JP6037298B1 - Energy absorption mechanism - Google Patents

Energy absorption mechanism Download PDF

Info

Publication number
JP6037298B1
JP6037298B1 JP2016065051A JP2016065051A JP6037298B1 JP 6037298 B1 JP6037298 B1 JP 6037298B1 JP 2016065051 A JP2016065051 A JP 2016065051A JP 2016065051 A JP2016065051 A JP 2016065051A JP 6037298 B1 JP6037298 B1 JP 6037298B1
Authority
JP
Japan
Prior art keywords
plate
energy absorption
spring member
absorption mechanism
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016065051A
Other languages
Japanese (ja)
Other versions
JP2017179762A (en
Inventor
古田 智基
智基 古田
方人 中尾
方人 中尾
Original Assignee
学校法人都築教育学園
古田 智基
智基 古田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人都築教育学園, 古田 智基, 智基 古田 filed Critical 学校法人都築教育学園
Priority to JP2016065051A priority Critical patent/JP6037298B1/en
Application granted granted Critical
Publication of JP6037298B1 publication Critical patent/JP6037298B1/en
Publication of JP2017179762A publication Critical patent/JP2017179762A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 従来よりも効果の高いエネルギー吸収機構を提供する。【解決手段】 鉛直方向に延びる柱材及び/又は水平方向に延びる構造材と、傾斜方向に延びる筋交い材とに固定されるエネルギー吸収機構であって、第1のバネ部材と、第2のバネ部材とを備え、前記1のバネ部材と前記第2のバネ部材とが組み合わされてなり、前記第1のバネ部材は、第1バネ定数K1が1.5〜7.5kN/mmの範囲内であり、前記第2のバネ部材は、第2バネ定数K2が5.0〜75.0kN/mmの範囲内であり、下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が、1.4〜4.9の範囲内であることを特徴とする、エネルギー吸収機構。K1<K2 ・・・(数式1)K=(K1×K2)/(K1+K2) ・・・(数式2)【選択図】図1PROBLEM TO BE SOLVED: To provide an energy absorption mechanism that is more effective than conventional ones. An energy absorbing mechanism fixed to a pillar material extending in a vertical direction and / or a structural material extending in a horizontal direction and a brace material extending in an inclined direction, the first spring member, and a second spring And the first spring member and the second spring member are combined, and the first spring member has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm. The second spring member has a second spring constant K2 in the range of 5.0 to 75.0 kN / mm, satisfies the following formula 1 and has a numerical value of K derived from the following formula 2. 1.4 to 4.9, an energy absorption mechanism. K1 <K2 (Equation 1) K = (K1 × K2) / (K1 + K2) (Equation 2) [Selection] FIG.

Description

本発明は、木造建物に用いるエネルギー吸収機構に関する。   The present invention relates to an energy absorption mechanism used for a wooden building.

一般的な木造建物は、柱及び横架材(梁及び土台)の軸組で構成されている。しかし、このような軸組のみでは地震や台風などに十分に抵抗できないことから、軸組に筋交いや面材を追加するなどして、木造建物の剛性および耐力を高めるようにしている。   A typical wooden building is composed of a column and a frame of horizontal members (beams and foundations). However, since such a shaft group alone cannot sufficiently resist earthquakes, typhoons, etc., bracing and face materials are added to the shaft group to increase the rigidity and proof strength of the wooden building.

また、上記の構造において、柱又は横架材と筋交いとの間に取り付けることにより、エネルギーを吸収するダンパが提案されている。(例えば、特許文献1、特許文献2参照)。   Moreover, the damper which absorbs energy is proposed by attaching between a pillar or a horizontal member and a brace in said structure. (For example, refer to Patent Document 1 and Patent Document 2).

特開2011−174364号公報JP 2011-174364 A 特開2011−157728号公報JP 2011-157728 A

特許文献1、特許文献2に記載の発明は、減衰材と高剛性部材を備えるダンパにより、地震等の振動によるエネルギーを吸収しようとするものである。なお、これら特許文献は、本願の発明者が発明したものであり、発明者は従来よりも効果的にエネルギーを吸収すべく鋭意研究を重ね、本願の発明をなした。   The inventions described in Patent Document 1 and Patent Document 2 try to absorb energy due to vibrations such as earthquakes by a damper including a damping material and a highly rigid member. These patent documents were invented by the inventor of the present application, and the inventor made intensive studies to absorb energy more effectively than before, and made the present invention.

本願の発明者は、ダンパ等のエネルギー吸収機構を構成する部材のバネ定数が極めて重要なファクターであることを見いだした。特許文献1及び2の記載によれば、減衰材等の特性としてせん断弾性率、等価粘性減衰定数を規定して、効果的なエネルギー吸収を得ようとするものである。   The inventors of the present application have found that the spring constant of a member constituting an energy absorption mechanism such as a damper is a very important factor. According to the description in Patent Documents 1 and 2, it is intended to obtain effective energy absorption by defining a shear elastic modulus and an equivalent viscous damping constant as characteristics of a damping material or the like.

しかし、これらは減衰材等の形状、例えば高減衰ゴムの形状(接着面の表面積×厚さ)によって、バネ定数は大きく変化する。すなわち、せん断弾性率が同一のゴムであっても、筋交いに生じる引張・圧縮によるせん断力が作用する接着面の表面積が同一である場合、厚さが小さくなるとバネ定数は大きくなり、厚さが大きくなるとバネ定数は小さくなる。   However, the spring constant varies greatly depending on the shape of the damping material or the like, for example, the shape of the high damping rubber (surface area of the adhesive surface × thickness). That is, even if the rubber has the same shear modulus, if the surface area of the adhesive surface on which the shearing force due to tension / compression that occurs in the bracing acts is the same, the spring constant increases and the thickness decreases as the thickness decreases. As it increases, the spring constant decreases.

このバネ定数が大き過ぎると、減衰材が変形することなく、振動によるエネルギーを吸収できず、ネジやボルトなどの締結部分に応力がかかり、変形が生じて破壊される。一方、バネ定数が小さ過ぎると、十分な剛性が確保できない。このように、バネ定数は制振において極めて大きなファクターである。   If this spring constant is too large, the damping material will not be deformed and energy from vibration cannot be absorbed, and stress will be applied to the fastening parts such as screws and bolts, causing deformation and destruction. On the other hand, if the spring constant is too small, sufficient rigidity cannot be ensured. Thus, the spring constant is an extremely large factor in damping.

そして、本願の発明者は、さらに研究を重ねることによって、エネルギー吸収機構を構成する2つのバネ部材の相関を見いだし、より効果的な制振効果を奏するエネルギー吸収機構を発明した。   The inventors of the present application have further studied and found a correlation between two spring members constituting the energy absorption mechanism, and invented an energy absorption mechanism that exhibits a more effective vibration damping effect.

以上のように、本発明の目的は、エネルギー吸収機構を構成する2つの部材を規定することにより、振動によるエネルギーに対する減衰能力及び靭性能力の向上を図り、従来よりも制振効果の高いエネルギー吸収機構を提供することにある。   As described above, the object of the present invention is to improve the damping capacity and toughness capacity for energy due to vibration by defining two members constituting the energy absorption mechanism, and to absorb energy with a higher damping effect than before. To provide a mechanism.

本発明に係る一の態様のエネルギー吸収機構は、鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、当該柱材と当該構造材との一の接合部と他の接合部を結ぶ対角線方向に延びる筋交い材とを備える木造建物に用いられ、前記接合部において、前記柱材及び/又は前記構造材と、前記筋交い材と、に固定されるエネルギー吸収機構であって、第1のバネ部材と、第2のバネ部材と、を備え、前記第1のバネ部材と前記第2のバネ部材とが組み合わされてなり、前記第1のバネ部材は、第1バネ定数K1が1.5〜7.5kN/mmの範囲内であり、前記第2のバネ部材は、第2バネ定数K2が5.0〜75.0kN/mmの範囲内であり、下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が、1.4〜4.9の範囲内であることを特徴とする。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
An energy absorption mechanism according to one aspect of the present invention includes a pair of pillars extending in the vertical direction, a pair of structural members extending in the horizontal direction, one joint between the pillars and the structural member, and another joint. It is used for a wooden building provided with a bracing material extending in a diagonal direction connecting the parts, and is an energy absorption mechanism fixed to the pillar material and / or the structural material and the bracing material in the joint portion, A first spring member; and a second spring member. The first spring member and the second spring member are combined, and the first spring member has a first spring constant K1. Is in the range of 1.5 to 7.5 kN / mm, the second spring member has a second spring constant K2 in the range of 5.0 to 75.0 kN / mm, and satisfies the following formula 1. And the numerical value of K derived by the following formula 2 is 1.4 to 4 Wherein the 9 in the range of.
K1 <K2 (Formula 1)
K = (K1 × K2) / (K1 + K2) (Equation 2)

この構成によれば、第1のバネ部材及び第2のバネ部材を具備するエネルギー吸収機構により、振動エネルギーに対する減衰能力及び靭性能力を向上し、効果的な制振効果を得ることができる。   According to this configuration, the energy absorption mechanism including the first spring member and the second spring member can improve the damping capability and toughness capability with respect to vibration energy, and can obtain an effective damping effect.

また、このエネルギー吸収機構は、前記第2バネ定数K2が10.0〜30.0の範囲内である。この構成によれば、このエネルギー吸収機構を用いて壁の強さが大きくなる。   In the energy absorbing mechanism, the second spring constant K2 is in the range of 10.0 to 30.0. According to this configuration, the strength of the wall is increased by using this energy absorption mechanism.

また、このエネルギー吸収機構は、前記筋交いの断面が、30mm×90mmの矩形断面又はこれと同等の断面であり、前記第1バネ定数K1が、1.5〜5.5kN/mmの範囲内であり、前記第2バネ定数K2が、5.0〜30.0kN/mmの範囲内であり、前記Kの数値が、1.4〜3.9の範囲内であってもよい。   Further, in this energy absorbing mechanism, the cross section of the braces is a rectangular cross section of 30 mm × 90 mm or a cross section equivalent thereto, and the first spring constant K1 is within a range of 1.5 to 5.5 kN / mm. Yes, the second spring constant K2 may be in the range of 5.0 to 30.0 kN / mm, and the numerical value of K may be in the range of 1.4 to 3.9.

また、このエネルギー吸収機構は、前記筋交いの断面が、45mm×90mmの矩形断面又はこれと同等の断面であり、前記第1バネ定数K1が、2.5〜7.5kN/mmの範囲内であり、前記第2バネ定数K2が、5.0〜30.0kN/mmの範囲内であり、前記Kの数値が、2.1〜4.9の範囲内であってもよい。   Further, in this energy absorption mechanism, the cross section of the braces is a rectangular cross section of 45 mm × 90 mm or a cross section equivalent thereto, and the first spring constant K1 is within a range of 2.5 to 7.5 kN / mm. Yes, the second spring constant K2 may be in the range of 5.0 to 30.0 kN / mm, and the numerical value of K may be in the range of 2.1 to 4.9.

また、このエネルギー吸収機構は、前記筋交いの断面が、90mm×90mmの矩形断面又はこれと同等の断面であり、前記第1バネ定数K1が、1.5〜5.5kN/mmの範囲内であり、前記第2バネ定数K2が、5.0〜30.0kN/mmの範囲内であり、前記Kの数値が、1.4〜3.9の範囲内であってもよい。   Further, in this energy absorbing mechanism, the cross section of the braces is a rectangular cross section of 90 mm × 90 mm or a cross section equivalent thereto, and the first spring constant K1 is within a range of 1.5 to 5.5 kN / mm. Yes, the second spring constant K2 may be in the range of 5.0 to 30.0 kN / mm, and the numerical value of K may be in the range of 1.4 to 3.9.

また、このエネルギー吸収機構は、前記第1のバネ部材が、弾性材からなる第1板状部を備え、前記第2のバネ部材は、金属又は樹脂からなり、前記第1のバネ部材より剛性が高い第2板状部を備え、前記第1板状部と、前記第2板状部とが接合されてなる。ここで、弾性体には、例えば天然ゴムなどのほか、高減衰ゴムなどの粘弾性体が含まれる。また、第1板状部と第2板状部との接合は、例えば接着による。   Further, in this energy absorbing mechanism, the first spring member includes a first plate-like portion made of an elastic material, and the second spring member is made of metal or resin and is more rigid than the first spring member. The second plate-like portion is provided, and the first plate-like portion and the second plate-like portion are joined. Here, the elastic body includes, for example, natural rubber and viscoelastic bodies such as high damping rubber. Further, the joining of the first plate-like portion and the second plate-like portion is, for example, by adhesion.

また、このエネルギー吸収機構は、前記第2のバネ部材が、一対の第2板状部を備え、前記第1板状部が、一対の前記第2板状部により挟持されてなる。これにより、第1板状部が一対の第2板状部に挟まれた構成となる。   In the energy absorbing mechanism, the second spring member includes a pair of second plate-like portions, and the first plate-like portion is sandwiched between the pair of second plate-like portions. Thereby, the first plate-like portion is sandwiched between the pair of second plate-like portions.

また、このエネルギー吸収機構は、前記第2のバネ部材が、一対の前記第2板状部を接続する接続部を備える。ここで、接続部は、例えばブリッジ状に形成され、当該接続部も1つのバネとして機能する。   In the energy absorbing mechanism, the second spring member includes a connection portion that connects the pair of second plate-like portions. Here, the connection portion is formed in a bridge shape, for example, and the connection portion also functions as one spring.

また、このエネルギー吸収機構は、前記接続部が、一対の前記第2板状部を結合する複数のブリッジである。この構成によれば、複数のブリッジがバネとして機能する。   In this energy absorption mechanism, the connection portion is a plurality of bridges that couple the pair of second plate-like portions. According to this configuration, the plurality of bridges function as springs.

また、このエネルギー吸収機構は、前記第2のバネ部材が、前記柱材及び/又は前記構造材と固定する取付部を備える。これにより、エネルギー吸収機構の柱材や構造材への取付が容易となる。   In the energy absorbing mechanism, the second spring member includes an attachment portion that is fixed to the column member and / or the structural member. Thereby, attachment to the pillar material or structural material of an energy absorption mechanism becomes easy.

また、このエネルギー吸収機構は、前記第1板状部及び前記第2板状部及び前記取付部が、貫通孔を備える。ここで、貫通孔は、エネルギー吸収機構を筋交いに固定する際に、ネジやボルトが通る孔となる。   Moreover, as for this energy absorption mechanism, the said 1st plate-shaped part, the said 2nd plate-shaped part, and the said attaching part are equipped with a through-hole. Here, the through hole is a hole through which a screw or a bolt passes when the energy absorbing mechanism is fixed to the brace.

また、このエネルギー吸収機構は、前記第2板状部の表面を被覆する、弾性材からなる被覆部をさらに備え、前記被覆部は、前記第1のバネ部材と一体に形成されてなる。この被覆部は、第1のバネ部材と一体となり、第1のバネ部材として機能する。   The energy absorbing mechanism further includes a covering portion made of an elastic material that covers the surface of the second plate-like portion, and the covering portion is formed integrally with the first spring member. The covering portion is integrated with the first spring member and functions as the first spring member.

また、このエネルギー吸収機構は、前記被覆部が、板状であり、貫通孔を備える。ここで、貫通孔は、エネルギー吸収機構を筋交いに固定する際に、ネジやボルトが通る孔となる。   In the energy absorbing mechanism, the covering portion is plate-shaped and includes a through hole. Here, the through hole is a hole through which a screw or a bolt passes when the energy absorbing mechanism is fixed to the brace.

本発明によれば、従来よりも制振効果の高いエネルギー吸収機構となる。   According to the present invention, an energy absorption mechanism having a higher vibration damping effect than the conventional one is obtained.

本発明の一実施形態に係るエネルギー吸収機構を適用した耐力壁の模式図である。It is a mimetic diagram of a bearing wall to which an energy absorption mechanism concerning one embodiment of the present invention is applied. 試験による引張り時の筋交いの軸力−エネルギー吸収機構の各変位の関係を示すグラフである。It is a graph which shows the relationship of each displacement of the axial force of bracing at the time of the tension | pulling by a test-energy absorption mechanism. 試験と解析による水平荷重−層間変位の比較を示すグラフである。It is a graph which shows the comparison of the horizontal load-interlayer displacement by a test and analysis. 解析により得られる筋交い引張り時の水平荷重−層間変位の関係を示すグラフである。It is a graph which shows the relationship of the horizontal load at the time of bracing tension obtained by analysis-interlayer displacement. 第1バネ部材のバネ定数から壁倍率を算出するための表である。It is a table | surface for calculating wall magnification from the spring constant of a 1st spring member. 壁倍率とバネ定数K1の関係を示すグラフである。It is a graph which shows the relationship between wall magnification and spring constant K1. 壁倍率とバネ定数K2の関係を示すグラフである。It is a graph which shows the relationship between wall magnification and spring constant K2. 等価粘性減衰定数とバネ定数K1の関係を示すグラフである。It is a graph which shows the relationship between an equivalent viscous damping constant and the spring constant K1. 壁倍率1.0の時のバネ定数K1とバネ定数K2の関係を示すグラフである。It is a graph which shows the relationship between the spring constant K1 at the time of wall magnification 1.0 and the spring constant K2. 壁倍率1.0〜2.5の時のバネ定数K1とバネ定数K2の関係を示すグラフである。It is a graph which shows the relationship between the spring constant K1 at the time of wall magnifications 1.0-2.5, and the spring constant K2. 壁倍率に対するバネ定数K1の下限・上限を示す表である。It is a table | surface which shows the minimum and the upper limit of the spring constant K1 with respect to wall magnification. 本発明の一実施形態に係るエネルギー吸収機構を柱および構造材に取り付けた状態を示す図である。It is a figure which shows the state which attached the energy absorption mechanism which concerns on one Embodiment of this invention to the pillar and the structural material. (a)は図12における正面図、(b)は同側面図である。(A) is a front view in FIG. 12, (b) is the side view. (a)はエネルギー吸収機構の斜視図、(b)は第1バネ部材を省略した斜視図である。(A) is the perspective view of an energy absorption mechanism, (b) is the perspective view which abbreviate | omitted the 1st spring member. (a)はエネルギー吸収機構の裏側からの斜視図、(b)は第1バネ部材を省略した斜視図である。(A) is the perspective view from the back side of an energy absorption mechanism, (b) is the perspective view which abbreviate | omitted the 1st spring member. 図12のA−A線断面図である。It is AA sectional view taken on the line of FIG. (a)はエネルギー吸収機構の変形例1の斜視図、(b)は第1バネ部材を省略した斜視図である。(A) is the perspective view of the modification 1 of an energy absorption mechanism, (b) is the perspective view which abbreviate | omitted the 1st spring member. エネルギー吸収機構の変形例2を柱及び構造材に取り付けた図である。It is the figure which attached the modification 2 of the energy absorption mechanism to the pillar and the structural material. エネルギー吸収機構の変形例3の要部断面図である。It is principal part sectional drawing of the modification 3 of an energy absorption mechanism.

以下、本発明に係る一実施形態を図面に基づき説明するが、本発明は下記実施形態に限定されるものではない。まず、本実施形態について模式図を用いて説明し、続き具体的な実施形態を説明する。   Hereinafter, although one embodiment concerning the present invention is described based on a drawing, the present invention is not limited to the following embodiment. First, the present embodiment will be described with reference to schematic diagrams, and then a specific embodiment will be described.

<耐力壁の構造>
図1は、本発明の一実施形態に係るエネルギー吸収機構を適用した耐力壁の模式図である。耐力壁とは、木造建物の軸組において、地震や台風により木造建物に生じる力を主として負担する壁のことである。本発明の一実施形態に係るエネルギー吸収機構は、この耐力壁に取り付けられている。
<Structure of bearing wall>
FIG. 1 is a schematic view of a load bearing wall to which an energy absorption mechanism according to an embodiment of the present invention is applied. A load-bearing wall is a wall that mainly bears the force generated in a wooden building by an earthquake or a typhoon in the framework of the wooden building. The energy absorbing mechanism according to one embodiment of the present invention is attached to this bearing wall.

図1に示すように、耐力壁Wは、鉛直方向に延びる一対の柱材100と、水平方向に延びる一対の構造材101とがそれぞれ接合され、一の接合部と他の接合部を結ぶ対角線方向に延びる筋交い材102が配されている。そして、各接合部と筋交い102の各端部との間に、エネルギー吸収機構Sが介在している。   As shown in FIG. 1, the bearing wall W is a diagonal line in which a pair of pillars 100 extending in the vertical direction and a pair of structural members 101 extending in the horizontal direction are joined to each other and connect one joint to another joint. A brace 102 extending in the direction is arranged. An energy absorbing mechanism S is interposed between each joint and each end of the brace 102.

エネルギー吸収機構Sは、バネ特性をもつ材料・機構・構造から構成されるもので、図1に示すように、所定のバネ定数(K1)の第1バネ部材S1と、所定のバネ定数(K2)の第2バネ部材S2を備える。本実施形態のエネルギー吸収機構Sは、一例として柱材100および筋交い102の端部に取り付けられるダンパであり、このダンパの詳細については後述する。なお、エネルギー吸収機構Sはダンパに限られない。   The energy absorbing mechanism S is composed of a material / mechanism / structure having spring characteristics. As shown in FIG. 1, the energy absorbing mechanism S includes a first spring member S1 having a predetermined spring constant (K1) and a predetermined spring constant (K2). ) Second spring member S2. The energy absorbing mechanism S of the present embodiment is a damper that is attached to the ends of the column member 100 and the brace 102 as an example, and details of the damper will be described later. The energy absorption mechanism S is not limited to a damper.

エネルギー吸収機構Sは、柱材100及び筋交い102の端部にそれぞれ固定されている。固定の方法としては、例えばネジやボルトを用いる。また、第1バネ部材S1は、例えば高減衰ゴム、ポリウレタンゴム、ブチルゴム、天然ゴムなどの弾性体(粘弾性体を含む)である。また、第2バネ部材S2は、第1バネ部材S1よりも剛性が高いもので、例えば鋼板などの金属板、FRPなどの合成樹脂板等、比較的高い剛性をもつ部材である。   The energy absorbing mechanism S is fixed to the end portions of the column member 100 and the brace 102, respectively. As a fixing method, for example, a screw or a bolt is used. The first spring member S1 is an elastic body (including a viscoelastic body) such as high damping rubber, polyurethane rubber, butyl rubber, or natural rubber. The second spring member S2 has a higher rigidity than the first spring member S1, and is a member having a relatively high rigidity, such as a metal plate such as a steel plate or a synthetic resin plate such as FRP.

そして、エネルギー吸収機構Sは、地震等により木造建物にエネルギーが入力された時、このエネルギーを吸収するデバイスとして機能する。すなわち、第1バネ部材S1が、主としてエネルギー吸収バネとして機能し、第2バネ部材S2が剛性を確保するとともに高剛性のバネとして機能する。なお、ネジやボルトなどの固定部材も第2バネ部材を補強する。これにより、エネルギー吸収機構S全体がバネ機構として機能し、木造建物に対するエネルギーを吸収する。   And energy absorption mechanism S functions as a device which absorbs this energy, when energy is inputted into a wooden building by an earthquake etc. That is, the first spring member S1 mainly functions as an energy absorbing spring, and the second spring member S2 functions as a highly rigid spring while ensuring rigidity. Note that fixing members such as screws and bolts also reinforce the second spring member. Thereby, the whole energy absorption mechanism S functions as a spring mechanism, and absorbs the energy with respect to the wooden building.

このように、第1バネ部材S1は、主としてエネルギーを吸収するバネ特性を備える材料・機構・構造からなり、第2バネ部材S2は、主として剛性を確保し、高剛性のバネとしても機能するバネ特性を備える材料・機構・構造からなる。   Thus, the first spring member S1 is made of a material / mechanism / structure mainly having a spring characteristic for absorbing energy, and the second spring member S2 is a spring that mainly ensures rigidity and functions as a high-rigidity spring. Consists of materials, mechanisms, and structures with characteristics.

また、第1バネ部材S1は、バネ定数K1が1.5〜7.5kN/mmであり、第2バネ部材S2は、バネ定数K2が5.0〜30.0kN/mmであり、下記の数式1を満たし、かつ、下記の数式2より算出されるKの数値が1.4〜4.9の範囲内である。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
The first spring member S1 has a spring constant K1 of 1.5 to 7.5 kN / mm, and the second spring member S2 has a spring constant K2 of 5.0 to 30.0 kN / mm. The numerical value of K that satisfies Expression 1 and is calculated from Expression 2 below is in the range of 1.4 to 4.9.
K1 <K2 (Formula 1)
K = (K1 × K2) / (K1 + K2) (Equation 2)

この条件を満たす、第1バネ部材S1及び第2バネ部材S2を備えるエネルギー吸収機構Sを耐力壁に用いることで、十分な強さを確保しつつ、効果的に木造建物にかかるエネルギーを吸収して地震等による被害を最大限に抑制することができる。   The energy absorbing mechanism S including the first spring member S1 and the second spring member S2 that satisfies this condition is used for the load bearing wall, thereby effectively absorbing energy applied to the wooden building while ensuring sufficient strength. Damage to earthquakes can be minimized.

また、次の場合には、以下の条件を満たす第1バネ部材S1と第2バネ部材S2を備えるエネルギー吸収機構Sがより好ましい。筋交い102が30mm×90mmの矩形断面又はこれと同等の断面の場合は、第1バネ定数K1が1.5〜5.5kN/mmであり、Kの数値が1.4〜3.9であることが望ましい。   In the following case, the energy absorbing mechanism S including the first spring member S1 and the second spring member S2 that satisfy the following conditions is more preferable. When the bracing 102 has a rectangular cross section of 30 mm × 90 mm or a cross section equivalent thereto, the first spring constant K1 is 1.5 to 5.5 kN / mm, and the numerical value of K is 1.4 to 3.9. It is desirable.

また、筋交い102が45mm×90mmの矩形断面又はこれと同等の断面の場合は、第1バネ定数K1が2.5〜7.5kN/mmであり、Kの数値が2.1〜4.9であることが望ましい。また、筋交い102が90mm×90mmの矩形断面又はこれと同等の断面の場合は、第1バネ定数K1が1.5〜5.5kN/mmであり、Kの数値が1.4〜3.9であることが望ましい。   When the bracing 102 is a rectangular cross section of 45 mm × 90 mm or a cross section equivalent thereto, the first spring constant K1 is 2.5 to 7.5 kN / mm, and the numerical value of K is 2.1 to 4.9. It is desirable that When the bracing 102 has a rectangular cross section of 90 mm × 90 mm or a cross section equivalent thereto, the first spring constant K1 is 1.5 to 5.5 kN / mm, and the numerical value of K is 1.4 to 3.9. It is desirable that

<検証>
また、発明者は、上記のエネルギー吸収機構が十分な効果を得られるかについて試験を行った。以下、当該試験の詳細を説明する。この試験は、図1に示す耐力壁のモデルに対する増分解析法に基づく解析と荷重試験により行った。なお、エネルギー吸収機構Sとして、板状の一対の第2バネ部材S2と、板状の第1バネ部材S1とで構成され、第1バネ部材S1が一対の第2バネ部材S2に挟まれる形で介在し、これらが接着された構造を用いた。
<Verification>
Further, the inventor conducted a test as to whether the above energy absorption mechanism can obtain a sufficient effect. Details of the test will be described below. This test was performed by an analysis based on an incremental analysis method and a load test for the bearing wall model shown in FIG. The energy absorbing mechanism S includes a pair of plate-like second spring members S2 and a plate-like first spring member S1, and the first spring member S1 is sandwiched between the pair of second spring members S2. A structure in which these were bonded together was used.

解析においては、第1バネ部材S1のバネ定数K1を2〜20kN/mmと変化させ、所定の水平荷重Pを掛け、エネルギー吸収機構Sに引張り応力を生じさせた時に得られる耐力壁の強さ(壁倍率)を算出した。   In the analysis, the strength of the bearing wall obtained when the spring constant K1 of the first spring member S1 is changed to 2 to 20 kN / mm, a predetermined horizontal load P is applied, and a tensile stress is generated in the energy absorbing mechanism S. (Wall magnification) was calculated.

このときの筋交いに用いる材料のヤング係数Eは12kN/mmである。また、エネルギー吸収機構Sにおける第2バネ部材S2のバネ定数K2は14kN/mmとした。 The Young's modulus E of the material used for bracing at this time is 12 kN / mm 2 . The spring constant K2 of the second spring member S2 in the energy absorbing mechanism S was 14 kN / mm.

まず、上記壁倍率の算出に必要な特性値を算定するため、上記のエネルギー吸収機構Sを適用して静的せん断加力試験を行った。図2にその結果を示す。   First, in order to calculate a characteristic value necessary for calculating the wall magnification, a static shear force test was performed by applying the energy absorption mechanism S described above. The results are shown in FIG.

次に、解析の信頼性を確認するため、実際の実験結果と本解析の水平荷重−変位関係を比較したところ、両データが精度良く一致していることが分かった。図3にその比較図を示す。   Next, in order to confirm the reliability of the analysis, the actual experimental results were compared with the horizontal load-displacement relationship of this analysis, and it was found that the two data matched with high accuracy. FIG. 3 shows a comparative view thereof.

次に、実験結果を基にした解析によって、バネ機構Sの引張り応力時における第1バネ部材S1のバネ定数K1と壁倍率の関係、第1バネ部材S1のバネ定数K1と第2バネ部材S2のバネ定数K2の関係を求めた。図4ないし図6にK1−壁倍率の関係、図7にK1−K2の関係を示す。   Next, by analysis based on the experimental results, the relationship between the spring constant K1 of the first spring member S1 and the wall magnification during the tensile stress of the spring mechanism S, the spring constant K1 of the first spring member S1 and the second spring member S2 The relationship of the spring constant K2 was obtained. FIG. 4 to FIG. 6 show the relationship of K1-wall magnification, and FIG. 7 shows the relationship of K1-K2.

なお、図5の表において、壁倍率は、以下の数式3により求めた。
壁倍率=P0×(1/1.96)×(1/L) ・・・(数式3)
ただし、1.96:壁倍率=1を算定する数値(kN/m)
L:試験体の壁の長さ(m)
In the table of FIG. 5, the wall magnification was obtained by the following mathematical formula 3.
Wall magnification = P0 × (1 / 1.96) × (1 / L) (Equation 3)
However, 1.96: Numerical value for calculating wall magnification = 1 (kN / m)
L: length of the wall of the specimen (m)

図6のグラフから、壁倍率1.0の時の第1バネ部材S1のバネ定数K1は2.03kN/mmとなり、K1<K2を満たし、数式2より算出されるKの数値は2.03×14/(2.03+14)=1.78であった。以上より、第1バネ部材S1のバネ定数K1、第2バネ部材S2の第2バネ定数K2、数値Kが本発明の規定の範囲内にある時、必要な耐力壁の強さを得られることが確認された。   From the graph of FIG. 6, the spring constant K1 of the first spring member S1 at a wall magnification of 1.0 is 2.03 kN / mm, satisfies K1 <K2, and the numerical value of K calculated from Equation 2 is 2.03. X14 / (2.03 + 14) = 1.78. From the above, when the spring constant K1 of the first spring member S1, the second spring constant K2 of the second spring member S2, and the numerical value K are within the specified range of the present invention, the necessary strength of the bearing wall can be obtained. Was confirmed.

また、壁倍率1.5の時の第1バネ部材S1のバネ定数K1は3.34kN/mmとなり、K1<K2を満たし、数式2より算出されるKの数値は2.69であった。これにより、必要な耐力壁の強さを得られることが確認された。   Further, the spring constant K1 of the first spring member S1 at the wall magnification of 1.5 was 3.34 kN / mm, K1 <K2 was satisfied, and the numerical value of K calculated from Equation 2 was 2.69. Thereby, it was confirmed that the required strength of the bearing wall can be obtained.

さらに、第1バネ部材S1のバネ定数K1を5.5kN/mmを超えて大きくしても、剛性から求まる壁倍率は高くなるが、ほぼ一定値である降伏耐力から求まる壁倍率のほうが相対的に小さく支配的になるため、壁倍率は2.0近傍以上には大きくならないことが確認された。   Furthermore, even if the spring constant K1 of the first spring member S1 is increased beyond 5.5 kN / mm, the wall magnification obtained from the rigidity is increased, but the wall magnification obtained from the yield strength, which is a substantially constant value, is relatively higher. Therefore, it was confirmed that the wall magnification does not increase to around 2.0 or more.

また、発明者は、第2バネ部材のバネ定数K2について、第1バネ部材のバネ定数K1が所定数値の場合の、壁倍率とバネ定数K2との関係を算出した。その結果を図7に示す。図7は、上記0037と同様の増分解析において、バネ定数K1を一定とし、バネ定数K2を増加させたときの壁倍率との関係を示す図である。これにより、バネ定数K2は5.0以上が好ましく、5.0から30.0がより好ましいことがわかる。K2が30.0を超えると、壁倍率が減少し、すなわち、壁の強さが弱まる傾向にあるためである。なお、バネ定数K2の上限を75.0としているのは、75.0を超えると、第2バネ部材S2が変形せず、固定部材であるネジのみが変形するためである。   Further, the inventor calculated the relationship between the wall magnification and the spring constant K2 when the spring constant K1 of the first spring member is a predetermined numerical value for the spring constant K2 of the second spring member. The result is shown in FIG. FIG. 7 is a diagram showing the relationship with the wall magnification when the spring constant K1 is made constant and the spring constant K2 is increased in the same incremental analysis as the above 0037. Thereby, it is understood that the spring constant K2 is preferably 5.0 or more, and more preferably 5.0 to 30.0. This is because when K2 exceeds 30.0, the wall magnification decreases, that is, the strength of the wall tends to weaken. The reason why the upper limit of the spring constant K2 is 75.0 is that when it exceeds 75.0, the second spring member S2 is not deformed and only the screw as the fixing member is deformed.

さらに、発明者は、第1バネ部材のバネ定数K1についても検証した。図8は、等価粘性減衰定数(heq)と第1バネ部材のバネ定数K1との関係を示すグラフである。図8は、バネ定数K1の所定値に対して適用されるバネ部材の形状と材質(剛性率(せん断弾性率))の関係から算出したものである。なお、等価粘性減衰定数とは、建物のエネルギー吸収能力を示す数値である。図8によれば、1.5kN/mm―7.5kN/mmにおいて、等価粘性減衰定数が略15%を超え、エネルギー吸収能力が高くなることがわかる。バネ定数K1の等価粘性減衰定数が15%を超えるあたりから制振の効果が発揮されるためである。   Furthermore, the inventor also verified the spring constant K1 of the first spring member. FIG. 8 is a graph showing the relationship between the equivalent viscous damping constant (heq) and the spring constant K1 of the first spring member. FIG. 8 is calculated from the relationship between the shape and material (rigidity (shear elastic modulus)) of the spring member applied to the predetermined value of the spring constant K1. The equivalent viscous damping constant is a numerical value indicating the energy absorption capacity of a building. According to FIG. 8, it can be seen that, at 1.5 kN / mm-7.5 kN / mm, the equivalent viscosity damping constant exceeds approximately 15%, and the energy absorption capability increases. This is because the damping effect is exhibited when the equivalent viscous damping constant of the spring constant K1 exceeds 15%.

これらより、本実施形態におけるバネ定数K1とK2の特定が、剛性の確保及びエネルギー吸収において、非常に効果的であることがわかる。   From these, it can be seen that the specification of the spring constants K1 and K2 in this embodiment is very effective in securing rigidity and energy absorption.

次に発明者は、壁倍率1.0の第1バネ部材S1のバネ定数K1と第2バネ部材S2のバネ定数K2の関係を確認した。図9にその関係を示す。同様に、壁倍率1.0〜2.5の時のバネ定数(K1、K2)の関係も求めた。図10にその関係を示す。   Next, the inventor confirmed the relationship between the spring constant K1 of the first spring member S1 having a wall magnification of 1.0 and the spring constant K2 of the second spring member S2. FIG. 9 shows the relationship. Similarly, the relationship of spring constants (K1, K2) when the wall magnification was 1.0 to 2.5 was also obtained. FIG. 10 shows the relationship.

また、バネ定数(K1、K2)の関係において、第1バネ部材S1が主としてエネルギーを吸収し、第2バネ部材S2が主として剛性の確保と、強いエネルギーが入力された場合にエネルギーの吸収を行う機能を発揮することから、このエネルギー吸収機構Sにおいては、K1<K2であることが必要となる。   Further, in relation to the spring constants (K1, K2), the first spring member S1 mainly absorbs energy, and the second spring member S2 mainly secures rigidity and absorbs energy when strong energy is input. In order to exhibit the function, in this energy absorption mechanism S, it is necessary that K1 <K2.

このことから、図9のグラフにより、壁倍率1.0の場合、第1バネ部材S1のバネ定数K1は1.78kN/mm以上、3.56kN/mm以下であり、第2バネ部材S2のバネ定数K2は3.56kN/mm以上であることが確認できた。   From this, according to the graph of FIG. 9, when the wall magnification is 1.0, the spring constant K1 of the first spring member S1 is 1.78 kN / mm or more and 3.56 kN / mm or less, and the second spring member S2 It was confirmed that the spring constant K2 was 3.56 kN / mm or more.

同様に、図10のグラフにより、壁倍率1.0〜2.5の場合、第1バネ部材S1のバネ定数K1の下限値、上限値を確認した。図11の表に壁倍率1.0〜2.5の場合の第1バネ部材S1のバネ定数K1の下限値、上限値を示す。   Similarly, the lower limit value and the upper limit value of the spring constant K1 of the first spring member S1 were confirmed from the graph of FIG. 10 when the wall magnification was 1.0 to 2.5. The table of FIG. 11 shows the lower limit value and upper limit value of the spring constant K1 of the first spring member S1 when the wall magnification is 1.0 to 2.5.

壁倍率1.0と認定する範囲を1.0以上、1.5未満とし、壁倍率1.5と認定する範囲を1.5以上、2.0未満とし、図11の表をもとにして、第1バネ部材S1のバネ定数K1の範囲を表1にまとめた。   The range to be recognized as wall magnification 1.0 is 1.0 or more and less than 1.5, the range to be recognized as wall magnification 1.5 is 1.5 or more and less than 2.0, and based on the table of FIG. The ranges of the spring constant K1 of the first spring member S1 are summarized in Table 1.

以上より、本実施形態のエネルギー吸収機構Sにおける第1バネ部材S1と第2バネ部材S2のバネ定数の条件を規定することにより、必要な壁倍率を確保しつつ、木造建物に入力されるエネルギーに対する減衰能力及び靭性能力の向上を図れることが確認された。   As described above, the energy input to the wooden building while ensuring the necessary wall magnification by defining the conditions of the spring constants of the first spring member S1 and the second spring member S2 in the energy absorbing mechanism S of the present embodiment. It was confirmed that the damping capacity and the toughness capacity can be improved.

<エネルギー吸収機構の構造>
続き、本実施形態に用いたエネルギー吸収機構Sの構造について説明する。以下の説明において、本実施形態のエネルギー吸収機構Sをダンパ1とし、第2バネ部材S2を剛性部材2とし、第1バネ部材S1を弾性部材3として説明する。なお、この構造は一例であり、他の形状を用いてもよく、本発明はこの構造に限定されない。
<Structure of energy absorption mechanism>
Next, the structure of the energy absorption mechanism S used in this embodiment will be described. In the following description, the energy absorbing mechanism S of the present embodiment will be described as the damper 1, the second spring member S 2 as the rigid member 2, and the first spring member S 1 as the elastic member 3. This structure is an example, and other shapes may be used, and the present invention is not limited to this structure.

図12は、図1の模式図における接合部の拡大図であり、本実施形態に係るエネルギー吸収機構Sの一例としてダンパ1を用い、ダンパ1を木造建物の柱及び筋交いに取り付けた状態を示す斜視図である。図13(a)(b)は、同正面図、同側面図である。   FIG. 12 is an enlarged view of the joint in the schematic diagram of FIG. 1, and shows a state in which the damper 1 is used as an example of the energy absorbing mechanism S according to the present embodiment, and the damper 1 is attached to the pillars and braces of the wooden building. It is a perspective view. 13A and 13B are a front view and a side view, respectively.

図12、図13(a)(b)に示すように、ダンパ1は、柱材100と、これに対し傾斜する方向に延びる筋交い102との間に取り付けられる。具体的には、柱材100は、水平方向に延びる下側の構造材101(土台101)に突き合わせて接合され、この接合部分において柱材100および土台101に対し筋交い102の端部が当接するように配置され、柱材100と筋交い102との間にダンパ1が取り付けられている。   As shown in FIGS. 12, 13 (a), and 13 (b), the damper 1 is attached between a column member 100 and a brace 102 extending in a direction inclined with respect to the pillar member 100. Specifically, the column member 100 is abutted and joined to the lower structural member 101 (base 101) extending in the horizontal direction, and the ends of the braces 102 abut against the column member 100 and the base 101 at the joint portion. The damper 1 is attached between the column member 100 and the brace 102.

図14(a)及び図15(a)に示すように、ダンパ1は、剛性部材2と、弾性部材3とを備える。図14(b)及び図15(b)に示すように、剛性部材2は、柱材100に固定される板状固定部4と、この板状固定部4に結合部6を介して略90度をなすように連設され筋交い102に固定される筒状固定部5とを有する。なお、結合部6には、ダンパ1の断面二次モーメントを上げるために、リブ加工により凸部9が設けられている。   As shown in FIGS. 14A and 15A, the damper 1 includes a rigid member 2 and an elastic member 3. As shown in FIGS. 14B and 15B, the rigid member 2 includes a plate-like fixing portion 4 fixed to the column member 100, and the plate-like fixing portion 4 approximately 90 via a coupling portion 6. It has a cylindrical fixing portion 5 that is continuously arranged so as to form a degree and is fixed to the brace 102. In addition, in order to raise the cross-sectional secondary moment of the damper 1, the convex part 9 is provided in the connection part 6 by rib processing.

筒状固定部5は、板状固定部4が連設される略矩形状の第1の板部分5aと、第1の板部分5aに対応する大きさを有し第1の板部分5aと平行に延びる第2の板部分5bと、並んで配置され第1及び第2の板部分5a,5bを接続する複数のブリッジ部5cとを有する。これにより、第1及び第2の板部分5a,5b並びにブリッジ5cによって囲まれる、狭い幅Wを有する内部空間Cが形成される。なお、第2の板部分5bは、板状固定部4の屈曲方向とは反対側に配置されている。   The cylindrical fixing portion 5 has a substantially rectangular first plate portion 5a to which the plate-like fixing portion 4 is connected, and a size corresponding to the first plate portion 5a. The first plate portion 5a A second plate portion 5b extending in parallel and a plurality of bridge portions 5c arranged side by side and connecting the first and second plate portions 5a and 5b. As a result, an internal space C having a narrow width W surrounded by the first and second plate portions 5a and 5b and the bridge 5c is formed. The second plate portion 5b is disposed on the side opposite to the bending direction of the plate-like fixing portion 4.

ブリッジ部5cは、略断面逆U字形をして、建物に入力されるエネルギーをその変形により弾性部材3と共に吸収するもので、かかるブリッジ部5cは、図14(b)及び図15(b)に示すように、第1の板部分5aの上下部の幅方向中央および幅方向両端に設けられている。各ブリッジ部5cの幅は、例えばそれぞれ0.5mm以上の幅で、第1の板部分5aの上部あるいは下部の全幅に対し、全体で2〜60%、好ましくは3〜50%、より好ましくは5〜30%の幅に設定されている。このように全体で少なくとも2%〜60%とすることで、建物に入力されるエネルギーをブリッジ部5cによっても吸収することができる。なお、この実施の形態では同じ幅のブリッジ部5cを3つ設けているが、ブリッジ部5cの幅や数は異なっていてもよい。   The bridge portion 5c has a substantially U-shaped cross section and absorbs energy input to the building together with the elastic member 3 by deformation thereof. The bridge portion 5c is shown in FIGS. 14 (b) and 15 (b). As shown in FIG. 2, the first plate portion 5a is provided at the upper and lower portions in the width direction center and at both ends in the width direction. The width of each bridge portion 5c is, for example, 0.5 mm or more, and is 2 to 60% as a whole, preferably 3 to 50%, more preferably with respect to the entire width of the upper portion or the lower portion of the first plate portion 5a. The width is set to 5 to 30%. Thus, the energy input to the building can be absorbed also by the bridge portion 5c by setting the total to at least 2% to 60%. In this embodiment, three bridge portions 5c having the same width are provided, but the width and number of the bridge portions 5c may be different.

また、例えば巨大地震など大きなエネルギーの入力等何らかの原因によって減衰材部分3との接着が剥がれたとき若しくはゴムが破断したときでもブリッジ部5cが塑性変形して残エネルギーを吸収する。つまり、大エネルギーの入力によって弾性部材3の接着が剥がれたとき若しくはゴムが破断したときに、各ブリッジ部5cはフォールトトレランス機構として作用し、塑性変形してエネルギーを吸収し、耐震性能・制振性能の信頼性を高める機能を発揮する。   Further, even when the bond with the damping member 3 is peeled off due to some cause such as input of a large energy such as a huge earthquake or when the rubber is broken, the bridge portion 5c is plastically deformed to absorb the remaining energy. That is, when the elastic member 3 is peeled off due to the input of large energy or when the rubber is broken, each bridge portion 5c acts as a fault tolerance mechanism, and plastically deforms to absorb energy, thereby providing seismic performance / damping. Demonstrates the ability to increase performance reliability.

弾性部材3は、筒状固定部5の内部空間内に内在されるだけでなく、筒状固定部5の外表面に表面層を形成している。そして、隣り合うブリッジ部5cの間には、ブリッジ部5cの表面層の表面と面一になるように弾性部材3が設けられ、その部分で前記内部空間内の弾性部材3と、表面層となる弾性部材3とが一体的に結合されている。   The elastic member 3 is not only in the internal space of the cylindrical fixing part 5 but also forms a surface layer on the outer surface of the cylindrical fixing part 5. The elastic member 3 is provided between the adjacent bridge portions 5c so as to be flush with the surface of the surface layer of the bridge portion 5c, and the elastic member 3 in the internal space and the surface layer The elastic member 3 is integrally coupled.

また、板状固定部4が連設される側とは反対側の、筒状固定部5の端部には、その端面の表面層の表面と面一になるように弾性部材3が設けられ、同様に、その部分で前記内部空間内の弾性部材3と、表面層となる弾性部材3とが一体的に結合されている。つまり、弾性部材3は、筒状固定部5の内部空間内に内在する部分3a(図16参照)と、外表面に表面層として設けられる部分3bとが、筒状固定部5の端部に設けられる部分3cと、ブリッジ部5cの間に設けられる部分3dとによって一体的に結合されている。   Further, the elastic member 3 is provided at the end of the cylindrical fixing portion 5 on the side opposite to the side on which the plate-like fixing portion 4 is provided so as to be flush with the surface layer of the end surface. Similarly, the elastic member 3 in the internal space and the elastic member 3 serving as a surface layer are integrally coupled at that portion. That is, the elastic member 3 includes a portion 3 a (see FIG. 16) present in the internal space of the cylindrical fixing portion 5 and a portion 3 b provided as a surface layer on the outer surface at the end of the cylindrical fixing portion 5. The portion 3c provided and the portion 3d provided between the bridge portions 5c are integrally coupled.

その結果、弾性部材3は、筒状固定部5の周囲を取り囲み、筒状固定部5が外部から見えないように筒状固定部5全体を被覆していることになる。なお、筒状固定部5の外表面及び内表面を含めて、弾性部材3の筒状固定部5への接触部分は、筒状固定部5に接着され、筒状固定部5と弾性部材3とは一体化されることとなる。   As a result, the elastic member 3 surrounds the cylindrical fixing portion 5 and covers the entire cylindrical fixing portion 5 so that the cylindrical fixing portion 5 cannot be seen from the outside. In addition, the contact part to the cylindrical fixing | fixed part 5 of the elastic member 3 including the outer surface and inner surface of the cylindrical fixing | fixed part 5 is adhere | attached on the cylindrical fixing | fixed part 5, and the cylindrical fixing | fixed part 5 and the elastic member 3 are attached. Will be integrated.

このように、筒状固定部5の内部空間内に内在する部分3aと、外表面に表面層として設けられる部分3bとが、ブリッジ部5cの間に設けられる部分3dによって結合され一体となっているので、弾性部材3と筒状固定部5との結合力が強固になっている。さらに、筒状固定部5の端部に設けられる部分3cによっても結合されるようにしているので、弾性部材3と筒状固定部5との結合力がより強固になっている。   Thus, the part 3a existing in the internal space of the cylindrical fixing part 5 and the part 3b provided as a surface layer on the outer surface are combined and integrated by the part 3d provided between the bridge parts 5c. Therefore, the coupling force between the elastic member 3 and the cylindrical fixing portion 5 is strengthened. Furthermore, since it is made to couple | bond also by the part 3c provided in the edge part of the cylindrical fixing | fixed part 5, the coupling | bonding force of the elastic member 3 and the cylindrical fixing | fixed part 5 becomes stronger.

剛性部材2の板状固定部4には、その板状固定部4を複数の第1の固定具7(例えば木ねじ)により柱材100に固定するための複数の取付孔4aが開設されている。   The plate-like fixing portion 4 of the rigid member 2 is provided with a plurality of mounting holes 4a for fixing the plate-like fixing portion 4 to the column member 100 with a plurality of first fixing tools 7 (for example, wood screws). .

また、このダンパ1の弾性部材3は一例として加硫成形により成型されており、筒状固定部5の第1の板部分5aには、筋交い102に固定するために用いる第1の貫通孔5dに加えて、加硫成形時に、前記内部空間内に弾性部材3を流入するための第2の貫通孔5eが形成されている。第2の板部分5bにも、第1の板部分5aの外側から複数の第2の固定具8(例えば木ねじ)により筋交い102に固定するために用いる第3の貫通孔5fに加えて、加硫成形時に、前記内部空間内に弾性部材3が流入するための第4の貫通孔5gが形成されている。   Further, the elastic member 3 of the damper 1 is formed by vulcanization molding as an example, and the first plate portion 5a of the cylindrical fixing portion 5 has a first through hole 5d used for fixing to the bracing 102. In addition, a second through hole 5e for allowing the elastic member 3 to flow into the internal space is formed during vulcanization molding. In addition to the third through-hole 5f used for fixing the second plate portion 5b to the bracing 102 from the outside of the first plate portion 5a with a plurality of second fixing tools 8 (for example, wood screws), A fourth through hole 5g for allowing the elastic member 3 to flow into the internal space is formed during the sulfur molding.

そして、図16に示すように、第1の板部分5aの外側から、複数の第2の固定具8により第2の板部分5bを筋交い102に固定する。なお、第1及び第2の固定具7,8としては、それぞれ木ねじの代わりに釘などを用いてよい。   Then, as shown in FIG. 16, the second plate portion 5b is fixed to the bracing 102 by the plurality of second fixing tools 8 from the outside of the first plate portion 5a. In addition, as the 1st and 2nd fixing tools 7 and 8, a nail etc. may be used instead of a wood screw, respectively.

また、第2の貫通孔5e及び第4の貫通孔5gに充填される減衰材部分によっても、筒状固定部5の内部空間内に内在する部分3aと、外表面に表面層として設けられる部分3bとが結合されているので、この部分によっても弾性部材3と筒状固定部5との結合力が高められている。   Moreover, the part 3a existing in the internal space of the cylindrical fixing part 5 and the part provided as the surface layer on the outer surface also by the damping material part filled in the second through hole 5e and the fourth through hole 5g Since 3b is couple | bonded, the coupling | bonding force of the elastic member 3 and the cylindrical fixing | fixed part 5 is heightened also by this part.

<変形例>
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、前述したダンパ1のほか、本実施形態のエネルギー吸収機構Sは、次のようにして実施することができる。
<Modification>
As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. For example, in addition to the damper 1 described above, the energy absorption mechanism S of the present embodiment can be implemented as follows.

また、図17(a)(b)に示すように、第2の板部分5b’を、第1の板部分5a’の、板状固定部4が設けられている側とは反対側から板状固定部4の屈曲方向と同じ側あるいは反対側にブリッジ部5c’を介して屈曲させる構造にしてもよい。この場合、第2の板部分のブリッジ部5c’が設けられている部分と反対側は板状固定部4に接触するようにしているが、一部を差し込む結合構造にしてもよい。   Also, as shown in FIGS. 17A and 17B, the second plate portion 5b ′ is formed from the opposite side of the first plate portion 5a ′ from the side where the plate-like fixing portion 4 is provided. The shape fixing part 4 may be bent on the same side as the bending direction or on the opposite side via a bridge part 5c ′. In this case, the side opposite to the portion where the bridge portion 5c 'of the second plate portion is provided is in contact with the plate-like fixing portion 4, but a coupling structure in which a part is inserted may be used.

また、図18に示すように、板状固定部4は、柱材100だけに固定されるようにしているが、柱材100に加えて、土台101にも固定される板状固定部4Aをさらに設けることもできる。この場合、板状固定部4と板状固定部4Aとは,90°の角度をなしている。   Further, as shown in FIG. 18, the plate-like fixing portion 4 is fixed only to the column material 100, but in addition to the column material 100, the plate-like fixing portion 4 </ b> A fixed to the base 101 is provided. It can also be provided. In this case, the plate-like fixing portion 4 and the plate-like fixing portion 4A form an angle of 90 °.

また、図19に示すように、筒状固定部5の内部空間は、ブリッジ部5cに対応する部分について、隣り合うブリッジ部5cの間も含め、弾性部材3が設けられず、空隙Cとする構成としてもよい。   Further, as shown in FIG. 19, the internal space of the cylindrical fixing portion 5 is a gap C in the portion corresponding to the bridge portion 5 c, including the space between the adjacent bridge portions 5 c, without the elastic member 3 being provided. It is good also as a structure.

また、図示しないが、弾性部材3の表面層を備えず、かつ、剛性部材2のブリッジ部を備えない構成としてもよい。すなわち、別体で構成された一対の板状の剛性部材と、これらに挟持される板状の弾性部材よりなるエネルギー吸収機構である。   Although not shown in the figure, the surface layer of the elastic member 3 may not be provided, and the bridge portion of the rigid member 2 may not be provided. In other words, the energy absorbing mechanism includes a pair of plate-like rigid members configured separately and a plate-like elastic member held between them.

また、剛性部材2には金属板を用いているが、FRPなどの合成樹脂板などを用いることも可能である。弾性部材3には、高減衰のゴムを用いているが、ポリウレタンゴム、ブチルゴムなどの他の粘弾性体、天然ゴムなどの弾性体を用いてよい。したがって、このようなものも本発明の範囲内に含まれる。   Moreover, although the metal plate is used for the rigid member 2, it is also possible to use a synthetic resin plate such as FRP. The elastic member 3 is made of high-damping rubber, but other viscoelastic bodies such as polyurethane rubber and butyl rubber, and elastic bodies such as natural rubber may be used. Therefore, such a thing is also included in the scope of the present invention.

1 ダンパ
2 剛性部材
3 弾性部材
4 板状固定部
4a 取付孔
5 筒状固定部
5a 第1の板部分
5b 第2の板部分
5c ブリッジ部
5d 第1の貫通孔
5e 第2の貫通孔
5f 第3の貫通孔
5g 第4の貫通孔
6 結合部
7 第1の固定具
8 第2の固定具
9 凸部
100 柱材
101 構造材(土台)
102 筋交い
C 空隙
S エネルギー吸収機構
S1 第1バネ部材
S2 第2バネ部材
DESCRIPTION OF SYMBOLS 1 Damper 2 Rigid member 3 Elastic member 4 Plate-shaped fixing | fixed part 4a Mounting hole 5 Cylindrical fixing | fixed part 5a 1st board part 5b 2nd board part 5c Bridge part 5d 1st through-hole 5e 2nd through-hole 5f 1st 3 through-holes 5g 4th through-hole 6 coupling portion 7 first fixture 8 second fixture 9 convex portion 100 column 101 structural material (base)
102 Bracing C Gap S Energy absorption mechanism S1 First spring member S2 Second spring member

Claims (13)

鉛直方向に延びる一対の柱材と、水平方向に延びる一対の構造材と、当該柱材と当該構造材との一の接合部と他の接合部を結ぶ対角線方向に延びる筋交い材とを備える木造建物に用いられ、前記接合部において、前記柱材及び/又は前記構造材と、前記筋交い材と、に固定されるエネルギー吸収機構であって、
第1のバネ部材と、
第2のバネ部材と、を備え、
前記1のバネ部材と前記第2のバネ部材とが組み合わされてなり、
前記第1のバネ部材は、第1バネ定数K1が1.5〜7.5kN/mmの範囲内であり、
前記第2のバネ部材は、第2バネ定数K2が5.0〜75.0kN/mmの範囲内であり、
下記数式1を満たし、かつ、下記数式2により導き出されるKの数値が、1.4〜4.9の範囲内であることを特徴とする、エネルギー吸収機構。
K1<K2 ・・・(数式1)
K=(K1×K2)/(K1+K2) ・・・(数式2)
A wooden structure comprising a pair of pillar members extending in the vertical direction, a pair of structural members extending in the horizontal direction, and a bracing member extending in a diagonal direction connecting one joint portion between the pillar member and the structural member and the other joint portion. An energy absorption mechanism used in a building, and fixed to the pillar material and / or the structural material and the brace material at the joint,
A first spring member;
A second spring member,
The first spring member and the second spring member are combined,
The first spring member has a first spring constant K1 in the range of 1.5 to 7.5 kN / mm,
The second spring member has a second spring constant K2 in the range of 5.0 to 75.0 kN / mm,
An energy absorption mechanism characterized by satisfying the following formula 1 and having a numerical value of K derived by the following formula 2 in a range of 1.4 to 4.9.
K1 <K2 (Formula 1)
K = (K1 × K2) / (K1 + K2) (Equation 2)
前記バネ定数K2が5.0〜30.0である、
請求項1に記載のエネルギー吸収機構。
The spring constant K2 is 5.0 to 30.0.
The energy absorption mechanism according to claim 1.
前記筋交いの断面が、30mm×90mmの矩形断面又はこれと同等の断面であり、
前記第1バネ定数K1が、1.5〜5.5kN/mmの範囲内であり、
前記Kの数値が、1.4〜3.9の範囲内である、
請求項1又は請求項2に記載のエネルギー吸収機構。
The cross section of the braces is a rectangular cross section of 30 mm x 90 mm or a cross section equivalent thereto,
The first spring constant K1 is in a range of 1.5 to 5.5 kN / mm;
The numerical value of K is in the range of 1.4 to 3.9.
The energy absorption mechanism according to claim 1 or 2.
前記筋交いの断面が、45mm×90mmの矩形断面又はこれと同等の断面であり、
前記第1バネ定数K1が、2.5〜7.5kN/mmの範囲内であり、
前記Kの数値が、2.1〜4.9の範囲内である、
請求項1又は請求項2に記載のエネルギー吸収機構。
The cross section of the braces is a 45 mm × 90 mm rectangular cross section or a cross section equivalent thereto,
The first spring constant K1 is in the range of 2.5 to 7.5 kN / mm;
The numerical value of K is in the range of 2.1 to 4.9.
The energy absorption mechanism according to claim 1 or 2.
前記筋交いの断面が、90mm×90mmの矩形断面又はこれと同等の断面であり、
前記第1バネ定数K1が、1.5〜5.5kN/mmの範囲内であり、
前記Kの数値が、1.4〜3.9の範囲内である、
請求項1又は請求項2に記載のエネルギー吸収機構。
The cross section of the braces is a rectangular cross section of 90 mm x 90 mm or a cross section equivalent thereto,
The first spring constant K1 is in a range of 1.5 to 5.5 kN / mm;
The numerical value of K is in the range of 1.4 to 3.9.
The energy absorption mechanism according to claim 1 or 2.
前記第1のバネ部材は、弾性材からなる第1板状部を備え、
前記第2のバネ部材は、金属又は樹脂からなり、前記第1のバネ部材より剛性が高い第2板状部を備え、
前記第1板状部と、前記第2板状部とが接合されてなる、
請求項1乃至請求項5のいずれか1項に記載のエネルギー吸収機構。
The first spring member includes a first plate-like portion made of an elastic material,
The second spring member is made of metal or resin, and includes a second plate-like portion having higher rigidity than the first spring member,
The first plate-like part and the second plate-like part are joined,
The energy absorption mechanism according to any one of claims 1 to 5.
前記第2のバネ部材は、一対の第2板状部を備え、
前記第1板状部が、一対の前記第2板状部により挟持されてなる、
請求項6に記載のエネルギー吸収機構。
The second spring member includes a pair of second plate-like portions,
The first plate-like portion is sandwiched between a pair of the second plate-like portions.
The energy absorption mechanism according to claim 6.
前記第2のバネ部材は、一対の前記第2板状部を接続する接続部を備える、
請求項7に記載のエネルギー吸収機構。
The second spring member includes a connection part that connects the pair of second plate-like parts,
The energy absorption mechanism according to claim 7.
前記接続部は、一対の前記第2板状部を結合する複数のブリッジである、
請求項8に記載のエネルギー吸収機構。
The connection part is a plurality of bridges that couple a pair of the second plate-like parts.
The energy absorption mechanism according to claim 8.
前記第2のバネ部材は、前記柱材及び/又は前記構造材と固定する取付部を備える、
請求項6乃至請求項9のいずれか1項に記載のエネルギー吸収機構。
The second spring member includes an attachment portion that is fixed to the column member and / or the structural member.
The energy absorption mechanism according to any one of claims 6 to 9.
前記第1板状部及び前記第2板状部及び前記取付部は、貫通孔を備える、
請求項10に記載のエネルギー吸収機構。
The first plate-like portion, the second plate-like portion, and the attachment portion each include a through hole.
The energy absorption mechanism according to claim 10.
前記第2板状部の表面を被覆する、弾性材からなる被覆部をさらに備え、
前記被覆部は、前記第1のバネ部材と一体に形成されてなる、
請求項6乃至請求項11のいずれか1項に記載のエネルギー吸収機構。
A coating portion made of an elastic material that covers the surface of the second plate-shaped portion;
The covering portion is formed integrally with the first spring member.
The energy absorption mechanism according to any one of claims 6 to 11.
前記被覆部は、板状であり、貫通孔を備える、
請求項12に記載のエネルギー吸収機構。
The covering portion is plate-shaped and includes a through hole.
The energy absorption mechanism according to claim 12.
JP2016065051A 2016-03-29 2016-03-29 Energy absorption mechanism Active JP6037298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016065051A JP6037298B1 (en) 2016-03-29 2016-03-29 Energy absorption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065051A JP6037298B1 (en) 2016-03-29 2016-03-29 Energy absorption mechanism

Publications (2)

Publication Number Publication Date
JP6037298B1 true JP6037298B1 (en) 2016-12-07
JP2017179762A JP2017179762A (en) 2017-10-05

Family

ID=57483099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065051A Active JP6037298B1 (en) 2016-03-29 2016-03-29 Energy absorption mechanism

Country Status (1)

Country Link
JP (1) JP6037298B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089077A (en) * 2000-09-12 2002-03-27 Nippon Steel Corp Viscoelastic brace serially connected with spring
JP2015209643A (en) * 2014-04-24 2015-11-24 学校法人都築教育学園 Brace hardware and joining structure of wooden building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089077A (en) * 2000-09-12 2002-03-27 Nippon Steel Corp Viscoelastic brace serially connected with spring
JP2015209643A (en) * 2014-04-24 2015-11-24 学校法人都築教育学園 Brace hardware and joining structure of wooden building

Also Published As

Publication number Publication date
JP2017179762A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
US8857111B2 (en) Composite damper
JP2008088641A (en) Reinforcing member of building or structure
JP4703971B2 (en) Energy absorbing brace damping device and energy absorbing device
JP2003193699A (en) Elasto-plastic, visco-elastic brace
JP6941467B2 (en) Damper and how to make the damper
JP4585470B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP6912102B2 (en) Energy absorption mechanism and wooden building
JP2021050507A (en) Buckling restraint brace
JP3664611B2 (en) Seismic structure of wooden buildings
JP6037298B1 (en) Energy absorption mechanism
JPH11153194A (en) Damping member integrating elasto-plastic and visco-elastic damper
JP4456514B2 (en) Seismic control structure of lightweight steel house
JP2009280963A (en) Vibration control frame using composite damper
JP5777036B1 (en) Joint structure of brace and wooden building
JP4464307B2 (en) Seismic control structure of lightweight steel house
JP4878338B2 (en) Reinforcement structure of buildings and structures
JP4456515B2 (en) Seismic control structure of lightweight steel house
JP2010024656A (en) Joint damper and structure of joint portion
JP2003090144A (en) Damping device, damping structure, and damping structural body
JP4889050B2 (en) Reinforcing members and reinforcing structures for buildings and structures
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
WO2000071840A1 (en) Vibration control member formed integrally with elasto-plastic and viscoelastic damper
JP4911715B2 (en) Reinforcement structure of buildings and structures
JPH10280727A (en) Damping frame by composite type damper and damping method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161021

R150 Certificate of patent or registration of utility model

Ref document number: 6037298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250