JP4296337B2 - Method for producing organohalogen compound decomposing agent - Google Patents

Method for producing organohalogen compound decomposing agent Download PDF

Info

Publication number
JP4296337B2
JP4296337B2 JP2002155135A JP2002155135A JP4296337B2 JP 4296337 B2 JP4296337 B2 JP 4296337B2 JP 2002155135 A JP2002155135 A JP 2002155135A JP 2002155135 A JP2002155135 A JP 2002155135A JP 4296337 B2 JP4296337 B2 JP 4296337B2
Authority
JP
Japan
Prior art keywords
iron powder
copper
surface area
organic halogen
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002155135A
Other languages
Japanese (ja)
Other versions
JP2003339902A (en
Inventor
一徳 吉田
大志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2002155135A priority Critical patent/JP4296337B2/en
Publication of JP2003339902A publication Critical patent/JP2003339902A/en
Application granted granted Critical
Publication of JP4296337B2 publication Critical patent/JP4296337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機ハロゲン化合物による汚染土壌や汚染水を無害化処理するための有機ハロゲン化合物の分解剤とその製造方法に関するものである。
【0002】
【従来の技術】
電子産業等の発展に伴って半導体製造工場や金属加工処理工場等において脱脂溶剤としてジクロロエチレン、トリクロロエチレン等の揮発性の有機ハロゲン化合物が過去に多量に使用され、これら有機ハロゲン化合物が土壌や地下水を汚染した状態で蓄積され、工場跡地の宅地等への再利用や周辺地域の土地開発に障害をもたらし、また、その蓄積された有機ハロゲン化合物による地下水の汚染がこの地下水利用上の障害になるなど大きな社会問題となっており、その効率的な無害化処理技術の開発が急務になっている。
【0003】
従来、有機ハロゲン化合物による汚染土壌や汚染水を無害化処理する方法として、このような有機ハロゲン化合物で汚染された土壌等を直接回収し、地上で洗浄機内で洗浄した後に埋め戻す土壌洗浄法がある。また、これらの有機ハロゲン化合物の揮発性を利用し、土壌等からそのまま有機ハロゲン化合物を揮発させ、ガスとして抽出してから地上で無害化処理する土壌等ガス吸引法が知られている。さらに、汚染地下水を土壌外に抽出して無害化処理する真空抽出法や揚水曝気法等もある。
【0004】
これに対して、汚染物質である有機ハロゲン化合物を原位置で浄化する方法も提案されている。例えば、このような有機ハロゲン化合物で汚染された地下水を地中に設けた鉄粉分散層や鉄粉と活性炭からなる地中壁に接触させて浄化する方法があり、また、注入井戸と抽出井戸を設けて、注入水に栄養分やpH調整剤あるいは微生物等を添加して循環させる微生物処理法ないし液循環法等がある。
【0005】
以上の様々な汚染処理法において、鉄粉等の金属還元剤を添加し、還元反応により有機ハロゲン化合物を分解処理して無害な炭化水素に変換するという無害化手段が比較的広く行われてきた。
そして、金属還元剤としては安価であることと環境面での安全性の点から、殆ど鉄粉が利用されている。しかし、鉄粉単独の添加では、分解反応が十分でないことからその使用条件について、様々な改善策が提案されてきている。
【0006】
すなわち、酸素の供給源を断ち、あるいは水素ガス、亜硫酸ナトリウム等の還元性物質を添加して溶存酸素を除去して酸化還元電位を下げ、汚染水等反応域をpH6.5〜9.5の中性域に調整すると共に、鉄粉等の金属還元剤を添加して有機ハロゲン化合物を分解させるなど、鉄粉等の金属還元剤の使用条件を改善することによりその分解作用を促進させる手段がとられてきている。
また、鉄粉等の金属還元剤を活性炭、アルミナ等の多孔質状の吸着性担体に担持させて使用する方法も提案されている。
【0007】
【発明が解決しようとする課題】
これらはいずれも金属還元剤として安価な鉄粉を単独で使用しまたは単独の鉄粉を担体に担持させて使用して有機ハロゲン化合物を分解除去できる有効な方法ではあるが、有機ハロゲン化合物の分解反応速度がより高いものが望まれている。
【0008】
本発明は、上記の状況に鑑み、有機ハロゲン化合物で汚染された土壌や水を無害化処理するに当たって、鉄粉自体の性状を改善し、従来の鉄粉単独使用の場合に比較して分解反応速度を大幅に向上させ、効率的に処理できる無害化処理用の分解剤の提供を目的とするものである。
【0009】
【課題を解決するための手段】
本発明者等は上記の目的の達成のため鋭意研究の結果、鉄粉を銅で部分被覆し、その被覆条件を規制することによって、還元力を長期にわたって維持し、有機ハロゲン化合物の分解反応速度を大幅に向上できることを見出したものである。
【0010】
すなわち、本発明は、第1に、有機ハロゲン化合物を含有する土壌または水に混合されて該有機ハロゲン化合物を分解する分解剤であって、分解作用係数が1m/g以上の銅被着鉄粉であることを特徴とする有機ハロゲン化合物の分解剤を、第2に、前記銅被着鉄粉が、凹凸が少ない鉄粉の表面を覆うように銅が点在する銅被着鉄粉である、第1に記載の有機ハロゲン化合物の分解剤を、第3に、前記銅被着鉄粉の比表面積が1m/g以上で、銅含有量が1〜20重量%である、第1または2に記載の有機ハロゲン化合物の分解剤を、第4に、有機ハロゲン化合物を含有する土壌または水に混合されて該有機ハロゲン化合物を分解する分解剤の製造方法であって、表面の凹凸が少ない鉄粉と酸化銅粉を混合すると共に弱酸を添加し該鉄粉の表面に銅を析出させることを特徴とする有機ハロゲン化合物の分解剤の製造方法を、第5に、前記鉄粉の比表面積が0.05m/gより小さい、第4に記載の有機ハロゲン化合物の分解剤の製造方法を、第6に、前記鉄粉がアトマイズ法によって製造された平粒粒径10〜100μmの鉄粉であり、前記酸化銅粉の平均粒径が該鉄粉の平均粒径の1/3以下である、第4または5に記載の有機ハロゲン化合物の分解剤の製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明の銅被着鉄粉は、鉄粉の表面に銅が全面被着されることなく点在的に被着され、鉄素地を部分的に露呈したものであり、有機ハロゲン化合物との接触反応にあたり、鉄と銅との電極電位の相違から局部電池作用および酸化還元作用により鉄分の該有機ハロゲン化合物に対する活性的な還元力を長期に維持でき、有機ハロゲン化合物の脱ハロゲン反応や脱ハロゲン化水素置換反応等の効果的な分解反応を行うものであることを特徴としている。このような銅被着鉄粉は、表面の凹凸が少なく、ほぼ球状の鉄粉に酸化銅粉を混合し、さらに弱酸として希硫酸を添加して撹拌することにより、酸化銅を浸出すると同時に銅を鉄粉表面に置換的に析出させるというセメンテーション手段によって得ることができる。ここで、弱酸としたのは、鉄粉の表面が酸に侵され表面が荒れるのを防ぐほか、鉄粉表面に銅を点在させるのに好適であり、点在量を制御しやすいためである。
【0012】
本発明の銅被着鉄粉の製造においては、原料鉄粉は鉄が主成分であればよく、特に純度を問わないので、電解鉄粉も使用できるが、特に、0.2重量%(wt%と表すことがある。)炭素以上の普通炭素鋼組成のものが分解速度を速めるので、これら組成の溶融鉄を噴霧するアトマイズ法によって得られた鉄粉が量産の面からも最も適している。
【0013】
また、分解剤の原料となる鉄粉の平均粒径は特に限定されないものの、一般に、平均粒径が細かい程、得られる銅被着鉄粉は有機ハロゲン化合物の分解処理時の分解反応速度が増大して好都合となるが、鉄粉の平均粒径が微細にすぎると、ハンドリング性が悪化するので、特に土壌と混合する場合を考慮すると、原料鉄粉として平均粒径10〜100μmが好ましい。
【0014】
有機ハロゲン化合物との反応性から、鉄粉表面上に銅が点在し、その点在数が多い方が望ましい。これは、鉄と銅との相互の電気化学的作用が個別に多く存在した方がより有機ハロゲン化合物の分解に有意であると考えられる。しかし、点在数を計測することは困難であるため、比表面積の増減により点在数の増減として捉え、分解作用係数として銅被着鉄粉としては比表面積1m/g以上のものが好ましい。すなわち、分解作用係数は、銅が鉄粉の表面に被着した銅被着鉄粉の比表面積値から銅を被着させる前の鉄粉の比表面積値を減算することにより求められる。もっとも、鉄粉の比表面積値が銅被着鉄粉の比表面積値に対し相対的に小さいものであれば、分解作用係数である銅の比表面積値は銅被着鉄粉の比表面積値と近似していると考えてよい。
【0015】
鉄粉に銅を被着すると比表面積が増加する。この場合に、比表面積の大きい鉄粉に銅を被着させた場合その比表面積の増加率は余り大きくはならないが、比表面積の小さい鉄粉(例えばアトマイズ鉄粉等)に上記のようにして銅を被着させた場合はその比表面積は飛躍的に増大する。これは、鉄粉表面に微細な銅が点在して被着したためと考えられる。この点在により、鉄の露出を保持し、銅と鉄の反応作用点を増大させ、より有機ハロゲン化合物の分解に適宜なものとなる。従って、原料鉄粉は銅が点在しやすく、かつ微細な銅が鉄粉表面に付着した後、はがれ落ちないような密着性の高い表面が求められる。このような原料鉄粉として、表面の凹凸が少ないであろうと考えられる比表面積の小さいものが望ましい。鉄粉の粒径が10〜100μmの場合の原料鉄粉の比表面積は0.05m/g(500cm/g)より小さいもの(0は含まない)が望ましい。さらには、0.001〜0.04m/g(10〜400cm/g)が望ましい。これは、銅被着の効果が最も有意であるほか、銅の被着量を制御しやすいためである。
【0016】
原料鉄粉の形状は球状でも楕円球状でもよいが、銅の被着性の点から表面状態は凹凸が少なく滑らかで、ほぼ球状であることが好ましい。
すなわち、有機ハロゲン化合物との反応速度の点については、原料鉄粉をそのまま有機ハロゲン化合物との分解反応に供した場合には、原料鉄粉の比表面積が大きいほど分解反応は進むと考えられるが、その反面、原料鉄粉に酸化銅粉を混合し、希硫酸等の弱酸によりセメンテーション反応を進めて銅を被着させるためには、硫酸濃度、酸化銅粉量を一定とした場合、原料鉄粉の比表面積が小さいほど銅の被着反応が起きる確率は大きいと考えられるので、原料鉄粉としては、表面が滑らかで凹凸の少ないアトマイズ粉が銅の被着や被覆厚さの点からは有利である。したがって、原料鉄粉そのものの形状よりも銅の被着により比表面積の増大を図るように考慮される。
【0017】
銅被着鉄粉を得るための銅源としては、酸化銅粉(Cu2O、CuO)が適しており、鉄粉よりも小径のものを使用する。その平均粒径は、鉄粉の平均粒径の1/3以下が好ましい。具体的には、鉄粉の平均粒径が60μmの場合は酸化銅粉の平均粒径としては10μm程度が適当である。
【0018】
酸化銅粉の添加量は銅被着鉄粉の銅含有量が1〜20重量%の範囲内になるようにするのが好ましい。
銅含有量が増すにつれ、銅被着鉄粉の比表面積が増大し、また、分解反応速度が大となる。しかし、銅含有量がほぼ15重量%を超えると、銅被着鉄粉の比表面積値は殆ど増大しなくなるので、以後の分解反応は、比表面積に係る反応サイト数の増加よりも被着銅による鉄分の還元力の維持によって促進されるものと考えられる。ただし、銅被着鉄粉の付着銅が多すぎると、汚染土壌や汚染水の浄化に使用した場合、コスト高となるので、過度の量の銅被着は好ましくない。
【0019】
本発明の銅被着鉄粉は以下のようにして製造される。
原料鉄粉と酸化銅粉を、水を使用することなくインペラー等で撹拌し、粒子同士の強制的衝突を繰り返す粉砕機、例えばヘンシェル型ミキサー等で混合する。この混合物に希硫酸等の弱酸を添加することにより、酸化銅を溶解すると同時に銅を鉄粉の表面に点在状に析出させることができ、焼成工程を要することなく、鉄粉表面に拡散状態で銅を被着させることができる。残存硫酸分は好ましくは加温乾燥により除去する。銅を鉄粉表面全体に均等に点在させるためには、銅分の溶解と析出被着は比較的緩慢な方が好ましく、このため希硫酸の硫酸濃度は20wt%以下、例えば5〜10wt%とする。希硫酸の添加量は分解反応速度には余り影響しないが反応物の取扱いの面から、鉄粉に対して5〜10wt%の割合とする。希硫酸を添加してから混合原料を混合するか、あるいは、混合原料を混合しながら希硫酸を添加するようにしてもよい。
【0020】
得られた銅被着鉄粉は大気中で室温〜105℃において乾燥して残存硫酸を除去する。この乾燥は保存のためで、すぐに使用する場合にあっては特に乾燥する必要はない。乾燥温度の低下に伴い、有機ハロゲン化合物の分解反応速度が低下する傾向が見られるが顕著なものではない。
得られた銅被着鉄粉は、銅分が鉄粉表面に点在する形で厚めにかつ均等に分布し、かつ、鉄粉表面が被着銅間に露出している状態をなしている。
【0021】
前記したように、有機ハロゲン化合物の分解反応速度の点から、銅被着鉄粉の銅含有量は1〜20重量%の範囲内が好ましく、また、銅被着鉄粉の比表面積は、前記のように1m/g以上が好ましい。
【0022】
水を用いることなく原料の鉄粉と酸化銅粉を混合した後に、希硫酸等の弱酸を添加するセメンテーション手段により銅被着を行って得られる銅被着鉄粉は、混合後、高温の焼成処理および解砕処理を必要とする通常の銅被着手段の場合とは異なり、容易に大きい比表面積を有するものが得られ、かつ容易にその形態を維持するので、有機ハロゲン化合物の分解剤として低コスト、かつ十分な性能を有する。
【0023】
なお、前記した有機ハロゲン化合物の分解反応速度は、次の分解反応速度を示す式
ln(C/C)=−Kt
(ただし、tは経過日数、Cは有機ハロゲン化合物の初期濃度、Cはt日経過後の有機ハロゲン化合物の濃度である。)
において、分解反応速度定数K(day−1)で示すことができ、このK値を算定することにより有機ハロゲン化合物の分解反応速度を判定することができる。この分解反応速度定数Kは0.5day−1以上が好ましく、1day−1以上がさらに好ましい。
【0024】
銅源として、最も入手し易く安価な酸化銅粉をあげたが、酸化銅粉に限らず、塩化銅粉、硝酸銅粉、硫化銅粉、塩化アンモニウム銅粉もしくはそれらの水和物粉をも使用できる。
【0025】
本発明の有機ハロゲン化合物分解剤は、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、1,3−ジクロロプロペン、トランス−1,2−ジクロロエチレン、トリハロメタン等各種の有機ハロゲン化合物の分解用に適用できる。
【0026】
この銅被着鉄粉は、中性pH域において、有機ハロゲン化合物含有汚染土壌または汚染水に添加することにより、水分の存在下で、鉄粉はその活性度を維持し、有機ハロゲン化合物を前記のように分解し無害化する。また、この銅被着鉄粉は、好ましくは、硫酸鉄等の鉄塩と共に汚染水と、または水の存在下で汚染土壌と接触させることにより、硫酸イオンと水との作用によりハロゲンの水素への効果的な置換等が行われ、有機ハロゲン化合物の分解反応速度がより向上する。
本発明は、有機ハロゲン化合物による汚染土壌または汚染水の浄化処理、特に、汚染物蓄積現場で原位置での無害化処理を行う場合に好適に使用できる。
【0027】
【実施例】
次に実施例によって本発明をさらに詳細に説明するが、本発明の技術的範囲は以下の実施例の記載によって限定されるものではないことは勿論である。
【0028】
〔実施例1〕 鉄を主成分とし平均粒径が63μmで凹凸が少なく滑らかな表面状態の球状アトマイズ鉄粉100gに、平均粒径10μmの酸化銅粉(CuO)を1.25g添加し、インペラー撹拌式のサンプルミキサーで混合した。この混合物に撹拌しながら10重量%濃度の希硫酸を上記鉄粉に対して5重量%の割合で添加して30秒間の銅被着処理を行った後、105℃で5分間乾燥して銅被着鉄粉を得た。
得られた銅被着鉄粉は、銅の含有量が0.9重量%であって、BET法による比表面積(単に、比表面積という。)が1m/gであり、上記鉄粉表面には微細な銅が鉄粉表面を覆うように点在して析出していた。なお、上記において10重量%濃度の希硫酸に代えて5重量%濃度の希硫酸を用いても同様の銅被着鉄粉が得られた。
【0029】
さらに、得られた銅被着鉄粉0.5gを撹拌機付のバイアル瓶容器中の純水50mLに添加し、窒素パージにより酸素を除去した。
次に、有機ハロゲン化合物としてcis−1,2−DCE(ジクロロエチレン)を1μL添加し容器を密封した。これを25℃において200rpmで反応液を撹拌しながら、容器の上部空間から一定時間毎にガスをサンプル採取した。
得られたガスについて経過時間毎のcis−1,2−DCE(ジクロロエチレン)の濃度をガスクロマトグラフィ(GC−MS)で測定した。その所定時間毎の濃度変化から求めた分解反応速度定数Kは0.22day−1であった。
【0030】
〔実施例2〕 原料鉄粉として、高比表面積鉄粉(No.2)およびアトマイズ法による低比表面積鉄粉(No.1)を用いた。
高比表面積鉄粉(No.2)は市販されている海綿状鉄粉で、比表面積が4.19m/gであって表面は非常に凹凸が多い。一方、低比表面積鉄粉(No.1)は比表面積が0.004m/gであって、表面の凹凸が少ないほぼ球状の形状である。
それぞれの原料鉄粉100gに対して、平均粒径10μmの酸化銅粉(CuO)をCu重量%が0、1、5、10、20重量%になるように添加し、実施例1と同様に銅被着処理を行い、105℃で5分間乾燥し、得られた銅被着鉄粉について、比表面積を測定した。
最初の鉄粉の比表面積値がわかっているので、得た銅被着鉄粉の比表面積値から最初の鉄粉の比表面積値を減算した値がほぼ銅の比表面積値、すなわち分解作用係数と言える。
【0031】
さらに、これらの銅被着鉄粉について、実施例1と同様の有機ハロゲン化合物の分解処理を行い、それぞれ分解反応速度定数Kを求めた。
各銅被着鉄粉について、銅含有量(重量%)毎の比表面積値を表1に示した。さらに、銅被着による比表面積の増加傾向を見るため、原料鉄粉の比表面積を1とした場合の各銅被着鉄粉の比表面積の増加割合を表2に表示する。また、各銅被着鉄粉について、銅含有重量%毎の分解反応速度定数K値を表3に表示し、図1に図示した。さらに、比表面積に対する分解反応速度定数Kの変化状況を図2に図示した。
【0032】
【表1】
比表面積(m/g)

Figure 0004296337
【0033】
【表2】
比表面積比(銅被着鉄粉/原料鉄粉)
Figure 0004296337
【0034】
【表3】
分解反応速度定数K(day−1
Figure 0004296337
【0035】
以上の結果から、いずれの鉄粉においても銅を被着させることにより比表面積が増加する。表2によると、比表面積が大きい原料鉄粉では銅被着により比表面積の増加率はそれほど大きくならず、比表面積が小さい原料鉄粉は比表面積の増加率は著しく、10〜2000倍の増加率になっているのが分かる。
また、銅含有量による比表面積の増加には限度があり、10〜15m/gを超えると緩やかな増加となり、K値との相関は希薄になる。すなわち、上記の範囲に達した以降の銅含有量によるK値の上昇は比表面積の影響を受け難くなることが分かる。
これらの結果から、反応サイト数が増加するよりも、銅の増加による還元力向上の方が分解には効果的であるといえる。すなわち、原料鉄粉の比表面積にこだわらず、むしろ銅の被着状況を改善することの方が有利であるとの見方が可能となる。
【0036】
【発明の効果】
以上のように、本発明によれば、鉄粉表面に銅を点在する状態で被着させることにより、従来の鉄粉単独使用の場合に比較して有機ハロゲン化合物の分解反応速度を大幅に向上させることができ、有機ハロゲン化合物で汚染された土壌や水を無害化処理するに当たって効率的に処理できる無害化処理における分解剤を提供することができる。また、本発明は、従来の鉄粉と同様にハンドリングも容易で、汚染土壌または汚染水の発生または蓄積現場での原位置無害化処理にも好適に使用できるという効果を奏する。
【図面の簡単な説明】
【図1】実施例2における銅被着鉄粉の銅含有量と分解反応速度定数Kとの関係を示す図である。
【図2】実施例2における銅被着鉄粉の比表面積と分解反応速度定数Kとの関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic halogen compound decomposing agent for detoxifying soil and water contaminated with an organic halogen compound, and a method for producing the same.
[0002]
[Prior art]
Along with the development of the electronics industry, volatile organic halogen compounds such as dichloroethylene and trichlorethylene have been used in large quantities in the past as degreasing solvents in semiconductor manufacturing plants and metal processing plants, and these organic halogen compounds contaminate soil and groundwater. It is accumulated in such a way that it causes obstacles to the reuse of factory premises for residential land and land development in the surrounding area, and contamination of groundwater by the accumulated organic halogen compounds becomes an obstacle to the use of groundwater. It is a social problem, and there is an urgent need to develop efficient detoxification technology.
[0003]
Conventionally, as a method for detoxifying contaminated soil and contaminated water by organic halogen compounds, there is a soil cleaning method in which soil contaminated with such organic halogen compounds is directly recovered, washed in the washing machine on the ground, and then backfilled. is there. Further, there is known a gas suction method for soil or the like that utilizes the volatility of these organic halogen compounds, volatilizes the organic halogen compounds as they are from the soil and extracts them as gas, and then detoxifies them on the ground. Furthermore, there are vacuum extraction methods and pumped water aeration methods that extract contaminated groundwater from the soil and render it detoxified.
[0004]
On the other hand, a method for purifying an organic halogen compound as a contaminant in situ has also been proposed. For example, there is a method of purifying groundwater contaminated with such organic halogen compounds by bringing it into contact with the underground wall made of iron powder dispersed layer or iron powder and activated carbon in the ground. There is a microbial treatment method or a liquid circulation method in which nutrients, pH adjusters, microorganisms or the like are added to the injected water and circulated.
[0005]
In the various pollution treatment methods described above, a detoxification means has been relatively widely performed in which a metal reducing agent such as iron powder is added and an organic halogen compound is decomposed by a reduction reaction to be converted into harmless hydrocarbons. .
As the metal reducing agent, iron powder is mostly used from the viewpoint of being inexpensive and environmentally safe. However, since the decomposition reaction is not sufficient with the addition of iron powder alone, various measures have been proposed for its use conditions.
[0006]
That is, cut off the oxygen supply source or add a reducing substance such as hydrogen gas or sodium sulfite to remove dissolved oxygen to lower the oxidation-reduction potential, and set the reaction zone of contaminated water to pH 6.5 to 9.5. A means to promote the decomposition action by adjusting the neutral conditions and improving the use conditions of the metal reducing agent such as iron powder such as adding a metal reducing agent such as iron powder to decompose the organic halogen compound. It has been taken.
There has also been proposed a method in which a metal reducing agent such as iron powder is supported on a porous adsorbent carrier such as activated carbon or alumina.
[0007]
[Problems to be solved by the invention]
These are effective methods that can be used to decompose and remove organic halogen compounds by using inexpensive iron powder alone as a metal reducing agent or by supporting a single iron powder on a carrier. A higher reaction rate is desired.
[0008]
In view of the above situation, the present invention improves the properties of iron powder itself in detoxifying soil and water contaminated with an organic halogen compound, and decomposes compared to the conventional use of iron powder alone. An object of the present invention is to provide a degrading agent for detoxification that can greatly increase the speed and can be efficiently processed.
[0009]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the inventors of the present invention partially coated iron powder with copper, and by regulating the coating conditions, the reducing power was maintained over a long period of time, and the decomposition reaction rate of organic halogen compounds. It has been found that can be greatly improved.
[0010]
That is, the present invention is, firstly, a decomposing agent that is mixed with soil or water containing an organic halogen compound to decompose the organic halogen compound, and has a decomposition action coefficient of 1 m 2 / g or more. Secondly, an organic halogen compound decomposing agent characterized by being a powder, wherein the copper-coated iron powder is a copper-coated iron powder dotted with copper so as to cover the surface of the iron powder with less irregularities. The decomposition agent of the organic halogen compound according to the first, third, the copper-coated iron powder has a specific surface area of 1 m 2 / g or more and a copper content of 1 to 20% by weight, Or a method for producing a decomposing agent which decomposes the organic halogen compound by mixing the organic halogen compound decomposing agent described in 2 with a soil or water containing the organic halogen compound, Mixing a small amount of iron powder and copper oxide powder and adding weak acid to the iron A method for producing an organic halogen compound decomposing agent characterized in that copper is deposited on the surface of the powder. Fifth, the organic powder according to the fourth aspect, wherein the specific surface area of the iron powder is less than 0.05 m 2 / g. A method for producing a halogen compound decomposing agent, sixthly, the iron powder is an iron powder having a flat particle diameter of 10 to 100 μm produced by an atomizing method, and the average particle diameter of the copper oxide powder is the iron powder The method for producing a decomposing agent for an organic halogen compound according to the fourth or fifth aspect, which is 1/3 or less of the average particle diameter.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The copper-coated iron powder of the present invention is deposited in an interstitial manner without copper being entirely deposited on the surface of the iron powder, partially exposing the iron substrate, and in contact with an organic halogen compound. In the reaction, the active reducing power of iron on the organic halogen compounds can be maintained for a long time by local cell action and redox action due to the difference in electrode potential between iron and copper, and dehalogenation and dehalogenation of organic halogen compounds. It is characterized by performing an effective decomposition reaction such as a hydrogen substitution reaction. Such copper-coated iron powder has less surface irregularities, and copper oxide powder is mixed with substantially spherical iron powder. Further, dilute sulfuric acid is added as a weak acid and stirred, so that copper oxide is leached at the same time. Can be obtained by a cementation means for depositing on the surface of the iron powder in a substitutional manner. The weak acid used here is suitable for preventing the surface of the iron powder from being corroded by the acid and making the surface rough, and is suitable for interspersing copper on the surface of the iron powder. is there.
[0012]
In the production of the copper-coated iron powder of the present invention, the raw iron powder only needs to have iron as a main component, and since the purity is not particularly limited, electrolytic iron powder can be used. Since carbon steel or higher carbon steel composition increases the decomposition rate, the iron powder obtained by atomizing the sprayed molten iron of these compositions is most suitable from the standpoint of mass production. .
[0013]
In addition, although the average particle diameter of the iron powder as a raw material for the decomposition agent is not particularly limited, generally, the smaller the average particle diameter, the higher the decomposition reaction rate of the obtained copper-coated iron powder during the decomposition treatment of the organic halogen compound. However, if the average particle size of the iron powder is too fine, the handling property is deteriorated. In particular, considering the case of mixing with soil, the average particle size of 10 to 100 μm is preferable as the raw material iron powder.
[0014]
From the reactivity with the organic halogen compound, it is desirable that copper is scattered on the surface of the iron powder and that the number of the dots is large. This is considered to be more significant for the decomposition of the organohalogen compound when there are many individual electrochemical actions of iron and copper. However, it is difficult to measure the number of scattered, captured as dotted number of increase or decrease by increasing or decreasing the specific surface area is preferably not less than a specific surface area of 1 m 2 / g as copper-clad Chakutetsuko as decomposition coefficients . That is, the decomposition function coefficient is obtained by subtracting the specific surface area value of the iron powder before depositing copper from the specific surface area value of the copper-coated iron powder in which copper is deposited on the surface of the iron powder. However, if the specific surface area value of the iron powder is relatively small relative to the specific surface area value of the copper-coated iron powder, the specific surface area value of copper, which is the decomposition action coefficient, is the specific surface area value of the copper-coated iron powder. You can think of it as an approximation.
[0015]
When copper is deposited on iron powder, the specific surface area increases. In this case, when copper is deposited on iron powder having a large specific surface area, the increase rate of the specific surface area is not so large, but iron powder having a small specific surface area (for example, atomized iron powder) is used as described above. When copper is deposited, the specific surface area increases dramatically. This is presumably because fine copper was scattered and deposited on the iron powder surface. This interspersedness maintains the exposure of iron, increases the reaction point of reaction between copper and iron, and is more appropriate for the decomposition of organic halogen compounds. Therefore, the raw iron powder is required to have a surface with high adhesion such that copper is easily scattered and fine copper does not peel off after the fine copper adheres to the iron powder surface. As such raw material iron powder, one having a small specific surface area, which is considered to have few surface irregularities, is desirable. When the particle size of the iron powder is 10 to 100 μm, the specific surface area of the raw iron powder is preferably smaller than 0.05 m 2 / g (500 cm 2 / g) (0 is not included). Furthermore, 0.001~0.04m 2 / g (10~400cm 2 / g) is preferable. This is because the effect of copper deposition is the most significant and the amount of copper deposition can be easily controlled.
[0016]
The shape of the raw iron powder may be spherical or elliptical, but from the viewpoint of copper adherence, the surface state is smooth with few irregularities and is preferably almost spherical.
That is, regarding the reaction rate with the organic halogen compound, when the raw iron powder is directly subjected to the decomposition reaction with the organic halogen compound, it is considered that the decomposition reaction proceeds as the specific surface area of the raw iron powder increases. On the other hand, in order to mix copper oxide powder with raw iron powder, and to promote the cementation reaction with weak acid such as dilute sulfuric acid to deposit copper, when the sulfuric acid concentration and copper oxide powder amount are constant, the raw material The smaller the specific surface area of the iron powder, the greater the probability that the copper deposition reaction will occur. Therefore, as the raw iron powder, atomized powder with a smooth surface and less irregularities is used in terms of copper deposition and coating thickness. Is advantageous. Therefore, it is considered that the specific surface area is increased by depositing copper rather than the shape of the raw iron powder itself.
[0017]
As a copper source for obtaining copper-coated iron powder, copper oxide powder (Cu 2 O, CuO) is suitable, and one having a smaller diameter than iron powder is used. The average particle size is preferably 1/3 or less of the average particle size of the iron powder. Specifically, when the average particle diameter of the iron powder is 60 μm, the average particle diameter of the copper oxide powder is suitably about 10 μm.
[0018]
The amount of copper oxide powder added is preferably such that the copper content of the copper-coated iron powder falls within the range of 1 to 20% by weight.
As the copper content increases, the specific surface area of the copper-coated iron powder increases and the decomposition reaction rate increases. However, when the copper content exceeds approximately 15% by weight, the specific surface area value of the copper-coated iron powder hardly increases, so that the subsequent decomposition reaction is more than the increase in the number of reaction sites related to the specific surface area. This is thought to be promoted by maintaining the reducing power of iron. However, if there is too much copper adhering to the copper-deposited iron powder, it will be costly when used to purify contaminated soil or contaminated water, so an excessive amount of copper deposition is not preferred.
[0019]
The copper-coated iron powder of the present invention is produced as follows.
The raw iron powder and copper oxide powder are mixed with an impeller or the like without using water, and mixed with a pulverizer such as a Henschel mixer that repeats forced collision between particles. By adding weak acid such as dilute sulfuric acid to this mixture, copper oxide can be dissolved and at the same time copper can be deposited on the surface of the iron powder in a scattered manner, and the diffusion state on the iron powder surface without requiring a firing step Can be used to deposit copper. The residual sulfuric acid content is preferably removed by heating and drying. In order to distribute copper evenly over the entire surface of the iron powder, it is preferable that the dissolution and deposition of the copper content be relatively slow. For this reason, the sulfuric acid concentration of dilute sulfuric acid is 20 wt% or less, for example, 5 to 10 wt%. And The addition amount of dilute sulfuric acid does not affect the decomposition reaction rate so much, but from the viewpoint of handling the reaction product, it is set to a ratio of 5 to 10 wt% with respect to the iron powder. The mixed raw materials may be mixed after adding the diluted sulfuric acid, or the diluted sulfuric acid may be added while mixing the mixed raw materials.
[0020]
The obtained copper-coated iron powder is dried in the atmosphere at room temperature to 105 ° C. to remove residual sulfuric acid. This drying is for storage, and it is not necessary to dry it for immediate use. Although the decomposition reaction rate of the organic halogen compound tends to decrease as the drying temperature decreases, it is not remarkable.
The obtained copper-coated iron powder is thick and evenly distributed in a form in which copper is scattered on the surface of the iron powder, and the iron powder surface is exposed between the coated copper. .
[0021]
As described above, from the viewpoint of the decomposition reaction rate of the organic halogen compound, the copper content of the copper-coated iron powder is preferably in the range of 1 to 20% by weight, and the specific surface area of the copper-coated iron powder is as described above. As above, 1 m 2 / g or more is preferable.
[0022]
After mixing the raw iron powder and copper oxide powder without using water, the copper-coated iron powder obtained by performing copper deposition with a cementation means adding weak acid such as dilute sulfuric acid, Unlike ordinary copper deposition means that require firing and crushing treatments, those having a large specific surface area can be easily obtained and easily maintained, so that the decomposition agent for organic halogen compounds. Low cost and sufficient performance.
[0023]
The decomposition reaction rate of the organic halogen compound is expressed by the formula ln (C / C 0 ) = − Kt indicating the following decomposition reaction rate.
(Where t is the number of days that have elapsed, C 0 is the initial concentration of the organic halogen compound, and C is the concentration of the organic halogen compound after the lapse of t days.)
, The decomposition reaction rate constant K (day −1 ) can be calculated, and the decomposition reaction rate of the organic halogen compound can be determined by calculating the K value. The decomposition reaction rate constant K is preferably 0.5 day −1 or more, and more preferably 1 day −1 or more.
[0024]
As the copper source, the most readily available and cheap copper oxide powder was mentioned, but not only copper oxide powder, but also copper chloride powder, copper nitrate powder, copper sulfide powder, ammonium chloride copper powder or their hydrate powders. Can be used.
[0025]
The organic halogen compound decomposing agent of the present invention is dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2- It can be applied to the decomposition of various organic halogen compounds such as trichloroethane, trichlorethylene, tetrachloroethylene, 1,3-dichloropropene, trans-1,2-dichloroethylene, trihalomethane and the like.
[0026]
In the neutral pH range, this copper-coated iron powder is added to organic halogen compound-containing contaminated soil or contaminated water, so that the iron powder maintains its activity in the presence of moisture, To make it harmless. Further, the copper-coated iron powder is preferably converted into halogen hydrogen by the action of sulfate ions and water by contacting with contaminated water together with an iron salt such as iron sulfate or contaminated soil in the presence of water. As a result, the decomposition reaction rate of the organic halogen compound is further improved.
INDUSTRIAL APPLICABILITY The present invention can be suitably used for the purification treatment of contaminated soil or contaminated water with an organic halogen compound, particularly when detoxification treatment is performed in situ at the contamination accumulation site.
[0027]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, of course, the technical scope of this invention is not limited by description of a following example.
[0028]
[Example 1] 1.25 g of copper oxide powder (CuO) with an average particle diameter of 10 μm was added to 100 g of spherical atomized iron powder having iron as a main component and an average particle diameter of 63 μm and a smooth surface with few irregularities, and an impeller It mixed with the stirring type sample mixer. While stirring the mixture, dilute sulfuric acid having a concentration of 10% by weight was added at a ratio of 5% by weight with respect to the iron powder, followed by a copper coating treatment for 30 seconds, and then dried at 105 ° C. for 5 minutes to obtain copper. A coated iron powder was obtained.
The obtained copper-coated iron powder has a copper content of 0.9% by weight and a specific surface area (hereinafter simply referred to as a specific surface area) by the BET method of 1 m 2 / g. The fine copper was scattered and deposited so as to cover the iron powder surface. In addition, the same copper-coated iron powder was obtained even when 5 wt% dilute sulfuric acid was used instead of 10 wt% dilute sulfuric acid.
[0029]
Furthermore, 0.5 g of the obtained copper-coated iron powder was added to 50 mL of pure water in a vial container with a stirrer, and oxygen was removed by nitrogen purge.
Next, 1 μL of cis-1,2-DCE (dichloroethylene) was added as an organic halogen compound, and the container was sealed. While stirring the reaction solution at 200 rpm at 25 ° C., gas was sampled from the upper space of the container at regular intervals.
About the obtained gas, the density | concentration of cis-1,2-DCE (dichloroethylene) for every elapsed time was measured by the gas chromatography (GC-MS). The decomposition reaction rate constant K determined from the concentration change every predetermined time was 0.22 day −1 .
[0030]
[Example 2] As a raw material iron powder, a high specific surface area iron powder (No. 2) and a low specific surface area iron powder (No. 1) by an atomizing method were used.
High specific surface area iron powder (No. 2) is a commercially available spongy iron powder having a specific surface area of 4.19 m 2 / g and a very uneven surface. On the other hand, the low specific surface area iron powder (No. 1) has a specific surface area of 0.004 m 2 / g and a substantially spherical shape with few surface irregularities.
In the same manner as in Example 1, copper oxide powder (CuO) having an average particle size of 10 μm was added to 100 g of each raw iron powder so that the Cu wt% was 0, 1, 5, 10, 20 wt%. A copper deposition treatment was performed, and drying was performed at 105 ° C. for 5 minutes, and the specific surface area of the obtained copper-coated iron powder was measured.
Since the specific surface area value of the first iron powder is known, the value obtained by subtracting the specific surface area value of the first iron powder from the specific surface area value of the obtained copper-coated iron powder is almost the specific surface area value of copper, that is, the decomposition action coefficient. It can be said.
[0031]
Further, these copper-coated iron powders were subjected to the same organic halogen compound decomposition treatment as in Example 1, and the decomposition reaction rate constant K was determined for each.
The specific surface area value for each copper content (% by weight) is shown in Table 1 for each copper-coated iron powder. Furthermore, in order to see the increase tendency of the specific surface area by copper deposition, the increase rate of the specific surface area of each copper deposition iron powder when the specific surface area of raw material iron powder is set to 1 is displayed in Table 2. Moreover, about each copper-coated iron powder, the decomposition reaction rate constant K value for every copper containing weight% was displayed in Table 3, and illustrated in FIG. Further, FIG. 2 shows a change state of the decomposition reaction rate constant K with respect to the specific surface area.
[0032]
[Table 1]
Specific surface area (m 2 / g)
Figure 0004296337
[0033]
[Table 2]
Specific surface area ratio (copper-coated iron powder / raw iron powder)
Figure 0004296337
[0034]
[Table 3]
Decomposition rate constant K (day −1 )
Figure 0004296337
[0035]
From the above results, the specific surface area is increased by depositing copper in any iron powder. According to Table 2, the increase rate of the specific surface area is not so large in the raw iron powder having a large specific surface area due to copper deposition, and the increase rate of the specific surface area is remarkable in the raw iron powder having a small specific surface area, which is increased by 10 to 2000 times. You can see the rate.
Moreover, there is a limit to the increase in the specific surface area due to the copper content, and when it exceeds 10-15 m 2 / g, the increase is moderate and the correlation with the K value becomes dilute. That is, it can be seen that the increase in the K value due to the copper content after reaching the above range is less affected by the specific surface area.
From these results, it can be said that the improvement of reducing power by increasing copper is more effective for decomposition than the number of reaction sites is increased. That is, it is possible to view that it is more advantageous to improve the copper deposition condition regardless of the specific surface area of the raw iron powder.
[0036]
【The invention's effect】
As described above, according to the present invention, the decomposition reaction rate of the organic halogen compound is greatly increased by depositing copper on the surface of the iron powder in comparison with the conventional use of iron powder alone. It is possible to provide a degrading agent in a detoxification treatment that can be efficiently treated when detoxifying soil or water contaminated with an organic halogen compound. In addition, the present invention is easy to handle in the same manner as conventional iron powder, and has an effect that it can be suitably used for in-situ detoxification treatment at the generation or accumulation site of contaminated soil or contaminated water.
[Brief description of the drawings]
1 is a graph showing the relationship between the copper content of a copper-coated iron powder and a decomposition reaction rate constant K in Example 2. FIG.
2 is a graph showing the relationship between the specific surface area of copper-coated iron powder and the decomposition reaction rate constant K in Example 2. FIG.

Claims (2)

有機ハロゲン化合物を含有する土壌または水に混合されて該有機ハロゲン化合物を分解する分解剤の製造方法であって、比表面積が0.05m 2 /gより小さい鉄粉と酸化銅粉を混合すると共に硫酸濃度20wt%以下の希硫酸を添加し該鉄粉の表面に銅を析出させることを特徴とする有機ハロゲン化合物の分解剤の製造方法。A method for producing a decomposing agent which is mixed with soil or water containing an organic halogen compound to decompose the organic halogen compound, wherein iron powder and copper oxide powder having a specific surface area of less than 0.05 m 2 / g are mixed. A method for producing an organic halogen compound decomposing agent, comprising adding dilute sulfuric acid having a sulfuric acid concentration of 20 wt% or less to precipitate copper on the surface of the iron powder. 前記鉄粉がアトマイズ法によって製造された平均粒径10〜100μmの鉄粉であり、前記酸化銅粉の平均粒径が該鉄粉の平均粒径の1/3以下である、請求項1に記載の有機ハロゲン化合物の分解剤の製造方法。The iron powder is an iron powder having an average grain size of 10~100μm produced by an atomizing method, an average particle diameter of the copper oxide powder is 1/3 or less of the average particle diameter of the iron powder, to claim 1 The manufacturing method of the decomposition | disassembly agent of the organohalogen compound of description .
JP2002155135A 2002-05-29 2002-05-29 Method for producing organohalogen compound decomposing agent Expired - Fee Related JP4296337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155135A JP4296337B2 (en) 2002-05-29 2002-05-29 Method for producing organohalogen compound decomposing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155135A JP4296337B2 (en) 2002-05-29 2002-05-29 Method for producing organohalogen compound decomposing agent

Publications (2)

Publication Number Publication Date
JP2003339902A JP2003339902A (en) 2003-12-02
JP4296337B2 true JP4296337B2 (en) 2009-07-15

Family

ID=29771724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155135A Expired - Fee Related JP4296337B2 (en) 2002-05-29 2002-05-29 Method for producing organohalogen compound decomposing agent

Country Status (1)

Country Link
JP (1) JP4296337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779523A (en) * 2016-03-23 2018-11-09 霍加纳斯股份有限公司 Iron-based powder

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022166A (en) * 2004-07-06 2006-01-26 Tosoh Corp Method for detoxifying object contaminated with organic halogen compound
JP4774478B2 (en) * 2004-10-01 2011-09-14 Dowaエコシステム株式会社 Soil or groundwater purification methods
JP5082041B2 (en) * 2005-03-25 2012-11-28 Dowaエコシステム株式会社 Decomposing agent for organic halogen compounds
WO2006101246A1 (en) * 2005-03-25 2006-09-28 Dowa Eco-System Co., Ltd. Agent for decomposing organic halogen-containing compound
JP4756190B2 (en) * 2006-02-16 2011-08-24 Dowaエコシステム株式会社 Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall
EP2461928B1 (en) 2009-08-05 2019-07-24 Höganäs AB Permeable porous composite
JP5148572B2 (en) * 2009-08-26 2013-02-20 Jfeミネラル株式会社 Decomposing material for organic halogen compounds and method for producing the same
JP5552708B2 (en) * 2010-03-04 2014-07-16 Dowaエコシステム株式会社 Method for purifying contaminated soil or contaminated groundwater
JP5721255B2 (en) 2011-01-17 2015-05-20 Dowaエコシステム株式会社 Method for producing iron powder for treating organohalogen compounds, and purification method for soil / groundwater contamination
JP6330581B2 (en) * 2014-08-25 2018-05-30 住友金属鉱山株式会社 Copper coated iron powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779523A (en) * 2016-03-23 2018-11-09 霍加纳斯股份有限公司 Iron-based powder

Also Published As

Publication number Publication date
JP2003339902A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP4296337B2 (en) Method for producing organohalogen compound decomposing agent
Choi et al. Reduction of 2, 4, 6-trichlorophenol with zero-valent zinc and catalyzed zinc
JPH10263522A (en) Treatment for making organic halogen compound harmless
EP1206949B1 (en) Remidiation method of media and iron powder for dehalogenation of halogenated hydrocarbons
JP3862394B2 (en) Detoxification method of soil
JP4448951B2 (en) Production method of organohalogen compound decomposer
CA2362005A1 (en) Iron powder for remediation and method for remediating soil, water, or gas
JP2002161263A (en) Iron power for decomposing organic halogen compound, method for producing the same and method for making contaminated soil and/or contaminated underground water harmless
JP4377657B2 (en) Organochlorine compound removing agent and organochlorine compound removing method
JP2003136051A (en) Metal powder for decomposing organic halogen compound and method for cleaning soil using the same
JP4715059B2 (en) Method for decomposing organochlorine compounds in soil and / or groundwater
JP5076246B2 (en) Method for producing organohalogen compound decomposing agent
JP2002248444A (en) Method for treating waste containing chromium oxide
JP4843776B2 (en) Metal powder for organic halogen decomposition and method for producing the same
JP5291315B2 (en) Organochlorine compound decomposing agent and purification method
JP2004249223A (en) Method for cleaning contaminated soil or contaminated water
JPH11197645A (en) Purification of organohalogen compound contaminate
JP4921856B2 (en) Purifying material for decomposition of organic halogen compounds and use thereof
JP2003253309A (en) Method for manufacturing copper-containing iron powder
KR20140004721A (en) Method for producing iron powder for processing organic halogen compounds, and method for purifying contaminated soil or groundwater
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP3385992B2 (en) Dioxin decomposition treatment agent and decomposition treatment method
JP4482678B2 (en) Detoxification method of soil
KR100582474B1 (en) Iron-Based cleaning powder
JP4823490B2 (en) Method for producing soil repair agent

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090325

R150 Certificate of patent or registration of utility model

Ref document number: 4296337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees