JP4295371B2 - Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same - Google Patents

Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same Download PDF

Info

Publication number
JP4295371B2
JP4295371B2 JP23973998A JP23973998A JP4295371B2 JP 4295371 B2 JP4295371 B2 JP 4295371B2 JP 23973998 A JP23973998 A JP 23973998A JP 23973998 A JP23973998 A JP 23973998A JP 4295371 B2 JP4295371 B2 JP 4295371B2
Authority
JP
Japan
Prior art keywords
steel
mass
steel material
present
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23973998A
Other languages
Japanese (ja)
Other versions
JP2000073149A (en
Inventor
俊之 村上
哲也 三瓶
隆志 出尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
JFE Bars and Shapes Corp
Original Assignee
Toyota Motor Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, JFE Bars and Shapes Corp filed Critical Toyota Motor Corp
Priority to JP23973998A priority Critical patent/JP4295371B2/en
Publication of JP2000073149A publication Critical patent/JP2000073149A/en
Application granted granted Critical
Publication of JP4295371B2 publication Critical patent/JP4295371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、自動車や産業機械等に使用される電磁弁等の電磁アクチュエーター用部品素材に関するものであり、低磁場磁束密度、最大透磁率及び高磁場磁束密度がいずれも大きく、保磁力が小さく、なお且つ電気抵抗の大きな軟磁性鋼材に関するものである。
【0002】
【従来の技術】
自動車や産業機械等に使用される電磁弁等の電磁アクチュエーターは、電磁誘導現象により動作し、入力電流を制御することによってその動作を制御し、目的に応じた機能を発揮する。こうした電磁アクチュエーターは近年の高性能化に伴い、その高応答性及び高電磁誘導力が要求されつつある。従来より、このような電磁誘導部には軟鋼、純鉄又は珪素鋼が使用されており、高応答性及び高電磁誘導力に有利な鋼材の成分系が検討されている。電磁アクチュエーターにこのような特性を発揮させるためには、優れた軟磁性、即ち、高磁束密度、高透磁率及び低保磁力を備え、且つ、高電気抵抗を備えた材料がその素材に要求される。
【0003】
このような要求に対して、例えば、特開平2−170948号公報には、高Cr鋼に炭窒化物形成元素を意図的に含有させることによって、高磁束密度及び低保磁力を付与すると共に、材料の加工性の改善を図った鋼材が開示されている(以下、先行技術1とう)。先行技術1によれば、良好な磁束密度(B20)が得られてはいるが、保磁力は0.7Oe以上であって、良好であるとはいえない。
【0004】
また、特開平2−259047号公報には、高Cr鋼にAlを含有させることによって、高電気抵抗化を図った鋼材が開示されている(以下、先行技術2という)。しかしながら、先行技術2では、低磁場磁束密度(B2 )が11000 G以下と低く、且つ、保磁力も0.7Oe以上であって、良好とはいえない。
【0005】
更に、特開平4−235257号公報には、高Cr鋼にMo、Ti、Al及びB等を含有させることによって、高電気抵抗化、軟磁性及び加工性の改善を図った鋼材が開示されている(以下、先行技術3という)。しかしながら、先行技術3では、低磁場磁束密度(B1 )9600 G以下と低く、良好とはいえない。
【0006】
【発明が解決しようとする課題】
上述した通り、先行技術1〜3ではいずれも、最近の電磁アクチュエーターに要求される高応答性及び高電磁誘導力を満たすための高電気抵抗を有する軟磁性材料として十分であるとはいえない。
【0007】
従って、この発明の目的は、上述した問題を解決して、自動車や産業機械等に使用される電磁アクチュエーター用部品素材として、低磁場磁束密度、最大透磁率及び高磁場磁束密度が大きく、保磁力が小さく、しかも電気抵抗が大きいという、諸特性が飛躍的に向上し、さらに、特に、高周波数域における消費電力の低減が図れる軟磁性鋼材及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、上述した観点から新技術を開発すべく鋭意研究を重ねた結果、適量のAl、Si及びCrを添加することにより、上記諸特性を備えた軟磁性鋼材の成分系が得られ、この成分系の鋼に適切な熱処理を施すことにより所望の軟磁性鋼材を製造することができるとの知見を得た。この発明は、上述した知見に基づきなされたものであって、下記構成を有する。
【0009】
請求項1記載の軟磁性鋼材は、軟磁性に優れ、即ち、低・高磁場磁束密度及び最大透磁率が大きく、且つ保磁力が小さく優れ、しかも、高電気抵抗を有する軟磁性鋼材であって、C:0.007mass%以下、T・N:0.01mass%以下、Al:2〜3mass%、Si:0.61〜0.7mass%、Cr:2〜7mass%を含有し、残部:Feおよび不可避的不純物からなり、かつ、下記(1)式
S値=2×(Al+Si)+Cr ---(1)
但し、Al、Si及びCr:それぞれの元素の含有率(mass%)
