JP4299709B2 - Manufacturing method of thick steel plate with excellent laser cutting ability - Google Patents

Manufacturing method of thick steel plate with excellent laser cutting ability Download PDF

Info

Publication number
JP4299709B2
JP4299709B2 JP2004092634A JP2004092634A JP4299709B2 JP 4299709 B2 JP4299709 B2 JP 4299709B2 JP 2004092634 A JP2004092634 A JP 2004092634A JP 2004092634 A JP2004092634 A JP 2004092634A JP 4299709 B2 JP4299709 B2 JP 4299709B2
Authority
JP
Japan
Prior art keywords
less
scale
temperature
steel
laser cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004092634A
Other languages
Japanese (ja)
Other versions
JP2005271074A (en
Inventor
力雄 千々岩
泰 水谷
龍治 植森
浩文 今井
晃 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004092634A priority Critical patent/JP4299709B2/en
Publication of JP2005271074A publication Critical patent/JP2005271074A/en
Application granted granted Critical
Publication of JP4299709B2 publication Critical patent/JP4299709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、建設機械、建築、橋梁分野等で使用されるレーザ切断性が優れた厚鋼板の製造法に関するものである。   The present invention relates to a method for producing a thick steel plate having excellent laser cutting ability used in construction machinery, construction, bridge fields and the like.

厚鋼板のレーザ切断はCO2レーザ加工機が最も効率が良いため広く使用されている。CO2レーザ切断の熱源はレーザエネルギーと酸素と鋼の酸化反応エネルギーであることが知られている。 Laser cutting of thick steel plates is widely used because CO 2 laser processing machines are most efficient. It is known that the heat source for CO 2 laser cutting is laser energy and the oxidation reaction energy of oxygen and steel.

また、板厚が16mm以上の厚鋼板では、厚みが増加するに従いレーザ切断速度を遅くする必要があり、レーザ切断時に要するエネルギーは鋼の酸化反応熱がレーザエネルギーを上回るようになり、鋼板の特性がレーザ切断性に大きく影響し、鋼板の特性がレーザ切断にとって最も大きな影響因子であった。   In addition, in a thick steel plate having a thickness of 16 mm or more, it is necessary to slow down the laser cutting speed as the thickness increases, and the energy required for laser cutting is such that the heat of oxidation reaction of the steel exceeds the laser energy, and the characteristics of the steel plate Greatly affected the laser cutting ability, and the properties of the steel sheet were the most influential factors for laser cutting.

これらの課題を解決するため多くの技術が実用化されている。   Many techniques have been put into practical use in order to solve these problems.

スケール厚みを薄くし、スケール組成をマグネタイト(Fe34)比率15%以上とすることによりレーザ切断性が向上させることが知られている(例えば、特許文献1参照)。 It is known that laser cutting performance is improved by reducing the thickness of the scale and setting the scale composition to a magnetite (Fe 3 O 4 ) ratio of 15% or more (see, for example, Patent Document 1).

しかしながら、この文献では適用板厚が15mm以下(実施例)であり、15mmを超える板厚での効果は前述のようにレーザ切断に要するエネルギーが酸化反応熱が主体となる領域であり、スケール厚みやスケール組成の制御だけで効果があるかどうか分からない。   However, in this document, the applicable plate thickness is 15 mm or less (Example), and the effect of the plate thickness exceeding 15 mm is the region where the energy required for laser cutting is mainly the oxidation reaction heat as described above, and the scale thickness I do not know if only controlling the scale composition is effective.

特開平10−158734号公報JP-A-10-158734

本発明はレーザ切断性が優れた板厚16mm以上の厚鋼板を安価に製造する技術を提供するものである。   The present invention provides a technique for manufacturing a steel plate having a thickness of 16 mm or more with excellent laser cutting properties at low cost.

本発明の要旨は以下のとおりである。   The gist of the present invention is as follows.

) 質量%で、
C:0.06〜0.30%、
Si:0.50%以下、
Mn:0.4〜1.5%、
P:0.015%以下、
S:0.010%以下、
Al:0.05%以下、
O:0.0035%以下、
N:0.006%以下
を含有し、残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後1100超〜1200℃の温度で再加熱後、圧延開始時に高圧水の噴射により鋼板のスケールを排除するとともに、鋼板の温度を950℃以下とし、圧延を920±25℃の温度で終了し、その後水冷して650〜700℃で水冷を停止して鋼板のスケール中の空孔(ボイド)率とスケール地鉄界面の剥離割合の合計が15%以下とすることを特徴とするレーザ切断性の優れた厚鋼板の製造法。
( 1 ) In mass%,
C: 0.06-0.30%,
Si: 0.50% or less,
Mn: 0.4 to 1.5%
P: 0.015% or less,
S: 0.010% or less,
Al: 0.05% or less,
O: 0.0035% or less,
N: A steel containing 0.006% or less, the balance being iron and inevitable impurities, is made into a slab by a continuous casting method, and then reheated at a temperature of over 1100 to 1200 ° C. and then injected with high-pressure water at the start of rolling. While eliminating the scale of the steel plate, the temperature of the steel plate is set to 950 ° C. or less, the rolling is finished at a temperature of 920 ± 25 ° C., and then water cooling is performed to stop water cooling at 650 to 700 ° C. A method for producing a thick steel plate having excellent laser cutting properties, characterized in that the sum of the (void) rate and the peel rate at the scale metal interface is 15% or less.

) 質量%で、
C:0.06〜0.30%、
Si:0.50%以下、
Mn:0.4〜1.5%、
P:0.015%以下、
S:0.010%以下、
Al:0.05%以下、
O:0.0035%以下、
N:0.006%以下
を含有し、
Ti:0.02%以下、
Nb:0.06%以下、
V:0.04%以下、
Ni:0.3%以下、
Cu:0.3%以下、
Mo:0.7%以下
の一種又は二種以上を更に加え、
残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後1100超〜1200℃の温度で再加熱後、圧延開始時に高圧水の噴射により鋼板のスケールを排除するとともに、鋼板の温度を950℃以下とし、圧延を920±25℃の温度で終了し、その後水冷して650〜700℃で水冷を停止して鋼板のスケール中の空孔(ボイド)率とスケール地鉄界面の剥離割合の合計が15%以下とすることを特徴とするレーザ切断性の優れた厚鋼板の製造法。
( 2 ) In mass%,
C: 0.06-0.30%,
Si: 0.50% or less,
Mn: 0.4 to 1.5%
P: 0.015% or less,
S: 0.010% or less,
Al: 0.05% or less,
O: 0.0035% or less,
N: containing 0.006% or less,
Ti: 0.02% or less,
Nb: 0.06% or less,
V: 0.04% or less,
Ni: 0.3% or less,
Cu: 0.3% or less,
Mo: 0.7% or less of one or more are further added,
Steel with the balance consisting of iron and inevitable impurities is made into a slab by a continuous casting method, then reheated at a temperature of more than 1100 to 1200 ° C., and then the scale of the steel plate is removed by jetting high-pressure water at the start of rolling. 950 ° C. or lower, rolling is finished at a temperature of 920 ± 25 ° C., then water-cooled, water cooling is stopped at 650-700 ° C., and the void ratio in the scale of the steel sheet and the peeling of the scale metal interface A method for producing a thick steel plate having excellent laser cutting properties, wherein the total ratio is 15% or less.

本発明によれば建設機械、建築、橋梁分野等で使用されるレーザ切断性が優れた厚鋼板の効果的な製造が可能となる。   According to the present invention, it is possible to effectively manufacture a thick steel plate having excellent laser cutting ability used in construction machinery, construction, bridge fields, and the like.

本発明者らの研究によれば、厚鋼板の場合6kWの高出力CO2レーザ加工機による切断が一般化しているが、板厚16mmで約1.6m/minが上限の切断速度となっている。更に、板厚25mmでは約0.75m/minとなり、レーザ切断に要する鋼の酸化反応エネルギーの寄与が大きくなり、鋼板特性が大きな影響因子となる。 According to the research by the present inventors, in the case of a thick steel plate, cutting with a 6 kW high-power CO 2 laser processing machine is generalized, but the cutting speed is about 1.6 m / min when the plate thickness is 16 mm. Yes. Furthermore, when the plate thickness is 25 mm, the thickness is about 0.75 m / min, and the contribution of the oxidation reaction energy of the steel required for laser cutting becomes large, and the steel plate characteristics become a significant influencing factor.

このため、レーザ切断性に鋼のどの様な特性が影響するかを検討し、表面のスケール性状が最も大きな影響因子であることを突き止めた。   For this reason, we examined what characteristics of steel affect the laser cutting ability, and found that the surface scale properties are the most influential factor.

本発明者らは、高速ビデオカメラでレーザ切断中のスケールの挙動を解析して
(a)レーザビームが到達する前にスケールが剥離する
(b)レーザビームが到達と同時にスケールが剥離する
(c)レーザビームが通過してもスケールの剥離が起きない
の3つのケースがあり、レーザ切断性(切断面粗さと裏面のドロス付着状態)は、この3つのケースで大きく変化することを知った。
The inventors analyzed the behavior of the scale during laser cutting with a high-speed video camera. (A) The scale peels before the laser beam reaches (b) The scale peels as soon as the laser beam reaches (c) ) There are three cases where scale peeling does not occur even when the laser beam passes, and it has been found that laser cutting performance (cut surface roughness and back surface dross adhesion state) varies greatly in these three cases.

このため、鋼板のスケール性状とレーザ切断時のスケールの剥離挙動に相関が存在すると考え、スケール性状を変化させた板厚16mmの鋼板を3kWのCO2レーザ加工機を使用して0.7m/minの速度で切断し、高速ビデオカメラで観察した。 For this reason, it is considered that there is a correlation between the scale properties of the steel sheet and the peeling behavior of the scale at the time of laser cutting, and a steel plate having a thickness of 16 mm with a changed scale property is 0.7 m / mm using a 3 kW CO 2 laser processing machine. It cut | disconnected at the speed | rate of min and observed with the high-speed video camera.

その結果、図1に示すようにレーザ切断中のスケール剥離はスケール中のボイド面積率やスケールと地鉄界面の剥離割合と良い相関が認められ、スケールボイド率やスケール剥離割合の減少で切断中のスケール剥離をなくす効果があることを知った。   As a result, as shown in FIG. 1, the scale peeling during laser cutting has a good correlation with the void area ratio in the scale and the peeling ratio at the scale-base metal interface. Knew that there was an effect of eliminating scale peeling.

すなわち、スケールが剥離した状態で高温に晒されるとアシストガス(純酸素)と鋼が反応するため、多量のドロスが生成してカーフ(切断溝)に流れ込みレーザビームが内部へ届かなくなり、ドロスの温度が低下し粘性が低下して、切断面を粗くしたりドロスが裏面に付着し、レーザ切断性を劣化させると考えられる。   That is, when exposed to high temperatures with the scale peeled off, the assist gas (pure oxygen) reacts with the steel, so a large amount of dross is generated and flows into the kerf (cutting groove), preventing the laser beam from reaching the interior, It is considered that the temperature is lowered and the viscosity is lowered, so that the cut surface is roughened or dross adheres to the back surface to deteriorate the laser cutting property.

このため、スケール性状(ボイド率や地鉄界面との剥離割合の低減)が重要であるが、これまで、厚鋼板においてスケールボイド率やスケールと地鉄界面の剥離割合に着目し、鋼板製造条件との関係を明らかにした研究はなされていなかった。   For this reason, scale properties (reduction of void ratio and separation rate from the iron-iron interface) are important, but so far, focusing on the scale void rate and the separation rate between the scale and the iron-iron interface in thick steel plates, No studies have been made to clarify the relationship.

本発明の場合、鋼板の製造法が重要であり第1のポイントはスラブ加熱温度である。工業生産的には、スラブ加熱温度は高いほど圧延が効率的に行えるため、一般には1200℃以上で実施されることが殆どであった。   In the present invention, the manufacturing method of the steel sheet is important, and the first point is the slab heating temperature. In industrial production, the higher the slab heating temperature, the more efficiently rolling can be performed.

一方、スケール中のボイドの生成は高温ほど顕著となり、スケール剥離割合も悪くなるため、スラブの加熱温度を900℃以下とすることが知られていた。   On the other hand, the generation of voids in the scale becomes more noticeable as the temperature increases, and the scale peeling rate also worsens. Therefore, it has been known that the heating temperature of the slab is set to 900 ° C. or less.

しかしながら、900℃以下の温度では温度が低すぎるため工業生産的には圧延に対する負担が大きすぎ実用的とは言えない状況であった。   However, since the temperature is too low at a temperature of 900 ° C. or less, the burden on rolling is too large for industrial production and it cannot be said that it is practical.

本発明者らは鋭意検討し、圧延開始温度(スラブ加熱温度)と圧延終了温度を最適な温度範囲とすれば、900℃以下の温度より高い温度でも初期の目的を達することを知った。   The present inventors diligently studied and found that if the rolling start temperature (slab heating temperature) and the rolling end temperature are in the optimum temperature range, the initial purpose can be achieved even at a temperature higher than 900 ° C.

一般的に、圧延中に生成するスケールは温度の低下とともに変形能が低下して、スケール中に亀裂やボイドの拡大、地鉄界面との剥離が起き、最期はスケールが剥離することが知られている。   Generally, the scale generated during rolling decreases in deformability with decreasing temperature, cracks and voids expand in the scale, and peeling from the iron-iron interface occurs. ing.

しかしながら、スケールの変形能はスケール中のボイドにより大きく左右され、ボイドが多い場合は変形能が小さく、ボイドが少ない場合は変形能が大きいことを突き止めた。   However, the deformability of the scale is greatly influenced by the voids in the scale, and it was found that the deformability is small when there are many voids and the deformability is large when there are few voids.

このため、スケール性状を良好とするためには、圧延開始温度(スラブ加熱温度)の制御が最も重要である。   For this reason, in order to improve the scale properties, the control of the rolling start temperature (slab heating temperature) is the most important.

通常、圧延開始温度はスラブ加熱温度と近い温度であるが、本発明では、圧延開始前に高圧水による噴射で鋼板のスケールを排除するとともに鋼板の温度を低下させるため、実質的にスケールが生成し始める温度はスラブ加熱温度より大幅に低下し、950℃以下となり、スケール性状を良好とすることができる。   Usually, the rolling start temperature is close to the slab heating temperature. In the present invention, however, the scale of the steel plate is substantially generated because the steel plate scale is eliminated by jetting with high-pressure water before rolling starts and the temperature of the steel plate is lowered. The temperature at which to start the process is significantly lower than the slab heating temperature and becomes 950 ° C. or lower, and the scale property can be improved.

このため、スラブ加熱温度は1100超〜1200℃でもスケール性状を良好とすることを見出した。   For this reason, it discovered that a slab heating temperature made the scale property favorable even if it exceeded 1100-1200 degreeC.

また、圧延の終了温度も狭い範囲にコントロールすることが重要で、920±25℃の範囲であれば、スケール性状が良好であることを見出した。   In addition, it is important to control the end temperature of rolling within a narrow range, and it has been found that the scale property is good when it is in the range of 920 ± 25 ° C.

以上、述べた理由から、鋼板製造のスラブ加熱温度、圧延開始、終了温度を以下の範囲に限定した。
スラブ加熱温度:1100超〜1200℃
圧延開始温度:950℃以下
圧延終了温度:920±25℃
なお、圧延終了後の水冷はスケール地鉄界面の剥離を少なくするためであり、急冷することにより鋼のγからαへの変態歪みを抑制することにより目的が達せられる。
As described above, the slab heating temperature, the rolling start temperature, and the end temperature for steel sheet production are limited to the following ranges.
Slab heating temperature: Over 1100-1200 ° C
Rolling start temperature: 950 ° C. or lower Rolling end temperature: 920 ± 25 ° C.
The water cooling after the end of rolling is to reduce the peeling of the scale base iron interface, and the purpose can be achieved by suppressing the transformation strain from γ to α of the steel by rapid cooling.

しかしながら、650℃未満の温度まで急冷すると鋼の材質に大きく影響するため650℃を下限温度とした。また、700℃超では効果が薄いため700℃を上限温度とした。   However, 650 ° C. is set as the lower limit temperature because rapid cooling to a temperature below 650 ° C. greatly affects the steel material. Further, since the effect is low at over 700 ° C., 700 ° C. is set as the upper limit temperature.

以上、鋼板の製造条件についてその限定理由を述べたが、鋼成分が適正でなければ、本発明鋼の目的を達することはできない。   As mentioned above, although the reason for limitation was described about the manufacturing conditions of a steel plate, if the steel component is not appropriate, the objective of this invention steel cannot be achieved.

以下に鋼成分の限定理由を述べる。   The reasons for limiting the steel components are described below.

Cはレーザ切断中に酸素と反応して、酸化エネルギーを生じるとともに生成したCOガスが他の元素の酸化反応を抑制する働きがある。このため0.06%未満では酸化エネルギーが過少となり他の元素の酸化反応が過大となるため、0.06%を下限とした。   C reacts with oxygen during laser cutting to generate oxidation energy, and the generated CO gas functions to suppress the oxidation reaction of other elements. For this reason, if it is less than 0.06%, the oxidation energy becomes too small and the oxidation reaction of other elements becomes too large, so 0.06% was made the lower limit.

一方、0.30%を超えると鋼の靭性に悪影響を及ぼすため0.30%を上限とした。   On the other hand, if it exceeds 0.30%, the toughness of steel is adversely affected, so 0.30% was made the upper limit.

Siは他の元素に比較して大きな酸化反応エネルギーを有するが、添加量が過大な場合、鋼の酸化反応が過大となりノッチやバーニングを起こしやすくするため、上限を0.50%とした。   Si has a larger oxidation reaction energy than other elements, but if the addition amount is excessive, the upper limit is set to 0.50% because the oxidation reaction of the steel becomes excessive and notch or burning is likely to occur.

MnはFeよりやや大きな酸化反応エネルギーを有し、レーザ切断性に大きな影響はなく、材質を作るために有用な元素であるため、0.4〜1.5%を限定範囲とした。   Mn has an oxidation reaction energy slightly larger than that of Fe, has no great influence on laser cutting ability, and is a useful element for producing a material. Therefore, 0.4 to 1.5% is set as a limited range.

P、Sは母材靭性、HAZ靭性等からともに少ないほうが良いが、工業生産的な制約もあり、それぞれ0.015%、0.010%を上限とした。   P and S should be less in terms of base metal toughness, HAZ toughness, etc., but there are also restrictions on industrial production, so the upper limits were made 0.015% and 0.010%, respectively.

Alは脱酸のため添加するが、添加量が多いとアルミナ系の非金属介在物が増加して、鋼の清浄性を劣化させるので0.05%が上限である。   Al is added for deoxidation, but if the addition amount is large, alumina non-metallic inclusions increase and the cleanliness of the steel is deteriorated, so 0.05% is the upper limit.

Oは多すぎると鋼の清浄性を損なうため、0.0035%が上限である。   If O is too much, the cleanliness of the steel is impaired, so 0.0035% is the upper limit.

Nは多すぎると鋳片製造時に表面割れが発生するため上限を0.006%とした。   If N is too much, surface cracks occur during slab production, so the upper limit was made 0.006%.

さらに基本と成る元素以外の鋼成分の限定理由を以下に述べる。   The reasons for limiting the steel components other than the basic elements will be described below.

TiはTi酸化物やTi窒化物を生成して粒内のミクロ組織を微細化し、靭性を向上させるが、0.005%未満では効果が少なく、0.02%超ではTiの炭化物を生成しやすくなり、   Ti produces Ti oxide and Ti nitride to refine the microstructure inside the grains and improves toughness, but less than 0.005% is less effective, and more than 0.02% produces Ti carbide. Easier,

NbやVは鋼の強度を増加させる有用な元素であるが、Nbが0.06%超、Vが0.04%超の添加は溶接熱影響部の靭性を損なうためそれぞれ0.06%、0.04%を上限とした。   Nb and V are useful elements that increase the strength of the steel, but addition of Nb exceeding 0.06% and V exceeding 0.04% impairs the toughness of the weld heat-affected zone. The upper limit was 0.04%.

Ni、Cu、Moは鋼の強度や靭性に有用な元素であるが、多すぎると溶接熱影響部の靭性を損なうため、それぞれ0.3%、0.3%、0.7%を上限の値とした。   Ni, Cu, and Mo are elements useful for the strength and toughness of steel, but if too much, the toughness of the weld heat affected zone is impaired, so the upper limit is 0.3%, 0.3%, and 0.7%, respectively. Value.

転炉−連続鋳造−厚板工程で種々の鋼成分の厚鋼板を製造し、レーザ切断試験を実施した。レーザ切断条件は板厚により異なり、以下のとおりである。
板厚16mm:出力6kW連続切断 切断速度1.4m/min
板厚19mm:出力4.5kWパルス切断(周波数500Hz、デューティ70%)
切断速度1.1m/min
板厚22mm:出力5.0kWパルス切断(周波数500Hz、デューティ70%)
切断速度1.0m/min
板厚25mm:出力5.0kWパルス切断(周波数500Hz、デューティ70%)
切断速度0.7m/min
Thick steel plates of various steel components were manufactured in a converter-continuous casting-thick plate process, and a laser cutting test was performed. The laser cutting conditions differ depending on the plate thickness and are as follows.
Plate thickness 16mm: Output 6kW continuous cutting Cutting speed 1.4m / min
Plate thickness 19mm: Output 4.5kW pulse cutting (frequency 500Hz, duty 70%)
Cutting speed 1.1m / min
Plate thickness 22mm: Output 5.0kW pulse cutting (frequency 500Hz, duty 70%)
Cutting speed 1.0m / min
Plate thickness 25mm: Output 5.0kW pulse cutting (frequency 500Hz, duty 70%)
Cutting speed 0.7m / min

表1、2に実施例を示す。   Examples are shown in Tables 1 and 2.

本発明で製造した鋼板(本発明鋼)はスケールボイド率とスケール剥離割合の合計が15%以下で、レーザ切断性が良好である。   The steel sheet manufactured in accordance with the present invention (present invention steel) has a total scale void ratio and scale peeling ratio of 15% or less, and has good laser cutting properties.

これに対し、比較鋼はいずれもレーザ切断性が悪い結果である。   On the other hand, all of the comparative steels have poor laser cutting properties.

比較鋼16は製造法が本発明鋼と同じであるためスケール性状は良好であるが、Cが低く、Mnが高すぎるためレーザ切断性が悪い。   Since the comparative steel 16 has the same manufacturing method as that of the steel of the present invention, the scale properties are good, but the laser cutting property is poor because C is low and Mn is too high.

比較鋼17も製造法が本発明鋼と同じであるためスケール性状は良好であるが、Cが高すぎるためレーザ切断性が悪い。   Since the comparative steel 17 has the same manufacturing method as that of the steel of the present invention, the scale properties are good, but since C is too high, the laser cutting property is poor.

比較鋼18、19、20は鋼成分は本発明鋼と同じであるが、製造方法のスラブ加熱温度が高すぎ、圧延終了温度も異なるためスケール性状が悪く、レーザ切断性が悪い結果であった。   Comparative steels 18, 19, and 20 have the same steel components as the steel of the present invention, but the slab heating temperature of the production method is too high and the rolling end temperature is different, so the scale properties are poor and the laser cutting properties are poor. .

Figure 0004299709
Figure 0004299709

Figure 0004299709
Figure 0004299709

Figure 0004299709
Figure 0004299709

スケール性状とレーザ切断時のスケール剥離挙動の関係を示す図である。It is a figure which shows the relationship between a scale property and the scale peeling behavior at the time of laser cutting.

Claims (2)

質量%で、
C:0.06〜0.30%、
Si:0.50%以下、
Mn:0.4〜1.5%、
P:0.015%以下、
S:0.010%以下、
Al:0.05%以下、
O:0.0035%以下、
N:0.006%以下
を含有し、残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後1100超〜1200℃の温度で再加熱後、圧延開始時に高圧水の噴射により鋼板のスケールを排除するとともに、鋼板の温度を950℃以下とし、圧延を920±25℃の温度で終了し、その後水冷して650〜700℃で水冷を停止して鋼板のスケール中の空孔(ボイド)率とスケール地鉄界面の剥離割合の合計が15%以下とすることを特徴とするレーザ切断性の優れた厚鋼板の製造法。
% By mass
C: 0.06-0.30%,
Si: 0.50% or less,
Mn: 0.4 to 1.5%
P: 0.015% or less,
S: 0.010% or less,
Al: 0.05% or less,
O: 0.0035% or less,
N: A steel containing 0.006% or less, the balance being iron and inevitable impurities, is made into a slab by a continuous casting method, and then reheated at a temperature of over 1100 to 1200 ° C. and then injected with high-pressure water at the start of rolling. While eliminating the scale of the steel plate, the temperature of the steel plate is set to 950 ° C. or less, the rolling is finished at a temperature of 920 ± 25 ° C., and then water cooling is performed to stop water cooling at 650 to 700 ° C. A method for producing a thick steel plate having excellent laser cutting properties, characterized in that the sum of the (void) rate and the peel rate at the scale metal interface is 15% or less.
質量%で、
C:0.06〜0.30%、
Si:0.50%以下、
Mn:0.4〜1.5%、
P:0.015%以下、
S:0.010%以下、
Al:0.05%以下、
O:0.0035%以下、
N:0.006%以下
を含有し、
Ti:0.02%以下、
Nb:0.06%以下、
V:0.04%以下、
Ni:0.3%以下、
Cu:0.3%以下、
Mo:0.7%以下
の一種又は二種以上を更に加え、
残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後1100超〜1200℃の温度で再加熱後、圧延開始時に高圧水の噴射により鋼板のスケールを排除するとともに、鋼板の温度を950℃以下とし、圧延を920±25℃の温度で終了し、その後水冷して650〜700℃で水冷を停止して鋼板のスケール中の空孔(ボイド)率とスケール地鉄界面の剥離割合の合計が15%以下とすることを特徴とするレーザ切断性の優れた厚鋼板の製造法。
% By mass
C: 0.06-0.30%,
Si: 0.50% or less,
Mn: 0.4 to 1.5%
P: 0.015% or less,
S: 0.010% or less,
Al: 0.05% or less,
O: 0.0035% or less,
N: containing 0.006% or less,
Ti: 0.02% or less,
Nb: 0.06% or less,
V: 0.04% or less,
Ni: 0.3% or less,
Cu: 0.3% or less,
Mo: 0.7% or less of one or more are further added,
Steel with the balance consisting of iron and inevitable impurities is made into a slab by a continuous casting method, then reheated at a temperature of more than 1100 to 1200 ° C., and then the scale of the steel plate is removed by jetting high-pressure water at the start of rolling. 950 ° C. or lower, rolling is finished at a temperature of 920 ± 25 ° C., then water-cooled, water cooling is stopped at 650-700 ° C., and the void ratio in the scale of the steel sheet and the peeling of the scale metal interface A method for producing a thick steel plate having excellent laser cutting properties, wherein the total ratio is 15% or less.
JP2004092634A 2004-03-26 2004-03-26 Manufacturing method of thick steel plate with excellent laser cutting ability Expired - Fee Related JP4299709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092634A JP4299709B2 (en) 2004-03-26 2004-03-26 Manufacturing method of thick steel plate with excellent laser cutting ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092634A JP4299709B2 (en) 2004-03-26 2004-03-26 Manufacturing method of thick steel plate with excellent laser cutting ability

Publications (2)

Publication Number Publication Date
JP2005271074A JP2005271074A (en) 2005-10-06
JP4299709B2 true JP4299709B2 (en) 2009-07-22

Family

ID=35171264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092634A Expired - Fee Related JP4299709B2 (en) 2004-03-26 2004-03-26 Manufacturing method of thick steel plate with excellent laser cutting ability

Country Status (1)

Country Link
JP (1) JP4299709B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702254B2 (en) * 2006-10-13 2011-06-15 住友金属工業株式会社 Thick steel plate for laser cutting and its manufacturing method
JP5958113B2 (en) * 2012-06-25 2016-07-27 Jfeスチール株式会社 Manufacturing method of thick steel plate with excellent scale adhesion
KR102488497B1 (en) * 2020-12-21 2023-01-13 주식회사 포스코 Steel having excellent laser cutting properties and method of manufacturing the same

Also Published As

Publication number Publication date
JP2005271074A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4544589B2 (en) Ferritic stainless steel sheet with excellent spinning processability and spinning process
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
WO2013122191A1 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
JP2012087339A (en) Steel sheet excellent in laser cuttability, and method for production thereof
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP2008261032A (en) Steel sheet for hot press working
JP2008169452A (en) Steel sheet for hot pressing
JP2010248621A (en) Method for manufacturing high-strength high-toughness steel
JP2013248629A (en) Method for producing steel plate having excellent laser cutting property and steel plate having excellent laser cutting property
KR101393809B1 (en) Steel material for thermal cutting using oxygen
TW200827459A (en) A steel excellent in high toughness at weld heat-affect zone
JP2007107078A (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP2011147956A (en) METHOD FOR PRODUCING Si-CONTAINING STEEL SHEET
JP4205933B2 (en) Thick steel plate with excellent laser cutting property and method for producing the same
JP4299709B2 (en) Manufacturing method of thick steel plate with excellent laser cutting ability
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2006200026A (en) Method for producing maraging steel
JP2017160491A (en) High strength stainless steel material excellent in processability and manufacturing method therefor
JP5867308B2 (en) Steel material with excellent end face properties
JP2005171298A (en) Thick steel plate having excellent cut-off property with laser beam and its production method
JP2004218081A (en) Method for producing high-tension steel plate
JP6879133B2 (en) Austenitic stainless steel welded member
JP6977409B2 (en) Stable austenitic stainless steel welded material
JPH10102212A (en) Ferritic stainless steel sheet excellent in penetration at welding
JP4174041B2 (en) Method for producing welding steel having a tensile strength of 1150 MPa or more

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R151 Written notification of patent or utility model registration

Ref document number: 4299709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees