2mm. Each of the flat portions 17 and 25 was formed with a short side of 240 mm, a long side of 430 mm, and a height of 92 mm. Each attachment part 21 and 29 was formed in the magnitude | size of 130 mm x 43 mm. The through holes 23 and 31 were each formed as a hole with a diameter of 6 mm, and 11 pieces (6 pieces + two pieces of 5 rows) were formed so as to be evenly arranged.

このように形成された第一板材11および第二板材13を、第一板材11の短辺43と第二板材13の短辺45とが面一になるように配置し、かつ、第一板材11の長辺39と第二板材13の長辺35とが面一になるように配置した。つまり、第一板材11と第二板材13とが重なり合っている接合面41が、略長方形(矩形)になるように配置した。
ここで、接合部41の大きさは、162mm×92mmになるように第一板材11と第二板材13とを配置した。
The first plate member 11 and the second plate member 13 thus formed are arranged so that the short side 43 of the first plate member 11 and the short side 45 of the second plate member 13 are flush with each other, and the first plate member The long side 39 of 11 and the long side 35 of the 2nd board | plate material 13 have arrange | positioned so that it may become flush | level. In other words, the joining surface 41 where the first plate member 11 and the second plate member 13 overlap each other is arranged to be substantially rectangular (rectangular).
Here, the 1st board | plate material 11 and the 2nd board | plate material 13 have been arrange | positioned so that the magnitude | size of the junction part 41 may be 162 mm x 92 mm.

このように構成することで、空間部50は、正面視において第一の隙間W1および第二の隙間W2がそれぞれ170mmの直角二等辺三角形の大きさで形成される。
また、弾性材料15は、第一板材11と第二板材13との間に充填され、厚さ3mmのゴム系材料で形成した。弾性材料15は、接合面41において、正面視で150mm×80mmの大きさで形成した。
そして、第一板材11の取付部21を土台51に固定設置し、第二板材13の取付部29を柱53に固定設置した。
By configuring in this way, the space 50 is formed in a right isosceles triangle size in which the first gap W1 and the second gap W2 are each 170 mm in front view.
The elastic material 15 was filled between the first plate material 11 and the second plate material 13 and formed of a rubber-based material having a thickness of 3 mm. The elastic material 15 was formed on the joint surface 41 with a size of 150 mm × 80 mm in front view.
Then, the attachment portion 21 of the first plate member 11 was fixedly installed on the base 51, and the attachment portion 29 of the second plate member 13 was fixedly installed on the column 53.

このように制振ダンパ10を木造構造体に設置した状態で加振実験などを実施し、耐震性の向上に寄与することが確認された。   Thus, it was confirmed that the vibration damping experiment 10 was performed in a state where the vibration damper 10 was installed on the wooden structure, which contributed to the improvement of the earthquake resistance.

尚、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な材料や構成等は一例にすぎず、適宜変更が可能である。
例えば、本実施形態では、第一板材と第二板材の取付部の折曲方向が同じ向きになるようにして配置構成したが、取付部の折曲方向が反対の向きになるように配置構成してもよい。
また、本実施形態では、空間部に根太とアンカーボルトが配置可能な大きさを有する場合の説明をしたが、根太のみが配置可能な大きさであってもよい。
また、本実施形態では、第一板材と第二板材との接合面が長方形になるように互いの板材を配置した場合の説明をしたが、第一板材と第二板材との位置関係をずらして、接合面が正方形になるように配置してもよい。
It should be noted that the technical scope of the present invention is not limited to the above-described embodiment, and includes those in which various modifications are made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific materials, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
For example, in the present embodiment, the first plate member and the second plate member are arranged and configured so that the bending direction of the attachment portion is the same direction, but the arrangement configuration is such that the bending direction of the attachment portion is opposite. May be.
Moreover, although the case where it has the magnitude | size which can arrange a joist and an anchor bolt in a space part was demonstrated in this embodiment, the magnitude | size which can arrange only a joist may be sufficient.
Moreover, in this embodiment, although the case where each board | plate material was arrange | positioned so that the joint surface of a 1st board | plate material and a 2nd board | plate material might become a rectangle, the positional relationship of a 1st board | plate material and a 2nd board | plate material was shifted. In addition, the joint surfaces may be arranged in a square shape.

本発明の実施形態における制振ダンパの斜視図である。It is a perspective view of the damping damper in the embodiment of the present invention. 本発明の実施形態における制振ダンパの正面図である。It is a front view of the damping damper in the embodiment of the present invention. 本発明の実施形態における制振ダンパの側面図である。It is a side view of the damping damper in the embodiment of the present invention. 本発明の実施形態における制振ダンパを木造構造体に設置した一例を示す斜視図である。It is a perspective view which shows an example which installed the damping damper in embodiment of this invention in the wooden structure. 本発明の実施形態における弾性材料(粘弾性体)のせん断歪を求める概略図である。It is the schematic which calculates | requires the shear distortion of the elastic material (viscoelastic body) in embodiment of this invention. 本発明の実施形態における弾性材料(粘弾性体)の履歴ループ(ヒステリシス曲線)である。It is a hysteresis loop (hysteresis curve) of the elastic material (viscoelastic body) in the embodiment of the present invention.

符号の説明Explanation of symbols

10…制振ダンパ 11…第一板材 13…第二板材 15…弾性材料 21…取付部(第一取付部) 29…取付部(第二取付部) 50…空間部 51…土台(軸組材) 53…柱(軸組材) 55…接合部 57…根太 63…アンカーボルト W1…第一の隙間 W2…第二の隙間   DESCRIPTION OF SYMBOLS 10 ... Damping damper 11 ... 1st board | plate material 13 ... 2nd board | plate material 15 ... Elastic material 21 ... Attachment part (1st attachment part) 29 ... Attachment part (2nd attachment part) 50 ... Space part 51 ... Base (shaft assembly material) 53 ... Pillar (shaft assembly) 55 ... Joint part 57 ... Jaw 63 ... Anchor bolt W1 ... First gap W2 ... Second gap

Claims (2)

木造構造体の軸組材同士の接合部近傍に設置する制振ダンパにおいて、
一方の軸組材に固定して突設される第一板材と、
他方の軸組材に固定して突設される第二板材と、
前記第一板材と前記第二板材との間に充填され、前記第一板材と前記第二板材とを接合する弾性材料と、を備え、
前記他方の軸組材と前記第一板材における前記一方の軸組材との第一取付部との間に第一の隙間が形成されるとともに、前記一方の軸組材と前記第二板材における前記他方の軸組材との第二取付部との間に第二の隙間が形成され、
前記第一板材が、前記第一取付部から前記第二取付部に指向するように形成された鋼板製の板材で構成されるとともに、
前記第二板材が、前記第二取付部から前記第一取付部に指向するように形成された鋼板製の板材で構成され、
前記第一の隙間、前記第二の隙間、前記第一板材および前記第二板材とで構成される空間部が、少なくとも根太を挿通可能な大きさを有しており、
前記弾性材料が、
0℃〜40℃環境下、かつ、0.125≦γ(せん断歪)≦3.0の領域下において、
Heq(等価粘性減衰定数(等価減衰定数))が、Heq>0.24であり、
γ=3とγ=1のGeq(等価せん断弾性率)の比が、0.40≦{Geq ( γ =3.0) }/{Geq ( γ =1.0) }<0.60であり、
前記弾性材料の減衰性能が、一定の温度条件下で、ある周波数を基準として、その変化率が、0.1〜20Hzの範囲で±50%以内であり、
20℃でのGeqを基準として、
0℃のときのGeq(t=0℃)と20℃のときのGeq(t=20℃)との比が、Geq(t=0℃)/Geq(t=20℃)≦2.0、かつ、
40℃のときのGeq(t=40℃)と20℃のときのGeq(t=20℃)との比が、Geq(t=40℃)/Geq(t=20℃)≧0.5であり、
限界変形時の変形量(歪み率)が、0℃〜40℃の範囲で、歪み率≧400%であり、
経年相当年数60年において、HeqおよびGeqの変化率が、Heq(60年)/Heq(0年)>0.8、Geq(60年)/Geq(0年)<1.2の範囲であることを特徴とする制振ダンパ。
In the vibration damper installed near the joint between the wooden frames of the wooden structure,
A first plate member fixed and projecting on one shaft assembly;
A second plate member fixed and projecting to the other shaft assembly;
An elastic material filled between the first plate and the second plate, and joining the first plate and the second plate;
A first gap is formed between the other shaft assembly and the first attachment portion of the first plate in the first plate, and in the one shaft assembly and the second plate. A second gap is formed between the second shaft assembly and the second attachment portion,
The first plate is composed of a plate made of a steel plate formed so as to be directed from the first mounting portion to the second mounting portion,
The second plate is composed of a plate made of a steel plate formed so as to be directed from the second mounting portion to the first mounting portion,
The space formed by the first gap, the second gap, the first plate member, and the second plate member has a size capable of inserting at least a joist ,
The elastic material is
In an environment of 0 ° C. to 40 ° C. and 0.125 ≦ γ (shear strain) ≦ 3.0,
Heq (equivalent viscous damping constant (equivalent damping constant)) is Heq> 0.24,
The ratio of Geq (equivalent shear modulus) between γ = 3 and γ = 1 is 0.40 ≦ {Geq ( γ = 3.0) } / {Geq ( γ = 1.0) } <0.60,
The damping performance of the elastic material has a rate of change within ± 50% within a range of 0.1 to 20 Hz on the basis of a certain frequency under a certain temperature condition,
Based on Geq at 20 ° C,
The ratio of Geq at 0 ° C. (t = 0 ° C.) to Geq at 20 ° C. (t = 20 ° C.) is Geq (t = 0 ° C.) / Geq (t = 20 ° C.) ≦ 2.0, And,
The ratio of Geq at 40 ° C. (t = 40 ° C.) to Geq at 20 ° C. (t = 20 ° C.) is Geq (t = 40 ° C.) / Geq (t = 20 ° C.) ≧ 0.5 Yes,
Deformation amount (distortion rate) at the limit deformation is in the range of 0 ° C. to 40 ° C., and distortion rate ≧ 400%,
Over 60 years, the change rate of Heq and Geq is in the range of Heq (60 years) / Heq (0 years)> 0.8 and Geq (60 years) / Geq (0 years) <1.2. Damping damper characterized by that.
前記空間部に、前記接合部近傍における土台と基礎とを接合するためのアンカーボルトを配置可能に構成されていることを特徴とする請求項1に記載の制振ダンパ。   The damping damper according to claim 1, wherein an anchor bolt for joining a base and a foundation in the vicinity of the joint is arranged in the space.
JP2008149930A 2007-06-06 2008-06-06 Damping damper Active JP4302175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149930A JP4302175B2 (en) 2007-06-06 2008-06-06 Damping damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007150342 2007-06-06
JP2008149930A JP4302175B2 (en) 2007-06-06 2008-06-06 Damping damper

Publications (2)

Publication Number Publication Date
JP2009013775A JP2009013775A (en) 2009-01-22
JP4302175B2 true JP4302175B2 (en) 2009-07-22

Family

ID=40354994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149930A Active JP4302175B2 (en) 2007-06-06 2008-06-06 Damping damper

Country Status (1)

Country Link
JP (1) JP4302175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104532981A (en) * 2014-12-31 2015-04-22 南京工业大学 Assembling type enhanced steel-wood buckling constraint support with tapping screws

Also Published As

Publication number Publication date
JP2009013775A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
Chan et al. Evaluation of yielding shear panel device for passive energy dissipation
JP2009513898A (en) FORK DAMPER AND METHOD OF USING THE DAMPER
JP4795114B2 (en) Damping structure
US8302351B2 (en) Vibration damper
JP2007297819A (en) Earthquake resistant reinforcing body
JP4302175B2 (en) Damping damper
JP4814857B2 (en) Seismic bearing wall structure
JP3931944B2 (en) Damping damper and its installation structure
JP2007308939A (en) Seismic control structure
KR20160120116A (en) Joint-shaped Vibration Control Device
JP2009013776A (en) Vibration control damper
JP2005133533A (en) Damping wall
JP4773215B2 (en) Damping braces and damping structures
JPH03235856A (en) Earthquake-isolating steel structural beam
JP6635327B2 (en) Seismic isolation structure of building and seismic isolation method
JP4097223B2 (en) Vibration control structure
JP5566737B2 (en) Vibration suppression brace
JP4114813B2 (en) Damping wall structure
JP4828951B2 (en) Laminated rubber bearing and seismic isolation system
JP4878338B2 (en) Reinforcement structure of buildings and structures
JP3245445U (en) Vibration damping structure
JP7278587B2 (en) Bracing hardware and joint structure of wooden building using it
JP5603656B2 (en) Vibration control structure
JP4911715B2 (en) Reinforcement structure of buildings and structures
JP6037298B1 (en) Energy absorption mechanism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250