で算出されるS値が、11.27〜14.0の範囲内にある化学成分組成を有することに特徴を有するものである。
【0010】
請求項2記載の軟磁性鋼材は、請求項1記載の発明において、前記化学成分組成に、更に、S:0.1mass%以下、及び、Pb:0.3mass%以下の内、1種又は2種が添加されていることに特徴を有するものである。
【0011】
請求項3記載の軟磁性鋼材の製造方法は、請求項1又は2記載の化学成分組成を有する鋼を溶製し、そして鋳造し、こうして得られた鋼塊又は鋳片に加工を施して所定形状の鋼材に成形し、次いで、得られた鋼材又は当該鋼材に更に加工を施して得られた加工品に対して800〜1300℃の範囲内の温度で熱処理を施すことに特徴を有するものである。
【0012】
【発明の実施の形態】
次に、この発明の軟磁性鋼材及びその製造方法を、上述した通りの鋼材の化学成分組成及び製造条件に限定した理由を説明する。
【0013】
(1)C:0.007mass%以下
Cは軟磁性に著しく悪影響を与える不純物元素であり、極力低減させなければならない。即ち、C含有率が0.007mass%を超えると、Al及びSi複合添加によるフェライト域拡大作用が低下するので、鋼材熱処理時のフェライト粒拡大作用が阻害されて、その結果として軟磁性が著しく劣化する。また、炭化物析出により、熱処理時のフェライト粒拡大作用が阻害されること、及び、炭化物自体の作用により、軟磁性が著しく劣化する。従って、C含有率は0.007mass%以下に限定する。
【0014】
(2)N:0.01mass%以下
NはCと同様に軟磁性に著しく悪影響を与える不純物元素であり、極力低減させなければならない。即ち、N含有率が0.01mass%を超えると、窒化物析出により、鋼材熱処理時のフェライト粒拡大作用が阻害されること、及び、窒化物自体の作用により、軟磁性が著しく劣化する。従って、N含有率は0.01mass%以下に限定する。
【0015】
(3)Al:2〜3mass%
Alはフェライト域拡大作用もしくはフェライト変態温度を高めるので、また、窒化物粒子の大型化に寄与するので、鋼材熱処理時のフェライト粒拡大作用を容易ならしめると共に、固溶窒素を低減させるので、軟磁性を向上させるために重要な元素である。一方、Alには、電気抵抗を増大させる効果もある。この効果を発揮させるためには、2mass%以上添加する必要がある。しかし、Al添加量が3mass%を超えると、軟磁性の改善効果が飽和傾向になると共に、鋼中にアルミナ系介在物が増加し、鋼材の加工性を劣化させる。従って、Al含有率は、2〜3mass%の範囲内に限定する。
【0016】
(4)Si:0.61〜0.7mass%
SiはAlと同様に、フェライト域拡大作用もしくはフェライト変態温度を高めるので、鋼材熱処理時のフェライト粒拡大作用を容易ならしめる。その結果、軟磁性を向上させると共に、電気抵抗を増大させる効果のあるので、重要な元素である。このような作用効果を発揮させるためには、Siを0.61mass%以上添加することが必要である。しかしながら、Si添加が0.7mass%を超えると靱性を劣化させる恐れが生じる。従って、Si含有率は、0.61〜0.7mass%の範囲内に限定する。
【0017】
(5)Cr:2〜7mass%
Crは、電気抵抗を他の添加必須元素に比べて顕著に上昇させるので、本発明の根幹に関わる重要な元素である。Crのこの効果を発揮させるためには、2mass%以上添加することが必要である。しかしながら、Cr添加が7mass%を超えると軟磁性の低下を招くと共に、電気抵抗の上昇効果が飽和傾向になる。従って、Cr含有率は、2〜7mass%の範囲内に限定する。
【0018】
(6)S:0.1mass%以下及びPb:0.3mass%以下の内1種又は2種
S及びPbはいずれも鋼材に良好な切削性を付与する場合に添加する。しかしながら、その添加量が、S:0.1mass%及びPb:0.3mass%のいずれかを超えて添加してもこの効果が飽和してしまい、また、経済的にも不利となる。従って、S及びPbの添加は良好な切削性を付与する場合に、S:0.1mass%以下且つPb:0.3mass%以下であって、いずれか1種又は2種に限定して添加する。
【0019】
上述した元素の他に、製鋼工程においてスクラップや耐火物等から不可避的に混入する元素、例えばP、Ni等の元素は、不純物としての含有率レベルで含有していても差し支えない。
【0020】
(7)S値:11.27〜14.0
S値は、下記(1)式で算出される電気抵抗及び磁束密度に対する、鋼中Al、Si及びCr含有率の影響を示すパラメーターである。
【0021】
S値=2(Al+Si)+Cr--------------------(1)
但し、Al、Si及びCr:それぞれの元素の含有率(mass%)
そして、S値が増大すると共に、電気抵抗の上昇という利点と磁束密度の低下という欠点との相反する特性変化が生じる。一方、この発明における軟磁性鋼材の目標とする代表特性として、本発明者等は下記(2)及び(3)式を満たすことを設定した。即ち、低磁場磁束密度(160A/mでの磁束密度)Bが、
≧1.1T ------------------------(2)
で、且つ、電気抵抗値ρが、
ρ≧88.9μΩcm ------------------------(3)
であること。
【0022】
本発明者等は、低磁場磁束密度B 及び電気抵抗値ρ共に上記条件を満たすためには、S値は11.27〜14.0の範囲内に限定すべきであることを見い出した。よって、S値を11.27〜14.0の範囲内に限定する。
【0023】
(8)熱処理温度:800〜1300℃
優れた軟磁性を得るためには、鋼材のフェライト結晶の平均粒径を0.1mm以上にすることが望ましいことを本発明者等は知得している。そのためには、この発明において、前述した化学成分組成からなる鋼を溶製・鋳造した後、鋳片又は鋼塊を所定形状の鋼材に成形し、得られた鋼材を800〜1300℃の範囲内の温度で熱処理(焼鈍)することが必要である。800℃未満の熱処理では、鋼材のフェライト結晶の平均粒径を0.1mm以上にすることができず、一方、1300℃を超える温度の熱処理では、粒径を大きくする効果があまりなく、かえって鋼材に変形をまねいたり、また熱経済的に不利となる。従って、鋼材の前熱処理温度を800〜1300℃の範囲内に限定する。
【0024】
なお、この熱処理は、焼鈍を目的とするものであり、鋼材に対する加工をほぼ終了した時点で実施することが望ましい。鋼材としては、鋼板、鋼管、棒鋼、形鋼及び線材等の各種鋼材、並びにこれらの加工材等、いかなる形態のものであってもよい。
【0025】
以上のようにして製造する本発明の軟磁性鋼材の諸特性の目標値は、前記の
低磁場磁束密度B≧1.1T
電気抵抗値ρ≧88.9μΩcm
の他に、 保磁力H≦28A/m
最大透磁率≧0.014
高磁場磁束密度B25≧1.35T
を追加したものである。
【0026】
【実施例】
次に、この発明を、実施例によって更に詳細に説明する。
表1に示す化学成分組成を有する各鋼を溶製し鋼塊を鋳造した。得られた鋼塊を直径50mmの丸棒の形材に熱間加工した。次いで当該丸棒から試験片を採取し、表2に示す各温度で真空熱処理を施した。このようにして得られた所要の試験片に対し、フェライト結晶平均粒径、電気抵抗及び直流磁気特性を測定した。直流磁気特性として、保磁力、最大透磁率、低磁場磁束密度(160A/mでの磁束密度、B2 )、及び高磁場磁束密度(2000A/mでの磁束密度、B25)を測定した。
【0027】
【表1】

Figure 0004295371
【0028】
【表2】
Figure 0004295371
【0029】
表1に示した鋼の化学成分組成は、本発明の範囲内にある鋼D、E、並びに、本発明の範囲外にある鋼A〜C、F〜Qからなる。表2には、本発明の範囲内の試験である実施例4、5、本発明の範囲外の試験である比較例1〜11、及び参考例1〜3、6、7についての各特性値の試験結果を併記した。試験結果は、表1及び2から下記の通りである。
【0030】
(1)実施例4、5(鋼D,E)、参考例1〜3(鋼A〜C)、比較例1、2(鋼F,G)は、Cr含有率を変化させた例である。これより、Cr含有率が増えるに従い、電気抵抗が増大し、低・高磁場磁束密度及び最大透磁率が低下し、保磁力が増加している。即ち、Cr含有率が増えるに従い軟磁性が劣化している。
実施例4、5(鋼D,E):すべて、低磁場磁束密度Bが1.1T以上で、且つ電気抵抗値ρが88.9μΩcm以上であり、代表特性の目標値を満足している。また、その他の特性値も目標値を満たしており良好である。
・比較例1(鋼F):Cr含有率及びS値が本発明の範囲を上方に外れている場合で、高電気抵抗であるが、軟磁性に劣り低・高磁場磁束密度が低くなり、総合的に特性が劣り、本発明の目的が達成されていない。
・比較例2(鋼G):Cr含有率及びS値が本発明の範囲を下方に外れている場合で、軟磁性に優れ、低・高磁場磁束密度が高いが、電気抵抗が低いため、総合的に特性が劣り、本発明の目的が達成されていない。
【0031】
(2)比較例3、4(鋼H,I)は、Al含有率を本発明の範囲外に変化させた例である。
・比較例3(鋼H):Al含有率が本発明の範囲を上方に外れている場合で、高電気抵抗であるが、軟磁性が劣り、低・高磁場磁束密度が低くなり、総合的に特性が劣り、本発明の目的が達成されていない。
・比較例4(鋼I):Al含有率が本発明の範囲を下方に外れている場合で、軟磁性に優れ、低・高磁場磁束密度が高いが、電気抵抗が低いため、総合的に特性が劣り、本発明の目的が達成されていない。
【0032】
(3)比較例5、6(鋼J,K)は、Si含有率を本発明の範囲外に変化させた例である。
・比較例5(鋼J):Si含有率が本発明の範囲を上方に外れている場合で、高電気抵抗であるが、軟磁性が劣り、低・高磁場磁束密度が低くなり、総合的に特性が劣り、本発明の目的が達成されていない。
・比較例6(鋼K):Si含有率が本発明の範囲を下方に外れている場合で、軟磁性に優れ、低・高磁場磁束密度が高いが、電気抵抗が低いため、総合的に特性が劣り、本発明の目的が達成されていない。
【0033】
(4)比較例7、8(鋼L,M)はそれぞれC、N含有率が、本発明の範囲を上方に外れている場合で、前述の如く、C、Nは軟磁性に大きく悪影響を与える不純物元素である。そのため、高電気抵抗であるが、低・高磁場磁束密度が低くなり、総合的に特性が劣り、本発明の目的が達成されていない。
【0034】
(5)参考例6、7(鋼N,O)はそれぞれ、切削性向上元素としてPb及びSを所定量添加した例である。両方共、低磁場磁束密度Bが1.1T以上であるが、電気抵抗値ρが88.9μΩcm未満であるので、高周波数域での消費電力の低減効果が小さい。
【0035】
(6)比較例9、10(鋼P,Q)は、S値を本発明の範囲外に変化させた例である。
・比較例9(鋼P):個々の成分元素添加量は、本発明の範囲内にあるが、S値が上方に外れた場合である。高電気抵抗であるが、軟磁性が劣り、低・高磁場磁束密度が低くなり、総合的に特性が劣り、本発明の目的が達成されていない。
・比較例10(鋼Q):個々の成分元素添加量は、本発明の範囲内にあるが、S値が下方に外れた場合である。軟磁性に優れ、低・高磁場磁束密度が高いが、電気抵抗が低いため、総合的に特性が劣り、本発明の目的が達成されていない。
・比較例11:化学成分組成は本発明の範囲内である鋼Dを用いたが、熱処理加熱温度が本発明の範囲より低い場合である。そのためフェライト粒径が小さいため、軟磁性が劣り、高電気抵抗であるが低・高磁場磁束密度が低くなり、総合的に特性が劣り、本発明の目的が達成されていない。
(7)参考例1、2(鋼A,B):個々の成分元素添加量は、本発明の範囲内にあるが、S値が本発明の範囲の下方に外れた場合である。軟磁性に優れ、低・高磁場磁束密度が高いが、電気抵抗が低いため、総合的に特性が劣り、本発明の目的が達成されていない。
(8)参考例3(鋼C):Si含有量およびS値が本発明の範囲の下方に外れているので、軟磁性に優れ、低・高磁場磁束密度が高いが、電気抵抗が低いため、総合的に特性が劣り、本発明の目的が達成されていない。
【0036】
以上の実施例及び比較例で得られた試験データより、目標とする代表特性である電気抵抗値ρと低磁場磁束密度B2 との関係をプロットすると、図1の通りである。本発明の範囲内の実施例では、電気抵抗値ρ及び低磁場磁束密度B2 がいずれも目標値を達成していることがわかる。
【0037】
次に、本発明の高電気抵抗軟磁性鋼材を用いて、自動車用電磁アクチュエーターを試作しその評価をした。評価試験は、参考例2(鋼B)、参考例6(鋼N)及び実施例4(鋼D)の各試験片について、消費電力比を測定した。消費電力比は、参考例2(鋼B)の消費電力を100とし、これに対する消費電力比で表わした。作動周波数は、8.35Hz、25Hz 及び50Hz の3水準で行なった。その結果を、図2に示す。同図から、消費電力比に及ぼす体積固有抵抗値(電気抵抗値)の影響がわかる。即ち、体積固有抵抗値ρが大きくなると消費電力は小さくなり、その効果の度合いは作動周波数に依存する。体積固有抵抗値ρを参考例2(鋼B)の75.3μΩcmから実施例4(鋼D)の88.9μΩcmまで高めると、いずれの作動周波数においても約12%低減できることが確認された。なお、本発明者等は、本発明鋼材によれば、従来鋼材の体積固有抵抗値である40〜60μΩcmの電磁アクチュエーターに比べ、30〜20%だけ消費電力が低減できることも確認済である。
【0038】
このように、本発明の軟磁性鋼材によれば消費電力を著しく低減できるので、小型化を要求される電磁アクチュエーターには、発熱量低下の観点からも非常に有利となる。また、特に、高周波数域での消費電力を低減することができるため、自動車に使用されると燃費低減効果に対しても有利となる。
【0039】
【発明の効果】
以上述べたように、この発明によれば、低磁場磁束密度、最大透磁率及び高磁場磁束密度がいずれも大きく、保磁力が小さく、且つ電気抵抗が大きく、これらの特性値が飛躍的に向上した、電磁弁等の電磁アクチュエーター用部品素材が得られ、その磁気回路構成部品として好適な軟磁性鋼材を得ることができる。このような軟磁性に優れ、高電気抵抗を有する軟磁性鋼材及びその製造方法を提供することができ、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】実施例及び比較例の軟磁性鋼材の目標とする代表特性である電気抵抗値と低磁場磁束密度との関係領域を示すグラフである。
【図2】本発明の軟磁性鋼材例の電気抵抗値と消費電力比との関係を示すグラフを作動周波数で層別したものである。[0001]
BACKGROUND OF THE INVENTION
This invention relates to a component material for an electromagnetic actuator such as a solenoid valve used in automobiles, industrial machines, etc., and the low magnetic flux density, the maximum magnetic permeability and the high magnetic flux density are all large, the coercive force is small, Further, the present invention relates to a soft magnetic steel material having a large electric resistance.
[0002]
[Prior art]
Electromagnetic actuators such as electromagnetic valves used in automobiles, industrial machines, and the like operate by an electromagnetic induction phenomenon, control the operation by controlling the input current, and exhibit functions according to the purpose. Such electromagnetic actuators are required to have high responsiveness and high electromagnetic induction force with the recent high performance. Conventionally, mild steel, pure iron, or silicon steel has been used for such an electromagnetic induction portion, and a steel component system that is advantageous for high response and high electromagnetic induction force has been studied. In order for an electromagnetic actuator to exhibit such characteristics, a material having excellent soft magnetism, that is, a material having a high magnetic flux density, a high magnetic permeability, a low coercive force, and a high electrical resistance is required. The
[0003]
In response to such a requirement, for example, in JP-A-2-170948, a high Cr steel is intentionally incorporated with a carbonitride-forming element to provide a high magnetic flux density and a low coercive force, A steel material that improves the workability of the material is disclosed (hereinafter referred to as Prior Art 1). According to the prior art 1, although a good magnetic flux density (B 20 ) is obtained, the coercive force is 0.7 Oe or more, which is not good.
[0004]
Japanese Patent Laid-Open No. 2-259047 discloses a steel material having a high electrical resistance by adding Al to high Cr steel (hereinafter referred to as Prior Art 2). However, in the prior art 2, the low magnetic flux density (B 2 ) is as low as 11000 G or less and the coercive force is 0.7 Oe or more, which is not good.
[0005]
Furthermore, Japanese Patent Laid-Open No. 4-235257 discloses a steel material that is intended to increase electrical resistance, soft magnetism, and workability by incorporating Mo, Ti, Al, and B into high Cr steel. (Hereinafter referred to as Prior Art 3). However, in Prior Art 3, the low magnetic field magnetic flux density (B 1 ) is as low as 9600 G or less, which is not good.
[0006]
[Problems to be solved by the invention]
As described above, none of the prior arts 1 to 3 is sufficient as a soft magnetic material having a high response and a high electric resistance required to satisfy a high electromagnetic induction force required for a recent electromagnetic actuator.
[0007]
Accordingly, the object of the present invention is to solve the above-mentioned problems, and as a component material for an electromagnetic actuator used in automobiles, industrial machines, etc., the low magnetic flux density, the maximum magnetic permeability and the high magnetic flux density are large, and the coercive force It is an object to provide a soft magnetic steel material and a method for manufacturing the same, which can dramatically improve various characteristics such as low electrical resistance and high electrical resistance, and can reduce power consumption particularly in a high frequency range .
[0008]
[Means for Solving the Problems]
As a result of intensive studies to develop a new technology from the viewpoint described above, the present inventors have obtained a component system of a soft magnetic steel material having the above characteristics by adding appropriate amounts of Al, Si and Cr. Thus, it has been found that a desired soft magnetic steel material can be produced by subjecting the steel of this component system to an appropriate heat treatment. The present invention has been made based on the above-described knowledge and has the following configuration.
[0009]
The soft magnetic steel material according to claim 1 is excellent in soft magnetism, that is, a soft magnetic steel material having a low and high magnetic field magnetic flux density and a large maximum magnetic permeability, an excellent small coercive force, and a high electric resistance. C: 0.007 mass% or less, TN: 0.01 mass% or less, Al: 2 to 3 mass%, Si: 0.61 to 0.7 mass%, Cr: 2 to 7 mass%, balance: Fe And inevitable impurities, and the following formula (1) S value = 2 × (Al + Si) + Cr —— (1)
However, Al, Si, and Cr: content rate of each element (mass%)
The S value calculated in (5) is characterized by having a chemical component composition in the range of 11.27 to 14.0.
[0010]
The soft magnetic steel material according to claim 2 is the invention according to claim 1, wherein the chemical component composition further includes one of S: 0.1 mass% or less and Pb: 0.3 mass% or less. It is characterized by the addition of seeds.
[0011]
According to a third aspect of the present invention, there is provided a method for producing a soft magnetic steel material, wherein the steel having the chemical component composition according to the first or second aspect is melted and cast, and the steel ingot or slab thus obtained is processed to obtain a predetermined value. It is characterized in that it is heat-treated at a temperature in the range of 800 to 1300 ° C. with respect to the obtained steel material or a processed product obtained by further processing the steel material. is there.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the soft magnetic steel material and the manufacturing method thereof according to the present invention are limited to the chemical component composition and manufacturing conditions of the steel material as described above will be described.
[0013]
(1) C: 0.007 mass% or less C is an impurity element that significantly adversely affects soft magnetism, and must be reduced as much as possible. In other words, if the C content exceeds 0.007 mass%, the ferrite region expansion effect due to the addition of Al and Si composites decreases, so the ferrite particle expansion effect during heat treatment of the steel material is inhibited, and as a result, soft magnetism is significantly deteriorated. To do. Further, the precipitation of carbides inhibits the ferrite grain expansion action during the heat treatment, and the soft magnetism is significantly deteriorated by the action of the carbides themselves. Therefore, the C content is limited to 0.007 mass% or less.
[0014]
(2) N: 0.01 mass% or less N, like C, is an impurity element that significantly adversely affects soft magnetism, and must be reduced as much as possible. That is, if the N content exceeds 0.01 mass%, the precipitation of nitride inhibits the ferrite grain expansion action during the heat treatment of the steel material, and the soft magnetism significantly deteriorates due to the action of the nitride itself. Therefore, the N content is limited to 0.01 mass% or less.
[0015]
(3) Al: 2-3 mass%
Al increases the ferrite region expansion effect or ferrite transformation temperature, and also contributes to the increase in the size of the nitride particles. Therefore, it facilitates the ferrite particle expansion operation during the heat treatment of the steel material and reduces the solid solution nitrogen. It is an important element for improving magnetism. On the other hand, Al also has an effect of increasing electric resistance. In order to exhibit this effect, it is necessary to add 2 mass% or more. However, when the Al addition amount exceeds 3 mass%, the soft magnetic improvement effect tends to be saturated, and alumina inclusions increase in the steel, which deteriorates the workability of the steel material. Therefore, the Al content is limited to a range of 2 to 3 mass%.
[0016]
(4) Si: 0.61 to 0.7 mass%
Si, like Al, increases the ferrite region expansion effect or the ferrite transformation temperature, and therefore facilitates the ferrite particle expansion effect during heat treatment of the steel material. As a result, it is an important element because it has the effect of improving soft magnetism and increasing electrical resistance. In order to exert such effects, it is necessary to add Si in an amount of 0.61 mass% or more. However, if Si addition exceeds 0.7 mass%, the toughness may be deteriorated. Therefore, the Si content is limited to a range of 0.61 to 0.7 mass%.
[0017]
(5) Cr: 2-7 mass%
Cr is an important element related to the basis of the present invention because it significantly increases electric resistance as compared with other essential elements. In order to exhibit this effect of Cr, it is necessary to add 2 mass% or more. However, when Cr addition exceeds 7 mass%, the soft magnetism is lowered and the effect of increasing the electric resistance tends to be saturated. Therefore, the Cr content is limited to a range of 2 to 7 mass%.
[0018]
(6) One or two of S: 0.1 mass% or less and Pb: 0.3 mass% or less S and Pb are added when imparting good machinability to the steel material. However, even if the addition amount exceeds S: 0.1 mass% or Pb: 0.3 mass%, this effect is saturated, and this is economically disadvantageous. Therefore, the addition of S and Pb is S: 0.1 mass% or less and Pb: 0.3 mass% or less when adding good machinability, and is limited to any one or two. .
[0019]
In addition to the elements described above, elements inevitably mixed from scraps, refractories and the like in the steel making process, for example, elements such as P and Ni may be contained at the content level as impurities.
[0020]
(7) S value: 11.27 to 14.0
The S value is a parameter indicating the influence of the Al, Si, and Cr content in steel on the electrical resistance and magnetic flux density calculated by the following equation (1).
[0021]
S value = 2 (Al + Si) + Cr ------------------- (1)
However, Al, Si, and Cr: content rate of each element (mass%)
Then, as the S value increases, a characteristic change contradicts the advantage of an increase in electrical resistance and the disadvantage of a decrease in magnetic flux density. On the other hand, the present inventors have set that the following formulas (2) and (3) are satisfied as representative characteristics of the soft magnetic steel material in the present invention. That is, the low magnetic field magnetic flux density (magnetic flux density at 160 A / m) B 2 is
B 2 ≧ 1.1T ------------------------ (2)
And the electrical resistance value ρ is
ρ ≧ 88.9μΩcm ------------------------ (3)
Be.
[0022]
The inventors have developed a low magnetic flux density B 2 In order to satisfy the above conditions for both the electrical resistance value ρ and the electrical resistance value ρ, it has been found that the S value should be limited to the range of 11.27 to 14.0. Therefore, the S value is limited to the range of 11.27 to 14.0.
[0023]
(8) Heat treatment temperature: 800-1300 ° C
In order to obtain excellent soft magnetism, the present inventors have known that it is desirable that the average grain size of the ferrite crystal of the steel material be 0.1 mm or more. For this purpose, in the present invention, after melting and casting the steel having the chemical composition described above, a slab or a steel ingot is formed into a steel material having a predetermined shape, and the obtained steel material is within a range of 800 to 1300 ° C. It is necessary to heat-treat (anneal) at the temperature of. When the heat treatment is less than 800 ° C., the average grain size of the ferrite crystals of the steel cannot be increased to 0.1 mm or more. On the other hand, the heat treatment at a temperature exceeding 1300 ° C. has little effect of increasing the particle size. This is a disadvantage in terms of heat economy. Therefore, the pre-heat treatment temperature of the steel material is limited to a range of 800 to 1300 ° C.
[0024]
This heat treatment is intended for annealing, and it is desirable to carry out the heat treatment when the processing on the steel material is almost completed. The steel material may be in any form such as various steel materials such as a steel plate, a steel pipe, a bar steel, a shaped steel and a wire, and a processed material thereof.
[0025]
The target values of various properties of the soft magnetic steel material of the present invention manufactured as described above are
Low magnetic flux density B 2 ≧ 1.1T
Electrical resistance value ρ ≧ 88.9 μΩcm
Besides, coercive force H C ≦ 28 A / m
Maximum permeability ≧ 0.014
High magnetic flux density B 25 ≧ 1.35T
Is added.
[0026]
【Example】
Next, the present invention will be described in further detail with reference to examples.
Each steel having the chemical composition shown in Table 1 was melted to cast a steel ingot. The obtained steel ingot was hot-worked into a round bar shape having a diameter of 50 mm. Next, a test piece was collected from the round bar and subjected to vacuum heat treatment at each temperature shown in Table 2. The required test specimens thus obtained were measured for ferrite crystal average grain size, electrical resistance and DC magnetic properties. As DC magnetic characteristics, coercive force, maximum magnetic permeability, low magnetic field magnetic flux density (magnetic flux density at 160 A / m, B 2 ), and high magnetic field magnetic flux density (magnetic flux density at 2000 A / m, B 25 ) were measured.
[0027]
[Table 1]
Figure 0004295371
[0028]
[Table 2]
Figure 0004295371
[0029]
The chemical composition of the steel shown in Table 1 consists of steels D and E which are within the scope of the present invention, and steels A to C and F to Q which are outside the scope of the present invention. Table 2 shows characteristic values of Examples 4 and 5 which are tests within the scope of the present invention, Comparative Examples 1 to 11 which are tests outside the scope of the present invention, and Reference Examples 1 to 3, 6, and 7. The test results were also shown. The test results are as follows from Tables 1 and 2.
[0030]
(1) Examples 4, 5 (Steel D, E), Reference Examples 1 to 3 (Steel A to C), and Comparative Examples 1 and 2 (Steel F and G) are examples in which the Cr content was changed. . Accordingly, as the Cr content increases, the electrical resistance increases, the low / high magnetic flux density and the maximum magnetic permeability decrease, and the coercive force increases. That is, the soft magnetism deteriorates as the Cr content increases.
Examples 4 and 5 (Steel D and E) : All of the low magnetic flux density B 2 is 1.1 T or more and the electric resistance value ρ is 88.9 μΩcm or more, which satisfies the target value of the representative characteristics. Yes. The other characteristic values also satisfy the target values and are good.
Comparative Example 1 (Steel F): When the Cr content and S value are out of the range of the present invention, the electrical resistance is high, but it is inferior to soft magnetism and the low magnetic field magnetic flux density is low. Overall, the properties are inferior and the object of the present invention has not been achieved.
Comparative Example 2 (Steel G): Cr content and S value are outside the scope of the present invention, excellent soft magnetism, low and high magnetic flux density, but low electrical resistance, Overall, the properties are inferior and the object of the present invention has not been achieved.
[0031]
(2) Comparative examples 3, 4 (steel H, I) are examples in which the Al content is changed outside the scope of the present invention.
Comparative Example 3 (Steel H): When the Al content is outside the range of the present invention, the electrical resistance is high, but the soft magnetism is inferior, and the low and high magnetic flux density is low. Therefore, the object of the present invention is not achieved.
Comparative Example 4 (Steel I): When the Al content is out of the range of the present invention, the soft magnetism is excellent and the low and high magnetic flux density is high, but the electrical resistance is low. The properties are inferior and the object of the present invention is not achieved.
[0032]
(3) Comparative Examples 5 and 6 (Steel J, K) are examples in which the Si content was changed outside the scope of the present invention.
Comparative Example 5 (Steel J): When the Si content is outside the range of the present invention, the electrical resistance is high, but the soft magnetism is inferior, and the low and high magnetic flux density is low. Therefore, the object of the present invention is not achieved.
Comparative Example 6 (Steel K): When the Si content is outside the range of the present invention, the soft magnetism is excellent, the low and high magnetic flux density is high, but the electrical resistance is low, so overall The properties are inferior and the object of the present invention is not achieved.
[0033]
(4) In Comparative Examples 7 and 8 (steel L and M), the C and N contents are out of the range of the present invention. As described above, C and N have a large adverse effect on soft magnetism. Impurity element to give. Therefore, although it has a high electrical resistance, the low / high magnetic flux density is low, the overall characteristics are inferior, and the object of the present invention is not achieved.
[0034]
(5) Reference Examples 6 and 7 (Steel N, O) are examples in which a predetermined amount of Pb and S are added as the machinability improving elements. Both, the low magnetic field flux density B 2 is not less than 1.1 T, the electrical resistance value ρ is because less than 88.9Myuomegacm, the effect of reducing the power consumption in the high-frequency range is small.
[0035]
(6) Comparative examples 9, 10 (steel P, Q) are examples in which the S value is changed outside the scope of the present invention.
Comparative Example 9 (Steel P): The amount of each component element added is within the scope of the present invention, but the S value deviates upward. Although it has a high electrical resistance, the soft magnetism is inferior, the low / high magnetic field magnetic flux density is low, and the overall characteristics are inferior, and the object of the present invention is not achieved.
Comparative Example 10 (Steel Q): The amount of each component element added is within the scope of the present invention, but the S value deviates downward. Although it is excellent in soft magnetism and has a low magnetic field density and a high magnetic flux density, since the electrical resistance is low, the overall characteristics are inferior and the object of the present invention is not achieved.
Comparative Example 11: Steel D having a chemical composition within the range of the present invention was used, but the heat treatment heating temperature was lower than the range of the present invention. Therefore, since the ferrite grain size is small, soft magnetism is inferior, high electrical resistance is obtained, but low and high magnetic flux density is low, and overall characteristics are inferior, and the object of the present invention is not achieved.
(7) Reference Examples 1 and 2 (Steel A and B): The individual component element addition amounts are within the scope of the present invention, but the S value deviates below the scope of the present invention. Although it is excellent in soft magnetism and has a low magnetic field density and a high magnetic flux density, since the electrical resistance is low, the overall characteristics are inferior and the object of the present invention is not achieved.
(8) Reference Example 3 (Steel C): Si content and S value are out of the range of the present invention, so soft magnetism is excellent, low and high magnetic flux density is high, but electric resistance is low The overall characteristics are inferior, and the object of the present invention has not been achieved.
[0036]
From the test data obtained in the above-described examples and comparative examples, the relationship between the target electric resistance value ρ and the low magnetic flux density B 2 is plotted as shown in FIG. In the examples within the scope of the present invention, it can be seen that the electric resistance value ρ and the low magnetic flux density B 2 both achieve the target values.
[0037]
Next, an automobile electromagnetic actuator was prototyped and evaluated using the high electrical resistance soft magnetic steel material of the present invention. In the evaluation test, the power consumption ratio was measured for each test piece of Reference Example 2 (Steel B), Reference Example 6 (Steel N), and Example 4 (Steel D). The power consumption ratio was expressed as the power consumption ratio with respect to 100 as the power consumption of Reference Example 2 (Steel B). The operating frequency was three levels of 8.35 Hz, 25 Hz and 50 Hz. The result is shown in FIG. From the figure, it can be seen that the influence of the volume specific resistance value (electric resistance value) on the power consumption ratio. That is, as the volume resistivity value ρ increases, the power consumption decreases, and the degree of the effect depends on the operating frequency. When the volume resistivity value ρ was increased from 75.3 μΩcm in Reference Example 2 (Steel B) to 88.9 μΩcm in Example 4 (Steel D), it was confirmed that it could be reduced by about 12% at any operating frequency. In addition, the present inventors have also confirmed that according to the steel material of the present invention, power consumption can be reduced by 30 to 20% as compared with an electromagnetic actuator having a volume resistivity of 40 to 60 μΩcm, which is a conventional steel material.
[0038]
As described above, according to the soft magnetic steel material of the present invention, the power consumption can be remarkably reduced. Therefore, the electromagnetic actuator that is required to be downsized is very advantageous from the viewpoint of a decrease in the heat generation amount. In particular, since power consumption in a high frequency range can be reduced, it is advantageous for a fuel consumption reduction effect when used in an automobile.
[0039]
【The invention's effect】
As described above, according to the present invention, the low magnetic field magnetic flux density, the maximum magnetic permeability and the high magnetic field magnetic flux density are all large, the coercive force is small, the electric resistance is large, and these characteristic values are dramatically improved. Thus, a component material for an electromagnetic actuator such as a solenoid valve can be obtained, and a soft magnetic steel material suitable as the magnetic circuit component can be obtained. It is possible to provide a soft magnetic steel material excellent in soft magnetism and having a high electric resistance and a method for producing the same, and an industrially useful effect is brought about.
[Brief description of the drawings]
FIG. 1 is a graph showing a relational region between an electric resistance value, which is a target representative characteristic of soft magnetic steel materials of examples and comparative examples, and a low magnetic flux density.
FIG. 2 is a graph showing the relationship between the electric resistance value and the power consumption ratio of the soft magnetic steel material example of the present invention stratified by operating frequency.

Claims (3)

C :0.007mass%以下、
T・N:0.01mass%以下、
Al :2〜3mass%、
Si :0.61〜0.7mass%、
Cr :2〜7mass%
を含有し、残部:Feおよび不可避的不純物からなり、かつ、下記(1)式
S値=2×(Al+Si)+Cr ---(1)
但し、Al、Si及びCr:それぞれの元素の含有率(mass%)
で算出されるS値が、11.27〜14.0の範囲内にある化学成分組成を有することを特徴とする軟磁性鋼材。
C: 0.007 mass% or less,
TN: 0.01 mass% or less,
Al: 2-3 mass%,
Si: 0.61 to 0.7 mass%,
Cr: 2-7 mass%
And the balance: Fe and inevitable impurities, and the following formula (1) S value = 2 × (Al + Si) + Cr —— (1)
However, Al, Si, and Cr: Content of each element (mass%)
A soft magnetic steel material having a chemical composition having an S value calculated in the range of 11.27 to 14.0.
前記化学成分組成に、更に、
S :0.1mass%以下、及び、
Pb :0.3mass%以下
のうち、1種又は2種が添加されている、請求項1記載の軟磁性鋼材。
In addition to the chemical component composition,
S: 0.1 mass% or less, and
The soft magnetic steel material according to claim 1, wherein one or two of Pb: 0.3 mass% or less are added.
請求項1又は2記載の化学成分組成を有する鋼を溶製し、そして鋳造し、こうして得られた鋼塊又は鋳片に加工を施して所定形状の鋼材に成形し、次いで、得られた鋼材又は当該鋼材又は当該鋼材に更に加工を施して得られた加工品に対して800〜1300℃の範囲内の温度で熱処理を施すことを特徴とする、軟磁性鋼材の製造方法。  A steel having the chemical composition according to claim 1 or 2 is melted and cast, and the steel ingot or slab thus obtained is processed to form a steel material having a predetermined shape. Alternatively, a method for producing a soft magnetic steel material, characterized in that the steel material or a workpiece obtained by further processing the steel material is subjected to a heat treatment at a temperature within a range of 800 to 1300 ° C.
JP23973998A 1998-08-26 1998-08-26 Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same Expired - Fee Related JP4295371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23973998A JP4295371B2 (en) 1998-08-26 1998-08-26 Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23973998A JP4295371B2 (en) 1998-08-26 1998-08-26 Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000073149A JP2000073149A (en) 2000-03-07
JP4295371B2 true JP4295371B2 (en) 2009-07-15

Family

ID=17049222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23973998A Expired - Fee Related JP4295371B2 (en) 1998-08-26 1998-08-26 Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4295371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3748055B2 (en) * 2001-08-07 2006-02-22 信越化学工業株式会社 Iron alloy plate material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134603A (en) * 1994-11-09 1996-05-28 Nkk Corp Soft-magnetic steel material, excellent in magnetic flux density and coercive force and having high electric resistance, and its production
JPH08134604A (en) * 1994-11-09 1996-05-28 Nkk Corp Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production

Also Published As

Publication number Publication date
JP2000073149A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
KR101728028B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4399751B2 (en) Composite magnetic member, method for manufacturing ferromagnetic portion of composite magnetic member, and method for forming nonmagnetic portion of composite magnetic member
JP5200376B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2006094251A2 (en) Magnetostrictive fega alloys
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
JP4295371B2 (en) Soft magnetic steel having excellent soft magnetism and high electrical resistance and method for producing the same
JP2022509675A (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
KR20190078361A (en) Non-oriented electrical steel sheet method for manufacturing the same
JP4240736B2 (en) Non-oriented electrical steel sheet with low iron loss and high magnetic flux density and method for producing the same
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JP3934904B2 (en) Low iron loss non-oriented electrical steel sheet excellent in workability and manufacturing method thereof
JPH0790505A (en) Soft magnetic steel material and its production
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property
JP4288811B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JPH03122237A (en) Ni-fe serite high permeability magnetic alloy
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JP2023554680A (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees