JP4300868B2 - Damping foam molding resin composition and damping foam - Google Patents

Damping foam molding resin composition and damping foam Download PDF

Info

Publication number
JP4300868B2
JP4300868B2 JP2003125461A JP2003125461A JP4300868B2 JP 4300868 B2 JP4300868 B2 JP 4300868B2 JP 2003125461 A JP2003125461 A JP 2003125461A JP 2003125461 A JP2003125461 A JP 2003125461A JP 4300868 B2 JP4300868 B2 JP 4300868B2
Authority
JP
Japan
Prior art keywords
weight
styrene
vibration
damping
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003125461A
Other languages
Japanese (ja)
Other versions
JP2004331707A (en
Inventor
成彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003125461A priority Critical patent/JP4300868B2/en
Publication of JP2004331707A publication Critical patent/JP2004331707A/en
Application granted granted Critical
Publication of JP4300868B2 publication Critical patent/JP4300868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、防音性、制振性が要求されるマンションなどの床材、運動靴、スポーツ用品のパッド等に使用される衝撃吸収性、制振性に優れる制振性発泡体が得られる制振性発泡体成形用樹脂組成物およびそれよりなる制振性発泡体に関する。
【0002】
【従来の技術】
制振性発泡体は、柔軟でかつ振動をすばやく減衰させる性能(振動減衰能)の大きいことを利用して、防音、制振、衝撃吸収、振動吸収などの目的で運動靴、パッド等のスポーツ用品、床材やその他の建材、日曜品等へ使用されている。
【0003】
ポリマーの制振性は、ガラス転移温度近辺やその温度以下の二次転移温度付近で分子鎖の内部摩擦により外部から与えられたエネルギーを消費することにより、振動減衰能が大きくなる現象を利用したものである。従来からポリウレタンで製造された制振発泡材料が使用され、例えば軟質ポリウレタンフォームを製造する際の整泡剤を特定量用いてなる制振性能及び吸音性能を兼備した天井、床等に用いる制振材料(例えば、特許文献1参照。)、有機ポリイソシアネートと特定のポリオールとを、発泡剤、触媒、整泡剤及び可塑効果を有する流動体等の存在下に発泡させて得られる防音・制振発泡体(例えば、特許文献2参照。)等が提案されている。これらのポリウレタンからなる制振発泡材料は、制振性に優れているが、耐候性、特に加水分解に起因する低い耐水性に欠点があった。また、ゴム系の制振性発泡体も提案されており、例えば制振性能に優れ、復元速度が遅くて衝撃吸収性に優れ、かつ熱可塑性樹脂と相溶性が良い1,2−ポリブタジエン発泡体の製造方法(例えば、特許文献3参照。)、制振性を有する1,2−ポリブタジエンと制振性を有するビニル結合−ポリイソプレン−ポリスチレンブロック共重合体との混合物の成形体を架橋発泡させる制振性の樹脂発泡体(例えば、特許文献4参照。)が提案されている。しかしながら、上記従来技術の1,2−ポリブタジエン系発泡体は、1,2−ポリブタジエンの側鎖にビニル基の二重結合炭素を有するので、側鎖間や側鎖と主鎖間で結合して架橋が起こり易く、これにより急激に硬化して、伸びと柔軟性が不足することが欠点であった。
【0004】
この欠点を解決するために、ポリスチレンとビニル−ポリイソプレンが結合したトリブロック共重合体とポリエチレン系樹脂とを混合して加熱発泡させて制振性樹脂発泡体とすることが提案されている(例えば、特許文献5参照。)。
【0005】
【特許文献1】
特公平05−008209号公報
【特許文献2】
特公平07−025863号公報
【特許文献3】
特開平07−062130号公報
【特許文献4】
特開平08−208869号公報
【特許文献5】
特開平11−349717号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献5に提案された制振性樹脂発泡体は、制振性能に優れるポリスチレンとビニル−ポリイソプレンが結合したトリブロック共重合体のスチレン含量が20wt%程度と多く、またポリエチレンと相溶しないポリイソプレン相からなっている。このため、高発泡体を得るために発泡剤を増量しても発泡体が発泡成形時に割れてしまい、高発泡倍率の製品が得られないという問題があった。
【0007】
そこで、本発明は、前記したような課題を解消し、耐候性、耐水性、伸び及び柔軟性に優れ、かつ、高発泡倍率の製品が成形可能な制振性発泡体成形用樹脂組成物及びそれよりなる制振性発泡体を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は上記課題に関し鋭意検討した結果、スチレン−イソプレン−スチレントリブロック共重合体、水添スチレン−ブタジエン−スチレントリブロック共重合体及びポリエチレン系樹脂をそれぞれ特定の割合で配合してなる組成物が、耐候性、耐水性、伸び、柔軟性に優れ、かつ、高発泡倍率を有する制振性発泡体を与えうることを見出し、本発明を完成させるに至った。
【0009】
即ち、本発明は、スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなることを特徴とする制振性発泡体成形用樹脂組成物及び該制振性発泡体成形用樹脂組成物を発泡させてなる制振性発泡体に関するものである。
【0010】
以下に本発明を詳細に説明する。
【0011】
本発明の制振性発泡体成形用樹脂組成物は、スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる樹脂組成物である。
【0012】
本発明において用いられるスチレン−イソプレン−スチレントリブロック共重合体とは、ポリスチレン単位とポリイソプレン単位が結合したトリブロック共重合体であり、室温領域にガラス転移温度(Tg)及び/又は損失正接係数(tanδ)のピークを有し、室温領域において高い制振性能を発揮する共重合体である。このようなスチレン−イソプレン−スチレントリブロック共重合体は、スチレン単量体とイソプレン単量体をイオン重合することにより製造することが可能であり、本発明においては市販のものを用いることも可能であり、その中でも特に制振性能に優れた制振性発泡体成形用樹脂組成物が得られることからポリスチレン単位を10〜40重量%含んでなるスチレン−イソプレン−スチレントリブロック共重合体であることが好ましい。また、スチレン−イソプレン−スチレントリブロック共重合体としては、水添触媒を用い水素添加を行った水添スチレン−イソプレン−スチレントリブロック共重合体であってもよい。
【0013】
このようなスチレン−イソプレン−スチレントリブロック共重合体は、例えば(株)クラレ製、商品名ハイブラーとして入手することができる。
【0014】
本発明において用いられる水添スチレン−ブタジエン−スチレントリブロック共重合体は、スチレン−イソプレン−スチレントリブロック共重合体とポリエチレン系樹脂とのバインダーとして作用する共重合体であり、このような水添スチレン−ブタジエン−スチレントリブロック共重合体は、スチレン単量体とブタジエン単量体をイオン重合することにより得られたスチレン−ブタジエン−スチレントリブロック共重合体を水添触媒を用いてポリブタジエン単位を水素添加することにより製造することが可能であり、本発明においては市販のものを用いることも可能である。
【0015】
本発明において用いられるポリエチレン系樹脂は、本発明の制振性発泡体成形用樹脂組成物の発泡特性を決定する樹脂成分であり、該ポリエチレン系樹脂としては、例えば高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン・α−オレフィン共重合体、エチレン・酢酸ビニル共重合体、メタロセン触媒を使用して重合されたポリエチレン系樹脂、バナジウム触媒を使用して重合されたポリエチレン系樹脂等が挙げられ、この中でも特に柔軟性に優れた制振性発泡体が得られることからメタロセン触媒、バナジウム触媒を使用して重合されたエチレン・α−オレフィン共重合体が好ましい。
【0016】
そして、その中でもエチレン・α−オレフィン共重合体とは、エチレンとα−オレフィンを共重合したものであり、その際のα−オレフィンとしては、α−オレフィンの範疇に属するものであればいかなるものでもよく、特に均一気泡、柔軟性、強靭性に優れる制振性発泡体を得ることが可能となる制振性発泡体成形用樹脂組成物が得られることから、例えばプロピレン、ブテン−1、ヘキセン−1、オクテン−1、4−メチル−ペンテン−1等の炭素数3〜12のα−オレフィンであることが好ましい。このようなエチレン・α−オレフィン共重合体は、一般的には直鎖状低密度ポリエチレンと称され、例えばエチレン・ブテン−1共重合体、エチレン・ヘキセン−1共重合体、エチレン・オクテン−1共重合体等が挙げられる。
【0017】
また、このようなエチレン・α−オレフィン共重合体を製造する際の製造方法としては、例えば高圧法、溶液法、気相法等の各種製造方法を用いることができ、その製造の際に使用する触媒としては、例えばマグネシウムとチタンを含有する固体触媒成分及び有機アルミニウム化合物からなるチーグラー触媒、シクロペンタジエニル誘導体を含有する有機遷移金属化合物と、これと反応してイオン性錯体を形成する化合物及び/又は有機金属化合物からなるメタロセン触媒、バナジウム触媒等を挙げることができる。
【0018】
本発明において、ポリエチレン系樹脂としてエチレン・α−オレフィン共重合体を用いる際には、特に柔軟性、クッション性に優れた制振性発泡体を生産効率良く製造することが可能となることから、JIS K 6760を準拠し測定した密度が0.94g/cm3以下、190℃、2160g荷重により測定したメルトフローレートが0.1〜30g/10分間であるエチレン・α−オレフィン共重合体であることが好ましく、0.87〜0.90g/cm3、0.1〜10g/10分間であるエチレン・α−オレフィン共重合体がより好ましく、0.87〜0.89g/cm3、0.1〜10g/10分間であるエチレン・α−オレフィン共重合体が特に好ましい。さらに、本発明の制振性発泡体成形用樹脂組成物を制振性架橋発泡体とする際には、必要となる過酸化物の量、電離放射線の照射線量を低く抑えることが可能となることから、ゲル・パーミエイション・クロマトグラフィーにより1,2,4−トリクロロベンゼンを溶媒として用い直鎖ポリエチレン換算値として求められた重量平均分子量が60000以上のエチレン・α−オレフィン共重合体であることが好ましい。
【0019】
また、本発明におけるポリエチレン系樹脂としては、得られた制振性発泡体成形用樹脂組成物を制振性架橋発泡体とした際に、特に高発泡倍率を有する制振性架橋発泡体を得ることが可能となることから、エチレン・α−オレフィン共重合体100重量部に対し、粘度平均分子量10000以下のポリエチレン系ワックス0.1〜30重量部を配合したポリエチレン系樹脂であることが好ましい。
【0020】
本発明の制振性発泡体成形用樹脂組成物は、スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなるものである。ここで、スチレン−イソプレン−スチレントリブロック共重合体が50重量%未満である場合、得られる組成物の制振性が不足する。一方、スチレン−イソプレン−スチレントリブロック共重合体が80重量%を越える場合、得られた組成物を発泡成形に供した際に高発泡倍率を有する発泡体が得られない。また、水添スチレン−ブタジエン−スチレントリブロック共重合体が5重量%未満である場合、得られる組成物を構成するスチレン−イソプレン−スチレントリブロック共重合体とポリエチレン系樹脂の相溶性が劣り、このような組成物を発泡成形に供しても高発泡倍率を有する発泡体が得られない。一方、水添スチレン−ブタジエン−スチレントリブロック共重合体が30重量%を越える場合、得られる組成物の制振性が不足する。ポリエチレン系樹脂が15重量%未満である場合、得られる組成物は架橋発泡性に劣り、このような組成物を架橋発泡成形に供しても高発泡倍率を有する発泡体が得られない。一方、ポリエチレン系樹脂が45重量%を越える場合、得られる組成物の制振性が不足する。
【0021】
また、本発明の制振性発泡体成形用樹脂組成物は、制振性発泡体とする際により高発泡倍率を有する架橋発泡体を効率良く製造することが可能となることから、スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる合計量100重量部に対し、さらに発泡剤2〜20重量部及び架橋剤0.1〜3重量部を含んでなることが好ましい。
【0022】
本発明の制振性発泡体成形用樹脂組成物は、発泡成形に供することによりスチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる制振性に優れる発泡体とすることができる。
【0023】
その際の制振性発泡体の製造方法としては、スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる混合物を発泡することが可能であれば如何なる方法を用いることも可能であり、例えば1)スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる混合物に発泡剤を添加し、加熱炉などにより発泡させ発泡体とする方法、2)スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる混合物に発泡剤及び架橋剤を添加、混練して、両者の分解温度以下でシート状に成形したのちに、加熱炉などを利用して架橋剤と発泡剤の分解温度以上で加熱・発泡させ架橋発泡体とする方法、3)スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる混合物に発泡剤を添加、混練して、電離放射線等を照射し架橋した後に、加熱炉などを利用して発泡剤の分解温度以上で加熱発泡させ架橋発泡体とする方法、等を挙げることができる。そして、本発明における制振性発泡体としては、特に高発泡倍率を有する制振性発泡体が容易に得られることからスチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる制振性架橋発泡体であることが好ましい。
【0024】
ここで、発泡剤としては、発泡剤の範疇に属するものであればいかなるものでも用いることが可能であり、その中でも特に高発泡倍率を有する制振性発泡体、特に制振性架橋発泡体が効率よく得られることから、ポリエチレン系樹脂の溶融温度以上の分解温度を有する化学発泡剤が好ましく、例えばアゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、p,p’−オキシビスベンゼンスルホニルヒドラジド等が挙げられる。さらに、発泡助剤を用いてもよく、該発泡助剤としては、例えば尿素を主成分とした化合物;酸化亜鉛、酸化鉛等の金属酸化物;サリチル酸、ステアリン酸等を主成分とする化合物、即ち高級脂肪酸あるいは高級脂肪酸の金属化合物などを挙げることができる。
【0025】
また、制振性発泡体を高発泡倍率となる制振性架橋発泡体とする際の架橋法には架橋剤の添加、加熱処理による化学架橋、電子線照射による架橋等の方法があり、いずれの方法を用いることも可能であり、その中でも制振性架橋発泡体の架橋が均質に生じ、製品外観に優れる制振性架橋発泡体が得られることから架橋剤による架橋が好ましい。その際の架橋剤としては、加熱により分解され、遊離ラジカルを発生し樹脂分子間もしくは分子内に架橋結合を生じせしめるラジカル発生剤であるところの有機過酸化物が好ましく、例えばジクミルパーオキサイド、1,1−ジターシャリーブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキサン、2,5−ジメチル−2,5−ジターシャリーブチルパーオキシヘキシン、α,α−ジターシャリーブチルパーオキシイソプロピルベンゼン、ターシャリーブチルパーオキシケトン、ターシャリーブチルパーオキシベンゾエート等が挙げられる。
【0026】
本発明の制振性発泡体成形用樹脂組成物は、スチレン−イソプレン−スチレントリブロック共重合体、水添スチレン−ブタジエン−スチレントリブロック共重合体、ポリエチレン系樹脂、必要に応じて発泡剤、架橋剤、その他添加剤等を添加し、樹脂又はゴムの混練機として知られている例えば単軸押出機、2軸押出機、バンバリーミキサー、ニーダーミキサー、ロール、ミキシングロール、加圧式ニーダー等により加熱・混練することにより製造することが可能である。
【0027】
また、本発明の制振性発泡体成形用樹脂組成物、制振性発泡体は、本発明の目的を逸脱しない限りにおいて物性の改良又は価格の低下を目的として、配合剤(充填剤)として、例えば酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化ケイ素等の金属酸化物;炭酸マグネシウム、炭酸カルシウム等の炭酸塩;パルプ等の繊維物質;各種染料;顔料;蛍光物質;その他常用のゴム配合剤等を必要に応じて添加することができる。また、制振性の更なる向上を目的として、例えばポリイソプレン、イソプレン−スチレン共重合体、ポリイソブチレン、ブタジエン−アクリロニトリル共重合体、可塑化ポリ酢酸ビニル等を配合したものであってもよい。
【0028】
また、本発明の制振性発泡体は、特にクッション性、柔軟性、防音性、制振性能に優れた発泡体となり、かつ連続したシート状の製品が得られることから常圧架橋発泡法で製造された発泡倍率10〜50倍を有する制振性架橋発泡体であることが好ましい。
【0029】
【実施例】
以下に実施例を示し本発明を更に具体的に説明するが、本発明はこれら実施例により何等制限されるものではない。
【0030】
〜反発弾性率の測定〜
実施例により得られた制振性発泡体の反ぱつ弾性は、JIS K 6401に規定された試験方法により測定した。
【0031】
5/8in並球を用い、460mmの高さから制振性発泡体に自然落下させた際の反発距離を測定し、該反発距離を落下距離で除した値を百分率で表わし、反発弾性率とした。
【0032】
実施例1
スチレン−イソプレン−スチレントリブロック共重合体(株式会社クラレ製、商品名ハイブラー5125、ポリスチレン単位含有量20重量%、ビニル結合量55%、ガラス転移温度−13℃)70重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体(クレイトンポリマー社製、商品名クレイトンG1657、ポリスチレン単位含有量13重量%)10重量%、直鎖状低密度ポリエチレン(デュポンダウエラストマー社製、商品名エンゲージ8200、MFR5.0g/10分、密度0.870g/cm3、重量平均分子量76000)20重量%からなる合計量100重量部に対し、発泡剤としてアゾジカルボンアミド10.0重量部、架橋剤としてジクミルパーオキサイド0.8重量部を配合し、130℃に設定したミキシングロールにて混練し、制振性発泡体成形用樹脂組成物を得た。
【0033】
得られた制振性発泡体成形用樹脂組成物を160℃に加熱されたプレス内の金型(200mm×200mm×2mm)に充填し、20分間加圧下で加熱した後除圧し制振性発泡性シートを作成した。該シートを210℃のオーブン中に静置して20分間加熱して、制振性発泡体を得た。
【0034】
得られた制振性発泡体は、発泡倍率20倍、みかけ密度0.045g/cm3、反発弾性率20%を有し、制振性に優れるものであった。
【0035】
実施例2
水添スチレン−イソプレン−スチレントリブロック共重合体(株式会社クラレ製、商品名ハイブラー7125、ポリスチレン単位含有量20重量%、ガラス転移温度−15℃)70重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体(クレイトンポリマー社製、商品名クレイトンG1657、ポリスチレン単位含有量13重量%)10重量%、直鎖状低密度ポリエチレン(デュポンダウエラストマー社製、商品名エンゲージ8200、MFR5.0g/10分、密度0.870g/cm3、重量平均分子量76000)20重量%からなる合計量100重量部に対し、発泡剤としてアゾジカルボンアミド10.0重量部、架橋剤としてジクミルパーオキサイド0.8重量部を配合し、130℃に調整したミキシングロールにて混練し、制振性発泡体成形用樹脂組成物を得た。
【0036】
得られた制振性発泡体成形用樹脂組成物を160℃に加熱されたプレス内の金型(200mm×200mm×2mm)に充填し、20分間加圧下で加熱した後除圧し、制振性発泡性シートを作成した。該シートを210℃のオーブン中に静置して20分間加熱して、制振性発泡体を得た。
【0037】
得られた制振性発泡体は、発泡倍率20倍、みかけ密度0.045g/cm3、反発弾性率18%を有し、制振性に優れるものであった。
【0038】
実施例3
スチレン−イソプレン−スチレントリブロック共重合体(株式会社クラレ製、商品名ハイブラー5127、ポリスチレン単位含有量20重量%、ビニル結合量55%、ガラス転移温度8℃)70重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体(クレイトンポリマー社製、商品名クレイトンG1657、ポリスチレン単位含有量13重量%)10重量%、直鎖状低密度ポリエチレン(デュポンダウエラストマー社製、商品名エンゲージ8200、MFR5.0g/10分、密度0.870g/cm3、重量平均分子量76000)20重量%からなる合計量100重量部に対し、発泡剤としてアゾジカルボンアミド10.0重量部、架橋剤としてジクミルパーオキサイド0.8重量部を配合し、130℃に調整したミキシングロールにて混練し、制振性発泡体成形用樹脂組成物を得た。
【0039】
得られた制振性発泡体成形用樹脂組成物を160℃に加熱されたプレス内の金型(200mm×200mm×2mm)に充填し、20分間加圧下で加熱した後除圧し、制振性発泡性シートを作成した。該シートを210℃のオーブン中に静置して20分間加熱して、制振性発泡体を得た。
【0040】
得られた制振性発泡体は、発泡倍率20倍、みかけ密度0.045g/cm3、反発弾性率10%を有し、制振性に優れるものであった。
【0041】
実施例4
水添スチレン−イソプレン−スチレントリブロック共重合体(株式会社クラレ製、商品名ハイブラー7125、ポリスチレン単位含有量20重量%、ガラス転移温度−15℃)70重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体(クレイトンポリマー社製、商品名クレイトンG1657、ポリスチレン単位含有量13重量%)10重量%、直鎖状低密度ポリエチレン(デュポンダウエラストマー社製、商品名エンゲージ8200、MFR5.0g/10分、密度0.870g/cm3、重量平均分子量76000)20重量%からなる合計量100重量部に対し、発泡剤としてアゾジカルボンアミド20.0重量部、架橋剤としてジクミルパーオキサイド1.0重量部、さらに直鎖状低密度ポリエチレン100重量部に対しポリエチレンワックス(三井化学製、商品名ハイワックスNL500、粘土平均分子量4300)10重量部を配合し、130℃に調整したミキシングロールにて混練し、制振性発泡体成形用樹脂組成物を得た。
【0042】
得られた制振性発泡体成形用樹脂組成物を160℃に加熱されたプレス内の金型(200mm×200mm×2mm)に充填し、20分間加圧下で加熱した後除圧し、制振性発泡性シートを作成した。該シートを210℃のオーブン中に静置して20分間加熱して、制振性発泡体を得た。
【0043】
得られた制振性発泡体は、発泡倍率38倍、みかけ密度0.023g/cm3、反発弾性率24%を有し、制振性に優れるものであった。
【0044】
比較例1
実施例2において、直鎖状低密度ポリエチレン20重量%を直鎖状低密度ポリエチレン30重量%とし、水添スチレン−ブタジエン−スチレントリブロック共重合体を用いなかった以外は、実施例2と同様の方法により制振性発泡体の成形を試みたが、得られた発泡体は割れが発生し制振性発泡体とはならなかった。
【0045】
比較例2
実施例2において、水添スチレン−ブタジエン−スチレントリブロック共重合体10重量%を70重量%、直鎖状低密度ポリエチレン20重量%を直鎖状低密度ポリエチレン30重量%とし、水添スチレン−イソプレン−スチレントリブロック共重合体を用いなかった以外は、実施例2と同様の方法により発泡体を得た。
【0046】
得られた発泡体は、発泡倍率20倍、みかけ密度0.046g/cm3、反発弾性率50%を有し、制振性に劣るものであった。
【0047】
比較例3
実施例2において、水添スチレン−ブタジエン−スチレントリブロック共重合体10重量%を30重量%とし、直鎖状低密度ポリエチレンを用いなかった以外は、実施例2と同様の方法により発泡体の成形を試みたが、得られた発泡体は割れが発生し発泡体とはならなかった。
【0048】
比較例4
実施例2において、水添スチレン−イソプレンースチレン共重合体70重量%を水添スチレン−イソプレン−スチレン共重合体30重量%とし、直鎖状低密度ポリエチレン20重量%を直鎖状低密度ポリエチレン60重量%とした以外は、実施例2と同様の方法により発泡体を得た。
【0049】
得られた発泡体は、発泡倍率22倍、みかけ密度0.043g/cm3、反発弾性率60%を有し、制振性に劣るものであった。
【0050】
【発明の効果】
本発明の制振性発泡体成形用樹脂組成物及びそれよりなる制振性発泡体は、室温領域において高い制振性能を有し、高発泡倍率を有する発泡体となることから制振性、伸び、柔軟性、耐候性、耐水性、遮音性に優れ、運動靴等のスポーツ用品、床材等に有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a vibration-damping foam that is excellent in shock absorption and vibration-damping properties, which is used for flooring materials in condominiums, sports shoes, sports equipment pads, etc. that require soundproofing and vibration-damping properties. The present invention relates to a resin composition for molding a vibratory foam and a vibration-damping foam comprising the same.
[0002]
[Prior art]
Damping foam is a flexible sport and sports such as sports shoes and pads for purposes such as soundproofing, damping, shock absorption, vibration absorption, etc. Used for goods, flooring, other building materials, and Sunday goods.
[0003]
The damping property of the polymer used the phenomenon that the vibration damping ability increases by consuming energy given from the outside due to internal friction of the molecular chain near the glass transition temperature or near the secondary transition temperature below that temperature. Is. Conventionally, vibration-damping foam materials made of polyurethane are used. For example, vibration-damping materials used for ceilings, floors, etc. that have both vibration-damping performance and sound-absorbing performance using a specific amount of foam stabilizer when producing flexible polyurethane foam. Soundproofing / damping obtained by foaming a material (for example, see Patent Document 1), an organic polyisocyanate and a specific polyol in the presence of a foaming agent, a catalyst, a foam stabilizer, a fluid having a plastic effect, and the like. A foam (see, for example, Patent Document 2) has been proposed. Although the vibration-damping foam material made of these polyurethanes is excellent in vibration-damping property, it has a defect in weather resistance, particularly low water resistance caused by hydrolysis. In addition, rubber-based vibration-damping foams have also been proposed, for example, 1,2-polybutadiene foams that have excellent vibration-damping performance, low recovery speed, excellent shock absorption, and good compatibility with thermoplastic resins. (See, for example, Patent Document 3), a molded product of a mixture of 1,2-polybutadiene having damping properties and a vinyl bond-polyisoprene-polystyrene block copolymer having damping properties is crosslinked and foamed. A vibration-damping resin foam (see, for example, Patent Document 4) has been proposed. However, since the 1,2-polybutadiene foam of the above prior art has a vinyl double bond carbon in the side chain of 1,2-polybutadiene, it is bonded between the side chains or between the side chains and the main chain. Crosslinking is likely to occur, which causes a rapid cure, resulting in a lack of elongation and flexibility.
[0004]
In order to solve this drawback, it has been proposed that a triblock copolymer in which polystyrene and vinyl-polyisoprene are bonded and a polyethylene resin are mixed and heated and foamed to obtain a vibration-damping resin foam ( For example, see Patent Document 5.)
[0005]
[Patent Document 1]
Japanese Patent Publication No. 05-008209
[Patent Document 2]
Japanese Patent Publication No. 07-025863
[Patent Document 3]
Japanese Patent Laid-Open No. 07-062130
[Patent Document 4]
Japanese Patent Laid-Open No. 08-208869
[Patent Document 5]
Japanese Patent Laid-Open No. 11-349717
[0006]
[Problems to be solved by the invention]
However, in the vibration-damping resin foam proposed in Patent Document 5, the styrene content of polystyrene and vinyl-polyisoprene-bonded triblock copolymer excellent in vibration-damping performance is as high as about 20 wt%, and is compatible with polyethylene. It consists of an insoluble polyisoprene phase. For this reason, even if the amount of the foaming agent is increased in order to obtain a high foam, there is a problem that the foam is cracked during foam molding and a product with a high expansion ratio cannot be obtained.
[0007]
Therefore, the present invention solves the problems as described above, is excellent in weather resistance, water resistance, elongation and flexibility, and is capable of molding a product having a high expansion ratio, and a resin composition for vibration-damping foam molding, An object of the present invention is to provide a vibration-damping foam.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventor has obtained a composition comprising a styrene-isoprene-styrene triblock copolymer, a hydrogenated styrene-butadiene-styrene triblock copolymer, and a polyethylene resin in specific ratios. It has been found that the product can provide a vibration-damping foam having excellent weather resistance, water resistance, elongation and flexibility, and having a high expansion ratio, and has completed the present invention.
[0009]
That is, the present invention comprises 50 to 80% by weight of styrene-isoprene-styrene triblock copolymer, 5 to 30% by weight of hydrogenated styrene-butadiene-styrene triblock copolymer, and 15 to 45% by weight of polyethylene resin. The present invention relates to a vibration-damping foam molding resin composition and a vibration-damping foam obtained by foaming the vibration-damping foam molding resin composition.
[0010]
The present invention is described in detail below.
[0011]
The resin composition for molding a vibration-damping foam of the present invention comprises 50-80% by weight of a styrene-isoprene-styrene triblock copolymer, 5-30% by weight of a hydrogenated styrene-butadiene-styrene triblock copolymer, and polyethylene. It is a resin composition comprising 15 to 45% by weight of a resin.
[0012]
The styrene-isoprene-styrene triblock copolymer used in the present invention is a triblock copolymer in which polystyrene units and polyisoprene units are bonded, and has a glass transition temperature (Tg) and / or loss tangent coefficient in a room temperature region. It is a copolymer having a peak of (tan δ) and exhibiting high vibration damping performance in the room temperature region. Such a styrene-isoprene-styrene triblock copolymer can be produced by ionic polymerization of a styrene monomer and an isoprene monomer, and a commercially available product can also be used in the present invention. Among them, a styrene-isoprene-styrene triblock copolymer containing 10 to 40% by weight of a polystyrene unit is obtained because a vibration-damping foam molding resin composition having particularly excellent vibration-damping performance can be obtained. It is preferable. Further, the styrene-isoprene-styrene triblock copolymer may be a hydrogenated styrene-isoprene-styrene triblock copolymer obtained by hydrogenation using a hydrogenation catalyst.
[0013]
Such a styrene-isoprene-styrene triblock copolymer can be obtained as, for example, Kuraray Co., Ltd., trade name HIBLER.
[0014]
The hydrogenated styrene-butadiene-styrene triblock copolymer used in the present invention is a copolymer that acts as a binder between a styrene-isoprene-styrene triblock copolymer and a polyethylene resin. The styrene-butadiene-styrene triblock copolymer is a styrene-butadiene-styrene triblock copolymer obtained by ion polymerization of a styrene monomer and a butadiene monomer. It can be produced by hydrogenation, and a commercially available product can also be used in the present invention.
[0015]
The polyethylene-based resin used in the present invention is a resin component that determines the foaming characteristics of the vibration-damping foam molding resin composition of the present invention. Examples of the polyethylene-based resin include high-pressure low-density polyethylene, high-density polyethylene, and the like. Polyethylene, ethylene / α-olefin copolymer, ethylene / vinyl acetate copolymer, polyethylene resin polymerized using a metallocene catalyst, polyethylene resin polymerized using a vanadium catalyst, and the like. Among them, an ethylene / α-olefin copolymer polymerized using a metallocene catalyst and a vanadium catalyst is preferable because a vibration-damping foam having particularly excellent flexibility can be obtained.
[0016]
Among them, the ethylene / α-olefin copolymer is a copolymer of ethylene and α-olefin, and the α-olefin at that time is any as long as it belongs to the category of α-olefin. In particular, since it is possible to obtain a vibration-damping foam molding resin composition that makes it possible to obtain a vibration-damping foam having excellent uniform cells, flexibility, and toughness, for example, propylene, butene-1, hexene, etc. It is preferable that it is C3-C12 alpha olefins, such as -1, octene-1, 4-methyl- pentene-1. Such an ethylene / α-olefin copolymer is generally referred to as a linear low density polyethylene, such as an ethylene / butene-1 copolymer, an ethylene / hexene-1 copolymer, an ethylene / octene- 1 copolymer and the like.
[0017]
In addition, as a production method for producing such an ethylene / α-olefin copolymer, for example, various production methods such as a high pressure method, a solution method, a gas phase method, and the like can be used. Examples of the catalyst to be used include a Ziegler catalyst comprising a solid catalyst component containing magnesium and titanium and an organoaluminum compound, an organic transition metal compound containing a cyclopentadienyl derivative, and a compound which reacts with this to form an ionic complex. And / or metallocene catalysts composed of organometallic compounds, vanadium catalysts, and the like.
[0018]
In the present invention, when an ethylene / α-olefin copolymer is used as the polyethylene-based resin, it is possible to produce a vibration-damping foam excellent in flexibility and cushioning with high production efficiency. Density measured according to JIS K 6760 is 0.94 g / cm Three Hereinafter, an ethylene / α-olefin copolymer having a melt flow rate measured at 190 ° C. under a load of 2160 g of 0.1 to 30 g / 10 minutes is preferably 0.87 to 0.90 g / cm. Three More preferred is an ethylene / α-olefin copolymer of 0.1 to 10 g / 10 min, 0.87 to 0.89 g / cm. Three An ethylene / α-olefin copolymer of 0.1 to 10 g / 10 min is particularly preferable. Further, when the vibration-damping foam molding resin composition of the present invention is used as a vibration-damping crosslinked foam, it is possible to keep the amount of peroxide required and the irradiation dose of ionizing radiation low. Therefore, it is an ethylene / α-olefin copolymer having a weight average molecular weight of 60,000 or more determined by gel permeation chromatography using 1,2,4-trichlorobenzene as a solvent as a linear polyethylene equivalent value. It is preferable.
[0019]
Further, as the polyethylene-based resin in the present invention, when the obtained vibration-damping foam molding resin composition is used as a vibration-damping crosslinked foam, a vibration-damping crosslinked foam having a particularly high expansion ratio is obtained. Therefore, it is preferable to use a polyethylene resin in which 0.1 to 30 parts by weight of a polyethylene wax having a viscosity average molecular weight of 10,000 or less is added to 100 parts by weight of the ethylene / α-olefin copolymer.
[0020]
The resin composition for molding a vibration-damping foam of the present invention comprises 50-80% by weight of a styrene-isoprene-styrene triblock copolymer, 5-30% by weight of a hydrogenated styrene-butadiene-styrene triblock copolymer, and polyethylene. It consists of 15 to 45% by weight of a resin. Here, when the styrene-isoprene-styrene triblock copolymer is less than 50% by weight, the vibration damping property of the resulting composition is insufficient. On the other hand, when the styrene-isoprene-styrene triblock copolymer exceeds 80% by weight, a foam having a high expansion ratio cannot be obtained when the obtained composition is subjected to foam molding. When the hydrogenated styrene-butadiene-styrene triblock copolymer is less than 5% by weight, the compatibility between the styrene-isoprene-styrene triblock copolymer and the polyethylene resin constituting the resulting composition is poor, Even if such a composition is subjected to foam molding, a foam having a high expansion ratio cannot be obtained. On the other hand, when the hydrogenated styrene-butadiene-styrene triblock copolymer exceeds 30% by weight, the vibration damping property of the resulting composition is insufficient. When the polyethylene resin is less than 15% by weight, the resulting composition is inferior in cross-linking foamability, and even when such a composition is subjected to cross-linking foam molding, a foam having a high expansion ratio cannot be obtained. On the other hand, when the polyethylene resin exceeds 45% by weight, the vibration damping property of the resulting composition is insufficient.
[0021]
In addition, since the resin composition for molding a vibration-damping foam of the present invention can efficiently produce a crosslinked foam having a higher expansion ratio when it is used as a vibration-damping foam, styrene-isoprene. -To 100 parts by weight of a total amount of 50 to 80% by weight of styrene triblock copolymer, 5 to 30% by weight of hydrogenated styrene-butadiene-styrene triblock copolymer and 15 to 45% by weight of polyethylene resin, It preferably comprises 2 to 20 parts by weight of a foaming agent and 0.1 to 3 parts by weight of a crosslinking agent.
[0022]
The vibration-damping foam molding resin composition of the present invention is subjected to foam molding to give a styrene-isoprene-styrene triblock copolymer 50 to 80% by weight, a hydrogenated styrene-butadiene-styrene triblock copolymer 5. It can be set as the foam which is excellent in the damping property which consists of -30 weight% and polyethylene-type resin 15-45 weight%.
[0023]
The production method of the vibration-damping foam at that time includes 50-80% by weight of styrene-isoprene-styrene triblock copolymer, 5-30% by weight of hydrogenated styrene-butadiene-styrene triblock copolymer, and polyethylene Any method can be used as long as it is possible to foam a mixture of 15 to 45% by weight of resin. For example, 1) 50 to 80% by weight of styrene-isoprene-styrene triblock copolymer, hydrogenated styrene -A method in which a foaming agent is added to a mixture consisting of 5 to 30% by weight of a butadiene-styrene triblock copolymer and 15 to 45% by weight of a polyethylene resin, and foamed by a heating furnace to obtain a foam. 2) Styrene-isoprene -50-80% by weight of styrene triblock copolymer, hydrogenated styrene-butadiene-styrene tribro After adding a foaming agent and a crosslinking agent to a mixture comprising 5 to 30% by weight of a copolymer and 15 to 45% by weight of a polyethylene-based resin, kneading and forming into a sheet shape below the decomposition temperature of both, a heating furnace 3) A method of heating and foaming at a temperature equal to or higher than the decomposition temperature of the crosslinking agent and the foaming agent to obtain a crosslinked foamed product. 3) 50-80% by weight of styrene-isoprene-styrene triblock copolymer, hydrogenated styrene-butadiene- A foaming agent is added to a mixture composed of 5 to 30% by weight of a styrene triblock copolymer and 15 to 45% by weight of a polyethylene resin, kneaded, irradiated with ionizing radiation, etc., and then crosslinked using a heating furnace or the like. Examples thereof include a method of heating and foaming at a temperature equal to or higher than the decomposition temperature of the foaming agent to form a crosslinked foam. And, as the vibration damping foam in the present invention, a styrene-isoprene-styrene triblock copolymer 50 to 80% by weight, hydrogenated styrene, since a vibration damping foam having a particularly high expansion ratio can be easily obtained. -It is preferable that it is a vibration-damping crosslinked foam which consists of 5-30 weight% of butadiene-styrene triblock copolymers and 15-45 weight% of polyethylene-type resin.
[0024]
Here, any foaming agent can be used as long as it belongs to the category of foaming agent, and among them, a vibration-damping foam having a particularly high expansion ratio, particularly a vibration-damping crosslinked foam. A chemical foaming agent having a decomposition temperature equal to or higher than the melting temperature of the polyethylene resin is preferable because it can be obtained efficiently. Examples thereof include azodicarbonamide, dinitrosopentamethylenetetramine, p, p′-oxybisbenzenesulfonylhydrazide, and the like. . Further, a foaming aid may be used. Examples of the foaming aid include: compounds mainly composed of urea; metal oxides such as zinc oxide and lead oxide; compounds mainly composed of salicylic acid and stearic acid, That is, higher fatty acids or metal compounds of higher fatty acids can be used.
[0025]
In addition, as a crosslinking method when making the vibration-damping foam into a vibration-damping crosslinked foam having a high expansion ratio, there are methods such as addition of a crosslinking agent, chemical crosslinking by heat treatment, crosslinking by electron beam irradiation, etc. It is also possible to use the above method, and among them, the crosslinking with a crosslinking agent is preferable since the vibration-damping crosslinked foamed body is uniformly crosslinked and a vibration-damping crosslinked foam having an excellent product appearance can be obtained. In this case, the crosslinking agent is preferably an organic peroxide which is a radical generator that is decomposed by heating and generates free radicals to form crosslinks between or within the resin molecules, for example, dicumyl peroxide, 1,1-ditertiarybutylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-ditertiarybutylperoxyhexane, 2,5-dimethyl-2,5-ditertiarybutylperper Examples thereof include oxyhexine, α, α-ditertiary butyl peroxyisopropylbenzene, tertiary butyl peroxyketone, and tertiary butyl peroxybenzoate.
[0026]
The vibration-damping foam molding resin composition of the present invention comprises a styrene-isoprene-styrene triblock copolymer, a hydrogenated styrene-butadiene-styrene triblock copolymer, a polyethylene resin, and if necessary, a foaming agent, Add a cross-linking agent, other additives, etc., and heat with a kneader for resin or rubber, such as a single screw extruder, twin screw extruder, Banbury mixer, kneader mixer, roll, mixing roll, pressure kneader, etc. -It can be manufactured by kneading.
[0027]
In addition, the resin composition for vibration-damping foam molding and the vibration-damping foam of the present invention are used as a compounding agent (filler) for the purpose of improving the physical properties or reducing the price without departing from the object of the present invention. Metal oxides such as zinc oxide, titanium oxide, calcium oxide, magnesium oxide, and silicon oxide; carbonates such as magnesium carbonate and calcium carbonate; fiber materials such as pulp; various dyes; pigments; fluorescent materials; A compounding agent etc. can be added as needed. Further, for the purpose of further improving the vibration damping properties, for example, polyisoprene, isoprene-styrene copolymer, polyisobutylene, butadiene-acrylonitrile copolymer, plasticized polyvinyl acetate, or the like may be blended.
[0028]
In addition, the vibration-damping foam of the present invention is a foam having excellent cushioning properties, flexibility, soundproofing, and vibration-damping performance, and a continuous sheet-like product can be obtained. It is preferable that it is a vibration-damping cross-linked foam having a foaming ratio of 10 to 50 times.
[0029]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[0030]
~ Measurement of rebound resilience ~
The rebound resilience of the vibration-damping foam obtained in the examples was measured by a test method specified in JIS K 6401.
[0031]
Using a 5/8 inch parallel sphere, the repulsion distance when it naturally dropped onto a vibration-damping foam from a height of 460 mm was measured, and the value obtained by dividing the repulsion distance by the drop distance was expressed as a percentage. did.
[0032]
Example 1
Styrene-isoprene-styrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name HIBLER 5125, polystyrene unit content 20% by weight, vinyl bond content 55%, glass transition temperature -13 ° C.) 70% by weight, hydrogenated styrene- Butadiene-styrene triblock copolymer (Clayton Polymer, trade name Clayton G1657, polystyrene unit content 13% by weight) 10% by weight, linear low density polyethylene (DuPond Dow Elastomers, trade name Engage 8200, MFR5 0.0 g / 10 min, density 0.870 g / cm Three , Weight average molecular weight 76000) To 100 parts by weight of a total amount of 20% by weight, 10.0 parts by weight of azodicarbonamide as a foaming agent and 0.8 parts by weight of dicumyl peroxide as a crosslinking agent were blended, and the mixture was heated to 130 ° C. The mixture was kneaded with a set mixing roll to obtain a vibration-damping foam molding resin composition.
[0033]
The obtained vibration-damping foam molding resin composition is filled in a mold (200 mm × 200 mm × 2 mm) in a press heated to 160 ° C., heated under pressure for 20 minutes, and then depressurized for vibration-damping foaming. A sex sheet was created. The sheet was left in an oven at 210 ° C. and heated for 20 minutes to obtain a vibration-damping foam.
[0034]
The obtained vibration-damping foam has an expansion ratio of 20 times and an apparent density of 0.045 g / cm. Three In addition, it had a rebound resilience of 20% and was excellent in vibration damping properties.
[0035]
Example 2
Hydrogenated styrene-isoprene-styrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name HYBRAR 7125, polystyrene unit content 20% by weight, glass transition temperature-15 ° C.) 70% by weight, hydrogenated styrene-butadiene-styrene tri Block copolymer (made by Kraton Polymer, trade name: Kraton G1657, polystyrene unit content: 13 weight%), 10% by weight, linear low density polyethylene (made by DuPont Dow Elastomer, trade name: Engage 8200, MFR 5.0 g / 10 Min, density 0.870 g / cm Three , Weight average molecular weight 76000) To 100 parts by weight of a total amount of 20% by weight, 10.0 parts by weight of azodicarbonamide as a foaming agent and 0.8 parts by weight of dicumyl peroxide as a crosslinking agent were blended, and the mixture was heated to 130 ° C. The mixture was kneaded with the adjusted mixing roll to obtain a vibration-damping foam molding resin composition.
[0036]
The obtained vibration-damping foam molding resin composition is filled in a mold (200 mm × 200 mm × 2 mm) in a press heated to 160 ° C., heated under pressure for 20 minutes, and then depressurized to provide vibration damping properties. A foamable sheet was prepared. The sheet was left in an oven at 210 ° C. and heated for 20 minutes to obtain a vibration-damping foam.
[0037]
The obtained vibration-damping foam has an expansion ratio of 20 times and an apparent density of 0.045 g / cm. Three Further, it had a rebound resilience of 18% and was excellent in vibration damping properties.
[0038]
Example 3
Styrene-isoprene-styrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name: HIBLER 5127, polystyrene unit content 20% by weight, vinyl bond content 55%, glass transition temperature 8 ° C.) 70% by weight, hydrogenated styrene-butadiene -Styrene triblock copolymer (Clayton Polymer Co., Ltd., trade name Clayton G1657, polystyrene unit content 13% by weight) 10% by weight, linear low density polyethylene (DuPond Dow Elastomer Co., trade name Engage 8200, MFR5. 0 g / 10 min, density 0.870 g / cm Three , Weight average molecular weight 76000) To 100 parts by weight of a total amount of 20% by weight, 10.0 parts by weight of azodicarbonamide as a foaming agent and 0.8 parts by weight of dicumyl peroxide as a crosslinking agent were blended, and the mixture was heated to 130 ° C. The mixture was kneaded with the adjusted mixing roll to obtain a vibration-damping foam molding resin composition.
[0039]
The obtained vibration-damping foam molding resin composition is filled in a mold (200 mm × 200 mm × 2 mm) in a press heated to 160 ° C., heated under pressure for 20 minutes, and then depressurized to provide vibration damping properties. A foamable sheet was prepared. The sheet was left in an oven at 210 ° C. and heated for 20 minutes to obtain a vibration-damping foam.
[0040]
The obtained vibration-damping foam has an expansion ratio of 20 times and an apparent density of 0.045 g / cm. Three The resilience modulus was 10% and the vibration damping property was excellent.
[0041]
Example 4
Hydrogenated styrene-isoprene-styrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name HYBRAR 7125, polystyrene unit content 20% by weight, glass transition temperature-15 ° C.) 70% by weight, hydrogenated styrene-butadiene-styrene tri Block copolymer (made by Kraton Polymer, trade name: Kraton G1657, polystyrene unit content: 13 weight%), 10% by weight, linear low density polyethylene (made by DuPont Dow Elastomer, trade name: Engage 8200, MFR 5.0 g / 10 Min, density 0.870 g / cm Three , Weight average molecular weight 76000) 20.0 parts by weight of azodicarbonamide as a foaming agent, 1.0 part by weight of dicumyl peroxide as a crosslinking agent, and linear low density 100 parts by weight of polyethylene is blended with 10 parts by weight of polyethylene wax (product name: Mitsui Chemicals, trade name High Wax NL500, clay average molecular weight 4300), kneaded with a mixing roll adjusted to 130 ° C., and used for damping foam molding A resin composition was obtained.
[0042]
The obtained vibration-damping foam molding resin composition is filled in a mold (200 mm × 200 mm × 2 mm) in a press heated to 160 ° C., heated under pressure for 20 minutes, and then depressurized to provide vibration damping properties. A foamable sheet was prepared. The sheet was left in an oven at 210 ° C. and heated for 20 minutes to obtain a vibration-damping foam.
[0043]
The obtained vibration-damping foam has an expansion ratio of 38 times and an apparent density of 0.023 g / cm. Three It had a rebound resilience of 24% and was excellent in vibration damping.
[0044]
Comparative Example 1
Example 2 was the same as Example 2 except that 20% by weight of linear low density polyethylene was changed to 30% by weight of linear low density polyethylene and no hydrogenated styrene-butadiene-styrene triblock copolymer was used. Attempts were made to form a vibration-damping foam by this method, but the resulting foam was cracked and did not become a vibration-damping foam.
[0045]
Comparative Example 2
In Example 2, 10% by weight of hydrogenated styrene-butadiene-styrene triblock copolymer was 70% by weight, 20% by weight of linear low density polyethylene was 30% by weight of linear low density polyethylene, and hydrogenated styrene- A foam was obtained in the same manner as in Example 2 except that the isoprene-styrene triblock copolymer was not used.
[0046]
The obtained foam has an expansion ratio of 20 times and an apparent density of 0.046 g / cm. Three The impact resilience was 50% and the vibration damping property was poor.
[0047]
Comparative Example 3
In Example 2, 10% by weight of the hydrogenated styrene-butadiene-styrene triblock copolymer was changed to 30% by weight, and the foam was prepared in the same manner as in Example 2 except that linear low density polyethylene was not used. Although molding was attempted, the obtained foam was cracked and did not become a foam.
[0048]
Comparative Example 4
In Example 2, 70% by weight of hydrogenated styrene-isoprene-styrene copolymer was changed to 30% by weight of hydrogenated styrene-isoprene-styrene copolymer, and 20% by weight of linear low density polyethylene was linear low density polyethylene. A foam was obtained in the same manner as in Example 2 except that the amount was 60% by weight.
[0049]
The obtained foam has an expansion ratio of 22 times and an apparent density of 0.043 g / cm. Three The impact resilience was 60% and the vibration damping property was poor.
[0050]
【The invention's effect】
The vibration-damping foam molding resin composition of the present invention and the vibration-damping foam comprising the same have a high vibration-damping performance in a room temperature region and become a foam having a high foaming ratio. It has excellent elongation, flexibility, weather resistance, water resistance, and sound insulation, and is useful for sports equipment such as athletic shoes and flooring materials.

Claims (7)

スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなることを特徴とする制振性発泡体成形用樹脂組成物。It comprises 50 to 80% by weight of a styrene-isoprene-styrene triblock copolymer, 5 to 30% by weight of a hydrogenated styrene-butadiene-styrene triblock copolymer, and 15 to 45% by weight of a polyethylene resin. A resin composition for forming a vibratory foam. スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる合計量100重量部に対し、さらに発泡剤2〜20重量部及び架橋剤0.1〜3重量部からなることを特徴とする請求項1に記載の制振性発泡体成形用樹
脂組成物。
To a total amount of 100 parts by weight comprising 50 to 80% by weight of styrene-isoprene-styrene triblock copolymer, 5 to 30% by weight of hydrogenated styrene-butadiene-styrene triblock copolymer and 15 to 45% by weight of polyethylene resin. On the other hand, the resin composition for molding a vibration-damping foam according to claim 1, further comprising 2 to 20 parts by weight of a foaming agent and 0.1 to 3 parts by weight of a crosslinking agent.
ポリエチレン系樹脂が、エチレン・α−オレフィン共重合体100重量部に対し、粘度平均分子量10000以下のポリエチレン系ワックス0.1〜30重量部を配合してなるポリエチレン系樹脂であることを特徴とする請求項1又は2に記載の制振性発泡体成形用樹脂組成物。The polyethylene resin is a polyethylene resin obtained by blending 0.1 to 30 parts by weight of a polyethylene wax having a viscosity average molecular weight of 10,000 or less with respect to 100 parts by weight of the ethylene / α-olefin copolymer. A resin composition for molding a vibration-damping foam according to claim 1 or 2. スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる組成物を発泡させることを特徴とする制振性発泡体。Foaming a composition comprising 50 to 80% by weight of a styrene-isoprene-styrene triblock copolymer, 5 to 30% by weight of a hydrogenated styrene-butadiene-styrene triblock copolymer and 15 to 45% by weight of a polyethylene resin. A vibration-damping foam characterized by スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる組成物を架橋発泡させることを特徴とする制振性架橋発泡体。A composition comprising 50 to 80% by weight of a styrene-isoprene-styrene triblock copolymer, 5 to 30% by weight of a hydrogenated styrene-butadiene-styrene triblock copolymer and 15 to 45% by weight of a polyethylene resin is crosslinked and foamed. A vibration-damping crosslinked foam characterized by the above. 発泡倍率10〜50倍を有することを特徴とする請求項5に記載の制振性架橋発泡体。6. The vibration-damping crosslinked foam according to claim 5, having a foaming ratio of 10 to 50 times. スチレン−イソプレン−スチレントリブロック共重合体50〜80重量%、水添スチレン−ブタジエン−スチレントリブロック共重合体5〜30重量%及びポリエチレン系樹脂15〜45重量%からなる混合物に発泡剤及び架橋剤を添加、混練し制振性発泡体成形用樹脂組成物を調製し、該制振性発泡体成形用樹脂組成物を加熱して架橋・発泡することを特徴とする制振性架橋発泡体の製造方法。A foaming agent and a cross-link to a mixture comprising 50 to 80% by weight of styrene-isoprene-styrene triblock copolymer, 5 to 30 % by weight of hydrogenated styrene-butadiene-styrene triblock copolymer and 15 to 45% by weight of polyethylene resin A vibration-damping foamed foam is characterized in that a vibration-damping foam molding resin composition is prepared by adding and kneading an agent, and the vibration-damping foam molding resin composition is crosslinked and foamed by heating. Manufacturing method.
JP2003125461A 2003-04-30 2003-04-30 Damping foam molding resin composition and damping foam Expired - Fee Related JP4300868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125461A JP4300868B2 (en) 2003-04-30 2003-04-30 Damping foam molding resin composition and damping foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125461A JP4300868B2 (en) 2003-04-30 2003-04-30 Damping foam molding resin composition and damping foam

Publications (2)

Publication Number Publication Date
JP2004331707A JP2004331707A (en) 2004-11-25
JP4300868B2 true JP4300868B2 (en) 2009-07-22

Family

ID=33502723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125461A Expired - Fee Related JP4300868B2 (en) 2003-04-30 2003-04-30 Damping foam molding resin composition and damping foam

Country Status (1)

Country Link
JP (1) JP4300868B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101180356B (en) * 2005-05-19 2013-09-18 三井化学株式会社 Resin composition for foam and use thereof
ES2449515T3 (en) * 2005-10-06 2014-03-20 Henkel Ag & Co. Kgaa Vibration transfer reduction
JP5089337B2 (en) * 2007-10-30 2012-12-05 三和化工株式会社 Super flexible polyethylene foam and method for producing the same
CN101981121B (en) 2008-03-31 2013-02-06 日本瑞翁株式会社 Block copolymer composition, method for producing the same, and film of the same
JP5227059B2 (en) * 2008-03-31 2013-07-03 積水化学工業株式会社 Laminated foam sheet
CN102264854B (en) 2008-12-26 2014-06-18 日本瑞翁株式会社 Block copolymer composition and hot-melt adhesive composition
US8598271B2 (en) 2008-12-26 2013-12-03 Zeon Corporation Block copolymer composition, film, and method for producing block copolymer composition
JP5394757B2 (en) * 2009-01-13 2014-01-22 旭化成ケミカルズ株式会社 Cross-linked foam composition, cross-linked foam, and footwear and laminate using the same
EP2402817B1 (en) 2009-02-27 2014-01-22 Zeon Corporation Block copolymer composition for flexographic printing plates
US8470929B2 (en) 2009-03-31 2013-06-25 Zeon Corporation Composition for stretchable film
JP5772592B2 (en) 2009-03-31 2015-09-02 日本ゼオン株式会社 Adhesive composition for labels
JP5533866B2 (en) 2009-06-30 2014-06-25 日本ゼオン株式会社 Elastic film composition
EP3354681B1 (en) * 2017-01-25 2020-08-19 TSRC Corporation Thermoplastic elastomer composition for crosslinked foam and use thereof
TWI766073B (en) 2017-07-21 2022-06-01 台橡股份有限公司 Composition for preparing a foam, foam and shoe employing the same
KR101787657B1 (en) 2017-08-17 2017-10-18 주식회사 에이티에스 Anti-vibration air mount
KR101787658B1 (en) 2017-08-17 2017-10-18 주식회사 에이티에스 Air spring for horizontal stiffness

Also Published As

Publication number Publication date
JP2004331707A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4300868B2 (en) Damping foam molding resin composition and damping foam
US6841582B2 (en) Thermoplastic elastomer composition, foam made from the same, and process for producing foam
JP4786343B2 (en) Resin composition for foam and use thereof
JP4059847B2 (en) Thermoplastic elastomer composition for core back type injection foam molding
JP5394757B2 (en) Cross-linked foam composition, cross-linked foam, and footwear and laminate using the same
JP5490573B2 (en) Cross-linked polyolefin resin foam
JP5634025B2 (en) Cross-linking composition, cross-linked body and cross-linked foam, and footwear and laminate using the same
JP4615181B2 (en) Composition and use thereof
JP3546141B2 (en) Manufacturing method of vibration damping resin foam
JPH0347849A (en) Partially crosslinked thermoplastic elastomer foam and production thereof
JPS6155126A (en) Crosslinked foam
JP3474178B2 (en) Vibration damping crosslinked resin foam and method for producing the same
JP2005220303A (en) Polypropylene-based resin composition for forming foamed article and peroxide-cross-linked foamed article consisting of the same
JPH059325A (en) Production of crosslinked foam of olefinic elastomer composition
JP2005146136A (en) Weather strip for automobile
JPH02255738A (en) Partially crosslinked thermoplastic elastomer foamed product and its production
JP5089337B2 (en) Super flexible polyethylene foam and method for producing the same
JP2004217681A (en) Ethylenic resin composition for cross-linked foam and ethylenic resin cross-linked foam comprising the same
KR20180115913A (en) Method of manufacturing molded foam
JP2003183435A (en) Crosslinked resin foam
KR20010101683A (en) Polymer composition for powder foam molding, powder thereof, foam obtained therefrom, process for producing the foam, and molded object comprising the foam
JPH03143932A (en) Crosslinked high-density polyethylene foam
JP2001026663A (en) Vibration-damping resin foam and its production
JP4313637B2 (en) Cross-linked polyolefin resin foam
JP2000072907A (en) Expanded material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees