JP4301992B2 - Decontamination waste liquid processing method and processing apparatus - Google Patents

Decontamination waste liquid processing method and processing apparatus Download PDF

Info

Publication number
JP4301992B2
JP4301992B2 JP2004131674A JP2004131674A JP4301992B2 JP 4301992 B2 JP4301992 B2 JP 4301992B2 JP 2004131674 A JP2004131674 A JP 2004131674A JP 2004131674 A JP2004131674 A JP 2004131674A JP 4301992 B2 JP4301992 B2 JP 4301992B2
Authority
JP
Japan
Prior art keywords
waste liquid
decomposition
decontamination waste
water
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004131674A
Other languages
Japanese (ja)
Other versions
JP2005315641A (en
Inventor
正見 遠田
由美 矢板
龍明 佐藤
仁志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004131674A priority Critical patent/JP4301992B2/en
Publication of JP2005315641A publication Critical patent/JP2005315641A/en
Application granted granted Critical
Publication of JP4301992B2 publication Critical patent/JP4301992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、原子力施設等において、配管、機器、構造部品等に付着した放射性物質を化学除染液により除染した後の除染廃液の処理方法および処理装置に関する。   The present invention relates to a method and an apparatus for treating a decontamination waste liquid after decontaminating radioactive substances adhering to piping, equipment, structural parts and the like with a chemical decontamination liquid in a nuclear facility or the like.

たとえば、原子力施設においては、その保守保全時には放射性物質が付着した使用済みの機器などが発生する。また、原子炉廃止措置時の解体時には放射性物質が付着した解体機器などが発生する。このような機器から放射物質を除去する除染技術としては、硫酸などの無機酸除染液を用いた化学除染方法が国内外で開発されている(たとえば特許文献1参照。)。 For example, in a nuclear facility, used equipment with radioactive materials attached is generated during maintenance. At the time of dismantling at the time of decommissioning of nuclear reactors, dismantling equipment with radioactive materials attached is generated. As such a decontamination technique for removing radioactive material from the device, the chemical decontamination methods have been developed at home and abroad using an inorganic acid decontamination liquid such as sulfuric acid (for example, see Patent Document 1.).

また、一般的に放射性廃棄物を処理する方法としては、セメント固化する方法が従来からとられている(たとえば特許文献2、特許文献3参照。)。   In general, as a method of treating radioactive waste, a method of solidifying cement has been conventionally employed (see, for example, Patent Document 2 and Patent Document 3).

このため、上記のような硫酸などの無機酸除染液を用いた化学除染方法では、使用済みの除染廃液は、苛性ソーダなどで中和処理して溶出金属を水酸化物として沈殿し、加熱・乾燥・粉体化し、安定化(セメント固化)する除染廃液処理を行うことが検討されている。このような除染廃液処理では、最終処理形態であるセメント固化体の発生量は、たとえば硫酸除染液の場合、使用済み硫酸量と金属溶出量によって影響されるが、特に金属水酸化物はセメント固化体への充填量が小さいため、セメント固化体、つまり二次廃棄物の発生量が増大するという課題があった。   For this reason, in the chemical decontamination method using an inorganic acid decontamination liquid such as sulfuric acid as described above, the used decontamination waste liquid is neutralized with caustic soda or the like to precipitate the eluted metal as a hydroxide, Decontamination waste liquid treatment that is heated, dried, pulverized and stabilized (cement solidified) has been studied. In such decontamination waste liquid treatment, the amount of cement solidified body that is the final treatment form is influenced by the amount of used sulfuric acid and the amount of metal elution, for example, in the case of sulfuric acid decontamination liquid. Since the filling amount of the cement solid body is small, there is a problem that the amount of cement solidified body, that is, the amount of secondary waste generated increases.

また、本発明者等は、従来からギ酸またはシュウ酸などの有機酸除染液を用いた化学除染方法を開発している。   In addition, the present inventors have conventionally developed a chemical decontamination method using an organic acid decontamination solution such as formic acid or oxalic acid.

この有機酸を用いた化学除染方法における除染廃液処理では、過酸化水素の添加などによって使用済み有機酸を炭酸ガスと水に分解する(たとえば特許文献4参照。)。このため、上述の無機酸を用いた場合と比較して二次廃棄物の発生量が少ないという利点を有する。しかしながら、この除染廃液処理では、溶出金属をイオン交換樹脂で除去しているので、使用済みイオン交換樹脂を放射性廃棄物として保管しなければならず、二次廃棄物の低減という点においては、充分とは言えなかった。   In the decontamination waste liquid treatment in the chemical decontamination method using an organic acid, the used organic acid is decomposed into carbon dioxide gas and water by adding hydrogen peroxide or the like (see, for example, Patent Document 4). For this reason, it has the advantage that there is little generation amount of a secondary waste compared with the case where the above-mentioned inorganic acid is used. However, in this decontamination waste liquid treatment, since the eluted metal is removed with an ion exchange resin, the used ion exchange resin must be stored as radioactive waste, and in terms of reducing secondary waste, It was not enough.

また、上記のようにして有機酸を分解処理した後に、苛性ソーダなどでアルカリ調整し金属水酸化物の沈殿物を生成し、セメント固化することが検討されている(たとえば特許文献5参照。)。この方法は、イオン交換樹脂を使用する場合に比べて二次廃棄物の発生量が少ないという利点があるものの、上述の無機酸除染廃液の処理の場合と同様に、金属水酸化物はセメント固化体への充填量が小さいという課題がある。
特開平02-22597号公報(2−5頁、第1図) 特開平08-166492号公報(2−13頁) 特開平09-211194号公報(4−8頁) 特開平09-113690号公報(4−9頁) 特開2002-333498号公報(3−5頁、第1図)
In addition, after the organic acid is decomposed as described above, it has been studied to adjust the alkali with caustic soda or the like to generate a metal hydroxide precipitate and solidify the cement (see, for example, Patent Document 5). Although this method has the advantage that the amount of secondary waste generated is small compared to the case of using an ion exchange resin, the metal hydroxide is a cement as in the case of the treatment of the above-mentioned inorganic acid decontamination waste liquid. There exists a subject that the filling amount to a solidified body is small.
JP 02-22597 (page 2-5, Fig. 1) JP 08-166492 A (page 2-13) JP 09-211194 A (page 4-8) JP 09-113690 A (page 4-9) JP 2002-333498 A (page 3-5, FIG. 1)

上述したとおり、従来の技術では、イオン交換樹脂を使用するためこのイオン交換樹脂が二次廃棄物となって二次廃棄物量が増大する、あるいは、金属水酸化物のセメント固化体への充填量が小さいため二次廃棄物発生量が増大するという課題があった。   As described above, in the conventional technology, since an ion exchange resin is used, this ion exchange resin becomes secondary waste, and the amount of secondary waste increases, or the amount of metal hydroxide filled in the cement solidified body Therefore, there is a problem that the amount of secondary waste generated increases.

本発明は、上記課題を解決するためになされたもので、有機酸除染廃液中に溶解した金属イオンを金属酸化物の粉体に変換できるため、従来に比べて除染後の二次廃棄物発生量を低減することでき、さらにはセメント固化体の発生量を低減することができる除染廃液の処理方法および処理装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and can convert metal ions dissolved in organic acid decontamination waste liquid into metal oxide powder. it is possible to reduce the goods generation amount, further aims to provide a processing method and processing apparatus for decontamination waste liquid that can reduce the generation amount of cement solidified bodies.

本発明の除染廃液の処理方法は、有機酸を含有し、金属が溶解した金属イオンを含む除染廃液の処理方法であって、前記金属イオンを含む除染廃液中の前記有機酸を分解剤である過酸化水素水によって炭酸ガスと水とに分解する分解工程と、前記分解工程後の除染廃液を加熱・乾燥して水分を蒸発させて前記金属イオンを金属酸化物の粉体とする乾燥工程と、前記金属イオンを酸化させた金属酸化物の粉体をセメント固化する固化工程とを有することを特徴とする。 The treatment method of the decontamination waste liquid of the present invention is a treatment method of a decontamination waste liquid containing an organic acid and containing metal ions in which the metal is dissolved, and decomposes the organic acid in the decontamination waste liquid containing the metal ions. A decomposition step of decomposing it into carbon dioxide gas and water by the hydrogen peroxide solution as an agent, and heating and drying the decontamination waste liquid after the decomposition step to evaporate the water, thereby converting the metal ions into a metal oxide powder. And a solidifying step in which the metal oxide powder obtained by oxidizing the metal ions is solidified with cement.

また、本発明の除染廃液の処理装置は、有機酸を含有し、金属が溶解した金属イオンを含む除染廃液の処理装置であって、前記金属イオンを含む除染廃液中の前記有機酸を分解剤である過酸化水素水によって炭酸ガスと水に分解する分解処理部と、前記分解処理部による分解処理後の除染廃液を加熱して乾燥し、水分を蒸発させて前記金属イオンを金属酸化物の粉体とする乾燥処理部と、前記金属イオンを酸化させた金属酸化物の粉体をセメント固化する固化処理部とを具備したことを特徴とする。 Further, the treatment apparatus for decontamination waste liquid of the present invention is a treatment apparatus for decontamination waste liquid containing an organic acid and containing metal ions in which the metal is dissolved, and the organic acid in the decontamination waste liquid containing the metal ions A decomposition treatment section for decomposing the water into a carbon dioxide gas and water using a hydrogen peroxide solution as a decomposition agent, and heating and drying the decontamination waste liquid after the decomposition treatment by the decomposition treatment section to evaporate the water and It is characterized by comprising a drying processing section for forming a metal oxide powder and a solidification processing section for cement-solidifying the metal oxide powder obtained by oxidizing the metal ions .

本発明の除染廃液の処理方法および処理装置によれば、有機酸除染廃液中に溶解した金属イオンを金属酸化物の粉体に変換できるため、従来に比べて除染後の二次廃棄物発生量を低減することができ、さらにはセメント固化体の発生量を低減することができるAccording to the treatment method and the treatment apparatus for decontamination waste liquid of the present invention, metal ions dissolved in the organic acid decontamination waste liquid can be converted into metal oxide powder. The amount of material generated can be reduced , and further the amount of cement solidified body generated can be reduced .

以下、本発明の詳細を実施の形態について図面を参照して説明する。図1は、本発明の一実施形態係る除染廃液の処理装置の構成を示すものである。同図に示すように、除染廃液の処理装置は、除染廃液中の有機酸を炭酸ガスと水に分解する分解処理部1と、分解処理した除染廃液を加熱し水分を蒸発させて除染廃液中に含まれる金属を金属酸化物として乾燥粉体化する乾燥処理部2と、乾燥分体化した金属酸化物をセメント固化する固化処理部3とを具備している。分解処理部1と乾燥処理部2は分解液移送ライン11によって接続されており、乾燥処理部2と固化処理部3は粉体移送ライン15によって接続されている。   The details of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a decontamination waste liquid treatment apparatus according to an embodiment of the present invention. As shown in the figure, the decontamination waste liquid treatment apparatus includes a decomposition processing unit 1 that decomposes organic acids in the decontamination waste liquid into carbon dioxide gas and water, and heats the decontamination decontamination waste liquid to evaporate water. A drying processing unit 2 that dry-forms the metal contained in the decontamination waste liquid as a metal oxide and a solidification processing unit 3 that solidifies the dried and separated metal oxide into cement are provided. The decomposition processing unit 1 and the drying processing unit 2 are connected by a decomposition liquid transfer line 11, and the drying processing unit 2 and the solidification processing unit 3 are connected by a powder transfer line 15.

上記分解処理部1は、除染廃液を収容し、この除染廃液中の有機酸を分解するための分解槽4と、この分解槽4に除染廃液を供給する除染廃液供給ライン5と、分解槽4内に分解剤として過酸化水素水を供給するための分解剤供給部6と、分解槽内の除染廃液を循環するために過流ポンプ7が付設された循環ライン8とを具備している。また、過流ポンプ7には、オゾン発生器9からオゾンガスを供給するためのオゾンガス供給ライン10が付設されている。   The decomposition processing unit 1 contains a decontamination waste liquid, a decomposition tank 4 for decomposing the organic acid in the decontamination waste liquid, and a decontamination waste liquid supply line 5 for supplying the decontamination waste liquid to the decomposition tank 4 A decomposing agent supplying unit 6 for supplying hydrogen peroxide water as a decomposing agent into the decomposing tank 4 and a circulation line 8 provided with an overflow pump 7 for circulating decontamination waste liquid in the decomposing tank. It has. The overflow pump 7 is additionally provided with an ozone gas supply line 10 for supplying ozone gas from the ozone generator 9.

上記ように循環ライン8に過流ポンプ7を用いたのは、過流ポンプは気液混合溶液を移送するのに適しているからである。なお、除染廃液中の有機酸がギ酸単独の場合は、オゾン発生器9およびオゾンガス供給ライン10は、省略することができる。   The reason why the overflow pump 7 is used in the circulation line 8 as described above is that the overflow pump is suitable for transferring the gas-liquid mixed solution. When the organic acid in the decontamination waste liquid is formic acid alone, the ozone generator 9 and the ozone gas supply line 10 can be omitted.

また、乾燥処理部2は、竪型遠心薄膜乾燥機12と、蒸発した水分を水に戻す復水器13とを具備している。復水器13には、復水移送ライン14が設けられており、復水器13内で発生した水は、この復水移送ライン14を通って廃棄物処理系へ移送され、処理されるようになっている。   Further, the drying processing unit 2 includes a vertical centrifugal thin film dryer 12 and a condenser 13 for returning evaporated water to water. The condenser 13 is provided with a condensate transfer line 14, and water generated in the condenser 13 is transferred to the waste treatment system through the condensate transfer line 14 so as to be processed. It has become.

さらに、固化処理部3は、乾燥粉体ホッパ16、セメントホッパ17、混和剤ホッパ18、混練水タンク19、混練機20を具備している。   Further, the solidification processing unit 3 includes a dry powder hopper 16, a cement hopper 17, an admixture hopper 18, a kneading water tank 19, and a kneading machine 20.

上記構成の除染廃液の処理装置では、まず、処理対象となる除染廃液を廃液供給ライン5から分解槽4に供給するとともに、分解剤供給部6から分解剤として過酸化水素水を分解槽4に供給し、除染廃液中の有機酸を炭酸ガスと水とに分解する。この際、分解槽4内の除染廃液は、過流ポンプ7が付設された循環ライン8により循環され、これにより、分解剤である過酸化水素水が均一に分散され、効率よく分解される。   In the decontamination waste liquid treatment apparatus having the above-described configuration, first, the decontamination waste liquid to be treated is supplied from the waste liquid supply line 5 to the decomposition tank 4, and the hydrogen peroxide solution is decomposed from the decomposition agent supply unit 6 as a decomposition agent. The organic acid in the decontamination waste liquid is decomposed into carbon dioxide gas and water. At this time, the decontamination waste liquid in the decomposition tank 4 is circulated by a circulation line 8 provided with an overflow pump 7, whereby hydrogen peroxide water as a decomposition agent is uniformly dispersed and decomposed efficiently. .

また、分解処理にオゾンガスを使用する場合には、オゾン発生器9を用いてオゾンガスを発生させ、オゾンガス供給ライン10により過流ポンプ7を通じて分解槽4にオゾンガスを供給する。なお、このようにオゾンガスを供給する場合、また、有機酸の分解で炭酸ガスが発生した場合においても、本実施形態では過流ポンプ7を用いているので、気液混合溶液の状態の除染廃液を安定に循環することができる。   Further, when ozone gas is used for the decomposition treatment, ozone gas is generated using the ozone generator 9, and ozone gas is supplied to the decomposition tank 4 through the overflow pump 7 through the ozone gas supply line 10. Even when ozone gas is supplied in this way, or when carbon dioxide gas is generated due to decomposition of the organic acid, the present embodiment uses the overflow pump 7, so the decontamination of the state of the gas-liquid mixed solution is performed. The waste liquid can be circulated stably.

上記のようにして分解処理された除染廃液は、分解液移送ライン11により乾燥処理部2の竪型遠心薄膜乾燥機12に移送される。移送された除染廃液は、竪型遠心薄膜乾燥機12により、加熱・乾燥され、水分は蒸発し、溶解していた金属は金属酸化物の粉体となる。蒸発した水分は、復水器13により水に戻されてから復水移送ライン14を通って廃棄物処理系で処理される。   The decontamination waste liquid decomposed as described above is transferred to the vertical centrifugal thin film dryer 12 of the drying processing unit 2 through the decomposition liquid transfer line 11. The transferred decontamination waste liquid is heated and dried by the vertical centrifugal thin film dryer 12, the water is evaporated, and the dissolved metal becomes a metal oxide powder. The evaporated water is returned to water by the condenser 13 and then processed by the waste treatment system through the condensate transfer line 14.

上記のように竪型遠心薄膜乾燥機12によって乾燥粉体化された金属酸化物は、粉体移送ライン15により固化手段3の乾燥粉体ホッパ16に移送される。そして、乾燥粉体ホッパ16からは乾燥手段2で乾燥された粉体が、セメントホッパ17からはセメントが、混和剤ホッパ18からは混和剤が、混練水タンク19からは混練水が、それぞれ、混練機20に供給され、これらが所定時間、混練機20において混練されて固化体ドラム缶21に排出されて固化される。   The metal oxide dried and powdered by the vertical centrifugal thin film dryer 12 as described above is transferred to the dry powder hopper 16 of the solidifying means 3 by the powder transfer line 15. The powder dried by the drying means 2 from the dry powder hopper 16, cement from the cement hopper 17, admixture from the admixture hopper 18, and kneading water from the kneading water tank 19 are respectively obtained. These are supplied to the kneading machine 20, and are kneaded in the kneading machine 20 for a predetermined time, discharged to the solidified drum can 21, and solidified.

次に、上記の除染廃液の処理装置の分解処理部1において、実際に鉄が溶解した除染廃液中の有機酸を分解した結果について、図2を参照して説明する。図2に示すグラフにおいて、縦軸は有機炭素濃度比(各濃度/初期濃度)を示し、横軸は処理時間を示している。また、同グラフにおいて円形のマークによってプロットされているのはギ酸単独液の場合の結果を示しており、四角形のマークによってプロットされているのはギ酸とシュウ酸の混合液の場合の結果を示している。   Next, the result of decomposing the organic acid in the decontamination waste liquid in which iron is actually dissolved in the decomposition processing unit 1 of the above-described decontamination waste liquid processing apparatus will be described with reference to FIG. In the graph shown in FIG. 2, the vertical axis represents the organic carbon concentration ratio (each concentration / initial concentration), and the horizontal axis represents the treatment time. Also, in the same graph, the results plotted for the formic acid alone solution are plotted with circular marks, and the results for the mixed solution of formic acid and oxalic acid are plotted with the square marks. ing.

ギ酸単独液の初期濃度は、2000ppmである。また、ギ酸とシュウ酸の混合液の初期濃度は、ギ酸が2000ppm、シュウ酸が100ppmである。同図に示すように、ギ酸単独液の場合、分解剤として過酸化水素のみを使用し、2時間で有機炭素濃度が2ppm以下(有機炭素濃度比0.001以下)に低下した。   The initial concentration of formic acid alone is 2000 ppm. The initial concentration of the mixture of formic acid and oxalic acid is 2000 ppm formic acid and 100 ppm oxalic acid. As shown in the figure, in the case of formic acid alone solution, only hydrogen peroxide was used as a decomposition agent, and the organic carbon concentration dropped to 2 ppm or less (organic carbon concentration ratio 0.001 or less) in 2 hours.

一方、ギ酸とシュウ酸の混合液の場合、過酸化水素のみを使用して2時間で有機酸素濃度が20ppmまでに低下したが、それ以降は分解反応の進行が認められなかった。上記のとおり、ギ酸は過酸化水素のみで分解するため、残留有機炭素はシュウ酸の成分と考えられる。このシュウ酸を分解するため、オゾンガスを供給したところ、分解が進行し、有機炭素濃度は、3.5時間で2ppm以下に低下した。   On the other hand, in the case of a mixture of formic acid and oxalic acid, the concentration of organic oxygen dropped to 20 ppm in 2 hours using only hydrogen peroxide, but no progress of the decomposition reaction was observed thereafter. As mentioned above, since formic acid decomposes only with hydrogen peroxide, residual organic carbon is considered to be a component of oxalic acid. When ozone gas was supplied to decompose this oxalic acid, the decomposition proceeded, and the organic carbon concentration decreased to 2 ppm or less in 3.5 hours.

以上の結果から、除染廃液に含まれる有機酸がギ酸単独の場合は、過酸化水素を用いて分解処理を行い、ギ酸とシュウ酸の場合(混合液の場合)は、過酸化水素とオゾンを用いて分解処理を行うことが好ましい。   From the above results, when the organic acid contained in the decontamination waste liquid is formic acid alone, it is decomposed using hydrogen peroxide, and in the case of formic acid and oxalic acid (in the case of a mixed liquid), hydrogen peroxide and ozone are used. It is preferable to carry out a decomposition treatment using

次に、上記の除染廃液の処理装置の乾燥処理部2において、実際に有機酸を分解した除染廃液を加熱し、水分を蒸発させて乾燥処理を行い、得られた乾燥粉体を、X線回折により分析した結果について説明する。図3は、有機酸がギ酸単独の場合に、このギ酸を上述したようにして炭酸ガスと水とに分解した除染廃液について、加熱蒸気温度175℃で処理した後の乾燥粉体物のX線回折分析結果を示すもので、縦軸はX線強度、横軸は回折角度を示している。この場合の乾燥粉体物のX線強度ピークは、α−Feとほぼ同じ回折角度に位置する。したがって、ギ酸を分解した後の廃液中の鉄イオンは、加熱・乾燥することで酸化鉄(α−Fe)に変換されていることがわかった。 Next, in the drying treatment unit 2 of the above decontamination waste liquid treatment apparatus, the decontamination waste liquid that actually decomposes the organic acid is heated, the moisture is evaporated, and the drying treatment is performed. The results of analysis by X-ray diffraction will be described. FIG. 3 shows that when the organic acid is formic acid alone, the decontamination waste liquid obtained by decomposing this formic acid into carbon dioxide gas and water as described above is treated with a heated steam temperature of 175 ° C. The results of line diffraction analysis are shown. The vertical axis represents the X-ray intensity, and the horizontal axis represents the diffraction angle. The X-ray intensity peak of the dried powder in this case is located at substantially the same diffraction angle as α-Fe 2 O 3 . Thus, the iron ions in the waste liquid after decomposing the formic acid was found to have been converted to iron oxide (α-Fe 2 O 3) by heating and drying.

一方、図4は、比較のため、鉄が溶解した塩酸廃液を、水酸化ナトリウムで中和し、その後に竪型遠心薄膜乾燥機で、加熱・乾燥した乾燥粉体物のX線回折分析結果を示すものである。同図に示されるように、このX線回折分析結果では、明確なX線強度のピークが見られない。したがって、無機酸を中和処理した後の鉄イオンは、過熱・乾燥することで、非結晶の水酸化鉄に変換されたものと推測される。   On the other hand, FIG. 4 shows, for comparison, the result of X-ray diffraction analysis of a dried powdery product obtained by neutralizing a hydrochloric acid waste solution in which iron is dissolved with sodium hydroxide, and then heating and drying with a vertical centrifugal thin film dryer. Is shown. As shown in the figure, no clear X-ray intensity peak is observed in the X-ray diffraction analysis result. Therefore, it is presumed that the iron ions after neutralizing the inorganic acid are converted to amorphous iron hydroxide by heating and drying.

次に、有機酸がギ酸単独の場合について、除染廃液から上記した分解処理工程及び乾燥処理工程を経て生成した酸化鉄の粉体を、固化処理部3において実際にセメント固化した結果について説明する。   Next, in the case where the organic acid is formic acid alone, the result of actually cement-solidifying the iron oxide powder generated from the decontamination waste liquid through the above-described decomposition treatment step and the drying treatment step in the solidification treatment unit 3 will be described. .

混練機20に、乾燥粉体ホッパ16より乾燥粉体を、セメントホッパ17より高炉セメントB種を、混和剤ホッパ18よりヘキサ燐酸ナトリウムと炭酸カリウムからなる無機混和剤を、混練水タンク19より混練水を、それぞれ供給し、混練機20にて所定時間混練して固化体ドラム缶21に排出した。   A kneading machine 20 is kneaded from a kneading water tank 19 with a dry powder from a dry powder hopper 16, a blast furnace cement B from a cement hopper 17, and an inorganic admixture composed of sodium hexaphosphate and potassium carbonate from an admixture hopper 18. Water was supplied, kneaded by a kneader 20 for a predetermined time, and discharged to a solidified drum 21.

得られた固化体ドラム缶21(セメント固化体)を1ヶ月放置した後の固化体外観と一軸圧縮強度の測定結果を表1に示す。

Figure 0004301992
Table 1 shows the measurement results of the solidified body appearance and uniaxial compressive strength after the obtained solidified drum 21 (cement solidified body) was allowed to stand for one month.
Figure 0004301992

ギ酸廃液から生成した酸化鉄をセメント固化した場合、200リットルドラム缶(以下、200Lドラム缶という。)充填量50〜120kgにおいて、一軸圧縮強度が目標値1.5MPaを大きく上回る値が得られ、固化体外観も良好でボイドの発生も認められなかった。   When cemented iron oxide produced from formic acid waste liquid, a uniaxial compressive strength greatly exceeding the target value of 1.5 MPa was obtained with a 200-liter drum can (hereinafter referred to as a 200-liter drum can) filling amount of 50 to 120 kg. Also, no void was observed.

一方、比較例として、塩酸廃液から生成した水酸化鉄を固化した場合は、充填量100kgにおいて、多数のボイド(空隙)が観察されたため、セメント固化体としては不適格と評価した。なお、充填量50kgではボイドの発生が認められず、また一軸圧縮強度が目標値1.5MPaを大きく上回る値が得られた。   On the other hand, as a comparative example, when iron hydroxide produced from a hydrochloric acid waste solution was solidified, a large number of voids (voids) were observed at a filling amount of 100 kg, and thus it was evaluated as unqualified as a cement solidified body. In addition, no void was observed at a filling amount of 50 kg, and the uniaxial compressive strength greatly exceeded the target value of 1.5 MPa.

以上の結果から、ギ酸廃液から生成した酸化鉄のセメント固化体充填量は、最大で120kg/200Lドラム缶と考えられる。一方、無機酸から生成した水酸化鉄のセメント固化体充填量は、最大でも酸化鉄の半分以下50kg/200Lドラム缶と考えられる。   From the above results, it is considered that the maximum amount of iron oxide cement solids produced from formic acid waste liquid is 120 kg / 200 L drum. On the other hand, the filling amount of cemented solid body of iron hydroxide produced from inorganic acid is considered to be 50kg / 200L drum can less than half of iron oxide.

次に、セメント固化試験結果に基づいて、除染廃液を処理した際の二次廃棄物発生量を試算した。   Next, the amount of secondary waste generated when the decontamination waste liquid was treated was calculated based on the cement solidification test results.

前提条件は、炭素鋼製の放射性廃棄物の表面積が100,000m、鉄の溶解量が50g/mとした。ギ酸廃液は、ギ酸分解し、加熱・乾燥して生成した酸化鉄(Fe)の乾燥粉体をセメント固化する。塩酸廃液は、塩化鉄(FeCl)水溶液を中和処理し、加熱・乾燥して水酸化鉄(Fe(OH))と塩化ナトリム(NaCl)の混合粉末をセメント固化する。 Assumptions, the surface area of the carbon steel of radioactive waste 100,000 m 2, the amount of dissolved iron was 50 g / m 2. The formic acid waste liquid decomposes formic acid and solidifies the dried iron oxide (Fe 2 O 3 ) powder produced by heating and drying. The hydrochloric acid waste liquid is neutralized with an aqueous solution of iron chloride (FeCl 3 ), heated and dried to solidify the mixed powder of iron hydroxide (Fe (OH) 3 ) and sodium chloride (NaCl).

この条件でセメント固化体(200Lドラム缶)発生量を試算した試算結果を図5に示す。図の縦軸は塩酸廃液の発生量を基準にした200Lドラム缶発生量比を示す。ギ酸廃液をセメント固化した際の200Lドラム缶の発生量は、塩酸廃液の約1/7と評価した。   Figure 5 shows the results of a trial calculation of the amount of solidified cement (200L drum) generated under these conditions. The vertical axis of the figure indicates the ratio of 200L drum generation rate based on the generation amount of hydrochloric acid waste liquid. The amount of 200L drum generated when formic acid waste liquor was solidified was estimated to be about 1/7 of hydrochloric acid waste liquor.

この結果に示されるとおり、本発明の除染廃液の処理方法および処理装置は、除染廃液を処理した際のセメント固化体の発生量および処分費用を従来に比べて大幅に低減することが可能である。   As shown in this result, the processing method and the processing apparatus of the decontamination waste liquid of the present invention can greatly reduce the amount of solidified cement and the disposal cost when the decontamination waste liquid is processed compared to the conventional method. It is.

以上のとおり、本実施形態によれば、有機酸除染廃液中に溶解した金属イオンを金属酸化物の粉体に変換できるため、イオン交換樹脂を使用する場合と比較して二次廃棄物の発生量を低減できる。しかも、セメント固化体への充填量は金属水酸化物に比べて金属酸化物の方が大きいため、溶出金属を水酸化物として処理してセメント固化する従来の方法に比べて、セメント固化体の発生量を低減することができる。 As described above, according to the present embodiment, since the metal ions dissolved in the organic acid decontamination waste liquid can be converted into a metal oxide powder, the secondary waste is compared with the case of using an ion exchange resin. The amount generated can be reduced. Moreover, since the filling amount of the cement solid body is larger in the metal oxide than in the metal hydroxide, the cement solid body is compared with the conventional method of treating the eluted metal as a hydroxide and solidifying the cement. The amount of generation can be reduced.

なお、除染廃液に含有している有機酸としては、ギ酸、シュウ酸の他、クエン酸等も使用することができる。また、除染廃液に含有している金属としては、たとえば、炭素鋼から溶解した鉄(Fe)、ステンレス鋼から溶解したクロム(Cr)、ニッケル(Ni)、放射性核種としてMn−54,Co−60等が挙げられる。   In addition, as an organic acid contained in the decontamination waste liquid, citric acid and the like can be used in addition to formic acid and oxalic acid. Examples of metals contained in the decontamination waste liquid include iron (Fe) dissolved from carbon steel, chromium (Cr) and nickel (Ni) dissolved from stainless steel, and Mn-54, Co— as radionuclides. 60 etc. are mentioned.

さらに、有機酸を炭酸ガスと水に分解する方法としては、過酸化水素、オゾンを用いた方法の他、たとえば、紫外線を照射する方法、電気化学的に陽極で酸化分解する方法等を用いることもできる。   Furthermore, as a method of decomposing an organic acid into carbon dioxide gas and water, in addition to a method using hydrogen peroxide and ozone, for example, a method of irradiating ultraviolet rays, a method of electrochemically oxidizing and decomposing at an anode, and the like are used. You can also.

本発明の一実施形態に係る除染廃液処理方法および処理装置の構成を示す図。The figure which shows the structure of the decontamination waste liquid processing method and processing apparatus which concern on one Embodiment of this invention. 分解処理における有機炭素量の変化の様子を示す図。The figure which shows the mode of the change of the amount of organic carbon in a decomposition process. 有機酸廃液を分解し、加熱して生成した乾燥粉体のX線回折分析結果を示す図。The figure which shows the X-ray-diffraction analysis result of the dry powder which decomposed | disassembled the organic acid waste liquid and was produced | generated by heating. 塩酸廃液を中和処理し、加熱して生成した乾燥粉体のX線回折分析結果を示す図。The figure which shows the X-ray-diffraction analysis result of the dry powder produced by neutralizing the hydrochloric acid waste liquid and heating. 本発明と従来法におけるセメント固化体発生量を試算した結果を示す図。The figure which shows the result of having calculated the amount of cement solid bodies generation | occurrence | production in this invention and the conventional method.

符号の説明Explanation of symbols

1…分解処理部、2…乾燥処理部、3…固化処理部、4…分解槽、5…廃液供給ライン、6…分解剤供給部、7…過流ポンプ、8…循環ライン、9…オゾン発生器、10…オゾンガス供給ライン、11…分解液移送ライン、12…竪型遠心薄膜乾燥機、13…復水器、14…復水移送ライン、15…粉体移送ライン、16…乾燥粉体ホッパ、17…セメントホッパ、18…混和剤ホッパ、19…混練水タンク、20…混練機、21…固化体ドラム缶   DESCRIPTION OF SYMBOLS 1 ... Decomposition process part, 2 ... Drying process part, 3 ... Solidification process part, 4 ... Decomposition tank, 5 ... Waste liquid supply line, 6 ... Decomposition agent supply part, 7 ... Overflow pump, 8 ... Circulation line, 9 ... Ozone Generator 10 ... Ozone gas supply line 11 ... Decomposition liquid transfer line 12 ... Vertical centrifugal thin film dryer 13 ... Condenser 14 ... Condensate transfer line 15 ... Powder transfer line 16 ... Dry powder Hopper, 17 ... cement hopper, 18 ... admixture hopper, 19 ... kneading water tank, 20 ... kneading machine, 21 ... solidified drum

Claims (5)

有機酸を含有し、金属が溶解した金属イオンを含む除染廃液の処理方法であって、
前記金属イオンを含む除染廃液中の前記有機酸を分解剤である過酸化水素水によって炭酸ガスと水とに分解する分解工程と、
前記分解工程後の除染廃液を加熱・乾燥して水分を蒸発させて前記金属イオンを金属酸化物の粉体とする乾燥工程と、
前記金属イオンを酸化させた金属酸化物の粉体をセメント固化する固化工程と
を有することを特徴とする除染廃液の処理方法。
A method for treating a decontamination waste liquid containing an organic acid and containing a metal ion in which a metal is dissolved,
A decomposition step of decomposing the organic acid in the decontamination waste liquid containing the metal ions into carbon dioxide gas and water with hydrogen peroxide water as a decomposition agent;
A drying step in which the decontamination waste liquid after the decomposition step is heated and dried to evaporate water and the metal ions are converted into a metal oxide powder;
A decontamination waste liquid treatment method comprising: a solidification step of solidifying cement powder of a metal oxide powder obtained by oxidizing the metal ions .
前記分解工程は、
前記有機酸がギ酸単独の場合は過酸化水素を用いて炭酸ガスと水に分解し、前記有機酸がギ酸とシュウ酸の場合は過酸化水素とオゾンを用いて炭酸ガスと水に分解することを特徴とする請求項1記載の除染廃液の処理方法。
The decomposition step includes
When the organic acid is formic acid alone, it is decomposed into carbon dioxide gas and water using hydrogen peroxide, and when the organic acid is formic acid and oxalic acid, it is decomposed into carbon dioxide gas and water using hydrogen peroxide and ozone. The processing method of the decontamination waste liquid of Claim 1 characterized by these.
有機酸を含有し、金属が溶解した金属イオンを含む除染廃液の処理装置であって、
前記金属イオンを含む除染廃液中の前記有機酸を分解剤である過酸化水素水によって炭酸ガスと水に分解する分解処理部と、
前記分解処理部による分解処理後の除染廃液を加熱して乾燥し、水分を蒸発させて前記金属イオンを金属酸化物の粉体とする乾燥処理部と、
前記金属イオンを酸化させた金属酸化物の粉体をセメント固化する固化処理部と
を具備したことを特徴とする除染廃液の処理装置。
An apparatus for treating a decontamination waste liquid containing an organic acid and containing metal ions in which the metal is dissolved ,
A decomposition treatment unit that decomposes the organic acid in the decontamination waste liquid containing the metal ions into carbon dioxide gas and water with hydrogen peroxide water as a decomposition agent;
A drying treatment unit that heats and dehydrates the decontamination waste liquid after the decomposition treatment by the decomposition treatment unit , evaporates the water and turns the metal ions into a metal oxide powder, and
An apparatus for treating a decontamination waste liquid, comprising: a solidification processing unit configured to solidify a powder of the metal oxide obtained by oxidizing the metal ions .
前記分解処理部が、
除染廃液を収容する分解槽と、
前記分解槽に前記分解剤を供給する分解剤供給部と、
過流ポンプが設けられ、前記分解槽内の除染廃液を循環するための廃液循環ラインと
を具備したことを特徴とする請求項3記載の除染廃液の処理装置。
The decomposition processing unit
A decomposition tank for storing decontamination waste liquid;
And decomposing agent supplying section for supplying the decomposing agent to the decomposition bath,
4. The decontamination waste liquid treatment apparatus according to claim 3, further comprising a waste liquid circulation line provided with an overflow pump for circulating the decontamination waste liquid in the decomposition tank.
前記分解処理部は、
前記分解剤供給部から前記分解槽に過酸化水素を供給し、前記有機酸がシュウ酸を含む場合には前記分解槽にオゾンガスを供給するよう構成されたことを特徴とする請求項4記載の除染廃液の処理装置。
The decomposition processing unit
The hydrogen peroxide is supplied to the decomposition tank from the decomposition agent supply unit, and ozone gas is supplied to the decomposition tank when the organic acid contains oxalic acid. Decontamination waste liquid treatment equipment.
JP2004131674A 2004-04-27 2004-04-27 Decontamination waste liquid processing method and processing apparatus Expired - Fee Related JP4301992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131674A JP4301992B2 (en) 2004-04-27 2004-04-27 Decontamination waste liquid processing method and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131674A JP4301992B2 (en) 2004-04-27 2004-04-27 Decontamination waste liquid processing method and processing apparatus

Publications (2)

Publication Number Publication Date
JP2005315641A JP2005315641A (en) 2005-11-10
JP4301992B2 true JP4301992B2 (en) 2009-07-22

Family

ID=35443238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131674A Expired - Fee Related JP4301992B2 (en) 2004-04-27 2004-04-27 Decontamination waste liquid processing method and processing apparatus

Country Status (1)

Country Link
JP (1) JP4301992B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253994B2 (en) * 2008-12-25 2013-07-31 中部電力株式会社 Treatment method of radioactive metal waste
JP5787588B2 (en) * 2011-04-18 2015-09-30 三菱重工業株式会社 Chemical cleaning method
US9793018B2 (en) * 2013-10-29 2017-10-17 Westinghouse Electric Company Llc Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide
JP6326299B2 (en) * 2014-06-11 2018-05-16 日立Geニュークリア・エナジー株式会社 Organic radioactive waste treatment system and treatment method
JP6616583B2 (en) * 2015-04-08 2019-12-04 日立Geニュークリア・エナジー株式会社 Organic acid solution decomposition system and organic acid solution decomposition method
JP6663302B2 (en) * 2016-05-31 2020-03-11 日立Geニュークリア・エナジー株式会社 Organic acid solution decomposition apparatus and organic acid solution decomposition method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358299A (en) * 1986-08-29 1988-03-14 株式会社東芝 Pyrolytic processing method and pyrolytic processor for radioactive chemically decontaminated waste liquor
JPH0222597A (en) * 1988-07-11 1990-01-25 Hitachi Plant Eng & Constr Co Ltd Chemical decontamination method for radioactive metal waste
JP3372684B2 (en) * 1994-12-14 2003-02-04 東芝セラミックス株式会社 Cement inorganic admixture for nuclear waste
JP3481746B2 (en) * 1995-10-19 2003-12-22 株式会社東芝 Decontamination method of metal contaminated by radioactivity
JPH09159798A (en) * 1995-12-12 1997-06-20 Jgc Corp Bubble decontamination and method for treating decontamination waste liquid
JP3833294B2 (en) * 1996-01-30 2006-10-11 株式会社東芝 Solidification method of radioactive waste
JPH10311897A (en) * 1997-05-09 1998-11-24 Hitachi Ltd Method and facility for disposing of waste liquid
JP2002333498A (en) * 2001-05-10 2002-11-22 Toshiba Corp Method of decontaminating radioactive substance
JP3834715B2 (en) * 2001-07-25 2006-10-18 株式会社日立製作所 Organic acid decomposition catalyst and chemical decontamination method
JP2003080295A (en) * 2001-09-14 2003-03-18 Think Laboratory Co Ltd Cleaning and regenerating equipment for used cleaning water in factory

Also Published As

Publication number Publication date
JP2005315641A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
CA2633626C (en) Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
JP5489124B2 (en) Waste resin treatment method and treatment system for nuclear power plant
US10762997B2 (en) Decontamination method reducing radioactive waste
JP4301992B2 (en) Decontamination waste liquid processing method and processing apparatus
KR20190015525A (en) Methods for decontaminating metal surfaces of nuclear facilities
JP3657747B2 (en) Decomposition method of ion exchange resin
JP7095130B2 (en) Wet decomposition of waste ion exchange resin A method of preparing a curable slurry with waste liquid and using it to solidify / fix other waste, and an improved wet oxidation method of waste ion exchange resin and organic matter.
CN107210073A (en) The method that metal surface is purified in the cooling system of nuclear reactor
CA3106515C (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
JP4196163B2 (en) Method for dry pyrolysis of organic acid decontamination waste liquid and dry pyrolysis apparatus
US5202062A (en) Disposal method of radioactive wastes
CN108780669B (en) Method for treating purified waste water from metal surfaces, waste water treatment plant and use of a waste water treatment plant
JP2012103145A (en) Method and device for processing waste ion exchange resin
JP5558028B2 (en) Ion exchange resin treatment method and treatment apparatus
CN113362978B (en) Method for inorganic treatment of organic matters in radioactive decontamination waste liquid and application
KR102100873B1 (en) Decontamination method with reduced radioactive waste
KR101183002B1 (en) Method for conditioning radioactive ion exchange resins
JP4522424B2 (en) Solidification and stabilization of waste acid solution
Araujo et al. Evaluation of the resin oxidation process using Fenton's reagent
JP2022173564A (en) Method for treating excess water and system for treating excess water
JPH01119386A (en) Treatment of chemical washing waste liquid and equipment therefor
JPH02216097A (en) Treatment system of decontaminated waste liquid
JPH07218692A (en) Solidification processing method for radioactive waste liquid
JPH05273387A (en) Resolving organic matter in radioactive waste liquid
JP2005274543A (en) Decontamination of radioactive waste and treatment method for waste solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees