JP4756190B2 - Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall - Google Patents

Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall Download PDF

Info

Publication number
JP4756190B2
JP4756190B2 JP2006039630A JP2006039630A JP4756190B2 JP 4756190 B2 JP4756190 B2 JP 4756190B2 JP 2006039630 A JP2006039630 A JP 2006039630A JP 2006039630 A JP2006039630 A JP 2006039630A JP 4756190 B2 JP4756190 B2 JP 4756190B2
Authority
JP
Japan
Prior art keywords
copper
iron powder
cyan
cyanide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006039630A
Other languages
Japanese (ja)
Other versions
JP2007216141A (en
Inventor
成雄 日野
雅美 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2006039630A priority Critical patent/JP4756190B2/en
Publication of JP2007216141A publication Critical patent/JP2007216141A/en
Application granted granted Critical
Publication of JP4756190B2 publication Critical patent/JP4756190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、シアン含有水及びシアン含有地下水の処理方法並びにシアン含有地下水の処理方法の実施に用いる浄化壁に関するものである。   The present invention relates to a method for treating cyan-containing water and cyanide-containing groundwater, and a purification wall used for carrying out the method for treating cyanide-containing groundwater.

化学プラントの工程排水、工場排水、汚染土壌に因る汚染地下水、シアンの流出事故等に因る汚染地下水などのシアン含有水又はシアン含有地下水中のシアン分を除去する方法が種々開発されてきているが、さらに一層の向上が望まれている。
その一例として土壌中に各種化学肥料等が用いられた場合に、この化学肥料等が土壌中で複雑な化学反応によって種々分解される中でシアンが生成され、地下水を汚染する場合があった。地下水汚染に至る前に土壌中のシアンを除去すべく、例えば本出願人に係る特開平10−071387号公報(特許文献1)においては、シアンが含まれる土壌中に鉄粉を混合させ、シアンを鉄粉に吸着させた後にこの鉄粉を磁石等に磁着させることによって鉄粉にシアンを同伴させて土壌中から除去する方法が開示されている。
Various methods have been developed to remove cyanide-containing water or cyanide-containing groundwater, such as chemical plant process wastewater, factory wastewater, contaminated groundwater caused by contaminated soil, and contaminated groundwater caused by cyanide spills. However, further improvements are desired.
As an example, when various chemical fertilizers are used in the soil, cyanide is generated while the chemical fertilizers are variously decomposed by a complicated chemical reaction in the soil, which may contaminate groundwater. In order to remove cyanide in soil before groundwater contamination, for example, in Japanese Patent Application Laid-Open No. 10-071387 (Patent Document 1) relating to the present applicant, iron powder is mixed in soil containing cyanide, A method is disclosed in which after iron is adsorbed to iron powder, the iron powder is magnetically attached to a magnet or the like, whereby iron is accompanied by cyan and removed from the soil.

また、特表平05−501520号公報(特許文献2)によれば、地下の帯水層に流れる有機化合物で汚染された地下水の浄化方法として、地下水の流路に汚染物質を除去する金属体(鉄粉)を設け有機化合物を分解し地下水を浄化する方法が開示されている。
特開平10−071387号公報 特表平05−501520号公報
Further, according to Japanese Patent Publication No. 05-501520 (Patent Document 2), as a method for purifying groundwater contaminated with an organic compound flowing in an underground aquifer, a metal body that removes contaminants in the flow path of groundwater A method is disclosed in which (iron powder) is provided to decompose organic compounds and purify groundwater.
Japanese Patent Laid-Open No. 10-071387 JP 05-501520 A

上記特許文献1の場合においては、土壌性状や肥料の種類等によっては土壌中からシアンを鉄粉中に十分に吸着できない場合があり、特に土壌にアルカリ成分が含有される場合や肥料がカルシウムを含む青化石灰の場合にはシアンの除去効果が減少する可能性があった。一方、上記特許文献2の場合においては、地下水中にシアンが含有されている場合には上記鉄粉等ではシアンの除去効果が不十分になるおそれがあった。
このような従来技術の中にあって汚染水中のシアンの除去効果が高く効率的な処理方法の開発が望まれており、特にシアン汚染地下水にあっては原位置において簡便に処理できる処理方法及びそれに用いる浄化壁が望まれていた。
In the case of the above-mentioned Patent Document 1, depending on the soil properties and the type of fertilizer, cyan may not be sufficiently adsorbed from the soil into the iron powder, especially when the soil contains an alkaline component or the fertilizer contains calcium. In the case of containing blue lime, the effect of removing cyan may be reduced. On the other hand, in the case of the said patent document 2, when cyanide was contained in groundwater, there existed a possibility that the removal effect of cyan might become inadequate with the said iron powder.
There is a demand for the development of an efficient treatment method that has a high effect of removing cyanide in contaminated water in such conventional techniques, and particularly in the case of cyan-contaminated groundwater, a treatment method that can be easily treated in situ, and The purification wall used for it was desired.

先ず本発明は第1に、シアン含有水を銅含有鉄粉と接触させることを特徴とするシアン含有水の処理方法であって、前記銅含有鉄粉の粒子が扁平状粒子であることが好ましく、また、前記銅含有鉄粉の粒子は、原料の鉄粉粒子が衝撃が加えられ且つ銅分が被着されてなる粒子であることが好ましく、さらに前記シアン含有水がpH5以上であることが好ましい。
次に本発明は第2に、シアン含有地下水を、銅含有鉄粉を含有する浄化壁内を通水させて該銅含有鉄粉と接触させることを特徴とするシアン含有地下水の処理方法であって、前記銅含有鉄粉の粒子が扁平状粒子であることが好ましく、また、前記銅含有鉄粉の粒子は、原料の鉄粉粒子が衝撃が加えられ且つ銅分が被着されてなる粒子であることが好ましく、さらに前記シアン含有地下水がpH5以上であることが好ましい。
最後に本発明は第3に、担持体中に銅含有鉄粉を含有してなることを特徴とするシアン含有地下水の通水処理用の浄化壁であって、前記銅含有鉄粉の粒子が扁平状粒子であることが好ましく、また、前記銅含有鉄粉の粒子は、原料の鉄粉粒子が衝撃が加えられ且つ銅分が被着されてなる粒子であることが好ましい。
First, the present invention firstly relates to a method for treating cyan-containing water, wherein the cyan-containing water is brought into contact with copper-containing iron powder, wherein the copper-containing iron powder particles are preferably flat particles. In addition, the particles of the copper-containing iron powder are preferably particles obtained by impacting the raw iron powder particles and depositing copper, and the cyan-containing water has a pH of 5 or more. preferable.
Next, the second aspect of the present invention is a method for treating cyanide-containing groundwater, characterized in that cyanide-containing groundwater is caused to pass through a purification wall containing copper-containing iron powder and contacted with the copper-containing iron powder. The copper-containing iron powder particles are preferably flat particles, and the copper-containing iron powder particles are formed by applying an impact to the raw iron powder particles and adhering a copper component. It is preferable that the cyan-containing groundwater has a pH of 5 or more.
Finally, the third aspect of the present invention is a purification wall for passing water containing cyanide-containing groundwater characterized by containing a copper-containing iron powder in the support, wherein the copper-containing iron powder particles are The particles are preferably flat particles, and the copper-containing iron powder particles are preferably particles obtained by applying impact to the raw iron powder particles and depositing copper.

本発明によれば、シアン含有水を銅含有鉄粉と接触させるだけで効率的かつ低コストでシアン処理することができ、特にシアン含有地下水にあっては銅含有鉄粉を含有する浄化壁を通水させることによって原位置において効率的にかつ低コストで簡便にシアン処理することができるものであって、シアン汚染水の浄化に貢献することができる。   According to the present invention, cyanide-containing water can be treated with cyanide efficiently and at low cost simply by bringing the cyanide-containing water into contact with copper-containing iron powder. In particular, in the case of cyanide-containing groundwater, a purification wall containing copper-containing iron powder is provided. By allowing water to pass through, cyan treatment can be easily performed efficiently at low cost at the original position, and can contribute to purification of cyan contaminated water.

シアン含有水やシアン含有地下水等の被処理水中のシアンは、主にある程度反応性があるイオン状態であり、各種の錯イオンを形成していてもよい。また、シアンが青化石灰に起因する場合には、被処理水中にカルシウムも含まれる場合があり、被処理水中にカルシウムが存在するとアルカリ性となるが、銅含有鉄粉はカルシウム等のアルカリ成分の影響を実質的に受けることなく、被処理水中のシアンと確実に反応する。本発明では被処理水のシアン濃度が2mg/Lの高濃度であっても、確実に浄化することができる。   Cyanide in water to be treated, such as cyanide-containing water and cyanide-containing groundwater, is an ion state that is mainly reactive to some extent, and may form various complex ions. In addition, when cyan is derived from cyanide lime, calcium may be contained in the water to be treated, and when calcium is present in the water to be treated, it becomes alkaline, but the copper-containing iron powder is an alkaline component such as calcium. Reacts reliably with cyanide in the water to be treated, without being substantially affected. In the present invention, even if the cyan concentration of the water to be treated is as high as 2 mg / L, it can be reliably purified.

本発明における浄化剤としての銅含有鉄粉の粒子は軸比が大きく扁平形状のものが好ましい。軸比は、電子顕微鏡(SEM)写真で見て、1つの粒子において最も大きい直径とその直角方向の最も大きい厚さの比であり、銅含有鉄粉は各粒子ごとの軸比の測定値の平均値が2以上である扁平状粒子からなることが好ましい。この軸比による効果への影響の理由は定かではないが、各粒子ごとに測定した軸比の粉体全体の平均値が2以上において浄化効果が高くなる。
その際、電子顕微鏡の倍率は小さくとも1つの粒子でのいずれかの最大長さが10mm程度となる設定をするのが望ましい。なお、浄化剤(銅含有鉄粉)の表面積は銅分を被着させる前の鉄粉より増加しており、衝撃が加えられたことにより粒子表面には内部の組織が展延により暴露した新面が形成されている。また、鉄粉粒子の表面または近傍に銅、硫黄、酸基が存在するとシアン浄化性能が向上する。
The copper-containing iron powder particles as the purifying agent in the present invention preferably have a large axial ratio and a flat shape. The axial ratio is the ratio of the largest diameter of one particle to the largest thickness in the direction perpendicular thereto as seen in an electron microscope (SEM) photograph, and the copper-containing iron powder is a measurement of the axial ratio of each particle. It is preferably made of flat particles having an average value of 2 or more. The reason for the effect of this axial ratio on the effect is not clear, but the purification effect becomes high when the average value of the whole powder of the axial ratio measured for each particle is 2 or more.
At that time, it is desirable to set the maximum length of any one particle to about 10 mm even if the magnification of the electron microscope is small. The surface area of the purifier (copper-containing iron powder) is larger than that of the iron powder before copper is deposited, and the impact of the impact on the particle surface reveals the internal structure exposed by spreading. A surface is formed. In addition, if copper, sulfur, or acid groups are present on or near the surface of the iron powder particles, the cyan purification performance is improved.

銅含有鉄粉の製造にあたって原料鉄粉としては、予め製造された鉄粉、例えば鉱石から還元により製造された還元鉄粉やアトマイズなどにより製造されたアトマイズ鉄粉などを用いることができ、その鉄粉粒子の粒径(最も大きい直径)の平均値があらかじめ1〜200μmのサイズであれば粒径調整を要することがなく好ましい。また、鉄粉は鉄を主成分としていればよく、分解剤として用いた場合に2次汚染源となるクロム、鉛などの成分を実質的に含有しないことが望ましい。   In the production of copper-containing iron powder, as raw material iron powder, pre-manufactured iron powder, for example, reduced iron powder produced by reduction from ore or atomized iron powder produced by atomizing, etc. can be used. If the average value of the particle size (largest diameter) of the powder particles is a size of 1 to 200 μm in advance, it is preferable that no adjustment of the particle size is required. Moreover, iron powder should just have iron as a main component, and when using as a decomposition agent, it is desirable not to contain components, such as chromium and lead which become a secondary pollution source substantially.

銅含有鉄粉の製造の銅源としては例えば硫酸銅を用いることができ、これに代えて酸化銅などの銅化合物、または金属銅を用いることもできるが、ハンドリングなどの面で硫酸銅を用いるのが好ましい。   As a copper source for producing copper-containing iron powder, for example, copper sulfate can be used, and instead of this, a copper compound such as copper oxide or metal copper can be used, but copper sulfate is used in terms of handling and the like. Is preferred.

これら鉄粉及び銅源等の原料はミル、例えば振動ボールミルに投入されて衝撃が加えられ、鉄粉の変形、改質、銅分の被着等が行われる。振動ボールミルの振動筐体の内部に硬質の直径数mmのボールが多数挿入されており、筐体の振動と共に内部のボールに振動、衝突等の運動が生じる。この多数のボールの中に原料が存在することで、ボールによる鉄粉への加圧、伸展、銅分の被着等が図られる。振動の時間、振幅、ボールの充填量、原料の投入量、雰囲気を適宜調整すればよい。   The raw materials such as iron powder and copper source are put into a mill, for example, a vibration ball mill, and an impact is applied, and iron powder is deformed and modified, and copper is deposited. A large number of hard balls having a diameter of several millimeters are inserted into the vibration housing of the vibration ball mill, and motions such as vibration and collision occur in the internal balls along with the vibration of the housing. The presence of the raw material in the large number of balls makes it possible to press and extend the iron powder with the balls, to apply copper, and the like. The vibration time, amplitude, ball filling amount, raw material input amount, and atmosphere may be appropriately adjusted.

銅含有鉄粉における銅分は鉄粉の表面近傍に分布することが好ましい。また、銅含有鉄粉中の銅含有量は0.1〜10質量%であるのが好ましい。工業的な生産方法では銅含有量を0.1質量%未満で制御するのは困難であり、10質量%以上ではコストが高くなるためである。
さらに、銅含有鉄粉において各粒子の粒径(最も大きい直径)の平均値は50〜200μmであるのが好ましい。粒径は、地下において地下水により流出されにくい程度の大きさであることが望ましいためであり、砕石等に付着し、隙間への進入がし易い程度であれば良い。
また、ボールミルを用いる場合は一般的に分散剤を添加するが、本発明においては特にその必要はない。なお、EPMA等により銅含有鉄粉粒子における銅の被着状態を観測することができる。
The copper content in the copper-containing iron powder is preferably distributed in the vicinity of the surface of the iron powder. Moreover, it is preferable that the copper content in a copper containing iron powder is 0.1-10 mass%. This is because it is difficult to control the copper content at less than 0.1% by mass in an industrial production method, and the cost increases at 10% by mass or more.
Furthermore, it is preferable that the average value of the particle size (the largest diameter) of each particle in the copper-containing iron powder is 50 to 200 μm. This is because it is desirable that the particle size is such that it is difficult for the underground water to be discharged by groundwater. The particle size may be such that it adheres to crushed stones and can easily enter the gap.
In the case of using a ball mill, a dispersant is generally added, but this is not particularly necessary in the present invention. In addition, the adhesion state of copper in the copper-containing iron powder particles can be observed by EPMA or the like.

銅源としての硫酸銅粉は結晶水を5分子持つ(すなわち5水塩の)CuSO4・5H2Oであってもよい。脱水処理などをすれば良いからである。 The copper sulfate powder as the copper source may be CuSO 4 .5H 2 O having 5 molecules of crystal water (that is, pentahydrate). This is because a dehydration process or the like may be performed.

前述のように、シアン含有水は工場排水等、様々な状態により発生する。このシアンはイオン状態のフリーシアンであったり、土着している場合がある。シアン含有水と銅含有鉄粉の接触は、銅含有鉄粉をシアン含有水に添加することにより行なってもよいし、シアン含有水を銅含有鉄粉に添加することにより行なってもよく、さらに所定比率でシアン含有水と銅含有鉄粉を容器に装入して接触させてもよい。また接触方法として、通常のようにシアン含有水と銅含有鉄粉を撹拌された槽内で接触させてもよいし、両者を通水配管中で接触させてもよい。   As described above, cyanide-containing water is generated due to various conditions such as factory effluent. This cyan may be free cyan in an ionic state or indigenous. The contact between the cyan-containing water and the copper-containing iron powder may be performed by adding the copper-containing iron powder to the cyan-containing water, or may be performed by adding the cyan-containing water to the copper-containing iron powder. The container may be charged with cyan-containing water and copper-containing iron powder at a predetermined ratio. As a contact method, cyan-containing water and copper-containing iron powder may be brought into contact in a stirred tank as usual, or both may be brought into contact in a water pipe.

シアン含有地下水の場合は地下水の流れを利用して浄化することができる。例えば、地下水の流路に通水性がある浄化壁を設置し、この浄化壁の中にシアンを処理する浄化剤を含有させ、この浄化壁内を通水させることによってシアン汚染地下水を浄化することができる。この浄化壁法において用いる浄化剤としては、地下水の通水性をあまり阻害せず、また通水のみにより確実に浄化する能力と持続力があることが望まれる。本発明において前記銅含有鉄粉を浄化壁法に浄化剤として使用することができ、シアン汚染地下水を効率的にかつ低コストで浄化することができる。浄化壁内のシアン汚染地下水の通水速度は1〜1000mm/分が好ましい。通水速度は本発明に影響を与えないが、通水速度があまりに小さいと浄化工期の延期につながる。   Cyanide-containing groundwater can be purified using the groundwater flow. For example, purifying cyan-contaminated groundwater by installing a purifying wall with water permeability in the flow path of groundwater, containing a purifying agent for treating cyan in the purifying wall, and allowing water to pass through the purifying wall. Can do. As a purifier used in this purification wall method, it is desired that the water permeability of groundwater is not so much hindered, and that it has an ability and a sustainability to purify reliably only through the water flow. In the present invention, the copper-containing iron powder can be used as a purification agent in the purification wall method, and cyan contaminated groundwater can be purified efficiently and at low cost. The flow rate of cyan-contaminated groundwater in the purification wall is preferably 1-1000 mm / min. The water flow rate does not affect the present invention, but if the water flow rate is too small, the purification period will be postponed.

浄化壁は、通水性を制御するため、および、通水によって銅含有鉄粉が流出・分散するのを防止するために担持体が含まれる。担持体としては銅含有鉄粉と反応しない、砂、土砂、無機物、有機物など各種の物質が挙げられ、これらの配合を適宜行なって通水性を制御する。本発明に係る浄化壁中の銅含有鉄粉は質量比で0.1〜10%が好ましい。鉄粉量が少ない方が安価になりコストに有利である。また多いと通水性が悪くなることから、浄化壁、地下水の状況に応じて添加量は調整される。
前記銅含有鉄粉が扁平状粒子からなる場合には、シアン吸着性能が高く、かつ上記担持体と混在して浄化壁を形成した場合に、銅含有鉄粉が担持体の隙間、担持体同士の隙間に刺さり、嵌まり込むような状態となって、銅含有鉄粉の流出が防止され、浄化能力が維持・持続される。
The purification wall includes a carrier for controlling water flow and for preventing copper-containing iron powder from flowing out and dispersing due to water flow. Examples of the carrier include various substances such as sand, earth and sand, inorganic substances, and organic substances that do not react with the copper-containing iron powder, and the water permeability is controlled by appropriately mixing these substances. The copper-containing iron powder in the purification wall according to the present invention is preferably 0.1 to 10% by mass ratio. The smaller the amount of iron powder, the lower the cost and the better the cost. Moreover, since water permeability will worsen when there are many, addition amount is adjusted according to the condition of a purification wall and groundwater.
When the copper-containing iron powder is made of flat particles, the cyan adsorption performance is high, and when the purification wall is formed by mixing with the support, the copper-containing iron powder is formed between the support and the support. In this state, the copper-containing iron powder is prevented from flowing out, and the purification ability is maintained and sustained.

また、本発明においては、シアン含有水、シアン含有地下水ともにpH5〜7の中性域はもとより、pH7を超えpH11までの弱アルカリ域まで浄化可能である。   Further, in the present invention, both cyan-containing water and cyan-containing groundwater can be purified not only in a neutral range of pH 5 to 7, but also in a weakly alkaline range exceeding pH 7 to pH 11.

以下に本発明の実施例を記載するが、本発明の技術的範囲はこれに限定されるものではないことは言うまでもない。   Examples of the present invention will be described below, but it goes without saying that the technical scope of the present invention is not limited thereto.

[実施例1]まず、市販の平均粒径80μmの還元鉄粉をボールミルに投入して衝撃を加え、さらに銅分が1.0質量%になるように脱水処理した硫酸銅粉を投入してボールミルを稼動させた後、ボールミルから抜き出して乾燥させ、鉄粉表面に銅分(硫酸銅)が被着した銅含有鉄粉を得た。この銅含有鉄粉粒子は平均軸比8.8、平均粒径(最も大きい直径の平均値)が127μmの偏平状になっており、かつその表面に銅分(硫酸銅)が被着している。 [Example 1] First, commercially available reduced iron powder having an average particle size of 80 μm was put into a ball mill, impact was applied, and copper sulfate powder dehydrated so that the copper content was 1.0% by mass was added. After operating the ball mill, it was extracted from the ball mill and dried to obtain a copper-containing iron powder having copper (copper sulfate) deposited on the surface of the iron powder. The copper-containing iron powder particles have an average axial ratio of 8.8, an average particle diameter (average value of the largest diameter) of 127 μm, and have copper (copper sulfate) deposited on the surface. Yes.

次いで、全シアン濃度が1.423mg/L(リットル)含まれるpH10.3のシアン汚染水を作成し用意した。
この汚染水250mLを容器に入れ、前記1.0質量%の銅含有鉄粉を汚染水に対して0.1質量%添加し、振とう機にて2時間撹拌し、終了後に24時間静置した。その後、液のpH及び酸化還元電位(ORP、Ag/AgCl電極)を測定し、濾過後に全シアンの濃度測定分析を行なった。分析はピクリン酸法にて実施した。
処理結果は表1に示すように、全シアン濃度は0.616mg/L、pH10.2、ORP94mVであった。このように汚染水からシアンが除去されたのが分かった。
Next, cyan contaminated water with a pH of 10.3 containing a total cyan concentration of 1.423 mg / L (liter) was prepared and prepared.
250 mL of this contaminated water is put in a container, 0.1 mass% of the copper-containing iron powder of 1.0% by mass is added to the contaminated water, stirred for 2 hours with a shaker, and allowed to stand for 24 hours after completion. did. Thereafter, the pH of the solution and the oxidation-reduction potential (ORP, Ag / AgCl electrode) were measured, and after filtration, concentration analysis of all cyan was performed. Analysis was performed by the picric acid method.
As shown in Table 1, the total cyan concentration was 0.616 mg / L, pH 10.2, and ORP 94 mV. Thus, it was found that cyan was removed from the contaminated water.

Figure 0004756190
Figure 0004756190

[実施例2、3]銅含有鉄粉の添加量をシアン汚染水に対して1質量%とした以外は実施例1と同様に行なった場合を実施例2とし、銅含有鉄粉の添加量をシアン汚染水に対して10質量%とした以外は実施例1と同様に行なった場合を実施例3とした。結果は表1に示すように、実施例2、3ともに全シアンが0.027mg/Lであり、汚染水からシアンが低濃度になるまで除去され、シアンの環境基準値の0.1mg/L以下となった。 [Examples 2 and 3] Example 2 was performed in the same manner as Example 1 except that the amount of copper-containing iron powder added was 1% by mass with respect to cyan contaminated water, and the amount of copper-containing iron powder added. Example 3 was carried out in the same manner as in Example 1 except that the amount was 10% by mass with respect to cyan contaminated water. As shown in Table 1, the total cyan is 0.027 mg / L in both Examples 2 and 3, and the cyan is removed from the contaminated water until the density becomes low, and the cyan environmental standard value of 0.1 mg / L. It became the following.

[実施例4]内径25mm、長さ300mmのカラム中に、担持体として平均粒径2.5〜5mmの規格品の砕石(砕石7号)350gと、この砕石の20質量%の前記実施例1で用いた銅含有鉄粉とを混ぜ合わせて投入した。上記充填条件のカラムに、pH6.9、全CN濃度1.7mg/Lに調整したフェリシアン水溶液を3mL/分で合計1L通水し、通水終了直後に処理水の測定を行なった。測定結果を上記の表1に示す。通水速度は1〜10mm/分であった。 [Example 4] In a column having an inner diameter of 25 mm and a length of 300 mm, 350 g of a standard crushed stone (crushed stone No. 7) having an average particle size of 2.5 to 5 mm as a carrier and the above-mentioned example of 20% by mass of this crushed stone The copper-containing iron powder used in 1 was mixed and charged. A total of 1 L of ferricyan water solution adjusted to pH 6.9 and total CN concentration of 1.7 mg / L was passed through the column under the above packing conditions at a rate of 3 mL / min, and the treated water was measured immediately after the end of the water flow. The measurement results are shown in Table 1 above. The water flow rate was 1 to 10 mm / min.

[比較例1]被処理水のシアン濃度を1.7mg/Lとし、上記銅含有鉄粉を平均粒径100μmの鉄粉に代えた以外は実施例4と同様に行なったところ、処理後のシアン濃度は0.4mg/Lであった。
充填条件:砕石(350g)+鉄粉(砕石の20質量%)
[Comparative Example 1] The same procedure as in Example 4 was conducted except that the cyan concentration of water to be treated was 1.7 mg / L and the copper-containing iron powder was replaced with iron powder having an average particle size of 100 µm. The cyan density was 0.4 mg / L.
Filling conditions: crushed stone (350 g) + iron powder (20% by mass of crushed stone)

[比較例2]前記銅含有鉄粉を用いなかった以外は実施例4と同様に行なったところ、処理後のシアン濃度は1.7mg/Lであった。
充填条件:砕石のみ(350g)
[Comparative Example 2] The same procedure as in Example 4 was conducted except that the copper-containing iron powder was not used. As a result, the cyan concentration after the treatment was 1.7 mg / L.
Filling condition: crushed stone only (350g)

Claims (8)

シアン含有水を銅含有鉄粉と接触させるシアン含有水の処理方法であって、前記銅含有鉄粉の粒子が扁平状粒子であるシアン含有水の処理方法。 A method for treating cyan-containing water in which cyan-containing water is brought into contact with copper-containing iron powder , wherein the copper-containing iron powder particles are flat particles. 前記銅含有鉄粉の粒子は、原料の鉄粉粒子に衝撃が加えられ且つ銅分が被着されてなる粒子である、請求項1記載のシアン含有水の処理方法。 2. The method for treating cyan-containing water according to claim 1 , wherein the copper-containing iron powder particles are particles formed by applying impact to the raw iron powder particles and adhering copper. 前記シアン含有水がpH5以上である、請求項1または2に記載のシアン含有水の処理方法。 The method for treating cyan-containing water according to claim 1 or 2, wherein the cyan-containing water has a pH of 5 or more. シアン含有地下水を、銅含有鉄粉を含有する浄化壁内を通水させて該銅含有鉄粉と接触させるシアン含有地下水の処理方法であって、前記銅含有鉄粉の粒子が扁平状粒子であるシアン含有地下水の処理方法。 A cyanide-containing groundwater treatment method in which cyanide-containing groundwater is allowed to flow through a purification wall containing copper-containing iron powder and contacted with the copper-containing iron powder , wherein the copper-containing iron powder particles are flat particles. A method of treating groundwater containing cyanide. 前記銅含有鉄粉の粒子は、原料の鉄粉粒子に衝撃が加えられ且つ銅分が被着されてなる粒子である、請求項4記載のシアン含有地下水の処理方法。 5. The method for treating cyan-containing groundwater according to claim 4 , wherein the copper-containing iron powder particles are particles in which impact is applied to the raw iron powder particles and copper is deposited. 前記シアン含有地下水がpH5以上である、請求項4または5に記載のシアン含有地下水の処理方法。 The method for treating cyan-containing groundwater according to claim 4 or 5, wherein the cyan-containing groundwater has a pH of 5 or more. 担持体中に銅含有鉄粉を含有してなるシアン含有地下水の通水処理用の浄化壁であって、前記銅含有鉄粉の粒子が扁平状粒子であるシアン含有地下水の通水処理用の浄化壁。 A purifying wall for water treatment of cyanide-containing groundwater containing copper-containing iron powder in a carrier , wherein the copper-containing iron powder particles are flat particles . Purification wall. 前記銅含有鉄粉の粒子は、原料の鉄粉粒子に衝撃が加えられ且つ銅分が被着されてなる粒子である、請求項7記載の浄化壁。 The purifying wall according to claim 7 , wherein the copper-containing iron powder particles are particles formed by applying impact to the raw iron powder particles and adhering a copper component.
JP2006039630A 2006-02-16 2006-02-16 Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall Active JP4756190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039630A JP4756190B2 (en) 2006-02-16 2006-02-16 Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039630A JP4756190B2 (en) 2006-02-16 2006-02-16 Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall

Publications (2)

Publication Number Publication Date
JP2007216141A JP2007216141A (en) 2007-08-30
JP4756190B2 true JP4756190B2 (en) 2011-08-24

Family

ID=38493956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039630A Active JP4756190B2 (en) 2006-02-16 2006-02-16 Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall

Country Status (1)

Country Link
JP (1) JP4756190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157798A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for treating cyanide-containing wastewater
CN115140865B (en) * 2022-05-20 2023-12-05 东莞东元环境科技股份有限公司 Cyanide-containing wastewater treatment method and cyanide-containing wastewater treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4296337B2 (en) * 2002-05-29 2009-07-15 Dowaエコシステム株式会社 Method for producing organohalogen compound decomposing agent
JP2004261738A (en) * 2003-03-03 2004-09-24 Kurita Water Ind Ltd Purification method for underground water polluted by cyanogen

Also Published As

Publication number Publication date
JP2007216141A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
Karageorgiou et al. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent
Oguz Removal of phosphate from aqueous solution with blast furnace slag
Hou et al. Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH4+-N reduction
Asaoka et al. Characteristics of phosphate adsorption onto granulated coal ash in seawater
CA2930294C (en) Treatment of arsenic contaminated soil and water
JP5268867B2 (en) Purification material
TWI626092B (en) New powder, powder composition, method for use thereof and use of the powder and powder composition
Yunnen et al. Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge.
US20180305230A1 (en) Methods for treating selenocyanate in wastewater
KR100804245B1 (en) Method for removing heavy metal and color from landfill leachates using steelmaking slag
KR20170105408A (en) Purification treatment agent and purification treatment method
Yuan et al. Nitrogen removal by modified zeolites coated with Zn-layered double hydroxides (Zn-LDHs) prepared at different molar ratios
Alvarado et al. Comparison of capping and mixing of calcined dolomite and zeolite for interrupting the release of nutrients from contaminated lake sediment
Rao et al. Simultaneous removal of lead (II) and nitrate from water at low voltage
García-Lara et al. Improvement of arsenic electro-removal from underground water by lowering the interference of other ions
JP4756190B2 (en) Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall
Pratt et al. Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater
JP2005230643A (en) Cleaning method for polluted soil
CN112322301A (en) Composite soil conditioner and application thereof
Solís–Rodríguez et al. Vanadium removal by electrocoagulation with anodes of zinc
Akdemir Determination of the effect of multi-walled carbon nanotube on the treatment efficiency and design parameters in the activated sludge systems
Samiee Beyragh et al. Kinetic and Adsorption Isotherms Study of Cyanide Removal from Gold Processing Wastewater Using Natural and Impregnated Zeolites
JPWO2017110964A1 (en) Arsenic insolubilizing material and method
JP2018103133A (en) Soil treatment material and purification method of heavy metal contaminated soil
JPH10309584A (en) Flocculating, separating and recovering method using zeolite-compounded treating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4756190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250