JP4295034B2 - Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method - Google Patents

Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method Download PDF

Info

Publication number
JP4295034B2
JP4295034B2 JP2003206431A JP2003206431A JP4295034B2 JP 4295034 B2 JP4295034 B2 JP 4295034B2 JP 2003206431 A JP2003206431 A JP 2003206431A JP 2003206431 A JP2003206431 A JP 2003206431A JP 4295034 B2 JP4295034 B2 JP 4295034B2
Authority
JP
Japan
Prior art keywords
toner
resin
fine particles
resin fine
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003206431A
Other languages
Japanese (ja)
Other versions
JP2005055534A (en
Inventor
竜太 井上
真弘 渡邊
雅英 山田
園生 松岡
千秋 田中
毅 高田
正啓 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003206431A priority Critical patent/JP4295034B2/en
Priority to US10/910,764 priority patent/US7348117B2/en
Publication of JP2005055534A publication Critical patent/JP2005055534A/en
Priority to US11/670,874 priority patent/US7348121B2/en
Application granted granted Critical
Publication of JP4295034B2 publication Critical patent/JP4295034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真法、静電記録法、静電印刷法等に好適に用いられるトナー及びその製造方法、並びに、該トナーを用いた現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法に関する。
【0002】
【従来の技術】
電子写真法による画像形成は、一般に、感光体(静電荷像担持体)上に静電荷像を形成し、該静電荷像を現像剤で現像して可視像(トナー像)とした後、該可視像を紙等の記録媒体に転写し定着することにより定着像とする一連のプロセスにより行われる(特許文献1参照)。前記電子写真法における前記定着の方式としては、熱効率に優れ、かつダウンサイジング化を図ることが可能な点で、加熱ローラを直接、転写材上のトナー像に圧接して定着する熱ローラ定着方式が広く用いられている。
しかし、該熱ローラ定着方式の場合、前記定着のための多大な電力が必要となるという問題がある。このため、省エネルギー化を図る観点から、前記加熱ローラの消費電力を削減することが種々検討されてきており、例えば、該加熱ローラにおける、前記転写材上に転写された前記トナー像と接触する層の厚みを可能な限り薄くすることにより、熱エネルギー効率を高め、立ち上げ時間を大幅に短縮することが提案されている。ところが、この場合、前記加熱ローラの比熱容量が小さくなり、該加熱ローラ上の前記転写材が通った部分と通らなかった部分との温度差が大きくなるため、該加熱ローラへ溶融トナーが付着し、該加熱ローラが一周した後、前記転写材上の非画像部に該溶融トナーが定着されてしまう現象、即ちホットオフセット現象が生じ易くなるという問題がある。
【0003】
近年、更なる省エネルギー化を図る観点から、低温定着や高速複写を可能にする技術の開発が進められており、例えば、低軟化点の樹脂・ワックス等を用いて低温定着性に優れたトナーが検討されてきている。しかし、前記低温定着性に優れたトナーでは、熱的に弱いため、使用している機械から発生する熱や保存時の熱などによって固まってしまう現象、即ちブロッキング現象が生じ易くなり、耐熱保存性が十分でなく、また、定着温度幅を十分に確保するのが困難であるという問題がある。
【0004】
前記低温定着性と前記耐熱保存性とを両立させる観点から、種々の検討がなされてきている。例えば、前記低温定着性が良好であり、前記耐熱保存性も比較的良好なポリエステル樹脂を前記トナーに使用することも考えられるが、前記低温定着性と前記耐熱保存性とは二律背反の関係にあるため、前記ポリエステル樹脂を単に使用しただけでは、前記低温定着性と前記耐熱保存性とを良好なレベルに両立させることはできない。そこで、前記低温定着性と前記耐熱保存性とを両立させる目的で、例えば、前記トナーの粒子の内側よりも外側の方がガラス転移温度が高い樹脂を用いた多層構造トナーが提案されている(特許文献2参照)。
【0005】
そして、前記多層構造トナーの製造方法としては、例えば、in−situ重合法、界面重合法、コアセルベーション法、スプレー・ドライ法、転相乳化法(特許文献3参照)などが知られている。これらの中でも、前記転相乳化法に関し、高いガラス転移温度を有する微粒子をトナーの粒子表面に固着させた多層構造トナーの製造方法が提案されている(特許文献4及び5参照)。この場合、前記トナーの前記耐熱保存性をある程度向上させることはできるものの、定着温度幅を十分に確保することができず、前記低温定着性と前記耐熱保存性とを高いレベルで両立させることは困難である。
したがって、耐凝集性、帯電性、流動性、転写性、定着性等の諸特性に優れ、耐ホットオフセット性が良好であり、優れた耐熱保存性と低温定着性とを両立し、高画質が得られるトナー及びその効率的な製造方法、並びに、該トナーを用いた関連技術は、未だ提供されていないのが現状である。
【0006】
【特許文献1】
米国特許第2297691号明細書
【特許文献2】
特開平9−258480号公報
【特許文献3】
特開平5−66600号公報
【特許文献4】
特開2000−347455号公報
【特許文献5】
特開2001−022117号公報
【0007】
【発明が解決しようとする課題】
本発明は、従来における問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、耐凝集性、帯電性、流動性、転写性、定着性等の諸特性に優れ、耐ホットオフセット性が良好であり、優れた耐熱保存性と低温定着性とを両立し、高画質が得られるトナー及びその効率的な製造方法、並びに、該トナーを用い、高画質化が可能な、現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決するための手段としては、下記の通りである。即ち、
<1> 活性水素基含有化合物及び該活性水素基含有化合物と反応可能な部位を有する重合体を含む有機溶媒相を、少なくとも2種の樹脂微粒子を含む水系媒体中に乳化分散させて、前記活性水素基含有化合物と前記活性水素基含有化合物と反応可能な重合体とを伸長反応乃至架橋反応させ、有機溶剤を除去して得られるトナーであって、
前記樹脂微粒子が、固着又は融着されることなく、
該樹脂微粒子における、ガラス転移温度が最も高いものを樹脂微粒子(A)、そのガラス転移温度を(TgA)とし、ガラス転移温度が最も低いものを樹脂微粒子(B)、そのガラス転移温度を(TgB)とした時、次式、温度差(TgA−TgB)≧20℃、を満たし、
前記樹脂微粒子のトナーに対する残存率が、熱分解クロマトグラフによる測定値で4.1〜8.0質量%であり、
前記樹脂微粒子(A)と前記樹脂微粒子(B)との質量比(樹脂微粒子(A):樹脂微粒子(B))が10:90〜50:50であることを特徴とするトナーである。
<2> 樹脂微粒子における、テトラヒドロフラン可溶分の分子量分布における重量平均分子量を(Mw)とした時、次式、8,000≦(Mw)≦1,500,000、を満たす前記<1>に記載のトナーである。
<3> 樹脂微粒子のトナー被覆率が75〜100%である前記<1>から<2>のいずれかに記載のトナーである。
<4> 樹脂微粒子の体積平均粒径が20〜400nmである前記<1>から<3>のいずれかに記載のトナーである。
<5> トナーのBET比表面積が、0.5〜8.0m/gである前記<1>から<4>のいずれかに記載のトナーである。
<6> トナーの体積平均粒径が、3〜8μmである前記<1>から<5>のいずれかに記載のトナーである。
<7> トナーの体積平均粒径/個数平均粒径が、1.00〜1.25である前記<1>から<6>のいずれかに記載のトナー。
<8> トナーの平均円形度が、0.90〜1.00である前記<1>から<7>のいずれかに記載のトナーである。
<9> 前記<1>から<8>のいずれかに記載のトナーの製造方法であって、活性水素基含有化合物と、該活性水素基含有化合物と反応可能な部位を有する重合体とを含む有機溶媒相を、少なくとも2種の樹脂微粒子を含む水系媒体中で乳化分散させて、前記活性水素基含有化合物と前記活性水素基含有化合物と反応可能な重合体とを伸長反応乃至架橋反応させることを特徴とするトナーの製造方法である。
<10> 前記<1>から<8>のいずれかに記載のトナーを含むことを特徴とする現像剤である。
<11> 前記<1>から<8>のいずれかに記載のトナーが充填されてなることを特徴とするトナー入り容器である。
【0009】
本発明のトナーは、活性水素基含有化合物及び該活性水素基含有化合物と反応可能な重合体を反応させて水系媒体中で接着性基材を生成しつつ粒子状に得られ、少なくとも2種の樹脂微粒子を含み、該樹脂微粒子における、ガラス転移温度が最も高いものを樹脂微粒子(A)、そのガラス転移温度を(TgA)とし、ガラス転移温度が最も低いものを樹脂微粒子(B)、そのガラス転移温度を(TgB)とした時、次式、温度差(TgA−TgB)≧20℃、を満たす。該トナーは、該トナーに耐熱保存性を付与する樹脂微粒子と、該トナーに低温定着性を付与する樹脂微粒子との少なくとも2種の樹脂微粒子が含むので、優れた耐熱保存性と低温定着性とを両立し、耐ホットオフセット性に優れる。また、該トナーは、前記活性水素基含有化合物及び該活性水素基含有化合物と反応可能な重合体を水系媒体中で反応させてなる前記接着性基材を含むので、耐凝集性、帯電性、流動性、転写性、定着性等の諸特性に優れる。該トナーを用いて画像形成を行うと、低温定着条件下で高画質が得られる。
【0010】
本発明のトナーの製造方法は、本発明の前記トナーを製造する方法であって、活性水素基含有化合物と、該活性水素基含有化合物と反応可能な部位を有する重合体と、少なくとも2種の樹脂微粒子とを水系媒体中で分散させかつ反応させて接着性基材を生成させつつトナーを得る工程を少なくとも含む。本発明のトナーの製造方法においては、前記工程において、前記活性水素基含有化合物と、前記活性水素基含有化合物と反応可能な部位を有する重合体とが、前記少なくとも2種の樹脂微粒子の存在下で、前記水系媒体中で分散・反応されて接着性基材が生成されつつトナーが粒子状に得られる。その結果、耐凝集性、帯電性、流動性、転写性、定着性等の諸特性に優れ、優れた耐熱保存性及び低温定着性を両立し、耐ホットオフセット性が良好な本発明の前記トナーが効率的に製造される。
【0011】
本発明の現像剤は、前記本発明のトナーを含む。このため、該現像剤を用いて電子写真法により画像形成を行うと、低温定着条件下でも高画像濃度で高鮮鋭な高品質画像が形成される。
【0012】
本発明のトナー入り容器は、本発明の前記トナーを容器中に収容してなる。このため、該トナー入り容器に収容された本発明の前記トナーを用いて電子写真法により画像形成を行うと、低温定着条件下でも高画像濃度で高鮮鋭な高品質画像が形成される。
【0013】
本発明のプロセスカートリッジは、静電潜像担持体と、該静電潜像担持体上に形成した静電潜像を前記本発明のトナーを用いて現像し可視像を形成する現像手段とを少なくとも有する。該プロセスカートリッジは、画像形成装置に着脱可能であり、利便性に優れ、また、前記本発明のトナーを用いるので、優れた耐熱保存性及び低温定着性を両立し、耐ホットオフセット性が良好であり、低温定着条件下でも高画像濃度で高鮮鋭な高品質画像が形成される。
【0014】
本発明の画像形成装置は、静電潜像担持体と、該静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、該静電潜像を前記本発明のトナーを用いて現像して可視像を形成する現像手段と、該可視像を記録媒体に転写する転写手段と、記録媒体に転写された転写像を定着させる定着手段とを少なくとも有する。該画像形成装置においては、前記静電潜像形成手段が、前記静電潜像担持体上に静電潜像を形成する。前記現像手段が、該静電潜像を前記本発明のトナーを用いて現像して可視像を形成する。前記転写手段が、前記可視像を記録媒体に転写する。前記定着手段が、前記記録媒体に転写された転写像を定着させる。その結果、低温定着条件下でも高画像濃度で高鮮鋭な高品質画像が形成される。
【0015】
本発明の画像形成方法は、静電潜像担持体上に静電潜像を形成する静電潜像形成工程と、前記静電潜像を前記本発明のトナーを用いて現像して可視像を形成する現像工程と、前記可視像を記録媒体に転写する転写工程と、記録媒体に転写された転写像を定着させる定着工程とを少なくとも含む。該画像形成装置においては、前記静電潜像形成工程において、静電潜像担持体上に静電潜像が形成される。前記現像工程において、前記静電潜像が前記本発明のトナーを用いて現像され、可視像が形成される。前記転写工程において、前記可視像が記録媒体に転写される。前記定着工程において、前記記録媒体に転写された転写像が定着される。その結果、低温定着条件下でも高画像濃度で高鮮鋭な高品質画像が形成される。
【0016】
【発明の実施の形態】
(トナー)
本発明のトナーは、活性水素基含有化合物及び該活性水素基含有化合物と反応可能な重合体を反応させて水系媒体中で接着性基材を生成しつつ粒子状に得られ、少なくとも2種の樹脂微粒子を含み、該樹脂微粒子における、ガラス転移温度が最も高いものを樹脂微粒子(A)、そのガラス転移温度を(TgA)とし、ガラス転移温度が最も低いものを樹脂微粒子(B)、そのガラス転移温度を(TgB)とした時、次式、温度差(TgA−TgB)≧20℃、を満たし、更に必要に応じて、着色剤、離型剤、未変性ポリエステル樹脂、帯電制御剤等のその他の成分を含む。
【0017】
−樹脂微粒子−
前記樹脂微粒子は、前記トナーの形状(円形度、粒度分布など)を制御し、該トナーにおける耐熱保存性と低温定着性とを両立させる目的で用いられ、該耐熱保存性を前記トナーに付与するものを少なくとも1種と、該低温定着性を前記トナーに付与するものを少なくとも1種とが用いられる。
【0018】
前記樹脂微粒子としては、その少なくとも2種における、ガラス転移温度が最も高いものを樹脂微粒子(A)、そのガラス転移温度を(TgA)とし、ガラス転移温度が最も低いものを樹脂微粒子(B)、そのガラス転移温度を(TgB)とした時、次式、温度差(TgA−TgB)≧20℃、を満たすのが好ましく、150℃≧温度差(TgA−TgB)≧20℃、を満たすのがより好ましく、70℃≧温度差(TgA−TgB)≧25℃、を満たすのが特に好ましい。
前記ガラス転移温度の温度差(TgA−TgB)が、20℃未満であると、前記樹脂微粒子(A)及び前記樹脂微粒子(B)それぞれの優れた特性の発現が抑制されて、低温定着性、耐オフセット性及び耐熱保存性のいずれかの特性が前記トナーにおいて十分でないことがある。
【0019】
前記樹脂微粒子(A)のガラス転移温度(TgA)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、55〜150℃程度が好ましい。該ガラス転移温度(TgA)が、55℃未満であると、耐熱保存性が悪化することがあり、150℃を超えると、低温定着性が悪化することがある。
前記樹脂微粒子(B)のガラス転移温度(TgB)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、25〜100℃程度である。該ガラス転移温度(TgB)が、25℃未満であると、耐熱保存性が悪化することがあり、100℃を超えると、低温定着性が悪化することがある。
【0020】
前記ガラス転移温度は、例えば、TG−DSCシステムTAS−100(理学電機社製)を用いて、以下の方法により測定することができる。まず、トナー約10mgをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットにのせ、電気炉中にセットする。室温から昇温速度10℃/minで150℃まで加熱した後、150℃で10min間放置し、室温まで試料を冷却して10min放置する。その後、窒素雰囲気下、150℃まで昇温速度10℃/minで加熱して示差走査熱量計(DSC)によりDSC曲線を計測する。得られたDSC曲線から、TG−DSCシステムTAS−100システム中の解析システムを用いて、ガラス転移温度(Tg)近傍の吸熱カーブの接線とベースラインとの接点からガラス転移温度(Tg)を算出することができる。
【0021】
前記樹脂微粒子としては、樹脂微粒子(A)と樹脂微粒子(B)との質量比(樹脂微粒子(A):樹脂微粒子(B))が、10:90〜50:50であるのが好ましく、20:80〜40:60であるのがより好ましい。
前記質量比として、前記樹脂微粒子(A)の質量が10未満であると、低温定着性、定着面の平滑性等が低下することがあり、前記樹脂微粒子(A)の質量が50を超えると、耐オフセット性、耐熱保存性等が悪化することがある。一方、前記質量比が前記数値範囲内にあると、低温定着性、耐オフセット性等に優れたトナーが得られる。
【0022】
前記樹脂微粒子における、テトラヒドロフラン可溶分の分子量分布における重量平均分子量を(Mw)とした時、次式、8,000≦(Mw)≦1,500,000、を満たすことが好ましく、9,000≦(Mw)≦1,300,000、を満たすことがより好ましく、10,000≦(Mw)≦1,200,000、を満たすことが特に好ましい。
前記重量平均分子量を(Mw)が、8,000未満であると、耐熱保存性、耐ホットオフセット性が悪化することがあり、1,500,000を超えると、低温定着性が得られないことがある。
【0023】
前記樹脂微粒子の分子量分布は、例えば、ゲルパーミエイションクロマトグラフ(GPC)により、以下のようにして測定することができる。即ち、40℃のヒートチャンバー中でカラムを安定させる。この温度でカラム溶媒としてテトラヒドロフランを毎分1mlの流速で流し、試料濃度を0.05〜0.6質量%に調整した樹脂のテトラヒドロフラン試料溶液を50〜200μl注入して測定する。前記試料における分子量の測定に当たっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出する。前記検量線作成用の標準ポリスチレン試料としては、Pressure Chemical Co.又は東洋ソーダ工業社製の分子量が6×10、2.1×10、4×10、1.75×10、1.1×10、3.9×10、8.6×10、2×10、及び4.48×10のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いることが好ましい。なお、前記検出器としてはRI(屈折率)検出器を用いることができる。
【0024】
前記樹脂微粒子(C)と前記樹脂微粒子(D)との質量比(樹脂微粒子(C):樹脂微粒子(D))としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、10:90〜50:50が好ましく、20:80〜40:60がより好ましい。
前記質量比として、前記樹脂微粒子(C)の質量が10未満であると、低温定着性、定着面の平滑性等が低下することがあり、前記樹脂微粒子(D)の質量が50を超えると、耐オフセット性、耐熱保存性が悪化することがある。一方、前記質量比が前記数値範囲内にあると、低温定着性、耐オフセット性等に優れたトナーが得られる。
【0025】
前記樹脂微粒子の体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、20〜400nmが好ましく、30〜350nmがより好ましい。
前記体積平均粒径が、20nm未満であると、前記トナーの表面上に残存する前記樹脂微粒子が皮膜化したり、前記トナーの表面全体を密に覆ってしまうことがあり、その結果、該樹脂微粒子が前記トナー内部の前記接着性基材と、転写材としての定着紙との接着性を阻害し、定着下限温度が上昇してしまうことがあり、400nmを超えると、前記樹脂微粒子がワックス成分の染み出しを阻害し、十分な離型性が得られず、オフセットが発生することがある。
前記樹脂微粒子の体積平均粒径は、例えば、レーザー光散乱法を用いた粒径分布測定装置(「LA−920」;堀場製作所社製)などを用いて測定することができる。
【0026】
前記樹脂微粒子のトナー被覆率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、75〜100%が好ましく、80〜100%がより好ましい。
前記トナー被覆率が、75%未満であると、前記トナーの保存性が悪化してしまい、保管時乃至使用時にブロッキングを発生してしまうことがある。
前記トナー被覆率は、例えば、トナー表面の電子顕微鏡写真を画像解析装置により測定し、トナー表面に対する樹脂微粒子の被覆率として測定することがでできる。
【0027】
前記樹脂微粒子の前記トナーにおける含有量(残存量)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.5〜8.0質量%が好ましく、0.6〜7.0質量%がより好ましい。
前記含有量(残存量)が、0.5質量%未満であると、前記トナーの保存性が悪化してしまい、保管時乃至使用時にブロッキングの発生が見られることがあり、8.0質量%を超えると、前記樹脂微粒子がワックスの染み出しを阻害し、十分な離型性が得られず、オフセットが発生することがある。
【0028】
前記樹脂微粒子の前記トナーにおける含有量(残存量)は、各種方法により測定することができ、前記樹脂微粒子にのみ起因する物質乃至官能基等を、例えば、熱分解ガスクロマトグラフ質量分析計などを用いて分析することにより、そのピーク面積から算出することができる。前記検出器としては、特に制限はなく、目的に応じて適宜選択することができるが、質量分析計が好適である。
【0029】
前記樹脂微粒子としては、水系媒体中で水性分散液を形成しうる樹脂であれば特に制限はなく、公知の樹脂の中から目的に応じて適宜選択することができ、熱可塑性樹脂であってもよいし、熱硬化性樹脂でもよく、例えば、ビニル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート樹脂、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、微細な球状の樹脂樹脂粒子の水性分散液が得られ易い点で、ビニル樹脂、ポリウレタン樹脂、エポキシ樹脂及びポリエステル樹脂から選択される少なくとも1種で形成されているのが好ましい。
なお、前記ビニル樹脂は、ビニルモノマーを単独重合又は共重合したポリマーであり、例えば、スチレン−(メタ)アクリル酸エステル樹脂、スチレン−ブタジエン共重合体、(メタ)アクリル酸−アクリル酸エステル重合体、スチレン−アクリロニトリル共重合体、スチレン−無水マレイン酸共重合体、スチレン−(メタ)アクリル酸共重合体、などが挙げられる。
また、前記樹脂微粒子としては、少なくとも2つの不飽和基を有する単量体を含んでなる共重合体を用いることもできる。
前記少なくとも2つの不飽和基を持つ単量体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)、ジビニルベンゼン、1,6−ヘキサンジオールアクリレートなどが挙げられる。
【0030】
前記樹脂微粒子は、目的に応じて適宜選択した公知の方法に従って重合させることにより得ることができるが、該樹脂微粒子の水性分散液として得るのが好ましい。該樹脂微粒子の水性分散液の調製方法としては、例えば、(1)前記ビニル樹脂の場合、ビニルモノマーを出発原料として、懸濁重合法、乳化重合法、シード重合法及び分散重合法から選択されるいずれかの重合反応により、直接、樹脂微粒子の水性分散液を製造する方法、(2)前記ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の重付加乃至縮合系樹脂の場合、前駆体(モノマー、オリゴマー等)又はその溶剤溶液を適当な分散剤の存在下、水性媒体中に分散させた後、加熱、又は硬化剤を添加して硬化させて、樹脂微粒子の水性分散体を製造する方法、(3)前記ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の重付加乃至縮合系樹脂の場合、前駆体(モノマー、オリゴマー等)又はその溶剤溶液(液体であることが好ましい。加熱により液状化してもよい)中に適当な乳化剤を溶解させた後、水を加えて転相乳化する方法、(4)予め重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい)により調製した樹脂を機械回転式又はジェット式等の微粉砕機を用いて粉砕し、次いで、分級することによって樹脂微粒子を得た後、適当な分散剤存在下、水中に分散させる方法、(5)予め重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい)により調製した樹脂を溶剤に溶解した樹脂溶液を霧状に噴霧することにより樹脂微粒子を得た後、該樹脂微粒子を適当な分散剤存在下、水中に分散させる方法、(6)予め重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい)により調製した樹脂を溶剤に溶解した樹脂溶液に貧溶剤を添加するか、又は予め溶剤に加熱溶解した樹脂溶液を冷却することにより樹脂微粒子を析出させ、次に溶剤を除去して樹脂粒子を得た後、該樹脂粒子を適当な分散剤存在下、水中に分散させる方法、(7)予め重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい)により調製した樹脂を溶剤に溶解した樹脂溶液を、適当な分散剤存在下、水性媒体中に分散させた後、加熱又は減圧等によって溶剤を除去する方法、(8)予め重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい)により調製した樹脂を溶剤に溶解した樹脂溶液中に適当な乳化剤を溶解させた後、水を加えて転相乳化する方法、などが好適に挙げられる。
【0031】
−接着性基材−
前記接着性基材は、紙等の記録媒体に対し接着性を示し、前記活性水素基含有化合物及び該活性水素基含有化合物と反応可能な重合体を前記水系媒体中で反応させてなるバインダーを少なくとも含み、更に必要に応じて公知のバインダー樹脂から適宜選択した他のバインダーを含んでいてもよい。
【0032】
前記接着性基材の重量平均分子量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1,000以上が好ましく、2,000〜10,000,000がより好ましく、3,000〜1,000,000が特に好ましい。
前記重量平均分子量が、1,000未満であると、耐ホットオフセット性が悪化することがある。
【0033】
前記接着性基材のガラス転移温度(Tg)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、30〜70℃が好ましく、40〜65℃がより好ましい。本発明のトナーでは、架橋反応及び/又は伸長反応したポリエステル樹脂が共存していることにより、従来のポリエステル系トナーと比較してガラス転移温度が低くても良好な保存性を示すものである。
前記ガラス転移温度(Tg)が、30℃未満であると、トナーの耐熱保存性が悪化することがあり、70℃を超えると、低温定着性が十分でないことがある。
【0034】
前記ガラス転移温度は、例えば、TG−DSCシステムTAS−100(理学電機社製)を用いて、以下の方法により測定することができる。まず、トナー約10mgをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットにのせ、電気炉中にセットする。室温から昇温速度10℃/minで150℃まで加熱した後、150℃で10min間放置し、室温まで試料を冷却して10min放置する。その後、窒素雰囲気下、150℃まで昇温速度10℃/minで加熱して示差走査熱量計(DSC)によりDSC曲線を計測する。得られたDSC曲線から、TG−DSCシステムTAS−100システム中の解析システムを用いて、ガラス転移温度(Tg)近傍の吸熱カーブの接線とベースラインとの接点からガラス転移温度(Tg)を算出することができる。
【0035】
前記接着性基材の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、ポリエステル系樹脂、などが特に好適に挙げられる。
前記ポリエステル系樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレア変性ポリエステル系樹脂、などが特に好適に挙げられる。
前記ウレア変性ポリエステル系樹脂は、前記活性水素基含有化合物としてのアミン類(B)と、該活性水素基含有化合物と反応可能な重合体としてのイソシアネート基含有ポリエステルプレポリマー(A)とを前記水系媒体中で反応させて得られる。
前記ウレア変性ポリエステル系樹脂は、ウレア結合のほかに、ウレタン結合を含んでいてもよく、この場合、該ウレア結合と該ウレタン結合との含有モル比(ウレア結合/ウレタン結合)としては、特に制限はなく、目的に応じて適宜選択することができるが、100/0〜10/90が好ましく、80/20〜20/80がより好ましく、60/40〜30/70が特に好ましい。
前記ウレア結合が10未満であると、耐ホットオフセット性が悪化することがある。
【0036】
前記ウレア変性ポリエステル樹脂の好ましい具体例としては、以下(1)から(10)、即ち、(1)ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーをイソホロンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物との混合物、(2)ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーをイソホロンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(3)ビスフェノールAエチレンオキサイド2モル付加物/ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーをイソホロンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物/ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(4)ビスフェノールAエチレンオキサイド2モル付加物/ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーをイソホロンジアミンでウレア化したものと、ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(5)ビスフェノールAエチレンオキサイド2モル付加物及びテレフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーを、ヘキサメチレンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(6)ビスフェノールAエチレンオキサイド2モル付加物及びテレフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーをヘキサメチレンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物/ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(7)ビスフェノールAエチレンオキサイド2モル付加物及びテレフタル酸の重縮合物をイソホロンジイソシアネートと反応させたポリエステルプレポリマーをエチレンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(8)ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物をジフェニルメタンジイソシアネートと反応させたポリエステルプレポリマーをヘキサメチレンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物との混合物、(9)ビスフェノールAエチレンオキサイド2モル付加物/ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸/ドデセニルコハク酸無水物の重縮合物をジフェニルメタンジイソシアネートと反応させたポリエステルプレポリマーをヘキサメチレンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物/ビスフェノールAプロピレンオキサイド2モル付加物及びテレフタル酸の重縮合物との混合物、(10)ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物をトルエンジイソシアネートと反応させたポリエステルプレポリマーをヘキサメチレンジアミンでウレア化したものと、ビスフェノールAエチレンオキサイド2モル付加物及びイソフタル酸の重縮合物との混合物、などが好適に挙げられる。
【0037】
−−活性水素基含有化合物−−
前記活性水素基含有化合物は、前記水系媒体中で、前記活性水素基含有化合物と反応可能な重合体が伸長反応、架橋反応等する際の伸長剤、架橋剤等として作用する。
前記活性水素基含有化合物としては、活性水素基を有していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、前記活性水素基含有化合物と反応可能な重合体が前記イソシアネート基含有ポリエステルプレポリマー(A)である場合には、該イソシアネート基含有ポリエステルプレポリマー(A)と伸長反応、架橋反応等の反応により高分子量化可能な点で、前記アミン類(B)が好適である。
前記活性水素基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水酸基(アルコール性水酸基又はフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アルコール性水酸基、が特に好ましい。
【0038】
前記アミン類(B)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ジアミン(B1)、3価以上のポリアミン(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、前記B1〜B5のアミノ基をブロックしたもの(B6)など、が挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ジアミン(B1)、ジアミン(B1)と少量の3価以上のポリアミン(B2)との混合物、が特に好ましい。
【0039】
前記ジアミン(B1)としては、例えば、芳香族ジアミン、脂環式ジアミン、脂肪族ジアミン、などが挙げられる。該芳香族ジアミンとしては、例えば、フェニレンジアミン、ジエチルトルエンジアミン、4,4’ジアミノジフェニルメタン等が挙げられる。該脂環式ジアミンとしては、例えば、4,4’−ジアミノ−3,3’ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミン等が挙げられる。該脂肪族ジアミンとしては、例えば、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等が挙げられる。
前記3価以上のポリアミン(B2)としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、などが挙げられる。
前記アミノアルコール(B3)としては、例えば、エタノールアミン、ヒドロキシエチルアニリン、などが挙げられる。
前記アミノメルカプタン(B4)としては、例えば、アミノエチルメルカプタン、アミノプロピルメルカプタン、などが挙げられる。
前記アミノ酸(B5)としては、例えば、アミノプロピオン酸、アミノカプロン酸、などが挙げられる。
前記B1〜B5のアミノ基をブロックしたもの(B6)としては、例えば、前記(B1)から(B5)のいずれかのアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリゾン化合物、などが挙げられる。
【0040】
なお、前記活性水素基含有化合物と前記活性水素基含有化合物と反応可能な重合体との伸長反応、架橋反応等を停止させるには、反応停止剤を用いることができる。該反応停止剤を用いると、前記接着性基材の分子量等を所望の範囲に制御することができる点で好ましい。該反応停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、又はこれらをブロックしたもの(ケチミン化合物)、などが挙げられる。
【0041】
前記アミン類(B)と、前記イソシアネート基含有ポリエステルプレポリマー(A)との混合比率としては、前記イソシアネート基含有プレポリマー(A)中のイソシアネート基[NCO]と、前記アミン類(B)中のアミノ基[NHx]の混合当量比([NCO]/[NHx])が、1/3〜3/1であるのが好ましく、1/2〜2/1であるのがより好ましく、1/1.5〜1.5/1であるのが特に好ましい。
前記イソシアネート基[NCO]が、1/2未満であると又は2/1を超えると、前記ウレア変性ポリエステル樹脂の分子量が低くなり、耐ホットオフセット性が悪化することがある。
【0042】
−−活性水素基含有化合物と反応可能な重合体−−
前記活性水素基含有化合物と反応可能な重合体(以下「プレポリマー」と称することがある)としては、前記活性水素基含有化合物と反応可能な部位を少なくとも有しているものであれば特に制限はなく、公知の樹脂等の中から適宜選択することができ、例えば、ポリオール樹脂、ポリアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、これらの誘導体樹脂、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、未変性ポリエステル樹脂との相溶性が良好である点で、ポリエステル樹脂が特に好ましい。
【0043】
前記プレポリマーにおける前記活性水素基含有化合物と反応可能な部位としては、特に制限はなく、公知の置換基等の中から適宜選択することができるが、例えば、イソシアネート基、エポキシ基、カルボン酸、酸クロリド基、などが挙げられる。
これらは、1種単独で含まれていてもよいし、2種以上が含まれていてもよい。これらの中でも、イソシアネート基が特に好ましい。
【0044】
前記プレポリマーの中でも、高分子成分の分子量を調節し易く、乾式トナーにおけるオイルレス低温定着特性、特に定着用加熱媒体への離型オイル塗布機構のない場合でも良好な離型性及び定着性を確保できる点で、ウレア結合生成基含有ポリエステル樹脂(RMPE)であるのが特に好ましい。
前記ウレア結合生成基としては、例えば、イソシアネート基、などが挙げられる。前記ウレア結合生成基含有ポリエステル樹脂(RMPE)における該ウレア結合生成基が該イソシアネート基である場合、該ポリエステル樹脂(RMPE)としては、前記イソシアネート基含有ポリエステルプレポリマー(A)などが特に好適に挙げられる。
【0045】
前記イソシアネート基含有ポリエステルプレポリマー(A)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオール(PO)とポリカルボン酸(PC)との重縮合物であり、かつ前記活性水素基含有ポリエステル樹脂をポリイソシアネート(PIC)と反応させてなるもの、などが挙げられる。
【0046】
前記ポリオール(PO)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジオール(DIO)、3価以上のポリオール(TO)、ジオール(DIO)と3価以上のポリオール(TO)との混合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、前記ジオール(DIO)単独、又は前記ジオール(DIO)と少量の前記3価以上のポリオール(TO)との混合物、などが好ましい。
【0047】
前記ジオール(DIO)としては、例えば、アルキレングリコール、アルキレンエーテルグリコール、脂環式ジオール、脂環式ジオールのアルキレンオキサイド付加物、ビスフェノール類、ビスフェノール類のアルキレンオキサイド付加物、などが挙げられる。
前記アルキレングリコールとしては、炭素数2〜12のものが好ましく、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等が挙げられる。前記アルキレンエーテルグリコールとしては、例えば、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等が挙げられる。前記脂環式ジオールとしては、例えば、1,4−シクロヘキサンジメタノール、水素添加ビスフェノールA等が挙げられる。前記脂環式ジオールのアルキレンオキサイド付加物としては、例えば、前記脂環式ジオールに対し、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加物したもの等が挙げられる。前記ビスフェノール類としては、例えば、ビスフェノールA 、ビスフェノールF 、ビスフェノールS等が挙げられる。前記ビスフェノール類のアルキレンオキサイド付加物としては、例えば、前記ビスフェノール類に対し、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加物したもの等が挙げられる。
これらの中でも、炭素数2〜12のアルキレングリコール、ビスフェノール類のアルキレンオキサイド付加物などが好ましく、ビスフェノール類のアルキレンオキサイド付加物、ビスフェノール類のアルキレンオキサイド付加物と炭素数2〜12のアルキレングリコールとの混合物が特に好ましい。
【0048】
前記3価以上のポリオール(TO)としては、3〜8価又はそれ以上のものが好ましく、例えば、3価以上の多価脂肪族アルコール、3価以上のポリフェノール類、3価以上のポリフェノール類のアルキレンオキサイド付加物、などが挙げられる。
前記3価以上の多価脂肪族アルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等が挙げられる。前記3価以上のポリフェノール類としては、例えば、トリスフェノールPA、フェノールノボラック、クレゾールノボラック等が挙げられる。前記3価以上のポリフェノール類のアルキレンオキサイド付加物としては、例えば、前記3価以上のポリフェノール類に対し、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加物したもの等が挙げられる。
【0049】
前記ジオール(DIO)と前記3価以上のポリオール(TO)との混合物における、前記ジオール(DIO)と前記3価以上のポリオール(TO)との混合質量比(DIO:TO)としては、100:0.01〜10が好ましく、100:0.01〜1がより好ましい。
【0050】
前記ポリカルボン酸(PC)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ジカルボン酸(DIC)、3価以上のポリカルボン酸(TC)、ジカルボン酸(DIC)と3価以上のポリカルボン酸との混合物、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ジカルボン酸(DIC)単独、又はDICと少量の3価以上のポリカルボン酸(TC)との混合物が好ましい。
前記ジカルボン酸としては、例えば、アルキレンジカルボン酸、アルケニレンジカルボン酸、芳香族ジカルボン酸、などが挙げられる。
前記アルキレンジカルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸等が挙げられる。前記アルケニレンジカルボン酸としては、炭素数4〜20のものが好ましく、例えば、マレイン酸、フマール酸等が挙げられる。前記芳香族ジカルボン酸としては、炭素数8〜20のものが好ましく、例えば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等が挙げられる。
これらの中でも、炭素数4〜20のアルケニレンジカルボン酸、炭素数8〜20の芳香族ジカルボン酸が好ましい。
【0051】
前記3価以上のポリカルボン酸(TO)としては、3〜8価又はそれ以上のものが好ましく、例えば、芳香族ポリカルボン酸、などが挙げられる。
前記芳香族ポリカルボン酸としては、炭素数9〜20のものが好ましく、例えば、トリメリット酸、ピロメリット酸等が挙げられる。
【0052】
前記ポリカルボン酸(PC)としては、前記ジカルボン酸(DIC)、前記3価以上のポリカルボン酸(TC)、及び、前記ジカルボン酸(DIC)と前記3価以上のポリカルボン酸との混合物、から選択されるいずれかの酸無水物又は低級アルキルエステル物を用いることもできる。前記低級アルキルエステルとしては、例えば、メチルエステル、エチルエステル、イソプロピルエステル等が挙げられる。
【0053】
前記ジカルボン酸(DIC)と前記3価以上のポリカルボン酸(TC)との混合物における前記ジカルボン酸(DIC)と前記3価以上のポリカルボン酸(TC)との混合質量比(DIC:TC)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、100:0.01〜10が好ましく、100:0.01〜1がより好ましい。
【0054】
前記ポリオール(PO)とポリカルボン酸(PC)とを重縮合反応させる際の混合比率としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記ポリオール(PO)における水酸基[OH]と、前記ポリカルボン酸(PC)におけるカルボキシル基[COOH]との当量比([OH]/[COOH])が、通常、2/1〜1/1であるのが好ましく、1.5/1〜1/1であるのがより好ましく、1.3/1〜1.02/1であるのが特に好ましい。前記当量比([OH]/[COOH])が、2/1を超えると又は1/1未満であると、重縮合反応が完全に進まないことがある。
【0055】
前記ポリオール(PO)の前記イソシアネート基含有ポリエステルプレポリマー(A)における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.5〜40質量%が好ましく、1〜30質量%がより好ましく、2〜20質量%が特に好ましい。
前記含有量が、0.5質量%未満であると、耐ホットオフセット性が悪化し、トナーの耐熱保存性と低温定着性とを両立させることが困難になることがあり、40質量%を超えると、低温定着性が悪化することがある。
【0056】
前記ポリイソシアネート(PIC)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ジイソシアネート、芳香脂肪族ジイソシアネート、イソシアヌレート類、これらのフェノール誘導体、オキシム、カプロラクタムなどでブロックしたもの、などが挙げられる。
前記脂肪族ポリイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、トリメチルヘキサンジイソシアネート、テトラメチルヘキサンジイソシアネート等が挙げられる。前記脂環式ポリイソシアネートとしては、例えば、イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネート等が挙げられる。前記芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5−ナフチレンジイソシアネート、ジフェニレン−4,4’−ジイソシアネート、4,4’−ジイソシアナト−3,3’−ジメチルジフェニル、3−メチルジフェニルメタン−4,4’−ジイソシアネート、ジフェニルエーテル−4,4’−ジイソシアネート等が挙げられる。前記芳香脂肪族ジイソシアネートとしては、例えば、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等が挙げられる。前記イソシアヌレート類としては、例えば、トリス−イソシアナトアルキル−イソシアヌレート、トリイソシアナトシクロアルキル−イソシアヌレート等が挙げられる。
これらは、1種単独でも使用することができ、2種以上を併用してもよい。これらの中でも、イソホロンジイソシアネートが好ましい。
【0057】
前記ポリイソシアネート(PIC)と、前記活性水素基含有ポリエステル樹脂(例えば水酸基含有ポリエステル樹脂)とを反応させる際の混合比率としては、該ポリイソシアネート(PIC)におけるイソシアネート基[NCO]と、該水酸基含有ポリエステル樹脂における水酸基[OH]との混合当量比([NCO]/[OH])が、通常、5/1〜1/1であるのが好ましく、4/1〜1.2/1でるのがより好ましく、3/1〜1.5/1であるのが特に好ましい。
前記イソシアネート基[NCO]が、5を超えると、低温定着性が悪化することがあり、1未満であると、耐ホットオフセット性が悪化することがある。
【0058】
前記ポリイソシアネート(PIC)の前記イソシアネート基含有ポリエステルプレポリマー(A)における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.5〜40質量%が好ましく、1〜30質量%がより好ましく、2〜20質量%が更に好ましい。
前記含有量が、0.5質量%未満であると、耐ホットオフセット性が悪化し、耐熱保存性と低温定着性とを両立させることが困難になることがあり、40質量%を超えると、低温定着性が悪化することがある。
【0059】
前記イソシアネート基含有ポリエステルプレポリマー(A)の1分子当たりに含まれるイソシアネート基の平均数としては、1以上が好ましく、1.2〜5がより好ましく、1.5〜4がより好ましい。
前記イソシアネート基の平均数が、1未満であると、前記ウレア結合生成基で変性されているポリエステル樹脂(RMPE)の分子量が低くなり、耐ホットオフセット性が悪化することがある。
【0060】
−−水系媒体−−
前記水系媒体としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、水、該水と混和可能な溶剤、これらの混合物、などが挙げられる。
前記水と混和可能な溶剤としては、前記水と混和可能であれば特に制限はなく、例えば、アルコール、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類、低級ケトン類、などが挙げられる。
前記アルコールとしては、例えば、メタノール、イソプロパノール、エチレングリコール等が挙げられる。前記セルソルブ類としては、例えば、メチルセルソルブ等が挙げられる。前記低級ケトン類としては、例えば、アセトン、メチルエチルケトン等が挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0061】
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、着色剤、離型剤、未変性ポリエステル樹脂、帯電制御剤、無機微粒子、流動性向上剤、クリーニング性向上剤、磁性材料、金属石鹸、などが挙げられる。
【0062】
前記着色剤としては、特に制限はなく、公知の染料及び顔料の中から目的に応じて適宜選択することができるが、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0063】
前記着色剤の前記トナーにおける含有量は、特に制限はなく、目的に応じて適宜選択することができるが、1〜15重量%が好ましく、3〜10重量%がより好ましい。
前記含有量が、1質量%未満であっても、また、15質量%を超えても、画像濃度が不足又は過剰となり、良好な画質が得られないことがある。
【0064】
前記着色剤は、樹脂と複合化されたマスターバッチとして用いることもできる。
前記樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スチレン又はその置換体の重合体、スチレン共重合体、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、芳香族石油樹脂、塩素化パラフィン、パラフィンワックス、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0065】
前記スチレン又はその置換体の重合体としては、例えば、ポリエステル樹脂、ポリスチレン、ポリp−クロロスチレン、ポリビニルトルエン、などが挙げられる。
前記スチレン共重合体としては、例えば、スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体、などが挙げられる。
【0066】
前記マスターバッチは、前記マスターバッチ用樹脂と、前記着色剤とを高せん断力をかけて混合又は混練させて製造することができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶剤を添加することが好ましい。また、いわゆるフラッシング法も着色剤のウエットケーキをそのまま用いることができ、乾燥する必要がない点で好適である。このフラッシング法は、着色剤の水を含んだ水性ペーストを樹脂と有機溶剤とともに混合又は混練し、着色剤を樹脂側に移行させて水分及び有機溶剤成分を除去する方法である。前記混合又は混練には、例えば、三本ロールミル等の高せん断分散装置が好適に用いられる。
【0067】
前記離型剤としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができ、例えば、ワックス類、などが好適に挙げられる。
前記ワックス類としては、例えば、カルボニル基含有ワックス、ポリオレフィンワックス、長鎖炭化水素、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、カルボニル基含有ワックスが好ましい。
前記カルボニル基含有ワックスとしては、例えば、ポリアルカン酸エステル、ポリアルカノールエステル、ポリアルカン酸アミド、ポリアルキルアミド、ジアルキルケトン、などが挙げられる。前記ポリアルカン酸エステルとしては、例えば、カルナバワックス、モンタンワックス、トリメチロールプロパントリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールジアセテートジベヘネート、グリセリントリベヘネート、1,18-オクタデカンジオールジステアレート等が挙げられる。前記ポリアルカノールエステルとしては、例えば、トリメリット酸トリステアリル、ジステアリルマレエート等が挙げられる。前記ポリアルカン酸アミドとしては、例えば、ジベヘニルアミド等が挙げられる。前記ポリアルキルアミドとしては、例えば、トリメリット酸トリステアリルアミド等が挙げられる。前記ジアルキルケトンとしては、例えば、ジステアリルケトン等が挙げられる。これらカルボニル基含有ワックスの中でも、ポリアルカン酸エステルが特に好ましい。
前記ポリオレフィンワッックスとしては、例えば、ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。
前記長鎖炭化水素としては、例えば、パラフィンワッックス、サゾールワックス等が挙げられる。
【0068】
前記離型剤の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、40〜160℃が好ましく、50〜120℃がより好ましく、60〜90℃が特に好ましい。
前記融点が、40℃未満であると、ワックスが耐熱保存性に悪影響を与えることがあり、160℃を超えると、低温での定着時にコールドオフセットを起こし易いことがある。
前記離型剤の溶融粘度としては、該ワックスの融点より20℃高い温度での測定値として、5〜1000cpsが好ましく、10〜100cpsがより好ましい。
前記溶融粘度が、5cps未満であると、離型性が低下することがあり、1000cpsを超えると、耐ホットオフセット性、低温定着性への向上効果が得られなくなることがある。
【0069】
前記離型剤の前記トナーにおける含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0〜40質量%が好ましく、3〜30質量%がより好ましい。
前記含有量が、40質量%を超えると、トナーの流動性が悪化することがある。
【0070】
前記未変性ポリエステル樹脂を前記トナー中に含有させると、低温定着性及び光沢性を向上させることができる。
前記未変性ポリエステル樹脂としては、前記ウレア結合生成基含有ポリエステル樹脂と同様のもの、即ちポリオール(PO)とポリカルボン酸(PC)との重縮合物、などが挙げられる。該未変性ポリエステル樹脂は、その一部が前記ウレア結合生成基含有ポリエステル系樹脂(RMPE)と相溶していること、即ち互いに相溶可能な類似の構造であるのが、低温定着性、耐ホットオフセット性の点で好ましい。
前記未変性ポリエステル樹脂の重量平均分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)による測定値で、1,000〜30,000が好ましく、1,500〜10,000がより好ましく、2,000〜8,000が特に好ましい。前記重量平均分子量が、1,000未満であると、耐熱保存性が悪化することがあり、30,000を超えると、低温定着性が悪化することがある。
前記未変性ポリエステル樹脂のガラス転移温度としては、30〜50℃が好ましく、35〜45℃がより好ましい。前記ガラス転移温度が、30℃未満であると、トナーの耐熱保存性が悪化することがあり、50℃を超えると、低温定着性が不十分となることがある。
前記未変性ポリエステル樹脂の水酸基価としては、5mgKOH/gが以上が好ましく、10〜120mgKOH/gがより好ましく、20〜80mgKOH/gが更に好ましい。前記水酸基価が、5未満であると、耐熱保存性と低温定着性とが両立し難くなることがある。
前記未変性ポリエステル樹脂の酸価としては、0〜40mgKOH/gが好ましく、0〜30mgKOH/gがより好ましい。一般に前記トナーに酸価をもたせることによって負帯電性となり易くなる。
【0071】
前記未変性ポリエステル樹脂を前記トナーに含有させる場合、前記ウレア結合生成基含有ポリエステル系樹脂(RMPE)と該未変性ポリエステル樹脂(PE)との混合質量比(RMPE/PE)としては、5/95〜25/75が好ましく、10/90〜25/75がより好ましい。
前記未変性ポリエステル樹脂(PE)の混合質量比が、95を超えると、耐ホットオフセット性が悪化し、耐熱保存性と低温定着性とが両立し難くなることがあり、25未満であると、光沢性が悪化することがある。
【0072】
前記帯電制御剤としては、特に制限はなく、公知のもの中から目的に応じて適宜選択することができるが、有色材料を用いると色調が変化することがあるため、無色乃至白色に近い材料が好ましく、例えば、トリフェニルメタン系染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体又はその化合物、タングステンの単体又はその化合物、フッ素系活性剤、サリチル酸の金属塩、サリチル酸誘導体の金属塩、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記帯電制御剤は、市販品を使用してもよく、該市販品としては、例えば、第四級アンモニウム塩のボントロンP−51、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物、などが挙げられる。
前記帯電制御剤は、前記マスターバッチと共に溶融混練させた後、溶解乃至分散させてもよく、あるいは前記トナーの各成分と共に前記有機溶媒に直接、溶解乃至分散させる際に添加してもよく、あるいはトナー粒子製造後にトナー表面に固定させてもよい。
【0073】
前記帯電制御剤の前記トナーにおける含有量としては、前記接着性基材の種類、添加剤の有無、分散方法等により異なり、一概に規定することができないが、例えば、前記接着性基材100質量部に対し、0.1〜10質量部が好ましく、0.2〜5質量部がより好ましい。該含有量が、0.1質量部未満であると、帯電制御性が得られないことがあり、10質量部を超えると、トナーの帯電性が大きくなりすぎ、主帯電制御剤の効果を減退させて、現像ローラとの静電的吸引力が増大し、現像剤の流動性低下や画像濃度の低下を招くことがある。
【0074】
前記無機微粒子としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができ、例えば、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記無機微粒子の一次粒子径としては、5nm〜2μmが好ましく、5nm〜500nmがより好ましい。また、前記無機微粒子のBET法による比表面積としては、20〜500m/gが好ましい。
前記無機微粒子の前記トナーにおける含有量としては、0.01〜5.0質量%が好ましく、0.01〜2.0質量%がより好ましい。
【0075】
前記流動性向上剤は、表面処理を行って、疎水性を上げ、高湿度下においても流動特性や帯電特性の悪化を防止可能なものを意味し、例えば、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイル、などが挙げられる。
前記クリーニング性向上剤は、感光体や一次転写媒体に残存する転写後の現像剤を除去するために前記トナーに添加され、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸等の脂肪酸金属塩、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等のソープフリー乳化重合により製造されたポリマー微粒子、などが挙げられる。該ポリマー微粒子は、比較的粒度分布が狭いものが好ましく、体積平均粒径が0.01〜1μmのものが好適である。
前記磁性材料としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができ、例えば、鉄粉、マグネタイト、フェライト、などが挙げられる。これらの中でも、色調の点で白色のものが好ましい。
【0076】
本発明のトナーは、その形状、大きさ等の諸物性については、特に制限はなく、目的に応じて適宜選択することができるが、以下のような、針入度、低温定着性、オフセット未発生温度、熱特性、画像濃度、平均円形度、重量(質量)平均粒径、BET比表面積等を有していることが好ましい。
【0077】
前記針入度としては、例えば、針入度試験(JIS K2235−1991)で測定した針入度が、15mm以上であることが必要であり、20〜30mmがより好ましい。
前記針入度が、15mm未満であると、耐熱保存性が悪化することがある。
前記針入度は、JIS K2235−1991に従って測定することができ、具体的には、50mlのガラス容器にトナーを充填し、50℃の恒温槽に20時間放置する。このトナーを室温まで冷却し、針入度試験を行うことにより針入度を測定することができる。なお、前記針入度の値が大きい程、前記耐熱保存性が優れることを示している。
【0078】
前記低温定着性としては、定着温度低下とオフセット未発生とを両立させる観点からは、定着下限温度が低くなるほど好ましく、また、オフセット未反応温度が高くなるほど好ましく、定着温度低下とオフセット未発生とを両立させ得る温度領域としては、前記定着下限温度が150℃未満であり、前記オフセット未発生温度が200℃以上である。
なお、前記定着下限温度は、例えば、画像形成装置を用い、転写紙をセットし、複写テストを行い、得られた定着画像をパットで擦った後の画像濃度の残存率が70%以上となる定着ロール温度を定着下限温度としたものである。
前記オフセット未発生温度は、例えば、画像形成装置を用いて、転写紙をセットし、イエロー、マゼンタ、シアン、及びブラックの各単色、及び中間色としてレッド、ブルー、及びグリーンのベタ画像を各単色で現像されるように調整し、定着ベルトの温度が可変となるように調整して、オフセットの発生しない温度を測定することによって求めることができる。
【0079】
前記熱特性は、フローテスター特性とも言われ、例えば、軟化温度(Ts)、流出開始温度(Tfb)、1/2法軟化点(T1/2)などとして評価される。これらの熱特性は、適宜選択した方法により測定することができ、例えば、高架式フローテスターCFT500型(島津製作所製)を用いて測定したフローカーブから求めることができる。
前記軟化温度(Ts)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、30℃以上が好ましく、50〜120℃がより好ましい。前記軟化温度(Ts)が、30℃未満であると、耐熱保存性及び低温保存性の少なくともいずれかが悪化することがある。
前記流出開始温度(Tfb)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、50℃以上が好ましく、60〜150℃がより好ましい。前記流出開始温度(Tfb)が、50℃未満であると、耐熱保存性及び低温保存性の少なくともいずれかが悪化することがある。
前記1/2法軟化点(T1/2)は、特に制限はなく、目的に応じて適宜選択することができ、例えば、60℃以上が好ましく、80〜170℃がより好ましい。前記1/2法軟化点(T1/2)が、60℃未満であると、耐熱保存性及び低温保存性の少なくともいずれかが悪化することがある。
【0080】
前記画像濃度は、分光計(X−ライト社製、938 スペクトロデンシトメータ)を用いて測定した濃度値が、例えば、1.90以上が好ましく、2.00以上がより好ましく、2.10以上が特に好ましい。
前記画像濃度が、1.90未満であると、画像濃度が低く、高画質が得られないことがある。
前記画像濃度は、例えば、imagio Neo 450(株式会社リコー製)を用いて、複写紙(TYPE 6000<70W>;株式会社リコー製)に現像剤の付着量が1.00±0.05mg/cmのベタ画像を定着ローラの表面温度が160±2℃で形成し、得られたベタ画像における任意の6箇所の画像濃度を、分光計(X−ライト社製、938 スペクトロデンシトメータ)を用いて測定しその平均値を算出することにより、測定することができる。
【0081】
前記平均円形度は、前記トナーの形状と投影面積の等しい相当円の周囲長を実在粒子の周囲長で除した値であり、例えば、0.90〜1.00が好ましく、0.910〜0.995がより好ましい。なお、前記平均円形度が0.90未満の粒子が30%以下であることが好ましい。
前記平均円形度が、0.90未満であると、満足できる転写性やチリのない高画質画像が得られないことがあり、0.995を超えると、ブレードクリーニングなどを採用している画像形成システムでは、感光体上及び転写ベルトなどのクリーニング不良が発生し、画像上の汚れ、例えば、写真画像等の画像面積率の高い画像形成の場合において、給紙不良等で未転写の画像を形成したトナーが感光体上に転写残トナーとなって蓄積した画像の地汚れが発生してしまうことがあり、あるいは、感光体を接触帯電させる帯電ローラ等を汚染してしまい、本来の帯電能力を発揮できなくなってしまうことがある。
前記平均円形度は、例えば、トナー粒子を含む懸濁液を平板上の撮像部検知帯に通過させ、CCDカメラで光学的に粒子画像を検知し、解析する光学的検知帯の手法などにより計測することができ、例えば、フロー式粒子像分析装置FPIA−2100(シスメックス社製)等を用いて計測することができる。
【0082】
前記トナーの体積平均粒径としては、例えば、3〜8μmが好ましい。
前記体積平均粒径が、3μm未満であると、二成分現像剤では現像装置における長期の撹拌においてキャリアの表面にトナーが融着し、キャリアの帯電能力を低下させることがあり、また、一成分現像剤では、現像ローラへのトナーのフィルミングや、トナーを薄層化するため、ブレード等の部材へのトナー融着が発生し易くなることがあり、8μmを超えると、高解像で高画質の画像を得ることが難しくなり、現像剤中のトナーの収支が行われた場合にトナーの粒子径の変動が大きくなることがある。
【0083】
前記トナーにおける体積平均粒径と個数平均粒子径との比(体積平均粒径/個数平均粒径)としては、例えば、1.00〜1.25が好ましく、1.10〜1.25がより好ましい。
前記体積平均粒径と個数平均粒径との比(体積平均粒径/個数平均粒径)が、1.00未満であると、二成分現像剤では現像装置における長期の撹拌においてキャリアの表面にトナーが融着し、キャリアの帯電能力を低下させることがあり、また、一成分現像剤では、現像ローラへのトナーのフィルミングや、トナーを薄層化するため、ブレード等の部材へのトナー融着が発生し易くなることがあり、1.25を超えると、高解像で高画質の画像を得ることが難しくなり、現像剤中のトナーの収支が行われた場合にトナーの粒子径の変動が大きくなることがある。
【0084】
前記体積平均粒径、及び、前記体積平均粒径と個数平均粒子径との比(体積平均粒径/個数平均粒径)は、例えば、ベックマン・コールター社製の粒度測定器「マルチサイザーII」を用いて測定することができる。
【0085】
前記トナーにおけるBET比表面積としては、例えば、0.5〜8.0m/gが好ましく、0.5〜7.5m/gがより好ましい。
前記BET比表面積が、0.5m/g未満であると、トナー表面上に残存する有機微粒子が皮膜化又はトナー表面全体を密に覆う状態となり、樹脂微粒子がトナー内部のバインダー樹脂成分と定着紙との接着性を阻害し、定着下限温度の上昇が見られることがある一方、8.0m/gを超えると、樹脂微粒子がワックスのしみ出しを阻害し、ワックスの離型性効果が得られず、オフセットの発生が見られることがある。
前記トナーの比表面積は、BET法に従って測定することができ、例えば、比表面積測定装置トライスター3000(島津製作所製)を用いて試料表面に窒素ガスを吸着させ、BET多点法を用いて測定することができる。
【0086】
本発明のトナーの着色としては、特に制限はなく、目的に応じて適宜選択することができ、ブラックトナー、シアントナー、マゼンタトナー及びイエロートナーから選択される少なくとも1種とすることができ、各色のトナーは前記着色剤の種類を適宜選択することにより得ることができる。
【0087】
本発明のトナーは、該トナーに耐熱保存性を付与する樹脂微粒子と、該トナーに低温定着性を付与する樹脂微粒子との少なくとも2種の樹脂微粒子が含むので、優れた耐熱保存性と低温定着性とを両立し、耐ホットオフセット性に優れ、低温定着条件下でも高品質な画像を形成することができる。また、本発明のトナーは、前記活性水素基含有化合物及び該活性水素基含有化合物と反応可能な重合体を水系媒体中で反応させてなる前記接着性基材を含むので、耐凝集性、帯電性、流動性、転写性、定着性等の諸特性に優れる。このため、本発明のトナーは、各種分野において好適に使用することができ、電子写真法による画像形成に、より好適に使用することができ、以下の本発明のトナー入り容器、現像剤、プロセスカートリッジ、画像形成装置及び画像形成方法に特に好適に使用することができる。
【0088】
本発明のトナーは、公知の方法により製造することができるが、後述する本発明のトナーの製造方法により、好適に製造することができる。
【0089】
(トナーの製造方法)
本発明のトナーの製造方法は、上述した本発明のトナーを製造する方法であって、活性水素基含有化合物と、該活性水素基含有化合物と反応可能な部位を有する重合体と、少なくとも2種の樹脂微粒子とを水系媒体中で分散させかつ反応させて接着性基材を生成させつつトナーを得る工程を少なくとも含み、更に必要に応じて適宜選択したその他の工程を含む。
【0090】
前記工程においては、例えば、水系媒体相の調製、有機溶媒相の調製、乳化・分散、その他(前記活性水素基含有化合物と反応可能な重合体(プレポリマー)の合成、前記活性水素基含有化合物の合成など)を行う。
【0091】
前記水系媒体相の調製は、例えば、前記少なくとも2種の樹脂微粒子を前記水系媒体に分散させることにより行うことができる。該樹脂微粒子の該水系媒体中の添加量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5〜10質量%が好ましい。
前記有機溶媒相の調製は、前記有機溶媒中に、前記活性水素基含有化合物、前記活性水素基含有化合物と反応可能な重合体、前記着色剤、前記離型剤、前記帯電制御剤、前記未変性ポリエステル樹脂等のトナー原料を、溶解乃至分散させることにより行うことができる。
なお、前記トナー原料の中で、前記活性水素基含有化合物と反応可能な重合体(プレポリマー)以外の成分は、前記水系媒体相調製において、前記樹脂微粒子を前記水系媒体に分散させる際に該水系媒体中に添加混合してもよいし、あるいは、前記有機溶媒相を前記水系媒体相に添加する際に、該有機溶媒相と共に前記水系媒体相に添加してもよい。
【0092】
前記有機溶媒としては、前記トナー原料を溶解乃至分散可能な溶媒であれば特に制限はなく、目的に応じて適宜選択することができ、除去の容易性の点で沸点が150℃未満の揮発性のものが好ましく、例えば、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、などが挙げられる。これらの中でも、酢酸エチル、トルエン、キシレン、ベンゼン、塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、などが特に好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記有機溶媒の使用量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記トナー原料100質量部に対し、40〜300質量部が好ましく、60〜140質量部がより好ましく、80〜120質量部が更に好ましい。
【0093】
前記乳化・分散は、先に調製した前記有機溶媒相を、先に調製した前記水系媒体相中に乳化・分散させることにより行うことができる。そして、該乳化・分散の際、前記活性水素基含有化合物と前記活性水素基含有化合物と反応可能な重合体とを伸長反応乃至架橋反応させると、前記接着性基材が生成する。
前記接着性基材(例えば、前記ウレア変性ポリエステル樹脂)は、例えば、(1)前記活性水素基含有化合物と反応可能な重合体(例えば、前記イソシアネート基含有ポリエステルプレポリマー(A))を含む前記有機溶媒相を、前記活性水素基含有化合物(例えば、前記アミン類(B))と共に、前記水系媒体相中に乳化・分散させ、分散体を形成し、該水系媒体相中で両者を伸長反応乃至架橋反応させることにより生成させてもよく、(2)前記有機溶媒相を、予め前記活性水素基含有化合物を添加した前記水系媒体中に乳化・分散させ、分散体を形成し、該水系媒体相中で両者を伸長反応乃至架橋反応させることにより生成させてもよく、あるいは(3)前記有機溶媒相を、前記水系媒体中に添加混合させた後で、前記活性水素基含有化合物を添加し、分散体を形成し、該水系媒体相中で粒子界面から両者を伸長反応乃至架橋反応させることにより生成させてもよい。なお、前記(3)の場合、生成するトナー表面に優先的に変性ポリエステル樹脂が生成され、該トナー粒子において濃度勾配を設けることもできる。
【0094】
前記乳化・分散により、前記接着性基材を生成させるための反応条件としては、特に制限はなく、前記活性水素基含有化合物と反応可能な重合体と前記活性水素基含有化合物との組合せに応じて適宜選択することができ、反応時間としては、10分間〜40時間が好ましく、2時間〜24時間がより好ましく、反応温度としては、0〜150℃が好ましく、40〜98℃がより好ましい。
【0095】
前記水系媒体相中において、前記活性水素基含有化合物と反応可能な重合体(例えば、前記イソシアネート基含有ポリエステルプレポリマー(A))を含む前記分散体を安定に形成する方法としては、例えば、前記水系媒体相中に、前記有機溶媒に溶解乃至分散させた前記活性水素基含有化合物と反応可能な重合体(例えば、前記イソシアネート基含有ポリエステルプレポリマー(A))、前記着色剤、前記離型剤、前記帯電制御剤、前記未変性ポリエステル樹脂などの前記トナー原料を加えて、せん断力により分散させる方法、などが挙げられる。
前記分散は、その方法としては特に制限はなく、公知の分散機等を用いて適宜選択することができ、該分散機としては、例えば、低速せん断式分散機、高速せん断式分散機、摩擦式分散機、高圧ジェット式分散機、超音波分散機、などが挙げられる。これらの中でも、前記分散体の粒径を2〜20μmに制御することができる点で、高速せん断式分散機が好ましい。
前記高速せん断式分散機を用いた場合、回転数、分散時間、分散温度などの条件については特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記回転数としては、1000〜30000rpmが好ましく、5000〜20000rpmがより好ましく、前記分散時間としては、バッチ方式の場合は、0.1〜5分が好ましく、前記分散温度としては、加圧下において0〜150℃が好ましく、40〜98℃がより好ましい。なお、前記分散温度は高温である方が一般に分散が容易である。
【0096】
前記乳化・分散において、前記水系媒体の使用量としては、前記トナー原料100質量部に対し、50〜2,000質量部が好ましく、100〜1,000質量部がより好ましい。
前記使用量が、50質量部未満であると、前記トナー原料の分散状態が悪く、所定の粒径のトナー粒子が得られないことがあり、2,000質量部を超えると、生産コストが高くなることがある。
【0097】
前記乳化・分散においては、必要に応じて、粒度分布をシャープにし、安定に分散を行う観点から、分散剤を用いることが好ましい。
前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、難水溶性の無機化合物分散剤、高分子系保護コロイド、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、界面活性剤が好ましい。
【0098】
前記界面活性剤としては、例えば、陰イオン界面活性剤、陽イオン界面活性剤、非イオン界面活性剤、両性界面活性剤、などが挙げられる。
前記陰イオン界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステル等が挙げられ、フルオロアルキル基を有するものが好適に挙げられる。該フルオロアルキル基を有するアニオン性界面活性剤としては、例えば、炭素数2〜10のフルオロアルキルカルボン酸又はその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[オメガ−フルオロアルキル(炭素数6〜11)オキシ]−1−アルキル(炭素数3〜4)スルホン酸ナトリウム、3−[オメガ−フルオロアルカノイル(炭素数6〜8)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(炭素数11〜20)カルボン酸又はその金属塩、パーフルオロアルキルカルボン酸(炭素数7〜13)又はその金属塩、パーフルオロアルキル(炭素数4〜12)スルホン酸又はその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(炭素数6〜10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(炭素数6〜10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(炭素数6〜16)エチルリン酸エステル等が挙げられる。該フルオロアルキル基を有する界面活性剤の市販品としては、例えば、サーフロンS−111、S−112、S−113(旭硝子社製);フロラードFC−93、FC−95、FC−98、FC−129(住友3M社製);ユニダインDS−101、DS−102(ダイキン工業社製);メガファックF−110、F−120、F−113、F−191、F−812、F−833(大日本インキ社製);エクトップEF−102、103、104、105、112、123A、123B、306A、501、201、204(ト−ケムプロダクツ社製);フタージェントF−100、F150(ネオス社製)等が挙げられる。
【0099】
前記陽イオン界面活性剤としては、例えば、アミン塩型界面活性剤、四級アンモニウム塩型の陽イオン界面活性剤等が挙げられる。前記アミン塩型界面活性剤としては、例えば、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリン等が挙げられる。前記四級アンモニウム塩型の陽イオン界面活性剤としては、例えば、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウム等が挙げられる。該陽イオン界面活性剤の中でも、フルオロアルキル基を有する脂肪族一級、二級又は三級アミン酸、パーフルオロアルキル(炭素数6〜10個)スルホンアミドプロピルトリメチルアンモニウム塩等の脂肪族四級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、などが挙げられる。該カチオン界面活性剤の市販品としては、例えば、サーフロンS−121(旭硝子社製);フロラードFC−135(住友3M社製);ユニダインDS−202(ダイキン工業杜製)、メガファックF−150、F−824(大日本インキ社製);エクトップEF−132(ト−ケムプロダクツ社製);フタージェントF−300(ネオス社製)等が挙げられる。
【0100】
前記非イオン界面活性剤としては、例えば、脂肪酸アミド誘導体、多価アルコール誘導体等が挙げられる。
前記両性界面活性剤としては、例えば、アラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシン、N−アルキル−N,N−ジメチルアンモニウムべタイン等が挙げられる。
【0101】
前記難水溶性の無機化合物分散剤としては、例えば、リン酸三カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロキシアパタイト、などが挙げられる。
前記高分子系保護コロイドとしては、例えば、酸類、水酸基を含有する(メタ)アクリル系単量体、ビニルアルコール又はビニルアルコールとのエーテル類、ビニルアルコールとカルボキシル基を含有する化合物のエステル類、アミド化合物又はこれらのメチロール化合物、クロライド類、窒素原子若しくはその複素環を有するもの等のホモポリマー又は共重合体、ポリオキシエチレン系、セルロース類、などが挙げられる。
前記酸類としては、例えば、アクリル酸、メタクリル酸、α−シアノアクリル酸、α−シアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、マレイン酸、無水マレイン酸等が挙げられる。前記水酸基を含有する(メタ)アクリル系単量体としては、例えば、アクリル酸β−ヒドロキシエチル、メタクリル酸β−ヒドロキシエチル、アクリル酸β−ヒドロキシプロビル、メタクリル酸β−ヒドロキシプロピル、アクリル酸γ−ヒドロキシプロピル、メタクリル酸γ−ヒドロキシプロピル、アクリル酸3−クロロ2−ヒドロキシプロビル、メタクリル酸3−クロロ−2−ヒドロキシプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノメタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル酸エステル、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等が挙げられる。前記ビニルアルコール又はビニルアルコールとのエーテル類としては、例えば、ビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル等が挙げられる。前記ビニルアルコールとカルボキシル基を含有する化合物のエステル類としては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられる。前記アミド化合物又はこれらのメチロール化合物としては、例えば、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド酸、又はこれらのメチロール化合物、などが挙げられる。前記クロライド類としては、例えば、アクリル酸クロライド、メタクリル酸クロライド等が挙げられる。前記窒素原子若しくはその複素環を有するもの等ホモポリマー又は共重合体としては、例えば、ビニルビリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミン等が挙げられる。前記ポリオキシエチレン系としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオキシエチレンノニルフェニルエステル等が挙げられる。前記セルロース類としては、例えば、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等が挙げられる。
【0102】
前記乳化・分散においては、必要に応じて分散安定剤を用いることができる。
該分散安定剤としては、例えば、リン酸カルシウム塩などの酸、アルカリに溶解可能なものなどが挙げられる。
該分散安定剤を用いた場合は、塩酸等の酸によりリン酸カルシウム塩を溶解した後、水洗する方法、酵素により分解する方法などによって、微粒子からリン酸カルシウム塩を除去することができる。
【0103】
前記乳化・分散においては、前記伸長反応乃至前記架橋反応の触媒を用いることができる。該触媒としては、例えば、ジブチルチンラウレート、ジオクチルチンラウレート、などが挙げられる。
【0104】
前記乳化・分散において得られた乳化スラリーから、有機溶媒を除去する。該有機溶媒の除去は、(1)反応系全体を徐々に昇温させて、液滴中の前記有機溶媒を完全に蒸発除去する方法、(2)乳化分散体を乾燥雰囲気中に噴霧して、液滴中の非水溶性有機溶媒を完全に除去してトナー微粒子を形成し、併せて水系分散剤を蒸発除去する方法、などが挙げられる。
【0105】
前記有機溶媒の除去が行われると、トナー粒子が形成される。該トナー粒子に対し、洗浄、乾燥等を行うことができ、更にその後、所望により分級等を行うことができる。該分級は、例えば、液中でサイクロン、デカンター、遠心分離等により、微粒子部分を取り除くことにより行うことができ、乾燥後に粉体として取得した後に分級操作を行ってもよい。
【0106】
こうして、得られたトナー粒子を、前記着色剤、離型剤、前記帯電制御剤等の粒子と共に混合したり、更に機械的衝撃力を印加することにより、該トナー粒子の表面から該離型剤等の粒子が脱離するのを防止することができる。
前記機械的衝撃力を印加する方法としては、例えば、高速で回転する羽根によって混合物に衝撃力を加える方法、高速気流中に混合物を投入し加速させて粒子同士又は複合化した粒子を適当な衝突板に衝突させる方法、などが挙げられる。この方法に用いる装置としては、例えば、オングミル(ホソカワミクロン社製)、I式ミル(日本ニューマチック社製)を改造して粉砕エアー圧カを下げた装置、ハイブリダイゼイションシステム(奈良機械製作所社製)、クリプトロンシステム(川崎重工業社製)、自動乳鉢、などが挙げられる。
【0107】
(現像剤)
本発明の現像剤は、本発明のトナーを少なくとも含有してなり、キャリア等の適宜選択したその他の成分を含有してなる。該現像剤としては、一成分現像剤であってもよいし、二成分現像剤であってもよいが、近年の情報処理速度の向上に対応した高速プリンタ等に使用する場合には、寿命向上等の点で前記二成分現像剤が好ましい。
本発明の前記トナーを用いた前記一成分現像剤の場合、トナーの収支が行われても、トナーの粒子径の変動が少なく、現像ローラへのトナーのフィルミングや、トナーを薄層化する為のブレード等の部材へのトナーの融着がなく、現像装置の長期の使用(撹拌)においても、良好で安定した現像性及び画像が得られる。また、本発明の前記トナーを用いた前記二成分現像剤の場合、長期にわたるトナーの収支が行われても、現像剤中のトナー粒子径の変動が少なく、現像装置における長期の撹拌においても、良好で安定した現像性が得られる。
【0108】
前記キャリアとしては、特に制限はなく、目的に応じて適宜選択することができるが、芯材と、該芯材を被覆する樹脂層とを有するものが好ましい。
【0109】
前記芯材の材料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、50〜90emu/gのマンガン−ストロンチウム(Mn−Sr)系材料、マンガン−マグネシウム(Mn−Mg)系材料などが好ましく、画像濃度の確保の点では、鉄粉(100emu/g以上)、マグネタイト(75〜120emu/g)等の高磁化材料が好ましい。また、トナーが穂立ち状態となっている感光体への当りを弱くでき高画質化に有利である点で、銅−ジンク(Cu−Zn)系(30〜80emu/g)等の弱磁化材料が好ましい。これらは、1種単独で使用してもよい、2種以上を併用してもよい。
【0110】
前記芯材の粒径としては、体積平均粒径で、10〜150μmが好ましく、40〜100μmがより好ましい。
前記平均粒径(体積平均粒径(D50))が、10μm未満であると、キャリア粒子の分布において、微粉系が多くなり、1粒子当たりの磁化が低くなってキャリア飛散を生じることがあり、150μmを超えると、比表面積が低下し、トナーの飛散が生じることがあり、ベタ部分の多いフルカラーでは、特にベタ部の再現が悪くなることがある。
【0111】
前記樹脂層の材料としては、特に制限はなく、公知の樹脂の中から目的に応じて適宜選択することができるが、例えば、アミノ系樹脂、ポリビニル系樹脂、ポリスチレン系樹脂、ハロゲン化オレフィン樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンとアクリル単量体との共重合体、フッ化ビニリデンとフッ化ビニルとの共重合体、テトラフルオロエチレンとフッ化ビニリデンと非フッ化単量体とのターポリマー等のフルオロターポリマー、シリコーン樹脂、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0112】
前記アミノ系樹脂としては、例えば、尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、ポリアミド樹脂、エポキシ樹脂等が挙げられる前記ポリビニル系樹脂としては、例えば、アクリル樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂等が挙げられる。前記ポリスチレン系樹脂としては、例えば、ポリスチレン樹脂、スチレンアクリル共重合樹脂等が挙げられる。前記ハロゲン化オレフィン樹脂としては、例えば、ポリ塩化ビニル等が挙げられる。前記ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等が挙げられる。
【0113】
前記樹脂層には、必要に応じて導電粉等を含有させてもよく、該導電粉としては、例えば、金属粉、カーボンブラック、酸化チタン、酸化錫、酸化亜鉛、などが挙げられる。これらの導電粉の平均粒子径としては、1μm以下が好ましい。前記平均粒子径が1μmを超えると、電気抵抗の制御が困難になることがある。
【0114】
前記樹脂層は、例えば、前記シリコーン樹脂等を溶剤に溶解させて塗布溶液を調製した後、該塗布溶液を前記芯材の表面に公知の塗布方法により均一に塗布し、乾燥した後、焼付を行うことにより形成することができる。前記塗布方法としては、例えば、浸漬法、スプレー法、ハケ塗り法、などが挙げられる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、セルソルブチルアセテート、などが挙げられる。
前記焼付としては、特に制限はなく、外部加熱方式であってもよいし、内部加熱方式であってもよく、例えば、固定式電気炉、流動式電気炉、ロータリー式電気炉、バーナー炉等を用いる方法、マイクロウエーブを用いる方法、などが挙げられる。
【0115】
前記樹脂層の前記キャリアにおける量としては、0.01〜5.0質量%が好ましい。
前記量が、0.01質量%未満であると、前記芯材の表面に均一な前記樹脂層を形成することができないことがあり、5.0質量%を超えると、前記樹脂層が厚くなり過ぎてキャリア同士の造粒が発生し、均一なキャリア粒子が得られないことがある。
【0116】
前記現像剤が前記二成分現像剤である場合、前記キャリアの該二成分現像剤における含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、90〜98質量%が好ましく、93〜97質量%がより好ましい。
【0117】
本発明の現像剤は、本発明の前記トナーを含有しているので、画像形成時における帯電性と定着性とをバランス良く両立することができ、高画質な画像を安定に形成することができる。
本発明の現像剤は、磁性一成分現像方法、非磁性一成分現像方法、二成分現像方法等の公知の各種電子写真法による画像形成に好適に用いることができ、以下の本発明のトナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法に特に好適に用いることができる。
【0118】
(トナー入り容器)
本発明のトナー入り容器は、本発明の前記トナー乃至前記現像剤を容器中に収容してなる。
前記容器としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、トナー入り容器本体とキャップとを有してなるもの、などが好適に挙げられる。
前記トナー入り容器本体としては、その大きさ、形状、構造、材質などについては特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、円筒状などが好ましく、内周面にスパイラル状の凹凸が形成され、回転させることにより内容物であるトナーが排出口側に移行可能であり、かつ該スパイラル部の一部又は全部が蛇腹機能を有しているもの、などが特に好ましい。前記トナー入り容器本体の材質としては、特に制限はなく、寸法精度がよいものが好ましく、例えば、樹脂が好適に挙げられ、その中でも、例えば、ポリエステル樹脂,ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリル酸、ポリカーボネート樹脂、ABS樹脂、ポリアセタール樹脂、などが好適に挙げられる。
本発明のトナー入り容器は、保存、搬送等が容易であり、取扱性に優れ、後述する本発明のプロセスカートリッジ、画像形成装置等に、着脱可能に取り付けてトナーの補給に好適に使用することができる。
【0119】
(プロセスカートリッジ)
本発明のプロセスカートリッジは、静電潜像を担持する静電潜像担持体と、該静電潜像担持体上に担持された静電潜像を、現像剤を用いて現像し可視像を形成する現像手段とを、少なくとも有してなり、更に必要に応じて適宜選択したその他の手段を有してなる。
前記現像手段としては、本発明の前記トナー乃至前記現像剤を収容する現像剤収容器と、該現像剤収容器内に収容されたトナー乃至現像剤を担持しかつ搬送する現像剤担持体とを、少なくとも有してなり、更に、担持させるトナー層厚を規制するための層厚規制部材等を有していてもよい。
本発明のプロセスカートリッジは、各種電子写真装置に着脱自在に備えさせることができ、後述する本発明の電子写真装置に着脱自在に備えさせるのが好ましい。
【0120】
(画像形成装置及び画像形成方法)
本発明の画像形成装置は、静電潜像担持体と、静電潜像形成手段と、現像手段と、転写手段と、定着手段とを少なくとも有してなり、更に必要に応じて適宜選択したその他の手段、例えば、除電手段、クリーニング手段、リサイクル手段、制御手段等を有してなる。
本発明の画像形成方法は、静電潜像形成工程と、現像工程と、転写工程と、定着工程とを少なくとも含み、更に必要に応じて適宜選択したその他の工程、例えば除電工程、クリーニング工程、リサイクル工程、制御工程等を含む。
【0121】
本発明の画像形成方法は、本発明の画像形成装置により好適に実施することができ、前記静電潜像形成工程は前記静電潜像形成手段により行うことができ、前記現像工程は前記現像手段により行うことができ、前記転写工程は前記転写手段により行うことができ、前記定着工程は前記定着手段により行うことができ、前記その他の工程は前記その他の手段により行うことができる。
【0122】
−静電潜像形成工程及び静電潜像形成手段−
前記静電潜像形成工程は、静電潜像担持体上に静電潜像を形成する工程である。
前記静電潜像担持体(「光導電性絶縁体」、「感光体」と称することがある)としては、その材質、形状、構造、大きさ、等について特に制限はなく、公知のものの中から適宜選択することができるが、その形状としてはドラム状が好適に挙げられ、その材質としては、例えばアモルファスシリコン、セレン等の無機感光体、ポリシラン、フタロポリメチン等の有機感光体、などが挙げられる。これらの中でも、長寿命性の点でアモルファスシリコン等が好ましい。
【0123】
前記静電潜像の形成は、例えば、前記静電潜像担持体の表面を一様に帯電させた後、像様に露光することにより行うことができ、前記静電潜像形成手段により行うことができる。
前記静電潜像形成手段は、例えば、前記静電潜像担持体の表面を一様に帯電させる帯電器と、前記静電潜像担持体の表面を像様に露光する露光器とを少なくとも備える。
【0124】
前記帯電は、例えば、前記帯電器を用いて前記静電潜像担持体の表面に電圧を印加することにより行うことができる。
前記帯電器としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、導電性又は半導電性のロール、ブラシ、フィルム、ゴムブレード等を備えたそれ自体公知の接触帯電器、コロトロン、スコロトロン等のコロナ放電を利用した非接触帯電器、などが挙げられる。
【0125】
前記露光は、例えば、前記露光器を用いて前記静電潜像担持体の表面を像様に露光することにより行うことができる。
前記露光器としては、前記帯電器により帯電された前記静電潜像担持体の表面に、形成すべき像様に露光を行うことができる限り特に制限はなく、目的に応じて適宜選択することができるが、例えば、複写光学系、ロッドレンズアレイ系、レーザー光学系、液晶シャッタ光学系、などの各種露光器が挙げられる。
なお、本発明においては、前記静電潜像担持体の裏面側から像様に露光を行う光背面方式を採用してもよい。
【0126】
−現像工程及び現像手段−
前記現像工程は、前記静電潜像を、本発明の前記トナー乃至前記現像剤を用いて現像して可視像を形成する工程である。
前記可視像の形成は、例えば、前記静電潜像を本発明の前記トナー乃至前記現像剤を用いて現像することにより行うことができ、前記現像手段により行うことができる。
前記現像手段は、例えば、本発明の前記トナー乃至前記現像剤を用いて現像することができる限り、特に制限はなく、公知のものの中から適宜選択することができ、例えば、本発明の前記トナー乃至現像剤を収容し、前記静電潜像に該トナー乃至該現像剤を接触又は非接触的に付与可能な現像器を少なくとも有するものが好適に挙げられ、本発明の前記トナー入り容器を備えた現像器などがより好ましい。
【0127】
前記現像器は、乾式現像方式のものであってもよいし、湿式現像方式のものであってもよく、また、単色用現像器であってもよいし、多色用現像器であってもよく、例えば、前記トナー乃至前記現像剤を摩擦攪拌させて帯電させる攪拌器と、回転可能なマグネットローラとを有してなるもの、などが好適に挙げられる。
【0128】
前記現像器内では、例えば、前記トナーと前記キャリアとが混合攪拌され、その際の摩擦により該トナーが帯電し、回転するマグネットローラの表面に穂立ち状態で保持され、磁気ブラシが形成される。該マグネットローラは、前記静電潜像担持体(感光体)近傍に配置されているため、該マグネットローラの表面に形成された前記磁気ブラシを構成する前記トナーの一部は、電気的な吸引力によって該静電潜像担持体(感光体)の表面に移動する。その結果、前記静電潜像が該トナーにより現像されて該静電潜像担持体(感光体)の表面に該トナーによる可視像が形成される。
【0129】
前記現像器に収容させる現像剤は、本発明の前記トナーを含む現像剤であるが、該現像剤としては一成分現像剤であってもよいし、二成分現像剤であってもよい。該現像剤に含まれるトナーは、本発明の前記トナーである。
【0130】
−転写工程及び転写手段−
前記転写工程は、前記可視像を記録媒体に転写する工程であるが、中間転写体を用い、該中間転写体上に可視像を一次転写した後、該可視像を前記記録媒体上に二次転写する態様が好ましく、前記トナーとして二色以上、好ましくはフルカラートナーを用い、可視像を中間転写体上に転写して複合転写像を形成する第一次転写工程と、該複合転写像を記録媒体上に転写する第二次転写工程とを含む態様がより好ましい。
前記転写は、例えば、前記可視像を転写帯電器を用いて前記静電潜像担持体(感光体)を帯電することにより行うことができ、前記転写手段により行うことができる。前記転写手段としては、可視像を中間転写体上に転写して複合転写像を形成する第一次転写手段と、該複合転写像を記録媒体上に転写する第二次転写手段とを有する態様が好ましい。
なお、前記中間転写体としては、特に制限はなく、目的に応じて公知の転写体の中から適宜選択することができ、例えば、転写ベルト等が好適に挙げられる。
【0131】
前記転写手段(前記第一次転写手段、前記第二次転写手段)は、前記静電潜像担持体(感光体)上に形成された前記可視像を前記記録媒体側へ剥離帯電させる転写器を少なくとも有するのが好ましい。前記転写手段は、1つであってもよいし、2以上であってもよい。
前記転写器としては、コロナ放電によるコロナ転写器、転写ベルト、転写ローラ、圧力転写ローラ、粘着転写器、などが挙げられる。
なお、前記記録媒体としては、特に制限はなく、公知の記録媒体(記録紙)の中から適宜選択することができる。
【0132】
前記定着工程は、記録媒体に転写された可視像を定着装置を用いて定着させる工程であり、各色のトナーに対し前記記録媒体に転写する毎に行ってもよいし、各色のトナーに対しこれを積層した状態で一度に同時に行ってもよい。
前記定着装置としては、特に制限はなく、目的に応じて適宜選択することができるが、公知の加熱加圧手段が好適である。前記加熱加圧手段としては、加熱ローラと加圧ローラとの組み合わせ、加熱ローラと加圧ローラと無端ベルトとの組み合わせ、などが挙げられる。
前記加熱加圧手段における加熱は、通常、80℃〜200℃が好ましい。
なお、本発明においては、目的に応じて、前記定着工程及び定着手段と共にあるいはこれらに代えて、例えば、公知の光定着器を用いてもよい。
【0133】
前記除電工程は、前記静電潜像担持体に対し除電バイアスを印加して除電を行う工程であり、除電手段により好適に行うことができる。
前記除電手段としては、特に制限はなく、前記静電潜像担持体に対し除電バイアスを印加することができればよく、公知の除電器の中から適宜選択することができ、例えば、除電ランプ等が好適に挙げられる。
【0134】
前記クリーニング工程は、前記静電潜像担持体上に残留する前記電子写真トナーを除去する工程であり、クリーニング手段により好適に行うことができる。
前記クリーニング手段としては、特に制限はなく、前記静電潜像担持体上に残留する前記電子写真トナーを除去することができればよく、公知のクリーナの中から適宜選択することができ、例えば、磁気ブラシクリーナ、静電ブラシクリーナ、磁気ローラクリーナ、ブレードクリーナ、ブラシクリーナ、ウエブクリーナ等が好適に挙げられる。
【0135】
前記リサイクル工程は、前記クリーニング工程により除去した前記電子写真用カラートナーを前記現像手段にリサイクルさせる工程であり、リサイクル手段により好適に行うことができる。
前記リサイクル手段としては、特に制限はなく、公知の搬送手段等が挙げられる。
【0136】
前記制御手段は、前記各工程を制御する工程であり、制御手段により好適に行うことができる。
前記制御手段としては、前記各手段の動きを制御することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、シークエンサー、コンピュータ等の機器が挙げられる。
【0137】
本発明の画像形成装置により本発明の画像形成方法を実施する一の態様について、図1を参照しながら説明する。図1に示す画像形成装置100は、前記静電潜像担持体としての感光体ドラム10(以下「感光体10」という)と、前記帯電手段としての帯電ローラ20と、前記露光手段としての露光装置30と、前記現像手段としての現像装置40と、中間転写体50と、クリーニングブレードを有する前記クリーニング手段としてのクリーニング装置60と、前記除電手段としての除電ランプ70とを備える。
【0138】
中間転写体50は、無端ベルトであり、その内側に配置されこれを張架する3個のローラ51によって、矢印方向に移動可能に設計されている。3個のローラ51の一部は、中間転写体50へ所定の転写バイアス(一次転写バイアス)を印加可能な転写バイアスローラとしても機能する。中間転写体50には、その近傍にクリーニングブレードを有するクリーニング装置90が配置されており、また、最終転写材としての転写紙95に現像像(トナー像)を転写(二次転写)するための転写バイアスを印加可能な前記転写手段としての転写ローラ80が対向して配置されている。中間転写体50の周囲には、中間転写体50上のトナー像に電荷を付与するためのコロナ帯電器58が、該中間転写体50の回転方向において、感光体10と中間転写体50との接触部と、中間転写体50と転写紙95との接触部との間に配置されている。
【0139】
現像装置40は、前記現像剤担持体としての現像ベルト41と、現像ベルト41の周囲に併設したブラック現像ユニット45K、イエロー現像ユニット45Y、マゼンタ現像ユニット45M及びシアン現像ユニット45Cとから構成されている。なお、ブラック現像ユニット45Kは、現像剤収容部42Kと現像剤供給ローラ43Kと現像ローラ44Kとを備えており、イエロー現像ユニット45Yは、現像剤収容部42Yと現像剤供給ローラ43Yと現像ローラ44Yとを備えており、マゼンタ現像ユニット45Mは、現像剤収容部42Mと現像剤供給ローラ43Mと現像ローラ44Mとを備えており、シアン現像ユニット45Cは、現像剤収容部42Cと現像剤供給ローラ43Cと現像ローラ44Cとを備えている。また、現像ベルト41は、無端ベルトであり、複数のベルトローラに回転可能に張架され、一部が感光体10と接触している。
【0140】
図1に示す画像形成装置100において、例えば、帯電ローラ20が感光体ドラム10を一様に帯電させる。露光装置30が感光ドラム10上に像様に露光を行い、静電潜像を形成する。感光ドラム10上に形成された静電潜像を、現像装置40からトナーを供給して現像して可視像(トナー像)を形成する。該可視像(トナー像)が、ローラ51から印加された電圧により中間転写体50上に転写(一次転写)され、更に転写紙95上に転写(二次転写)される。その結果、転写紙95上には転写像が形成される。なお、感光体10上の残存トナーは、クリーニング装置60により除去され、感光体10における帯電は除電ランプ70により一旦、除去される。
【0141】
本発明の画像形成装置により本発明の画像形成方法を実施する他の態様について、図2を参照しながら説明する。図2に示す画像形成装置100は、図1に示す画像形成装置100において、現像ベルト41を備えてなく、感光体10の周囲に、ブラック現像ユニット45K、イエロー現像ユニット45Y、マゼンタ現像ユニット45M及びシアン現像ユニット45Cが直接対向して配置されていること以外は、図1に示す画像形成装置100と同様の構成を有し、同様の作用効果を示す。なお、図2においては、図1におけるものと同じものは同符号で示した。
【0142】
本発明の画像形成装置により本発明の画像形成方法を実施する他の態様について、図3を参照しながら説明する。図3に示すタンデム画像形成装置120は、タンデム型カラー画像形成装置である。タンデム画像形成装置120は、複写装置本体150と、給紙テーブル200と、スキャナ300と、原稿自動搬送装置(ADF)400とを備えている。
複写装置本体150には、無端ベルト状の中間転写体50が中央部に設けられている。そして、中間転写体50は、支持ローラ14、15及び16に張架され、図3中、時計回りに回転可能とされている。支持ローラ15の近傍には、中間転写体50上の残留トナーを除去するための中間転写体クリーニング装置17が配置されている。支持ローラ14と支持ローラ15とにより張架された中間転写体50には、その搬送方向に沿って、イエロー、シアン、マゼンタ、ブラックの4つの画像形成手段18が対向して並置されたタンデム型現像器120が配置されている。タンデム型現像器120の近傍には、露光装置21が配置されている。中間転写体50における、タンデム型現像器120が配置された側とは反対側には、二次転写装置22が配置されている。二次転写装置22においては、無端ベルトである二次転写ベルト24が一対のローラ23に張架されており、二次転写ベルト24上を搬送される転写紙と中間転写体50とは互いに接触可能である。二次転写装置22の近傍には定着装置25が配置されている。定着装置25は、無端ベルトである定着ベルト26と、これに押圧されて配置された加圧ローラ27とを備えている。
なお、タンデム画像形成装置120においては、二次転写装置22及び定着装置25の近傍に、転写紙の両面に画像形成を行うために該転写紙を反転させるためのシート反転装置28が配置されている。
【0143】
次に、タンデム画像形成装置120を用いたフルカラー画像の形成(カラーコピー)について説明する。即ち、先ず、原稿自動搬送装置(ADF)400の原稿台130上に原稿をセットするか、あるいは原稿自動搬送装置400を開いてスキャナ300のコンタクトガラス32上に原稿をセットし、原稿自動搬送装置400を閉じる。
【0144】
スタートスイッチ(不図示)を押すと、原稿自動搬送装置400に原稿をセットした時は、原稿が搬送されてコンタクトガラス32上へと移動された後で、一方、コンタクトガラス32上に原稿をセットした時は直ちに、スキャナ300が駆動し、第1走行体33及び第2走行体34が走行する。このとき、第1走行体33により、光源からの光が照射されると共に原稿面からの反射光を第2走行体34におけるミラーで反射し、結像レンズ35を通して読取りセンサ36で受光されてカラー原稿(カラー画像)が読み取られ、ブラック、イエロー、マゼンタ及びシアンの画像情報とされる。
【0145】
そして、ブラック、イエロー、マゼンタ及びシアンの各画像情報は、タンデム画像形成装置120における各画像形成手段18(ブラック用画像形成手段、イエロー用画像形成手段、マゼンタ用画像形成手段及びシアン用画像形成手段)にそれぞれ伝達され、各画像形成手段において、ブラック、イエロー、マゼンタ及びシアンの各トナー画像が形成される。即ち、タンデム画像形成装置120における各画像形成手段18(ブラック用画像形成手段、イエロー用画像形成手段、マゼンタ用画像形成手段及びシアン用画像形成手段)は、図4に示すように、それぞれ、感光体10(ブラック用感光体10K、イエロー用感光体10Y、マゼンタ用感光体10M及びシアン用感光体10C)と、該感光体を一様に帯電させる帯電器60と、各カラー画像情報に基づいて各カラー画像対応画像様に前記感光体を露光(図4中、L)し、該感光体上に各カラー画像に対応する静電潜像を形成する露光器と、該静電潜像を各カラートナー(ブラックトナー、イエロートナー、マゼンタトナー及びシアントナー)を用いて現像して各カラートナーによるトナー像を形成する現像器61と、該トナー像を中間転写体50上に転写させるための転写帯電器62と、感光体クリーニング装置63と、除電器64とを備えており、それぞれのカラーの画像情報に基づいて各単色の画像(ブラック画像、イエロー画像、マゼンタ画像及びシアン画像)を形成可能である。こうして形成された該ブラック画像、該イエロー画像、該マゼンタ画像及び該シアン画像は、支持ローラ14、15及び16により回転移動される中間転写体50上にそれぞれ、ブラック用感光体10K上に形成されたブラック画像、イエロー用感光体10Y上に形成されたイエロー画像、マゼンタ用感光体10M上に形成されたマゼンタ画像及びシアン用感光体10C上に形成されたシアン画像が、順次転写(一次転写)される。そして、中間転写体50上に前記ブラック画像、前記イエロー画像、マゼンタ画像及びシアン画像が重ね合わされて合成カラー画像(カラー転写像)が形成される。
【0146】
一方、給紙テーブル200においては、給紙ローラ142の1つを選択的に回転させ、ペーパーバンク143に多段に備える給紙カセット144の1つからシート(記録紙)を繰り出し、分離ローラ145で1枚ずつ分離して給紙路146に送出し、搬送ローラ147で搬送して複写機本体150内の給紙路148に導き、レジストローラ49に突き当てて止める。あるいは、給紙ローラ150を回転して手差しトレイ51上のシート(記録紙)を繰り出し、分離ローラ52で1枚ずつ分離して手差し給紙路53に入れ、同じくレジストローラ49に突き当てて止める。なお、レジストローラ49は、一般には接地されて使用されるが、シートの紙粉除去のためにバイアスが印加された状態で使用されてもよい。
そして、中間転写体50上に合成された合成カラー画像(カラー転写像)にタイミングを合わせてレジストローラ49を回転させ、中間転写体50と二次転写装置22との間にシート(記録紙)を送出させ、二次転写装置22により該合成カラー画像(カラー転写像)を該シート(記録紙)上に転写(二次転写)することにより、該シート(記録紙)上にカラー画像が転写され形成される。なお、画像転写後の中間転写体50上の残留トナーは、中間転写体クリーニング装置17によりクリーニングされる。
【0147】
カラー画像が転写され形成された前記シート(記録紙)は、二次転写装置22により搬送されて、定着装置25へと送出され、定着装置25において、熱と圧力とにより前記合成カラー画像(カラー転写像)が該シート(記録紙)上に定着される。その後、該シート(記録紙)は、切換爪55で切り換えて排出ローラ56により排出され、排紙トレイ57上にスタックされ、あるいは、切換爪55で切り換えてシート反転装置28により反転されて再び転写位置へと導き、裏面にも画像を記録した後、排出ローラ56により排出され、排紙トレイ57上にスタックされる。
【0148】
本発明の画像形成装置及び画像形成方法では、耐熱保存性と低温定着性とを両立し、耐ホットオフセット性が良好な本発明の前記トナーを用いるので、低温定着条件下でも高画質が効率よく得られる。
【0149】
【実施例】
以下、本発明の実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0150】
(製造例1)
−微粒子分散液(1)の調製−
撹拌棒及び温度計をセットした反応容器中に、水683質量部、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)11質量部、スチレン83質量部、メタクリル酸83質量部、アクリル酸ブチル110質量部、及び過硫酸アンモニウム1質量部を仕込み、400回転/分で15分間撹拌し、白色の乳濁液を得た。該乳濁液を加熱して、系内温度75℃まで昇温して5時間反応させた。次いで、1質量%過硫酸アンモニウム水溶液30質量部を添加し、75℃にて5時間熟成してビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(1))を調製した。
得られた微粒子分散液(1)に含まれる微粒子の体積平均粒径を測定したところ、100nmであった。また、該微粒子分散液(1)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、80℃であり、数平均分子量を測定したところ、1,700であり、重量平均分子量を測定したところ、10,000であった。
【0151】
(製造例2)
−微粒子分散液(2)の調製−
製造例1において、スチレンを83質量部から79質量部に変え、メタクリル酸を83質量部から79質量部に変え、アクリル酸ブチルを110質量部から105質量部に変え、1,6−ヘキサンジオールジアクリレートを13質量部添加した以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(2))を調製した。
得られた微粒子分散液(2)に含まれる微粒子の体積平均粒径を測定したところ、105nmであった。また、該微粒子分散液(2)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、105℃であり、数平均分子量を測定したところ、167,000であり、重量平均分子量を測定したところ、1,000,000であった。
【0152】
(製造例3)
−微粒子分散液(3)の調製−
製造例1において、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)を11質量部から21質量部に変え、チオカルコール20を13質量部添加した以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(3))を調製した。
得られた微粒子分散液(3)に含まれる微粒子の体積平均粒径を測定したところ、15nmであった。また、該微粒子分散液(3)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、95℃であり、数平均分子量を測定したところ、1,000であり、重量平均分子量を測定したところ、5,000であった。
【0153】
(製造例4)
−微粒子分散液(4)の調製−
製造例1において、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)を11質量部から3質量部に変え、スチレンを83質量部から71質量部に変え、メタクリル酸を83質量部から71質量部に変え、アクリル酸ブチルを110質量部から98質量部に変え、1,6−ヘキサンジオールジアクリレートを14質量部添加した以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(4))を調製した。
得られた微粒子分散液(4)に含まれる微粒子の体積平均粒径を測定したところ、600nmであった。また、該微粒子分散液(1)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、105℃であり、数平均分子量を測定したところ、225,000であり、重量平均分子量を測定したところ、1,800,000であった。
【0154】
(製造例5)
−微粒子分散液(5)の調製−
製造例1において、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)を11質量部から8質量部に変え、スチレンを83質量部から82質量部に変え、メタクリル酸を83質量部から82質量部に変え、アクリル酸ブチルを110質量部から109質量部に変えた以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(5))を調製した。
得られた微粒子分散液(5)に含まれる微粒子の体積平均粒径を測定したところ、200nmであった。また、該微粒子分散液(5)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、78℃であり、数平均分子量を測定したところ、15,700であり、重量平均分子量を測定したところ、110,000であった。
【0155】
(製造例6)
−微粒子分散液(6)の調製−
製造例1において、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)11質量部を8質量部に変え、スチレン83質量部を79質量部に変え、メタクリル酸83質量部を79質量部に変え、アクリル酸ブチル110質量部を105質量部に変え、1,6−ヘキサンジオールジアクリレートを13質量部添加した以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(6))を調製した。
得られた微粒子分散液(6)に含まれる微粒子の体積平均粒径を測定したところ、200nmであった。また、該微粒子分散液(6)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、107℃であり、数平均分子量を測定したところ、220,000であり、重量平均分子量を測定したところ、1,100,000であった。
【0156】
(製造例7)
−微粒子分散液(7)の調製−
製造例1において、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)を11質量部から6質量部に変え、スチレンを83質量部から85質量部に変え、メタクリル酸を83質量部から85質量部に変え、アクリル酸ブチルを110質量部から111質量部に変えた以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(7))を調製した。
得られた微粒子分散液(7)に含まれる微粒子の体積平均粒径を測定したところ、300nmであった。また、該微粒子分散液(7)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、78℃であり、数平均分子量を測定したところ、2,100であり、重量平均分子量を測定したところ、9,900であった。
【0157】
(製造例8)
−微粒子分散液(8)の調製−
製造例1において、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(「エレミノールRS−30」;三洋化成工業製)を11質量部から5質量部に変え、スチレンを83質量部から81質量部に変え、メタクリル酸を83質量部から81質量部に変え、アクリル酸ブチルを110質量部から107質量部に変え、1,6−ヘキサンジオールジアクリレートを13質量部添加した以外は、製造例1と同様にして、ビニル樹脂粒子(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液(微粒子分散液(8))を調製した。
得られた微粒子分散液(8)に含まれる微粒子の体積平均粒径を測定したところ、295nmであった。また、該微粒子分散液(8)の一部を乾燥して樹脂分を単離し、該樹脂分のガラス転移温度(Tg)を測定したところ、105℃であり、数平均分子量を測定したところ、10,000であり、重量平均分子量を測定したところ、1,000,000であった。
【0158】
ここで、微粒子分散液(1)〜(8)の各原料配合組成を表1に示す。
【表1】
【0159】
なお、体積平均粒径(Dv)、ガラス転移温度(Tg)、数平均分子量(Mn)及び重量平均分子量(Mw)は以下のようにして測定した。
【0160】
<体積平均粒径Dv)>
体積平均粒径(Dv)は、レーザー回折式粒度分布測定器(「LA−920」;堀場製作所社製)を用いて測定した。
【0161】
<ガラス転移温度(Tg)>
TG−DSCシステムTAS−100(理学電機社製)を用いて、下記方法により、ガラス転移温度(Tg)を測定した。
まず、試料約10mgをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットにのせ、電気炉中にセットした。室温から昇温速度10℃/minで150℃まで加熱した後、150℃で10min間放置し、室温まで試料を冷却して10min放置した。その後、窒素雰囲気下、150℃まで昇温速度10℃/minで加熱して示差走査熱量計(DSC)によりDSC曲線を計測した。得られたDSC曲線から、TG−DSCシステムTAS−100システム中の解析システムを用いて、ガラス転移温度(Tg)近傍の吸熱カーブの接線とベースラインとの接点からガラス転移温度(Tg)を算出した。
【0162】
<数平均分子量(Mn)及び重量平均分子量(Mw)>
数平均分子量及び重量平均分子量は、テトラヒドロフラン可溶分のゲルパーミエイションクロマトグラフ(GPC)による分子量分布から重量平均分子量(Mw)及び数平均分子量(Mn)を測定した。
具体的には、40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラム溶媒としてテトラヒドロフランを毎分1mlの流速で流し、試料濃度として0.05〜0.6質量%に調整した樹脂のテトラヒドロフラン試料溶液を50〜200μl注入して測定した。
前記試料における分子量の測定に当たっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出した。検量線作成用の標準ポリスチレン試料としては、分子量が6×10、2.1×10、4×10、1.75×10、1.1×10、3.9×10、8.6×10、2×10、及び48×10のもの(東洋ソーダ工業社製)を用い、少なくとも10点程度の標準ポリスチレン試料を用いた。なお、前記検出器としてはRI(屈折率)検出器を用いた。
【0163】
【表2】
【0164】
(実施例1)
−接着性基材生成工程−
製造例1で得た微粒子分散液(1)及び製造例2で得た微粒子分散液(2)を用い、以下のようにしてトナーを製造した。
【0165】
−−未変性ポリエステルの合成−−
冷却管、撹拌機及び窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物220質量部、ビスフェノールAプロピレンオキサイド3モル付加物561質量部、テレフタル酸218質量部、アジピン酸48質量部、及びジブチルチンオキサイド2質量部を仕込み、常圧下、230℃にて8時間反応させた。次いで、該反応液を10〜15mmHgの減圧下にて5時間反応させた後、反応容器中に無水トリメリット酸45質量部を添加し、常圧下、180℃にて2時間反応させて、未変性ポリエステルを合成した。
得られた未変性ポリエステルは、数平均分子量(Mn)が2,500、重量平均分子量(Mw)が6,700、ガラス転移温度(Tg)が43℃、酸価が25であった。
【0166】
−−プレポリマーの合成−−
冷却管、撹拌機及び窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682質量部、ビスフェノールAプロピレンオキサイド2モル付加物81質量部、テレフタル酸283質量部、無水トリメリット酸22質量部、及びジブチルチンオキサイド2質量部を仕込み、常圧下で、230℃にて8時間反応させた。次いで、10〜15mHgの減圧下で、5時間反応させて、中間体ポリエステルを合成した。
得られた中間体ポリエステルは、数平均分子量(Mn)が2,100、重量平均分子量(Mw)が9,500、ガラス転移温度(Tg)が55℃、酸価が0.5、水酸基価が49であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、前記中間体ポリエステル410質量部、イソホロンジイソシアネート89質量部、及び酢酸エチル500質量部を仕込み、100℃にて5時間反応させて、プレポリマー(前記活性水素基含有化合物と反応可能な重合体)を合成した。
得られたプレポリマーの遊離イソシアネート含有量は、1.53質量%であった。
【0167】
−−ケチミン(前記活性水素基含有化合物)の合成−−
撹拌棒及び温度計をセットした反応容器中に、イソホロンジアミン170質量部及びメチルエチルケトン75質量部を仕込み、50℃にて5時間反応を行い、ケチミン化合物(前記活性水素基含有化合物)を合成した。
得られたケチミン化合物(前記活性水素基含有化合物)のアミン価は418であった。
【0168】
−マスターバッチ(MB)の調製−
着色剤としてのカーボンブラック(「リーガル400R」;キャボット社製)40質量部、ポリエステル樹脂(「RS801」;三洋化成工業製、酸価=10、重量平均分子量(Mw)=20,000、ガラス転移温度(Tg)=64℃)、及び水30質量部をヘンシェルミキサー(三井鉱山社製)で混合した。該混合物を二本ロールで130℃にて45分混練した後、圧延冷却し、パルペライザー(ホソカワミクロン社製)で直径1mmの大きさに粉砕して、マスターバッチを調製した。
【0169】
−−有機溶媒相の調製−−
撹拌棒及び温度計をセットした反応容器中に、前記未変性ポリエステル378質量部、カルナバワックス110質量部、CCA(「サリチル酸金属錯体E−84」;オリエント化学工業製)22質量部、及び酢酸エチル947質量部を仕込み、撹拌下、80℃まで昇温し、80℃のまま5時間保持した後、1時間かけて30℃まで冷却した。次いで、反応容器中に、前記マスターバッチ500質量部、及び酢酸エチル500質量部を仕込み、1時間混合して原料溶解液を得た。
得られた原料溶解液1324質量部を反応容器に移し、ビーズミル(「ウルトラビスコミル」;アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒、及び0.5mmジルコニアビーズを80体積%充填した条件で3パスして、前記カーボンブラック、及びカルナバワックスの分散を行った。次いで、該分散液に前記未変性ポリエステルの65質量%酢酸エチル溶液1324質量部を添加した。上記同様の条件のビーズミルで1パスし、分散させ、有機溶媒相を調製した。
得られた有機溶媒相の固形分濃度は(130℃、30分)は、50質量%であった。
【0170】
−−乳化・分散−−
反応容器中に、前記有機溶媒相648質量部、前記プレポリマー154質量部、及び前記ケチミン化合物6.6質量部を仕込み、TK式ホモミキサー(特殊機化製)を用いて5,000rpmにて1分間混合して、油相混合液を得た。
次に、反応容器中に、水990質量部、前記微粒子分散液(1)72質量部(表3参照)、前記微粒子分散液(2)8質量部(表3参照)、ドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5質量%水溶液(「エレミノールMON−7」;三洋化成工業製)40質量部、及び酢酸エチル90質量部を仕込み、TK式ホモミキサー(特殊機化製)で、3000rpmにて1分間混合した。次いで、反応容器中に、前記油相混合液809質量部を添加し、TK式ホモミキサーで、回転数13,000rpmにて20分間混合して、乳化スラリーを調製した。
次に、撹拌機及び温度計をセットした反応容器中に、前記乳化スラリーを仕込み、30℃にて8時間脱溶剤した後、45℃にて4時間熟成を行い、分散スラリーを得た。
得られた分散スラリー1は、マルチサイザーII(ベックマン・コールター社製)で測定した体積平均粒径が4.95μm、個数平均粒径が4.45μmであった。
【0171】
【表3】
【0172】
−−洗浄・乾燥−−
前記分散スラリー100質量部を減圧濾過した後、濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過する操作を3回行い、最終濾過ケーキを得た。
ここで、得られた最終濾過ケーキを循風乾燥機にて45℃で48時間乾燥し、目開き75μmメッシュで篩い、実施例1のトナー母体粒子を得た。
【0173】
−−外添剤処理−−
得られた実施例1のトナー母体粒子100質量部に対し、外添剤としての疎水性シリカ0.7質量部と、疎水化酸化チタン0.3質量部をヘンシェルミキサー(三井鉱山社製)を用いて混合処理し、実施例1のトナーを製造した。
実施例1のトナーについて、以下のようにして、体積平均粒径、数平均粒径及び粒度分布、平均円形度、樹脂微粒子の被覆率、樹脂微粒子の含有率(残存率)、BET比表面積、並びに、ガラス転移温度のトナー物性値を測定した。結果を表8に示す。
【0174】
(比較例1)
−トナー母体粒子の調製−
実施例1において、前記微粒子分散液(1)を前記微粒子分散液(3)に変え、及び、前記微粒子分散液(2)を前記微粒子分散液(4)に変えた(表4)以外は、実施例1と同様にして、比較例1のトナー母体粒子を得た。
【0175】
−外添剤処理−
得られた比較例1のトナー母体粒子につき、実施例1のトナー母体粒子と同様にして外添剤を添加し、比較例1のトナーを製造した。比較例1のトナーについて、実施例1と同様にして諸物性等を測定した。結果を表8に示す。
【0176】
【表4】
【0177】
(実施例2)
−トナー母体粒子の調製−
実施例1において、前記微粒子分散液(1)を72質量部から40質量部に変え、前記微粒子分散液(2)を8質量部から40質量部に変えた(表5)以外は、実施例1と同様にして、実施例2のトナー母体粒子を得た。
【0178】
−外添剤処理−
得られた実施例2のトナー母体粒子につき、実施例1のトナー母体粒子と同様にして外添剤を添加し、実施例2のトナーを製造した。実施例2のトナーについて、実施例1と同様にして諸物性等を測定した。結果を表8に示す。
【0179】
【表5】
【0180】
(実施例3)
−トナー母体粒子の調製−
実施例1において、前記微粒子分散液(1)72質量部を前記微粒子分散液(5)48質量部に変え、前記微粒子分散液(2)8質量部を前記微粒子分散液(6)32質量部に変えた(表6)以外は、実施例1と同様にして、実施例3のトナー母体粒子を得た。
【0181】
−外添剤処理−
得られた実施例3のトナー母体粒子につき、実施例1のトナー母体粒子と同様にして外添剤を添加し、実施例3のトナーを製造した。実施例3のトナーについて、実施例1と同様にして諸物性等を測定した。結果を表8に示す。
【0182】
【表6】
【0183】
参考例1
−トナー母体粒子の調製−
実施例1において、前記微粒子分散液(1)72質量部を前記微粒子分散液(7)48質量部に変え、前記微粒子分散液(2)8質量部を前記微粒子分散液(8)32質量部に変えた(表7)以外は、実施例1と同様にして、参考例1のトナー母体粒子を得た。
【0184】
−外添剤処理−
得られた参考例1のトナー母体粒子につき、実施例1のトナー母体粒子と同様にして外添剤を添加し、参考例1のトナーを製造した。参考例1のトナーについて、実施例1と同様にして諸物性等を測定した。結果を表8に示す。
【0185】
【表7】
【0186】
<トナー粒径>
各トナーの体積平均粒径(Dv)及び個数平均粒径(Dn)は、粒度測定器(「マルチサイザーII」;ベックマン・コールター社製)を用い、アパーチャー径100μmで測定した。これらの結果から(体積平均粒径(Dv/個数平均粒径(Dn))を算出した。
【0187】
<平均円形度>
各トナーの平均円形度は、フロー式粒子像分析装置(「FPIA−2100」;シスメックス社製)を用いて計測した。具体的には、容器中に、予め不純固形物を除去した水100〜150mlに分散剤としての界面活性剤(アルキルベンゼンスフォン酸塩)を0.1〜0.5ml添加し、更に、各トナーを0.1〜0.5g添加して分散させた。得られた分散液を超音波分散器(本多電子社製)で約1〜3分間分散処理して、分散液の濃度を3000〜10,000個/μlとしてトナーの形状及び分布を測定した。これらの測定結果から平均円形度を算出した。
【0188】
<樹脂微粒子の被覆率の測定方法>
樹脂微粒子の被覆率は、各トナー表面における倍率5万倍の電子顕微鏡写真を数視野撮影し、これらの中から、なるべく傾きや亀裂のないトナー表面を選択し、画像解析装置(「ルーゼックスIII」;ニレコ社製)を用いて、トナー表面における樹脂微粒子の被覆率を測定した。
【0189】
<樹脂微粒子の含有率(残存率)の測定方法>
スチレン−アクリル系共重合体の樹脂微粒子に由来するスチレンモノマーを標識として、トナーを熱分解して熱分解生成物中におけるスチレンモノマーの量を測定し、トナーにおける樹脂微粒子の含有量を算出した。即ち、組成が既知であるスチレン-アクリル系共重合体の樹脂微粒子を標識として用い、トナーにスチレン−アクリル系共重合体の樹脂微粒子の含有量が0.01質量%、0.10質量%、1.00質量%、3.00質量%、及び10.0質量%となるように添加した。得られた組成が既知の各モデルトナーを590℃×12秒の条件で熱分解させて、下記の測定機器及び測定条件に従って熱分解生成物を分析し、各トナーについてスチレンモノマーのピーク面積を求め、トナーにおける樹脂微粒子の含有量を算出した。
〔測定機器及び測定条件〕
分析機器:熱分解ガスクロマトグラフ質量分析計
装置本体:QR−5000(島津製作所製)
付属品の熱分解炉:JHP−3S(日本分析工業製)
熱分解温度:590℃×12秒
カラム:「DB−1」
(L=30m I.D.=0.25mm Film=0.25μm)
カラム温度:40℃(保持2分)〜300℃(10℃/分昇温)
気化室温度:300℃
【0190】
<BET比表面積の測定方法>
BET法に従って、比表面積測定装置(「トライスター3000」;島津製作所製)を用いて各トナー母体(試料)表面に窒素ガスを吸着させて、BET多点法により測定した。
【0191】
<ガラス転移温度(Tg)測定方法>
TG−DSCシステムTAS−100(理学電機社製)を用いて、下記方法により、ガラス転移温度(Tg)を測定した。
まず、各トナー(試料)約10mgをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットにのせ、電気炉中にセットした。室温から昇温速度10℃/minで150℃まで加熱した後、150℃で10min間放置し、室温まで試料を冷却して10min放置した。その後、窒素雰囲気下、150℃まで昇温速度10℃/minで加熱して示差走査熱量計(DSC)によりDSC曲線を計測した。得られたDSC曲線から、TG−DSCシステムTAS−100システム中の解析システムを用いて、ガラス転移温度(Tg)近傍の吸熱カーブの接線とベースラインとの接点からガラス転移温度(Tg)を算出した。
【0192】
【表8】
【0193】
−現像剤の調製−
次に、外添剤処理済の各トナー5質量%と、シリコーン樹脂で被覆した平均粒径40μmの銅−亜鉛フェライトキャリア95質量%とから常法により実施例1〜3、参考例1及び比較例1の各現像剤を製造した。
【0194】
得られた各現像剤を用いて、以下のようにして、(a)定着性(定着下限温度及びオフセット未発生温度)、(b)耐熱保存性(針入度)、及び(c)総合評価を測定した。結果を表9に示す。
【0195】
(a)定着性(オフセット未発生温度及び定着下限温度)
図5に示すベルト定着装置110を備えた画像形成装置を用いて、定着性(オフセット未発生温度及び定着下限温度)を評価した。
ベルト式定着装置110は、加熱ローラ121と、定着ローラ122と、加圧ローラ124と、定着ベルト123とを備えている。
定着ベルト123は、内部に回転可能に配置された加熱ローラ121と定着ローラ122とによって張架され、加熱ローラ121により所定の温度に加熱されている。加熱ローラ121は、内部には加熱源125が内蔵されており、加熱ローラ121の近傍に取り付けられた温度センサ127により温度調節自在に設計されている。定着ローラ122は、定着ベルト123の内側に、かつ定着ベルト123の内面に当接しながら回転可能に配置されている。加圧ローラ124は、定着ベルト123の外側に、かつ定着ベルト123の外面に、定着ローラ122を圧接するようにして当接し、回転可能に配置されている。
定着ベルト装置110では、まず、定着処理すべきトナー像が形成された記録媒体(シート)Pが加熱ローラ121まで搬送される。そして、内蔵されている加熱源125の働きにより所定の温度に加熱された加熱ローラ121及び定着ベルト123によりシートP上のトナーTが加熱されて溶融状態となる。この状態において、該シートPが定着ローラ122及び加圧ローラ124間に形成されたニップ部に挿入される。該ニップ部に挿入されたシートPは、定着ローラ122及び加圧ローラ124の回転に連動して回転する定着ベルト123の表面に当接され、加圧ローラ124の押圧力により前記ニップ部を通過する際に押圧され、トナーTがシートP上に定着される。次いで、トナーTが定着されたシートPは、定着ローラ122及び加圧ローラ124間を通過し、定着ベルト123から剥離され、ガイドGを経てトレイ(不図示)に搬送される。なお、定着ベルト123はクリーニングローラ126で清浄化される。
【0196】
図5に示すベルト式定着装置においては、定着ローラ122、加圧ローラ124、加熱ローラ121及び定着ベルト123により、ベルト張力1.5kg/片、ベルト速度170mm/sec及びニップ部幅10mmの定着条件にて定着が行われた。
定着ローラ122は、直径38mm、アスカーC硬度が約30度のシリコーン発砲体製のローラである。加圧ローラ124は、直径48mmの芯金(鉄製、肉厚1mm)上にPFAチューブを被覆し、該PFA層の表面に厚さ1mmのシリコーンゴム層を被覆した直径50mm、アスカーC硬度が約75度のローラである。加熱ローラ121は、直径30mm、肉厚2mmのアルミニウム製のローラである。定着ベルト123は、ベルト直径60mm及びベルト幅310mmであり、約40μm厚みのニッケル製ベルト基体表面に厚さ約150μmのシリコーンゴム製の離型層を有するローラに張架されている。
【0197】
<オフセット未発生温度>
図5に示すベルト定着装置を備えた画像形成装置を用いてオフセット未発生温度を測定した。即ち、画像形成は、カラー複写機(「プリテール550」;株式会社リコー製)を用いて、転写紙(「タイプ6000−70W」;株式会社リコー製)に、イエロー、マゼンタ、シアン、及びブラックの各単色、及び中間色としてレッド、ブルー、及びグリーンのベタ画像を各単色で、1.0±0.1mg/cmのトナーが現像されるように調整した。得られた画像を定着ベルト(加熱ローラ)の温度を変えて図5のベルト定着装置を用いて定着し、オフセットの発生しない定着温度(オフセット未発生温度)を測定した。
【0198】
<定着下限温度>
図5に示すベルト定着装置を備えた画像形成装置を用いて、画像は、カラー複写機(「プリテール550」;株式会社リコー製)を用いて、転写紙(「タイプ6200」;株式会社リコー製)をセットし、複写テストを行った。得られた定着画像をパットで擦った後の画像濃度の残存率が70%以上となる定着ロール温度をもって定着下限温度とした。なお、定着下限温度が150℃より高いものを不良と判断した。
【0199】
(b)耐熱保存性(針入度)
50mlのガラス容器に各トナーを充填し、50℃の恒温槽に20時間放置した。このトナーを室温に冷却し、針入度試験(JIS K2235―1991)により針入度を測定した。なお、前記針入度の値が大きいほど耐熱保存性が優れていることを示す。
【0200】
(c)総合評価
前記総ての性能評価の結果から、下記基準に基づき総合評価を行った。
〔評価基準〕
○:総合的に優れている状態
△:総合的に普通である状態
×:総合的に不良である状態
【0201】
【表9】
【0202】
表8〜9の結果から以下のことが明らかである。即ち、実施例1〜については、低温定着性、耐ホットオフセット性、及び耐熱保存性の各品質の評価結果が良好であり、総合評価が良好(○)となった。一方、比較例1については、低温定着性は良好であるが、耐ホットオフセット性及び耐耐熱保存性が劣るため、総合評価が不良(×)となった。
【0203】
【発明の効果】
本発明によると、従来における問題を解決することができ、耐凝集性、帯電性、流動性、転写性、定着性等の諸特性に優れ、耐ホットオフセット性が良好であり、優れた耐熱保存性と低温定着性とを両立し、高画質が得られるトナー及びその効率的な製造方法、並びに、該トナーを用い、高画質化が可能な、現像剤、トナー入り容器、プロセスカートリッジ、画像形成装置及び画像形成方法を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明の画像形成装置により本発明の画像形成方法を実施する一の例を示す概略説明図である。
【図2】図2は、本発明の画像形成装置により本発明の画像形成方法を実施する他の例を示す概略説明図である。
【図3】図3は、本発明の画像形成装置(タンデム型カラー画像形成装置)により本発明の画像形成方法を実施する一例を示す概略説明図である。
【図4】図4は、図3に示す画像形成装置における一部拡大概略説明図である。
【図5】図5は、本発明の画像形成装置におけるベルト式定着装置の一例を示す概略説明図である。
【符号の説明】
10 感光体(感光体ドラム)
10K ブラック用感光体
10Y イエロー用感光体
10M マゼンタ用感光体
10C シアン用感光体
14 支持ローラ
15 支持ローラ
16 支持ローラ
17 中間転写クリーニング装置
18 画像形成手段
20 帯電ローラ
21 露光装置
22 二次転写装置
23 ローラ
24 二次転写ベルト
25 定着装置
26 定着ベルト
27 加圧ベルト
28 シート反転装置
30 露光装置
32 コンタクトガラス
33 第1走行体
34 第2走行体
35 結像レンズ
36 読取りセンサ
40 現像装置
41 現像ベルト
42K 現像剤収容部
42Y 現像剤収容部
42M 現像剤収容部
42C 現像剤収容部
43K 現像剤供給ローラ
43Y 現像剤供給ローラ
43M 現像剤供給ローラ
43C 現像剤供給ローラ
44K 現像ローラ
44Y 現像ローラ
44M 現像ローラ
44C 現像ローラ
45K ブラック用現像器
45Y イエロー用現像器
45M マゼンタ用現像器
45C シアン用現像器
49 レジストローラ
50 中間転写体
51 ローラ
52 分離ローラ
53 定電流源
55 切換爪
56 排出ローラ
57 排出トレイ
58 コロナ帯電器
60 クリーニング装置
61 現像器
62 転写帯電器
63 感光体クリーニング装置
64 除電器
70 除電ランプ
80 転写ローラ
90 クリーニング装置
95 転写紙
100 画像形成装置
110 ベルト式定着装置
120 タンデム型現像器
121 加熱ローラ
122 定着ローラ
123 定着ベルト
124 加圧ローラ
125 加熱源
126 クリーニングローラ
127 温度センサ
130 原稿台
142 給紙ローラ
143 ペーパーバンク
144 給紙カセット
145 分離ローラ
146 給紙路
147 搬送ローラ
148 給紙路
150 複写装置本体
200 給紙テーブル
300 スキャナ
400 原稿自動搬送装置(ADF)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a toner suitably used in an electrophotographic method, an electrostatic recording method, an electrostatic printing method, and the like, a manufacturing method thereof, a developer using the toner, a container containing a toner, a process cartridge, an image forming apparatus, and The present invention relates to an image forming method.
[0002]
[Prior art]
Image formation by electrophotography generally forms an electrostatic image on a photoreceptor (electrostatic image carrier), develops the electrostatic image with a developer to form a visible image (toner image), The visible image is transferred to a recording medium such as paper and fixed to form a fixed image (see Patent Document 1). The fixing method in the electrophotographic method is a heat roller fixing method in which a heat roller is directly pressed against a toner image on a transfer material and fixed because it is excellent in thermal efficiency and can be downsized. Is widely used.
However, in the case of the heat roller fixing method, there is a problem that a large amount of electric power is required for the fixing. For this reason, from the viewpoint of energy saving, various studies have been made to reduce the power consumption of the heating roller. For example, a layer of the heating roller that contacts the toner image transferred onto the transfer material. It has been proposed that the thermal energy efficiency is increased and the start-up time is significantly shortened by making the thickness of the as thin as possible. However, in this case, the specific heat capacity of the heating roller is reduced, and the temperature difference between the portion through which the transfer material passes and the portion through which the transfer material does not pass increases, so that the molten toner adheres to the heating roller. There is a problem that after the heating roller makes a round, a phenomenon that the molten toner is fixed to a non-image portion on the transfer material, that is, a hot offset phenomenon is likely to occur.
[0003]
In recent years, from the viewpoint of further energy saving, development of technology that enables low-temperature fixing and high-speed copying has been advanced. For example, a toner having excellent low-temperature fixing property using a resin or wax having a low softening point has been developed. It has been studied. However, since the toner having excellent low-temperature fixability is thermally weak, a phenomenon that solidifies due to heat generated from the machine being used or heat during storage, that is, a blocking phenomenon is likely to occur, and heat resistant storage stability. Is not sufficient, and there is a problem that it is difficult to secure a sufficient fixing temperature range.
[0004]
Various studies have been made from the viewpoint of achieving both the low-temperature fixability and the heat-resistant storage stability. For example, it may be possible to use a polyester resin having good low-temperature fixability and relatively good heat-resistant storage stability for the toner, but the low-temperature fixability and the heat-resistant storage stability are in a trade-off relationship. Therefore, the simple use of the polyester resin cannot achieve both the low-temperature fixability and the heat-resistant storage stability at a good level. Therefore, for the purpose of achieving both the low-temperature fixability and the heat-resistant storage stability, for example, a multi-layered toner using a resin having a glass transition temperature higher on the outer side than on the inner side of the toner particles has been proposed ( Patent Document 2).
[0005]
As a method for producing the multilayered toner, for example, an in-situ polymerization method, an interfacial polymerization method, a coacervation method, a spray / dry method, a phase inversion emulsification method (see Patent Document 3) and the like are known. . Among these, regarding the phase inversion emulsification method, a method for producing a multilayer structure toner in which fine particles having a high glass transition temperature are fixed to the particle surface of the toner has been proposed (see Patent Documents 4 and 5). In this case, although the heat-resistant storage stability of the toner can be improved to some extent, a sufficient fixing temperature range cannot be ensured, and the low-temperature fixing property and the heat-resistant storage property can be made compatible at a high level. Have difficulty.
Therefore, it has excellent properties such as anti-aggregation, charging, fluidity, transferability, and fixability, good hot offset resistance, excellent heat resistance storage and low-temperature fixability, and high image quality. At present, the obtained toner, its efficient production method, and related technology using the toner have not yet been provided.
[0006]
[Patent Document 1]
US Pat. No. 2,297,691
[Patent Document 2]
JP-A-9-258480
[Patent Document 3]
JP-A-5-66600
[Patent Document 4]
JP 2000-347455 A
[Patent Document 5]
JP 2001-022117 A
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention is excellent in various properties such as anti-aggregation property, charging property, fluidity, transferability, and fixability, has good hot offset resistance, and has both excellent heat-resistant storage stability and low-temperature fixability. Provided are a toner capable of obtaining high image quality, an efficient manufacturing method thereof, and a developer, a container containing toner, a process cartridge, an image forming apparatus, and an image forming method capable of achieving high image quality using the toner. With the goal.
[0008]
[Means for Solving the Problems]
  Means for solving the problems are as follows. That is,
  <1> An organic solvent phase containing an active hydrogen group-containing compound and a polymer having a site capable of reacting with the active hydrogen group-containing compound is emulsified and dispersed in an aqueous medium containing at least two kinds of resin fine particles, and the activity is obtained. A hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound are subjected to an extension reaction or a crosslinking reaction.Obtained by removing organic solventToner,
  Without the resin fine particles being fixed or fused,
  Among the resin fine particles, those having the highest glass transition temperature are the resin fine particles (A), the glass transition temperature is (TgA), the one having the lowest glass transition temperature is the resin fine particles (B), and the glass transition temperature is (TgB). ), The following equation, temperature difference (TgA−TgB) ≧ 20 ° C. is satisfied,
  The residual ratio of the resin fine particles to the toner is 4.1 to 8.0% by mass as measured by a pyrolysis chromatograph,
  A toner having a mass ratio of the resin fine particles (A) to the resin fine particles (B) (resin fine particles (A): resin fine particles (B)) of 10:90 to 50:50.
  <2> The above <1> satisfying the following formula, 8,000 ≦ (Mw) ≦ 1,500,000, where (Mw) is the weight average molecular weight in the molecular weight distribution of the tetrahydrofuran solubles in the resin fine particles. The toner is described.
  <3> The toner according to any one of <1> to <2>, wherein a toner coverage of the resin fine particles is 75 to 100%.
  <4> The toner according to any one of <1> to <3>, wherein the resin fine particles have a volume average particle diameter of 20 to 400 nm.
  <5> The BET specific surface area of the toner is 0.5 to 8.0 m.2The toner according to any one of <1> to <4>, which is / g.
  <6> The toner according to any one of <1> to <5>, wherein the toner has a volume average particle diameter of 3 to 8 μm.
  <7> The toner according to any one of <1> to <6>, wherein the toner has a volume average particle diameter / number average particle diameter of 1.00 to 1.25.
  <8> The toner according to any one of <1> to <7>, wherein the toner has an average circularity of 0.90 to 1.00.
  <9> The method for producing a toner according to any one of <1> to <8>, including an active hydrogen group-containing compound and a polymer having a site capable of reacting with the active hydrogen group-containing compound. The organic solvent phase is emulsified and dispersed in an aqueous medium containing at least two kinds of resin fine particles, and the active hydrogen group-containing compound and the polymer capable of reacting with the active hydrogen group-containing compound are subjected to an extension reaction or a crosslinking reaction. A method for producing a toner.
  <10> A developer comprising the toner according to any one of <1> to <8>.
  <11> A toner-containing container filled with the toner according to any one of <1> to <8>.
[0009]
The toner of the present invention is obtained in the form of particles while reacting an active hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound to form an adhesive substrate in an aqueous medium. The resin fine particles containing the resin fine particles, the resin fine particles having the highest glass transition temperature (A), the glass transition temperature of which is (TgA), the one having the lowest glass transition temperature, the resin fine particles (B), and the glass thereof When the transition temperature is (TgB), the following equation, temperature difference (TgA−TgB) ≧ 20 ° C. is satisfied. The toner contains at least two kinds of resin fine particles, resin fine particles that impart heat-resistant storage stability to the toner and resin fine particles that impart low-temperature fixability to the toner. And excellent hot offset resistance. Further, since the toner includes the adhesive base material obtained by reacting the active hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound in an aqueous medium, the aggregation resistance, charging property, Excellent properties such as fluidity, transferability and fixability. When image formation is performed using the toner, high image quality can be obtained under low-temperature fixing conditions.
[0010]
The method for producing the toner of the present invention is a method for producing the toner of the present invention, comprising an active hydrogen group-containing compound, a polymer having a site capable of reacting with the active hydrogen group-containing compound, and at least two kinds It includes at least a step of obtaining toner while dispersing and reacting resin fine particles in an aqueous medium to produce an adhesive substrate. In the toner production method of the present invention, in the step, the active hydrogen group-containing compound and the polymer having a site capable of reacting with the active hydrogen group-containing compound are present in the presence of the at least two kinds of resin fine particles. Thus, the toner is obtained in the form of particles while being dispersed and reacted in the aqueous medium to form an adhesive substrate. As a result, the toner of the present invention is excellent in various properties such as aggregation resistance, charging property, fluidity, transferability, fixing property, etc., has both excellent heat storage stability and low temperature fixing property, and has good hot offset resistance. Is efficiently manufactured.
[0011]
The developer of the present invention contains the toner of the present invention. For this reason, when an image is formed by electrophotography using the developer, a high-quality image with high image density and high sharpness is formed even under low-temperature fixing conditions.
[0012]
The toner-containing container of the present invention contains the toner of the present invention in a container. Therefore, when an image is formed by electrophotography using the toner of the present invention contained in the toner-containing container, a high-quality image having a high image density and a high sharpness is formed even under a low-temperature fixing condition.
[0013]
The process cartridge of the present invention comprises an electrostatic latent image carrier, and developing means for developing the electrostatic latent image formed on the electrostatic latent image carrier using the toner of the present invention to form a visible image. At least. The process cartridge is detachable from the image forming apparatus, is excellent in convenience, and uses the toner of the present invention. Therefore, the process cartridge has both excellent heat-resistant storage stability and low-temperature fixability, and good hot offset resistance. Yes, a high-quality image with high image density and high sharpness can be formed even under low-temperature fixing conditions.
[0014]
The image forming apparatus of the present invention includes an electrostatic latent image carrier, electrostatic latent image forming means for forming an electrostatic latent image on the electrostatic latent image carrier, and the electrostatic latent image of the present invention. The image forming apparatus includes at least a developing unit that forms a visible image by developing with toner, a transfer unit that transfers the visible image to a recording medium, and a fixing unit that fixes the transferred image transferred to the recording medium. In the image forming apparatus, the electrostatic latent image forming unit forms an electrostatic latent image on the electrostatic latent image carrier. The developing means develops the electrostatic latent image using the toner of the present invention to form a visible image. The transfer means transfers the visible image to a recording medium. The fixing unit fixes the transferred image transferred to the recording medium. As a result, a high-quality image with high image density and high sharpness is formed even under low-temperature fixing conditions.
[0015]
The image forming method of the present invention comprises an electrostatic latent image forming step of forming an electrostatic latent image on an electrostatic latent image carrier, and developing the electrostatic latent image with the toner of the present invention to make visible. It includes at least a developing step for forming an image, a transfer step for transferring the visible image to a recording medium, and a fixing step for fixing the transferred image transferred to the recording medium. In the image forming apparatus, an electrostatic latent image is formed on the electrostatic latent image carrier in the electrostatic latent image forming step. In the developing step, the electrostatic latent image is developed using the toner of the present invention to form a visible image. In the transfer step, the visible image is transferred to a recording medium. In the fixing step, the transferred image transferred to the recording medium is fixed. As a result, a high-quality image with high image density and high sharpness is formed even under low-temperature fixing conditions.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(toner)
The toner of the present invention is obtained in the form of particles while reacting an active hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound to form an adhesive substrate in an aqueous medium. The resin fine particles containing the resin fine particles, the resin fine particles having the highest glass transition temperature (A), the glass transition temperature of which is (TgA), the one having the lowest glass transition temperature, the resin fine particles (B), and the glass thereof When the transition temperature is (TgB), the following formula, temperature difference (TgA−TgB) ≧ 20 ° C. is satisfied, and if necessary, a colorant, a release agent, an unmodified polyester resin, a charge control agent, etc. Contains other ingredients.
[0017]
-Resin fine particles-
The resin fine particles are used for the purpose of controlling the shape (circularity, particle size distribution, etc.) of the toner and achieving both heat-resistant storage stability and low-temperature fixability in the toner, and imparting the heat-resistant storage stability to the toner. At least one type of toner and at least one type that imparts the low-temperature fixability to the toner are used.
[0018]
As the resin fine particles, those having the highest glass transition temperature in at least two of them are the resin fine particles (A), the glass transition temperature is (TgA), the one having the lowest glass transition temperature is the resin fine particles (B), When the glass transition temperature is (TgB), it is preferable to satisfy the following formula, temperature difference (TgA−TgB) ≧ 20 ° C., and 150 ° C. ≧ temperature difference (TgA−TgB) ≧ 20 ° C. It is more preferable that 70 ° C. ≧ temperature difference (TgA−TgB) ≧ 25 ° C. is satisfied.
When the temperature difference (TgA-TgB) of the glass transition temperature is less than 20 ° C., the development of excellent properties of the resin fine particles (A) and the resin fine particles (B) is suppressed, and low temperature fixability, Either the anti-offset property or the heat-resistant storage property may not be sufficient for the toner.
[0019]
There is no restriction | limiting in particular as glass transition temperature (TgA) of the said resin fine particle (A), According to the objective, it can select suitably, For example, about 55-150 degreeC is preferable. When the glass transition temperature (TgA) is less than 55 ° C, the heat-resistant storage stability may be deteriorated, and when it exceeds 150 ° C, the low-temperature fixability may be deteriorated.
There is no restriction | limiting in particular as glass transition temperature (TgB) of the said resin fine particle (B), According to the objective, it can select suitably, For example, it is about 25-100 degreeC. When the glass transition temperature (TgB) is less than 25 ° C, the heat-resistant storage stability may be deteriorated, and when it exceeds 100 ° C, the low-temperature fixability may be deteriorated.
[0020]
The glass transition temperature can be measured by, for example, the following method using a TG-DSC system TAS-100 (manufactured by Rigaku Corporation). First, about 10 mg of toner is placed in an aluminum sample container, and the sample container is placed on a holder unit and set in an electric furnace. After heating from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min, the sample is left at 150 ° C. for 10 minutes, and the sample is cooled to room temperature and left for 10 minutes. Then, the DSC curve is measured with a differential scanning calorimeter (DSC) after heating to 150 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. From the obtained DSC curve, using the analysis system in the TG-DSC system TAS-100 system, the glass transition temperature (Tg) is calculated from the contact point between the tangent line of the endothermic curve near the glass transition temperature (Tg) and the baseline. can do.
[0021]
The resin fine particles preferably have a mass ratio of resin fine particles (A) to resin fine particles (B) (resin fine particles (A): resin fine particles (B)) of 10:90 to 50:50, 20 : More preferably, it is 80-40: 60.
When the mass ratio of the resin fine particles (A) is less than 10 as the mass ratio, the low-temperature fixability, the smoothness of the fixing surface, and the like may be reduced, and the mass of the resin fine particles (A) exceeds 50. Moreover, offset resistance, heat-resistant storage stability, etc. may deteriorate. On the other hand, when the mass ratio is within the numerical range, a toner having excellent low-temperature fixability and offset resistance can be obtained.
[0022]
When the weight average molecular weight in the molecular weight distribution of tetrahydrofuran-soluble matter in the resin fine particles is (Mw), it is preferable to satisfy the following formula: 8,000 ≦ (Mw) ≦ 1,500,000, More preferably, ≦ (Mw) ≦ 1,300,000 is satisfied, and it is particularly preferable that 10,000 ≦ (Mw) ≦ 1,200,000 is satisfied.
When the weight average molecular weight (Mw) is less than 8,000, heat-resistant storage stability and hot offset resistance may be deteriorated, and when it exceeds 1,500,000, low-temperature fixability cannot be obtained. There is.
[0023]
The molecular weight distribution of the resin fine particles can be measured, for example, by gel permeation chromatography (GPC) as follows. That is, the column is stabilized in a 40 ° C. heat chamber. At this temperature, tetrahydrofuran as a column solvent is allowed to flow at a flow rate of 1 ml / min, and 50 to 200 μl of a tetrahydrofuran sample solution of a resin whose sample concentration is adjusted to 0.05 to 0.6 mass% is injected and measured. In measuring the molecular weight of the sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of the calibration curve created by several monodisperse polystyrene standard samples and the count number. Examples of standard polystyrene samples for preparing the calibration curve include Pressure Chemical Co. Or the molecular weight made by Toyo Soda Industry Co., Ltd. is 6 × 1022.1 × 1024 × 1021.75 × 1041.1 × 1053.9 × 1058.6 × 1052 × 106And 4.48 × 106It is preferable to use at least about 10 standard polystyrene samples. As the detector, an RI (refractive index) detector can be used.
[0024]
The mass ratio of the resin fine particles (C) to the resin fine particles (D) (resin fine particles (C): resin fine particles (D)) is not particularly limited and may be appropriately selected depending on the intended purpose. 10: 90-50: 50 is preferable and 20: 80-40: 60 is more preferable.
When the mass ratio of the resin fine particles (C) is less than 10 as the mass ratio, the low temperature fixability, the smoothness of the fixing surface and the like may be deteriorated, and the mass of the resin fine particles (D) exceeds 50. In addition, offset resistance and heat storage stability may be deteriorated. On the other hand, when the mass ratio is within the numerical range, a toner having excellent low-temperature fixability and offset resistance can be obtained.
[0025]
There is no restriction | limiting in particular as a volume average particle diameter of the said resin fine particle, According to the objective, it can select suitably, For example, 20-400 nm is preferable and 30-350 nm is more preferable.
When the volume average particle size is less than 20 nm, the resin fine particles remaining on the surface of the toner may be formed into a film or may cover the entire surface of the toner densely. As a result, the resin fine particles May hinder the adhesion between the adhesive substrate inside the toner and the fixing paper as a transfer material, and the minimum fixing temperature may be increased. Occurrence of bleeding may be hindered, sufficient release properties may not be obtained, and offset may occur.
The volume average particle diameter of the resin fine particles can be measured using, for example, a particle size distribution measuring apparatus (“LA-920”; manufactured by Horiba, Ltd.) using a laser light scattering method.
[0026]
There is no restriction | limiting in particular as the toner coverage of the said resin fine particle, According to the objective, it can select suitably, For example, 75-100% is preferable and 80-100% is more preferable.
If the toner coverage is less than 75%, the storage stability of the toner is deteriorated, and blocking may occur during storage or use.
The toner coverage can be measured, for example, by measuring an electron micrograph of the toner surface with an image analyzer and measuring the coverage of the resin fine particles on the toner surface.
[0027]
The content (residual amount) of the resin fine particles in the toner is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 0.5 to 8.0% by mass is preferable, and 0.6 -7.0 mass% is more preferable.
When the content (residual amount) is less than 0.5% by mass, the storage stability of the toner is deteriorated, and blocking may be observed during storage or use. 8.0% by mass Exceeding the above may cause the resin fine particles to inhibit the seepage of the wax, so that sufficient releasability cannot be obtained and offset may occur.
[0028]
The content (residual amount) of the resin fine particles in the toner can be measured by various methods. Substances or functional groups derived only from the resin fine particles can be measured using, for example, a pyrolysis gas chromatograph mass spectrometer. It is possible to calculate from the peak area. There is no restriction | limiting in particular as said detector, Although it can select suitably according to the objective, A mass spectrometer is suitable.
[0029]
The resin fine particle is not particularly limited as long as it is a resin that can form an aqueous dispersion in an aqueous medium, and can be appropriately selected from known resins according to the purpose, and may be a thermoplastic resin. It may be a thermosetting resin, for example, vinyl resin, polyurethane resin, epoxy resin, polyester resin, polyamide resin, polyimide resin, silicon resin, phenol resin, melamine resin, urea resin, aniline resin, ionomer resin, polycarbonate resin. , Etc.
These may be used individually by 1 type and may use 2 or more types together. Among these, at least one selected from a vinyl resin, a polyurethane resin, an epoxy resin, and a polyester resin is preferable because an aqueous dispersion of fine spherical resin resin particles can be easily obtained.
The vinyl resin is a polymer obtained by homopolymerizing or copolymerizing a vinyl monomer. For example, a styrene- (meth) acrylic acid ester resin, a styrene-butadiene copolymer, a (meth) acrylic acid-acrylic acid ester polymer. Styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, styrene- (meth) acrylic acid copolymer, and the like.
Moreover, as the resin fine particles, a copolymer comprising a monomer having at least two unsaturated groups can be used.
The monomer having at least two unsaturated groups is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a sodium salt of ethylene oxide methacrylate adduct sulfate (“Eleminol RS-30”). "; Manufactured by Sanyo Chemical Industries Ltd.), divinylbenzene, 1,6-hexanediol acrylate and the like.
[0030]
The resin fine particles can be obtained by polymerization according to a known method appropriately selected according to the purpose, but is preferably obtained as an aqueous dispersion of the resin fine particles. The method for preparing the aqueous dispersion of the resin fine particles is, for example, (1) In the case of the vinyl resin, a vinyl monomer is used as a starting material and is selected from suspension polymerization, emulsion polymerization, seed polymerization, and dispersion polymerization. (2) In the case of polyaddition or condensation resin such as polyester resin, polyurethane resin, epoxy resin, etc., a precursor (monomer, oligomer). Or the like, or a solvent solution thereof is dispersed in an aqueous medium in the presence of an appropriate dispersant, and then heated or added with a curing agent to be cured to produce an aqueous dispersion of resin fine particles (3) ) In the case of polyaddition or condensation resin such as polyester resin, polyurethane resin, epoxy resin, etc., it may be a precursor (monomer, oligomer, etc.) or a solvent solution thereof (liquid). (4) Preliminary polymerization reaction (addition polymerization, ring-opening polymerization, polyaddition, addition) After the resin prepared by any polymerization reaction mode such as condensation and condensation polymerization is pulverized using a mechanical pulverizer or jet type pulverizer and then classified to obtain resin fine particles , A method of dispersing in water in the presence of an appropriate dispersant, (5) prepared in advance by a polymerization reaction (any polymerization reaction mode such as addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc.) (6) A polymerization reaction (addition polymerization) in advance, in which resin fine particles are obtained by spraying a resin solution in which the resin is dissolved in a solvent to obtain resin fine particles and then dispersing the resin fine particles in water in the presence of an appropriate dispersant. , Ring-opening polymerization, polyaddition, addition condensation The resin fine particles can be obtained by adding a poor solvent to a resin solution obtained by dissolving a resin prepared in a solvent by a polymerization reaction method such as condensation polymerization or by cooling a resin solution previously dissolved in a solvent by heating. And then removing the solvent to obtain resin particles, and then dispersing the resin particles in water in the presence of a suitable dispersant. (7) Polymerization reaction (addition polymerization, ring-opening polymerization, heavy polymerization) in advance (Any polymerization reaction mode such as addition, addition condensation, and condensation polymerization may be used.) A resin solution prepared by dissolving a resin prepared in a solvent in a solvent is dispersed in an aqueous medium and then heated or heated. (8) A resin prepared in advance by a polymerization reaction (which may be any polymerization reaction mode such as addition polymerization, ring-opening polymerization, polyaddition, addition condensation or condensation polymerization) is used as a solvent. In the dissolved resin solution A method of dissolving a suitable emulsifier and then adding water to carry out phase inversion emulsification is preferable.
[0031]
-Adhesive substrate-
The adhesive substrate is a binder obtained by reacting the active hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound in the aqueous medium. It may contain at least other binders appropriately selected from known binder resins as required.
[0032]
The weight average molecular weight of the adhesive substrate is not particularly limited and may be appropriately selected depending on the purpose. For example, 1,000 or more is preferable, and 2,000 to 10,000,000 is more preferable. 3,000 to 1,000,000 is particularly preferred.
When the weight average molecular weight is less than 1,000, the hot offset resistance may be deteriorated.
[0033]
There is no restriction | limiting in particular as glass transition temperature (Tg) of the said adhesive base material, According to the objective, it can select suitably, For example, 30-70 degreeC is preferable and 40-65 degreeC is more preferable. In the toner of the present invention, the coexistence of the polyester resin subjected to the crosslinking reaction and / or the elongation reaction exhibits good storage stability even when the glass transition temperature is lower than that of the conventional polyester toner.
When the glass transition temperature (Tg) is less than 30 ° C., the heat-resistant storage stability of the toner may deteriorate, and when it exceeds 70 ° C., the low-temperature fixability may not be sufficient.
[0034]
The glass transition temperature can be measured by, for example, the following method using a TG-DSC system TAS-100 (manufactured by Rigaku Corporation). First, about 10 mg of toner is placed in an aluminum sample container, and the sample container is placed on a holder unit and set in an electric furnace. After heating from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min, the sample is left at 150 ° C. for 10 minutes, and the sample is cooled to room temperature and left for 10 minutes. Then, the DSC curve is measured with a differential scanning calorimeter (DSC) after heating to 150 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere. From the obtained DSC curve, using the analysis system in the TG-DSC system TAS-100 system, the glass transition temperature (Tg) is calculated from the contact point between the tangent line of the endothermic curve near the glass transition temperature (Tg) and the baseline. can do.
[0035]
There is no restriction | limiting in particular as a specific example of the said adhesive base material, According to the objective, it can select suitably, A polyester resin etc. are mentioned especially suitably.
There is no restriction | limiting in particular as said polyester resin, According to the objective, it can select suitably, For example, a urea modified polyester resin etc. are mentioned especially suitably.
The urea-modified polyester resin comprises an amine (B) as the active hydrogen group-containing compound and an isocyanate group-containing polyester prepolymer (A) as a polymer that can react with the active hydrogen group-containing compound. It is obtained by reacting in a medium.
The urea-modified polyester resin may contain a urethane bond in addition to the urea bond, and in this case, the molar ratio of the urea bond to the urethane bond (urea bond / urethane bond) is particularly limited. However, 100/0 to 10/90 is preferable, 80/20 to 20/80 is more preferable, and 60/40 to 30/70 is particularly preferable.
When the urea bond is less than 10, the hot offset resistance may be deteriorated.
[0036]
Preferable specific examples of the urea-modified polyester resin include the following (1) to (10), that is, (1) a polyester pre-reacted polycondensate of bisphenol A ethylene oxide 2 mol adduct and isophthalic acid with isophorone diisocyanate. A mixture of a polymer urealated with isophoronediamine and a polycondensate of bisphenol A ethylene oxide 2 mol adduct and isophthalic acid, (2) a polycondensate of bisphenol A ethylene oxide 2 mol adduct and isophthalic acid A mixture of a polyester prepolymer reacted with diisocyanate and uread with isophoronediamine, a bicondensate of bisphenol A ethylene oxide 2 mol adduct and terephthalic acid, (3) bisphenol A ethylene oxide 2 mol Polyester prepolymer obtained by reacting an adduct / bisphenol A propylene oxide 2 mol adduct and terephthalic acid polycondensate with isophorone diisocyanate and urethanized with isophorone diamine, and bisphenol A ethylene oxide 2 mol adduct / bisphenol A propylene Mixture of oxide 2 mol adduct and terephthalic acid polycondensate, (4) Bisphenol A ethylene oxide 2 mol adduct / bisphenol A propylene oxide 2 mol adduct and terephthalic acid polycondensate were reacted with isophorone diisocyanate. A mixture of a polyester prepolymer uread with isophoronediamine, a bisphenol A propylene oxide 2-mole adduct and a polycondensate of terephthalic acid, (5) bisphenol A Polyester prepolymer obtained by reacting a polycondensate of tylene oxide 2 mol adduct and terephthalic acid with isophorone diisocyanate and ureaated with hexamethylenediamine, a polycondensate of bisphenol A ethylene oxide 2 mol adduct and terephthalic acid (6) Polyester prepolymer obtained by reacting polycondensate of bisphenol A ethylene oxide with 2 mol of bisphenol A and isophorone diisocyanate with urea and hexamethylenediamine and 2 mol of bisphenol A ethylene oxide. Product / bisphenol A propylene oxide 2 mol adduct and terephthalic acid polycondensate, (7) bisphenol A ethylene oxide 2 mol adduct and terephthalic acid polycondensate A mixture of a polyester prepolymer reacted with socyanate with urethanized with ethylenediamine and a polycondensate of bisphenol A ethylene oxide 2 mol adduct and terephthalic acid, (8) bisphenol A ethylene oxide 2 mol adduct and isophthalic acid A mixture of a polyester prepolymer obtained by reacting a polycondensate of bisphenol with diphenylmethane diisocyanate with urea and hexamethylenediamine, and a polycondensate of bisphenol A ethylene oxide 2 mol adduct and isophthalic acid, (9) bisphenol A ethylene Polyester prepolymer obtained by reacting polycondensate of oxide 2 mol adduct / bisphenol A propylene oxide 2 mol adduct and terephthalic acid / dodecenyl succinic anhydride with diphenylmethane diisocyanate Mixture of uremer urea-modified with hexamethylenediamine and bisphenol A ethylene oxide 2-mole adduct / bisphenol A propylene oxide 2-mole adduct and terephthalic acid polycondensate, (10) bisphenol A ethylene oxide 2-mole addition And a mixture of a polyester prepolymer obtained by reacting a polycondensate of isophthalic acid and isophthalic acid with toluene diisocyanate with urea methylenediamine, a 2-mole adduct of bisphenol A ethylene oxide and a polycondensate of isophthalic acid, etc. Preferably mentioned.
[0037]
-Active hydrogen group-containing compound-
The active hydrogen group-containing compound acts as an elongation agent, a crosslinking agent, or the like when a polymer capable of reacting with the active hydrogen group-containing compound undergoes an elongation reaction, a crosslinking reaction, or the like in the aqueous medium.
The active hydrogen group-containing compound is not particularly limited as long as it has an active hydrogen group, and can be appropriately selected depending on the purpose. For example, the polymer capable of reacting with the active hydrogen group-containing compound is In the case of the isocyanate group-containing polyester prepolymer (A), the amines (B) can be increased in molecular weight by a reaction such as an elongation reaction or a crosslinking reaction with the isocyanate group-containing polyester prepolymer (A). Is preferred.
There is no restriction | limiting in particular as said active hydrogen group, According to the objective, it can select suitably, For example, a hydroxyl group (alcoholic hydroxyl group or phenolic hydroxyl group), an amino group, a carboxyl group, a mercapto group etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, an alcoholic hydroxyl group is particularly preferable.
[0038]
The amines (B) are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include diamine (B1), trivalent or higher polyamine (B2), amino alcohol (B3), and amino mercaptan. (B4), amino acid (B5), and those obtained by blocking the amino groups of B1 to B5 (B6).
These may be used individually by 1 type and may use 2 or more types together. Among these, diamine (B1), a mixture of diamine (B1) and a small amount of a trivalent or higher polyamine (B2) are particularly preferable.
[0039]
Examples of the diamine (B1) include aromatic diamines, alicyclic diamines, and aliphatic diamines. Examples of the aromatic diamine include phenylenediamine, diethyltoluenediamine, 4,4′diaminodiphenylmethane, and the like. Examples of the alicyclic diamine include 4,4′-diamino-3,3′dimethyldicyclohexylmethane, diaminecyclohexane, and isophoronediamine. Examples of the aliphatic diamine include ethylene diamine, tetramethylene diamine, and hexamethylene diamine.
Examples of the trivalent or higher polyamine (B2) include diethylenetriamine and triethylenetetramine.
Examples of the amino alcohol (B3) include ethanolamine and hydroxyethylaniline.
Examples of the amino mercaptan (B4) include aminoethyl mercaptan and aminopropyl mercaptan.
Examples of the amino acid (B5) include aminopropionic acid and aminocaproic acid.
Examples of the block (B6) obtained by blocking the amino group of B1 to B5 include ketimines obtained from any of the amines (B1) to (B5) and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.). Compounds, oxazolyzone compounds, and the like.
[0040]
In addition, a reaction terminator can be used to stop the elongation reaction, the crosslinking reaction, etc. between the active hydrogen group-containing compound and the polymer capable of reacting with the active hydrogen group-containing compound. Use of the reaction terminator is preferable in that the molecular weight and the like of the adhesive substrate can be controlled within a desired range. Examples of the reaction terminator include monoamines (diethylamine, dibutylamine, butylamine, laurylamine, etc.), or those obtained by blocking these (ketimine compounds).
[0041]
As a mixing ratio of the amines (B) and the isocyanate group-containing polyester prepolymer (A), the isocyanate group [NCO] in the isocyanate group-containing prepolymer (A) and the amines (B) The mixing equivalent ratio ([NCO] / [NHx]) of the amino group [NHx] is preferably 1/3 to 3/1, more preferably 1/2 to 2/1, It is particularly preferably 1.5 to 1.5 / 1.
When the isocyanate group [NCO] is less than 1/2 or exceeds 2/1, the molecular weight of the urea-modified polyester resin is lowered, and the hot offset resistance may be deteriorated.
[0042]
--Polymer capable of reacting with active hydrogen group-containing compound--
The polymer capable of reacting with the active hydrogen group-containing compound (hereinafter sometimes referred to as “prepolymer”) is not particularly limited as long as it has at least a site capable of reacting with the active hydrogen group-containing compound. It can be appropriately selected from known resins and the like, and examples thereof include polyol resins, polyacrylic resins, polyester resins, epoxy resins, and derivative resins thereof.
These may be used individually by 1 type and may use 2 or more types together. Among these, the polyester resin is particularly preferable in terms of good compatibility with the unmodified polyester resin.
[0043]
The site capable of reacting with the active hydrogen group-containing compound in the prepolymer is not particularly limited and may be appropriately selected from known substituents. For example, an isocyanate group, an epoxy group, a carboxylic acid, An acid chloride group, and the like.
These may be contained singly or in combination of two or more. Among these, an isocyanate group is particularly preferable.
[0044]
Among the prepolymers, it is easy to adjust the molecular weight of the polymer component, and oil-less low-temperature fixing characteristics in dry toners, in particular, good releasability and fixability even in the absence of a release oil application mechanism to a fixing heating medium. It is particularly preferable that it is a urea bond-forming group-containing polyester resin (RMPE) in that it can be secured.
As said urea bond production | generation group, an isocyanate group etc. are mentioned, for example. When the urea bond-forming group in the urea bond-forming group-containing polyester resin (RMPE) is the isocyanate group, the isocyanate group-containing polyester prepolymer (A) and the like are particularly preferable as the polyester resin (RMPE). It is done.
[0045]
The isocyanate group-containing polyester prepolymer (A) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is a polycondensate of a polyol (PO) and a polycarboxylic acid (PC), And those obtained by reacting the active hydrogen group-containing polyester resin with polyisocyanate (PIC).
[0046]
There is no restriction | limiting in particular as said polyol (PO), According to the objective, it can select suitably, For example, diol (DIO), trihydric or more polyol (TO), diol (DIO), and trihydric or more polyol And a mixture with (TO). These may be used individually by 1 type and may use 2 or more types together. Among these, the diol (DIO) alone or a mixture of the diol (DIO) and a small amount of the trivalent or higher polyol (TO) is preferable.
[0047]
Examples of the diol (DIO) include alkylene glycol, alkylene ether glycol, alicyclic diol, alkylene oxide adduct of alicyclic diol, bisphenol, alkylene oxide adduct of bisphenol, and the like.
The alkylene glycol is preferably one having 2 to 12 carbon atoms, such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, and the like. Can be mentioned. Examples of the alkylene ether glycol include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like. Examples of the alicyclic diol include 1,4-cyclohexanedimethanol and hydrogenated bisphenol A. Examples of the alkylene oxide adduct of the alicyclic diol include those obtained by adding an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide to the alicyclic diol. Examples of the bisphenols include bisphenol A, bisphenol F, and bisphenol S. Examples of the alkylene oxide adduct of the bisphenol include those obtained by adding an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide to the bisphenol.
Among these, alkylene glycols having 2 to 12 carbon atoms, alkylene oxide adducts of bisphenols and the like are preferable, and alkylene oxide adducts of bisphenols, alkylene oxide adducts of bisphenols and alkylene glycols having 2 to 12 carbon atoms. Mixtures are particularly preferred.
[0048]
The trivalent or higher polyol (TO) is preferably 3 to 8 or higher, for example, a trivalent or higher polyhydric aliphatic alcohol, a trivalent or higher polyphenol, a trivalent or higher polyphenol. And alkylene oxide adducts.
Examples of the trihydric or higher polyhydric aliphatic alcohol include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol and the like. Examples of the trihydric or higher polyphenols include trisphenol PA, phenol novolak, cresol novolak, and the like. Examples of the alkylene oxide adducts of trihydric or higher polyphenols include those obtained by adding alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide to the trihydric or higher polyphenols.
[0049]
The mixture mass ratio (DIO: TO) of the diol (DIO) and the trivalent or higher polyol (TO) in the mixture of the diol (DIO) and the trivalent or higher polyol (TO) is 100: 0.01-10 are preferable and 100: 0.01-1 are more preferable.
[0050]
There is no restriction | limiting in particular as said polycarboxylic acid (PC), Although it can select suitably according to the objective, For example, dicarboxylic acid (DIC), trivalent or more polycarboxylic acid (TC), dicarboxylic acid (DIC) ) And a tricarboxylic or higher polycarboxylic acid.
These may be used individually by 1 type and may use 2 or more types together. Among these, dicarboxylic acid (DIC) alone or a mixture of DIC and a small amount of trivalent or higher polycarboxylic acid (TC) is preferable.
Examples of the dicarboxylic acid include alkylene dicarboxylic acid, alkenylene dicarboxylic acid, aromatic dicarboxylic acid, and the like.
Examples of the alkylene dicarboxylic acid include succinic acid, adipic acid, and sebacic acid. As said alkenylene dicarboxylic acid, a C4-C20 thing is preferable, For example, a maleic acid, a fumaric acid, etc. are mentioned. As said aromatic dicarboxylic acid, a C8-C20 thing is preferable, For example, a phthalic acid, an isophthalic acid, a terephthalic acid, naphthalene dicarboxylic acid etc. are mentioned.
Among these, alkenylene dicarboxylic acid having 4 to 20 carbon atoms and aromatic dicarboxylic acid having 8 to 20 carbon atoms are preferable.
[0051]
The trivalent or higher polycarboxylic acid (TO) is preferably 3 to 8 or higher, and examples thereof include aromatic polycarboxylic acids.
The aromatic polycarboxylic acid preferably has 9 to 20 carbon atoms, and examples thereof include trimellitic acid and pyromellitic acid.
[0052]
As the polycarboxylic acid (PC), the dicarboxylic acid (DIC), the trivalent or higher polycarboxylic acid (TC), and a mixture of the dicarboxylic acid (DIC) and the trivalent or higher polycarboxylic acid, Any acid anhydride or lower alkyl ester selected from can also be used. Examples of the lower alkyl ester include methyl ester, ethyl ester, isopropyl ester and the like.
[0053]
Mixing mass ratio (DIC: TC) of the dicarboxylic acid (DIC) and the trivalent or higher polycarboxylic acid (TC) in the mixture of the dicarboxylic acid (DIC) and the trivalent or higher polycarboxylic acid (TC) There is no restriction | limiting in particular, According to the objective, it can select suitably, For example, 100: 0.01-10 are preferable and 100: 0.01-1 are more preferable.
[0054]
The mixing ratio for the polycondensation reaction between the polyol (PO) and the polycarboxylic acid (PC) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, in the polyol (PO) The equivalent ratio ([OH] / [COOH]) of the hydroxyl group [OH] to the carboxyl group [COOH] in the polycarboxylic acid (PC) is usually preferably 2/1 to 1/1. More preferably, it is 0.5 / 1 to 1/1, and particularly preferably 1.3 / 1 to 1.02 / 1. If the equivalent ratio ([OH] / [COOH]) exceeds 2/1 or is less than 1/1, the polycondensation reaction may not proceed completely.
[0055]
There is no restriction | limiting in particular as content in the said isocyanate group containing polyester prepolymer (A) of the said polyol (PO), Although it can select suitably according to the objective, For example, 0.5-40 mass% is preferable. 1-30 mass% is more preferable, and 2-20 mass% is especially preferable.
When the content is less than 0.5% by mass, the hot offset resistance deteriorates, and it may be difficult to achieve both the heat-resistant storage stability and the low-temperature fixability of the toner, and exceeds 40% by mass. In some cases, the low-temperature fixability may deteriorate.
[0056]
There is no restriction | limiting in particular as said polyisocyanate (PIC), Although it can select suitably according to the objective, For example, aliphatic polyisocyanate, alicyclic polyisocyanate, aromatic diisocyanate, araliphatic diisocyanate, isocyanurate And those blocked with phenol derivatives, oximes, caprolactams, and the like.
Examples of the aliphatic polyisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, 2,6-diisocyanatomethylcaproate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, trimethylhexane diisocyanate, Examples include tetramethylhexane diisocyanate. Examples of the alicyclic polyisocyanate include isophorone diisocyanate and cyclohexylmethane diisocyanate. Examples of the aromatic diisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, diphenylene-4,4′-diisocyanate, 4,4′-diisocyanato-3,3′-dimethyldiphenyl, 3- Examples thereof include methyldiphenylmethane-4,4′-diisocyanate, diphenyl ether-4,4′-diisocyanate and the like. Examples of the araliphatic diisocyanate include α, α, α ′, α′-tetramethylxylylene diisocyanate. Examples of the isocyanurates include tris-isocyanatoalkyl-isocyanurate and triisocyanatocycloalkyl-isocyanurate.
These can be used alone or in combination of two or more. Among these, isophorone diisocyanate is preferable.
[0057]
As a mixing ratio when the polyisocyanate (PIC) and the active hydrogen group-containing polyester resin (for example, a hydroxyl group-containing polyester resin) are reacted, the isocyanate group [NCO] in the polyisocyanate (PIC) and the hydroxyl group-containing component are used. The mixing equivalent ratio ([NCO] / [OH]) with the hydroxyl group [OH] in the polyester resin is usually preferably 5/1 to 1/1, and preferably 4/1 to 1.2 / 1. More preferred is 3/1 to 1.5 / 1.
If the isocyanate group [NCO] exceeds 5, the low-temperature fixability may deteriorate, and if it is less than 1, the hot offset resistance may deteriorate.
[0058]
There is no restriction | limiting in particular as content in the said isocyanate group containing polyester prepolymer (A) of the said polyisocyanate (PIC), Although it can select suitably according to the objective, For example, 0.5-40 mass% is Preferably, 1-30 mass% is more preferable, and 2-20 mass% is still more preferable.
When the content is less than 0.5% by mass, the hot offset resistance is deteriorated, and it may be difficult to achieve both heat-resistant storage stability and low-temperature fixability. When the content exceeds 40% by mass, Low temperature fixability may deteriorate.
[0059]
As an average number of the isocyanate groups contained per molecule of the isocyanate group-containing polyester prepolymer (A), 1 or more is preferable, 1.2 to 5 is more preferable, and 1.5 to 4 is more preferable.
When the average number of the isocyanate groups is less than 1, the molecular weight of the polyester resin (RMPE) modified with the urea bond-forming group is lowered, and the hot offset resistance may be deteriorated.
[0060]
--- Aqueous medium--
There is no restriction | limiting in particular as said aqueous medium, It can select suitably from well-known things, For example, water, a solvent miscible with this water, a mixture thereof, etc. are mentioned.
The solvent miscible with water is not particularly limited as long as it is miscible with water, and examples thereof include alcohol, dimethylformamide, tetrahydrofuran, cellosolves, and lower ketones.
Examples of the alcohol include methanol, isopropanol, ethylene glycol and the like. Examples of the cell solves include methyl cell solve. Examples of the lower ketones include acetone and methyl ethyl ketone.
These may be used individually by 1 type and may use 2 or more types together.
[0061]
The other components are not particularly limited and may be appropriately selected depending on the purpose. For example, a colorant, a release agent, an unmodified polyester resin, a charge control agent, inorganic fine particles, a fluidity improver, and a cleaning agent. Property improvers, magnetic materials, metal soaps, and the like.
[0062]
The colorant is not particularly limited and may be appropriately selected from known dyes and pigments according to the purpose. For example, carbon black, nigrosine dye, iron black, naphthol yellow S, Hansa yellow (10G 5G, G), cadmium yellow, yellow iron oxide, ocher, yellow lead, titanium yellow, polyazo yellow, oil yellow, Hansa yellow (GR, A, RN, R), pigment yellow L, benzidine yellow (G , GR), Permanent Yellow (NCG), Vulcan Fast Yellow (5G, R), Tartrazine Lake, Quinoline Yellow Lake, Anthrazan Yellow BGL, Isoindolinone Yellow, Bengala, Lead Red, Lead Zhu, Cadmium Red, Cadmium Mercury Red, Antimony Zhu, Permanent Red 4R Parared, Faisered, Parachlor ortho nitroaniline red, Resol Fast Scarlet G, Brilliant Fast Scarlet, Brilliant Carmine BS, Permanent Red (F2R, F4R, FRL, FRLL, F4RH), Fast Scarlet VD, Belkan Fast Rubin B, Brilliant Scarlet G, Risor Rubin GX, Permanent Red F5R, Brilliant Carmine 6B, Pogment Scarlet 3B, Bordeaux 5B, Toluidine Maroon, Permanent Bordeaux F2K, Helio Bordeaux BL, Bordeaux 10B, Bon Maroon Light, Bon Maroon Medium, Eosin Lake, Rhodamine Lake B, Rhodamine Lake Y, Alizarin Lake, Thioindigo Red B, Thioindigo Maroon Oil Red, Quinacridone Red, Pyrazolone Red, Polyazo Red, Chrome Vermilion, Benzidine Orange, Perinone Orange, Oil Orange, Cobalt Blue, Cerulean Blue, Alkaline Blue Lake, Peacock Blue Lake, Victoria Blue Lake, Metal-Free Phthalocyanine Blue, Phthalocyanine Blue , Fast Sky Blue, Indanthrene Blue (RS, BC), Indigo, Ultramarine Blue, Bitumen, Anthraquinone Blue, Fast Violet B, Methyl Violet Lake, Cobalt Purple, Manganese Purple, Dioxane Violet, Anthraquinone Violet, Chrome Green, Zinc Green, Chrome oxide, pyridian, emerald green, pigment green B, naphthol green B, green gold, a Cid green lake, malachite green lake, phthalocyanine green, anthraquinone green, titanium oxide, zinc white, litbon, and the like.
These may be used individually by 1 type and may use 2 or more types together.
[0063]
The content of the colorant in the toner is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 to 15% by weight, and more preferably 3 to 10% by weight.
Even if the content is less than 1% by mass or exceeds 15% by mass, the image density may be insufficient or excessive, and good image quality may not be obtained.
[0064]
The colorant can also be used as a master batch combined with a resin.
The resin is not particularly limited and may be appropriately selected depending on the intended purpose.For example, styrene or a substituted polymer thereof, styrene copolymer, polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, Polyvinyl acetate, polyethylene, polypropylene, polyester, epoxy resin, epoxy polyol resin, polyurethane, polyamide, polyvinyl butyral, polyacrylic acid resin, rosin, modified rosin, terpene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, Aromatic petroleum resin, chlorinated paraffin, paraffin wax and the like can be mentioned.
These may be used individually by 1 type and may use 2 or more types together.
[0065]
Examples of the polymer of styrene or a substituted product thereof include polyester resin, polystyrene, poly p-chlorostyrene, polyvinyl toluene, and the like.
Examples of the styrene copolymer include styrene-p-chlorostyrene copolymer, styrene-propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer. Copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-methacrylic copolymer Acid butyl copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene- Acrylonitrile-indene copolymer, Len - maleic acid copolymer, styrene - maleic acid ester copolymer, and the like.
[0066]
The masterbatch can be produced by mixing or kneading the masterbatch resin and the colorant under high shear. At this time, it is preferable to add an organic solvent in order to enhance the interaction between the colorant and the resin. Also, the so-called flushing method is preferable in that the wet cake of the colorant can be used as it is, and there is no need to dry it. This flushing method is a method of mixing or kneading an aqueous paste containing water of a colorant together with a resin and an organic solvent, and transferring the colorant to the resin side to remove moisture and organic solvent components. For the mixing or kneading, for example, a high shear dispersion device such as a three-roll mill is preferably used.
[0067]
There is no restriction | limiting in particular as said mold release agent, According to the objective, it can select suitably from well-known things, For example, waxes etc. are mentioned suitably.
Examples of the waxes include carbonyl group-containing waxes, polyolefin waxes, and long-chain hydrocarbons. These may be used individually by 1 type and may use 2 or more types together. Among these, a carbonyl group-containing wax is preferable.
Examples of the carbonyl group-containing wax include polyalkanoic acid esters, polyalkanol esters, polyalkanoic acid amides, polyalkylamides, dialkyl ketones, and the like. Examples of the polyalkanoic acid ester include carnauba wax, montan wax, trimethylolpropane tribehenate, pentaerythritol tetrabehenate, pentaerythritol diacetate dibehenate, glycerin tribehenate, and 1,18-octadecane. Examples thereof include diol distearate. Examples of the polyalkanol ester include tristearyl trimellitic acid and distearyl maleate. Examples of the polyalkanoic acid amide include dibehenyl amide. Examples of the polyalkylamide include trimellitic acid tristearylamide. Examples of the dialkyl ketone include distearyl ketone. Of these carbonyl group-containing waxes, polyalkanoic acid esters are particularly preferred.
Examples of the polyolefin wax include polyethylene wax and polypropylene wax.
Examples of the long chain hydrocarbon include paraffin wax and sazol wax.
[0068]
There is no restriction | limiting in particular as melting | fusing point of the said mold release agent, Although it can select suitably according to the objective, 40-160 degreeC is preferable, 50-120 degreeC is more preferable, 60-90 degreeC is especially preferable.
When the melting point is less than 40 ° C., the wax may adversely affect the heat-resistant storage stability, and when it exceeds 160 ° C., cold offset may easily occur during fixing at a low temperature.
The melt viscosity of the release agent is preferably 5 to 1000 cps, more preferably 10 to 100 cps, as a measured value at a temperature 20 ° C. higher than the melting point of the wax.
If the melt viscosity is less than 5 cps, the releasability may be lowered, and if it exceeds 1000 cps, the effect of improving hot offset resistance and low-temperature fixability may not be obtained.
[0069]
There is no restriction | limiting in particular as content in the said toner of the said mold release agent, Although it can select suitably according to the objective, 0-40 mass% is preferable and 3-30 mass% is more preferable.
When the content exceeds 40% by mass, the fluidity of the toner may be deteriorated.
[0070]
When the unmodified polyester resin is contained in the toner, low-temperature fixability and glossiness can be improved.
Examples of the unmodified polyester resin include those similar to the urea bond-forming group-containing polyester resin, that is, a polycondensate of polyol (PO) and polycarboxylic acid (PC). The unmodified polyester resin is partially compatible with the urea bond-forming group-containing polyester resin (RMPE), that is, has a similar structure compatible with each other. It is preferable in terms of hot offset.
The weight average molecular weight of the unmodified polyester resin is preferably 1,000 to 30,000, more preferably 1,500 to 10,000, and more preferably 2,000 to 30,000, as measured by GPC (gel permeation chromatography). 8,000 is particularly preferred. When the weight average molecular weight is less than 1,000, the heat resistant storage stability may be deteriorated, and when it exceeds 30,000, the low temperature fixability may be deteriorated.
The glass transition temperature of the unmodified polyester resin is preferably 30 to 50 ° C, and more preferably 35 to 45 ° C. When the glass transition temperature is less than 30 ° C., the heat-resistant storage stability of the toner may be deteriorated, and when it exceeds 50 ° C., the low-temperature fixability may be insufficient.
The hydroxyl value of the unmodified polyester resin is preferably 5 mgKOH / g, more preferably 10 to 120 mgKOH / g, and still more preferably 20 to 80 mgKOH / g. If the hydroxyl value is less than 5, it may be difficult to achieve both heat-resistant storage stability and low-temperature fixability.
The acid value of the unmodified polyester resin is preferably 0 to 40 mgKOH / g, more preferably 0 to 30 mgKOH / g. Generally, it becomes easy to be negatively charged by giving the toner an acid value.
[0071]
When the unmodified polyester resin is contained in the toner, the mixing mass ratio (RMPE / PE) of the urea bond-forming group-containing polyester resin (RMPE) and the unmodified polyester resin (PE) is 5/95. -25/75 is preferable, and 10 / 90-25 / 75 is more preferable.
When the mixing mass ratio of the unmodified polyester resin (PE) exceeds 95, the hot offset resistance is deteriorated, and it may be difficult to achieve both heat-resistant storage stability and low-temperature fixability. Glossiness may deteriorate.
[0072]
The charge control agent is not particularly limited and may be appropriately selected from known ones according to the purpose. However, since a color tone may change when a colored material is used, a colorless or nearly white material may be used. Preferably, for example, triphenylmethane dyes, molybdate chelate pigments, rhodamine dyes, alkoxy amines, quaternary ammonium salts (including fluorine-modified quaternary ammonium salts), alkylamides, phosphorus alone or compounds thereof, tungsten Examples thereof include a single substance or a compound thereof, a fluorine-based activator, a metal salt of salicylic acid, and a metal salt of a salicylic acid derivative. These may be used individually by 1 type and may use 2 or more types together.
Commercially available products may be used as the charge control agent. Examples of the commercially available products include quaternary ammonium salt Bontron P-51, oxynaphthoic acid metal complex E-82, and salicylic acid metal complex. E-84, E-89 of a phenol-based condensate (above, manufactured by Orient Chemical Industries), TP-302, TP-415 of a quaternary ammonium salt molybdenum complex (above, manufactured by Hodogaya Chemical Co., Ltd.), Fourth Copy charge PSY VP2038 of quaternary ammonium salt, copy blue PR of triphenylmethane derivative, copy charge of quaternary ammonium salt NEG VP2036, copy charge NX VP434 (manufactured by Hoechst), LRA-901, LR which is a boron complex -147 (Nippon Carlit), quinacridone, azo pigment, other sulfonic acid groups, cal Examples thereof include polymer compounds having a functional group such as a boxyl group and a quaternary ammonium salt.
The charge control agent may be melted and kneaded with the master batch and then dissolved or dispersed, or may be added together with each component of the toner when directly dissolving or dispersing in the organic solvent, or The toner particles may be fixed on the toner surface after production.
[0073]
The content of the charge control agent in the toner varies depending on the type of the adhesive base material, the presence or absence of additives, the dispersion method, and the like, and cannot be defined generally. 0.1-10 mass parts is preferable with respect to part, and 0.2-5 mass parts is more preferable. When the content is less than 0.1 parts by mass, the charge controllability may not be obtained. When the content exceeds 10 parts by mass, the chargeability of the toner becomes too large, and the effect of the main charge control agent is reduced. As a result, the electrostatic attractive force with the developing roller increases, which may lead to a decrease in developer fluidity and a decrease in image density.
[0074]
The inorganic fine particles are not particularly limited and may be appropriately selected from known ones according to the purpose. For example, silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, titanate Strontium, zinc oxide, tin oxide, silica sand, clay, mica, wollastonite, diatomaceous earth, chromium oxide, cerium oxide, pengala, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, carbonized Examples thereof include silicon and silicon nitride. These may be used individually by 1 type and may use 2 or more types together.
The primary particle diameter of the inorganic fine particles is preferably 5 nm to 2 μm, and more preferably 5 nm to 500 nm. The specific surface area of the inorganic fine particles by BET method is 20 to 500 m.2/ G is preferred.
The content of the inorganic fine particles in the toner is preferably 0.01 to 5.0% by mass, and more preferably 0.01 to 2.0% by mass.
[0075]
The fluidity improver means a material that can be surface treated to increase hydrophobicity and prevent deterioration of flow characteristics and charging characteristics even under high humidity. For example, a silane coupling agent, a silylating agent, Examples thereof include a silane coupling agent having a fluoroalkyl group, an organic titanate coupling agent, an aluminum coupling agent, silicone oil, and modified silicone oil.
The cleaning improver is added to the toner in order to remove the developer after transfer remaining on the photoreceptor or the primary transfer medium, and includes, for example, fatty acid metal salts such as zinc stearate, calcium stearate, stearic acid, and the like. Examples thereof include polymer fine particles produced by soap-free emulsion polymerization such as methyl methacrylate fine particles and polystyrene fine particles. The polymer fine particles preferably have a relatively narrow particle size distribution, and those having a volume average particle size of 0.01 to 1 μm are suitable.
There is no restriction | limiting in particular as said magnetic material, According to the objective, it can select suitably from well-known things, For example, iron powder, a magnetite, a ferrite etc. are mentioned. Among these, white is preferable in terms of color tone.
[0076]
The toner of the present invention is not particularly limited as to its physical properties such as shape and size, and can be appropriately selected depending on the purpose. It preferably has generation temperature, thermal characteristics, image density, average circularity, weight (mass) average particle diameter, BET specific surface area, and the like.
[0077]
As said penetration, the penetration measured by the penetration test (JIS K2235-1991) needs to be 15 mm or more, for example, and 20-30 mm is more preferable.
When the penetration is less than 15 mm, the heat resistant storage stability may be deteriorated.
The penetration can be measured according to JIS K2235-1991. Specifically, a 50 ml glass container is filled with toner and left in a thermostatic bath at 50 ° C. for 20 hours. The penetration can be measured by cooling the toner to room temperature and performing a penetration test. In addition, it has shown that the said heat-resistant preservation | save property is excellent, so that the said penetration value is large.
[0078]
As the low-temperature fixability, from the viewpoint of achieving both a reduction in fixing temperature and no occurrence of offset, the lower fixing minimum temperature is preferably lower, and the higher the offset non-reaction temperature is, the lower the fixing temperature and no occurrence of offset. As a temperature range in which both can be achieved, the minimum fixing temperature is less than 150 ° C., and the non-offset temperature is 200 ° C. or more.
The fixing minimum temperature is, for example, an image forming apparatus, a transfer sheet is set, a copy test is performed, and the obtained fixed image is rubbed with a pad. The fixing roll temperature is the lower limit fixing temperature.
The offset non-occurrence temperature is set by, for example, using an image forming apparatus, setting a transfer paper, and each color of solid images of red, blue, and green as single colors of yellow, magenta, cyan, and black, and solid colors of each color. It can be determined by adjusting the toner image to be developed, adjusting the temperature of the fixing belt to be variable, and measuring the temperature at which no offset occurs.
[0079]
The thermal characteristics are also called flow tester characteristics, and are evaluated as, for example, a softening temperature (Ts), an outflow start temperature (Tfb), a 1/2 method softening point (T1 / 2), and the like. These thermal characteristics can be measured by an appropriately selected method. For example, the thermal characteristics can be obtained from a flow curve measured using an elevated flow tester CFT500 type (manufactured by Shimadzu Corporation).
There is no restriction | limiting in particular as said softening temperature (Ts), According to the objective, it can select suitably, For example, 30 degreeC or more is preferable and 50-120 degreeC is more preferable. When the softening temperature (Ts) is less than 30 ° C., at least one of heat resistant storage stability and low temperature storage stability may be deteriorated.
There is no restriction | limiting in particular as said outflow start temperature (Tfb), According to the objective, it can select suitably, For example, 50 degreeC or more is preferable and 60-150 degreeC is more preferable. When the outflow start temperature (Tfb) is less than 50 ° C., at least one of heat resistant storage stability and low temperature storage stability may deteriorate.
The 1/2 method softening point (T1 / 2) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 60 ° C. or higher is preferable, and 80 to 170 ° C. is more preferable. If the 1/2 method softening point (T1 / 2) is less than 60 ° C., at least one of heat resistant storage stability and low temperature storage stability may be deteriorated.
[0080]
The image density is, for example, preferably 1.90 or more, more preferably 2.00 or more, and 2.10 or more, as measured by a spectrometer (X-Light, 938 Spectrodensitometer). Is particularly preferred.
If the image density is less than 1.90, the image density may be low and high image quality may not be obtained.
The image density is, for example, imagio Neo 450 (manufactured by Ricoh Co., Ltd.), and the amount of developer adhered to copy paper (TYPE 6000 <70W>; manufactured by Ricoh Co., Ltd.) is 1.00 ± 0.05 mg / cm.2The solid roller image was formed at a fixing roller surface temperature of 160 ± 2 ° C., and the image density at any six locations in the solid image obtained was measured using a spectrometer (938 Spectrodensitometer, manufactured by X-Light). It can be measured by measuring and calculating the average value.
[0081]
The average circularity is a value obtained by dividing the circumference of an equivalent circle having the same projected area as the shape of the toner by the circumference of the actual particles. For example, 0.90 to 1.00 is preferable, and 0.910 to 0 is preferable. .995 is more preferred. The particles having an average circularity of less than 0.90 are preferably 30% or less.
If the average circularity is less than 0.90, satisfactory transferability and a high-quality image free from dust may not be obtained. If the average circularity exceeds 0.995, image formation employing blade cleaning or the like is employed. In the system, defective cleaning occurs on the photoconductor and the transfer belt, and in the case of image formation with a high image area ratio such as a photographic image, an untransferred image is formed due to defective paper feeding, etc. The accumulated toner may become a transfer residual toner on the photoconductor, resulting in background smearing of the image, or it may contaminate the charging roller for charging the photoconductor in contact with the original charging ability. It may become impossible to demonstrate.
The average circularity is measured by, for example, an optical detection band method in which a suspension containing toner particles is passed through an imaging unit detection band on a flat plate, and a particle image is optically detected and analyzed by a CCD camera. For example, it can be measured using a flow type particle image analyzer FPIA-2100 (manufactured by Sysmex Corporation).
[0082]
The volume average particle diameter of the toner is preferably 3 to 8 μm, for example.
When the volume average particle size is less than 3 μm, in the case of a two-component developer, the toner may be fused to the surface of the carrier during long-term agitation in the developing device, and the charging ability of the carrier may be reduced. In the developer, toner filming on the developing roller and toner fusion to a member such as a blade are likely to occur because the toner is thinned. When the thickness exceeds 8 μm, the resolution is high and high. It becomes difficult to obtain an image of an image quality, and when the balance of the toner in the developer is performed, the variation in the particle diameter of the toner may increase.
[0083]
The ratio of the volume average particle diameter to the number average particle diameter (volume average particle diameter / number average particle diameter) in the toner is, for example, preferably 1.00 to 1.25, more preferably 1.10 to 1.25. preferable.
If the ratio of the volume average particle diameter to the number average particle diameter (volume average particle diameter / number average particle diameter) is less than 1.00, the two-component developer may cause the surface of the carrier to be agitated over a long period of time in the developing device. The toner may be fused to reduce the charging ability of the carrier. In the case of a one-component developer, the toner is applied to a member such as a blade in order to form the toner on the developing roller or to make the toner thin. Fusing tends to occur, and if it exceeds 1.25, it becomes difficult to obtain a high-resolution and high-quality image, and the toner particle size when the balance of toner in the developer is performed Fluctuations may increase.
[0084]
The volume average particle diameter and the ratio of the volume average particle diameter to the number average particle diameter (volume average particle diameter / number average particle diameter) are, for example, a particle size measuring device “Multisizer II” manufactured by Beckman Coulter, Inc. Can be measured.
[0085]
The BET specific surface area of the toner is, for example, 0.5 to 8.0 m.2/ G is preferred, 0.5 to 7.5 m2/ G is more preferable.
The BET specific surface area is 0.5 m2If it is less than / g, the organic fine particles remaining on the toner surface become a film or cover the entire surface of the toner closely, and the fine resin particles impair the adhesiveness between the binder resin component inside the toner and the fixing paper, thereby fixing the toner. While an increase in the minimum temperature may be observed, 8.0 m2When the amount exceeds / g, the resin fine particles inhibit the exudation of the wax, and the effect of releasing the wax cannot be obtained, and offset may be observed.
The specific surface area of the toner can be measured according to the BET method. For example, the specific surface area measuring device Tristar 3000 (manufactured by Shimadzu Corporation) is used to adsorb nitrogen gas on the sample surface and the BET multipoint method is used. can do.
[0086]
The coloration of the toner of the present invention is not particularly limited and can be appropriately selected according to the purpose, and can be at least one selected from black toner, cyan toner, magenta toner and yellow toner. This toner can be obtained by appropriately selecting the type of the colorant.
[0087]
The toner of the present invention contains at least two kinds of resin fine particles, resin fine particles that impart heat-resistant storage stability to the toner and resin fine particles that impart low-temperature fixability to the toner. The high-quality image can be formed even under low temperature fixing conditions. In addition, the toner of the present invention includes the adhesive base formed by reacting the active hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound in an aqueous medium. Excellent properties such as properties, fluidity, transferability, and fixability. Therefore, the toner of the present invention can be suitably used in various fields, and can be more suitably used for image formation by electrophotography. The following toner-containing container, developer, and process of the present invention are described below. It can be particularly suitably used for a cartridge, an image forming apparatus, and an image forming method.
[0088]
The toner of the present invention can be produced by a known method, but can be suitably produced by the toner production method of the present invention described later.
[0089]
(Toner production method)
The method for producing the toner of the present invention is a method for producing the toner of the present invention described above, wherein the active hydrogen group-containing compound, a polymer having a site capable of reacting with the active hydrogen group-containing compound, and at least two kinds are used. At least a step of obtaining a toner while producing an adhesive substrate by dispersing and reacting the resin fine particles in an aqueous medium, and further including other steps appropriately selected as necessary.
[0090]
In the step, for example, preparation of an aqueous medium phase, preparation of an organic solvent phase, emulsification / dispersion, and others (synthesis of a polymer (prepolymer) capable of reacting with the active hydrogen group-containing compound, the active hydrogen group-containing compound) Etc.).
[0091]
The aqueous medium phase can be prepared, for example, by dispersing the at least two kinds of resin fine particles in the aqueous medium. There is no restriction | limiting in particular as the addition amount in this aqueous medium of this resin fine particle, According to the objective, it can select suitably, For example, 0.5-10 mass% is preferable.
The organic solvent phase is prepared by mixing the active hydrogen group-containing compound, the polymer capable of reacting with the active hydrogen group-containing compound, the colorant, the mold release agent, the charge control agent, The toner raw material such as a modified polyester resin can be dissolved or dispersed.
It should be noted that components other than the polymer (prepolymer) capable of reacting with the active hydrogen group-containing compound in the toner raw material are added when the resin fine particles are dispersed in the aqueous medium in the aqueous medium phase preparation. You may add and mix in an aqueous medium, or when adding the said organic solvent phase to the said aqueous medium phase, you may add to the said aqueous medium phase with this organic solvent phase.
[0092]
The organic solvent is not particularly limited as long as it is a solvent that can dissolve or disperse the toner raw material, and can be appropriately selected according to the purpose, and has a boiling point of less than 150 ° C. in terms of ease of removal. For example, toluene, xylene, benzene, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate, Examples thereof include methyl ethyl ketone and methyl isobutyl ketone. Among these, ethyl acetate, toluene, xylene, benzene, methylene chloride, 1,2-dichloroethane, chloroform, carbon tetrachloride and the like are particularly preferable. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as the usage-amount of the said organic solvent, According to the objective, it can select suitably, For example, 40-300 mass parts is preferable with respect to 100 mass parts of said toner raw materials, and 60-140 mass parts is. More preferably, 80-120 mass parts is still more preferable.
[0093]
The emulsification / dispersion can be performed by emulsifying / dispersing the previously prepared organic solvent phase in the previously prepared aqueous medium phase. In the emulsification / dispersion, when the active hydrogen group-containing compound and the polymer capable of reacting with the active hydrogen group-containing compound are subjected to an extension reaction or a crosslinking reaction, the adhesive base material is generated.
The adhesive substrate (for example, the urea-modified polyester resin) includes, for example, (1) a polymer that can react with the active hydrogen group-containing compound (for example, the isocyanate group-containing polyester prepolymer (A)). The organic solvent phase is emulsified and dispersed in the aqueous medium phase together with the active hydrogen group-containing compound (for example, the amines (B)) to form a dispersion, and both are extended in the aqueous medium phase. Or (2) the organic solvent phase is emulsified and dispersed in the aqueous medium to which the active hydrogen group-containing compound has been added in advance to form a dispersion, and the aqueous medium It may be produced by extending or cross-linking both in the phase, or (3) the organic solvent phase is added and mixed in the aqueous medium and then the active hydrogen group-containing The compound was added to form a dispersion, it may be generated by elongation reaction or crosslinking reaction from particle interfaces in the aqueous medium phase. In the case of (3), a modified polyester resin is preferentially produced on the surface of the toner to be produced, and a concentration gradient can be provided in the toner particles.
[0094]
The reaction conditions for producing the adhesive base material by the emulsification / dispersion are not particularly limited, depending on the combination of the polymer capable of reacting with the active hydrogen group-containing compound and the active hydrogen group-containing compound. The reaction time is preferably 10 minutes to 40 hours, more preferably 2 hours to 24 hours, and the reaction temperature is preferably 0 to 150 ° C, more preferably 40 to 98 ° C.
[0095]
In the aqueous medium phase, as a method for stably forming the dispersion containing a polymer capable of reacting with the active hydrogen group-containing compound (for example, the isocyanate group-containing polyester prepolymer (A)), for example, Polymer capable of reacting with the active hydrogen group-containing compound dissolved or dispersed in the organic solvent in the aqueous medium phase (for example, the isocyanate group-containing polyester prepolymer (A)), the colorant, and the release agent And a method of adding the toner raw materials such as the charge control agent and the unmodified polyester resin, and dispersing them by shearing force.
The dispersion is not particularly limited as a method thereof, and can be appropriately selected using a known disperser. Examples of the disperser include a low-speed shear disperser, a high-speed shear disperser, and a friction type. Examples thereof include a disperser, a high-pressure jet disperser, and an ultrasonic disperser. Among these, a high-speed shearing disperser is preferable in that the particle size of the dispersion can be controlled to 2 to 20 μm.
When the high-speed shearing disperser is used, conditions such as the rotation speed, dispersion time, and dispersion temperature are not particularly limited and can be appropriately selected according to the purpose. For example, the rotation speed is 1000 -30000 rpm is preferable, 5000-20000 rpm is more preferable, the dispersion time is preferably 0.1-5 minutes in the case of a batch system, and the dispersion temperature is preferably 0-150 ° C. under pressure, -98 degreeC is more preferable. The dispersion temperature is generally easier when the temperature is higher.
[0096]
In the emulsification / dispersion, the usage amount of the aqueous medium is preferably 50 to 2,000 parts by mass, and more preferably 100 to 1,000 parts by mass with respect to 100 parts by mass of the toner raw material.
When the amount used is less than 50 parts by mass, the toner raw material is poorly dispersed, and toner particles having a predetermined particle size may not be obtained. When the amount exceeds 2,000 parts by mass, the production cost is high. May be.
[0097]
In the emulsification / dispersion, it is preferable to use a dispersant as necessary from the viewpoint of sharpening the particle size distribution and performing stable dispersion.
There is no restriction | limiting in particular as said dispersing agent, According to the objective, it can select suitably, For example, surfactant, a poorly water-soluble inorganic compound dispersing agent, a polymeric protective colloid, etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, surfactants are preferable.
[0098]
Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
Examples of the anionic surfactant include alkylbenzene sulfonates, α-olefin sulfonates, phosphate esters, and the like, and those having a fluoroalkyl group are preferable. Examples of the anionic surfactant having a fluoroalkyl group include a fluoroalkylcarboxylic acid having 2 to 10 carbon atoms or a metal salt thereof, disodium perfluorooctanesulfonylglutamate, 3- [omega-fluoroalkyl (6 carbon atoms). -11) Oxy] -1-alkyl (carbon number 3-4) sodium sulfonate, 3- [omega-fluoroalkanoyl (carbon number 6-8) -N-ethylamino] -1-propanesulfonic acid sodium, fluoroalkyl (Carbon number 11-20) carboxylic acid or its metal salt, perfluoroalkyl carboxylic acid (carbon number 7-13) or its metal salt, perfluoroalkyl (carbon number 4-12) sulfonic acid or its metal salt, perfluoro Octanesulfonic acid diethanolamide, N-propyl-N- (2-hydroxy Ethyl) perfluorooctanesulfonamide, perfluoroalkyl (carbon number 6-10) sulfonamidopropyltrimethylammonium salt, perfluoroalkyl (carbon number 6-10) -N-ethylsulfonylglycine salt, monoperfluoroalkyl (carbon number) 6-16) Ethyl phosphate and the like. Examples of commercially available surfactants having a fluoroalkyl group include Surflon S-111, S-112, S-113 (manufactured by Asahi Glass Co., Ltd.); Fluorard FC-93, FC-95, FC-98, FC- 129 (manufactured by Sumitomo 3M); Unidyne DS-101, DS-102 (manufactured by Daikin Industries); Megafac F-110, F-120, F-113, F-191, F-812, F-833 (large) Nihon Ink Co., Ltd.); Xtop EF-102, 103, 104, 105, 112, 123A, 123B, 306A, 501, 201, 204 (manufactured by Tochem Products); Manufactured) and the like.
[0099]
Examples of the cationic surfactant include amine salt type surfactants and quaternary ammonium salt type cationic surfactants. Examples of the amine salt type surfactant include alkylamine salts, amino alcohol fatty acid derivatives, polyamine fatty acid derivatives, imidazolines, and the like. Examples of the quaternary ammonium salt type cationic surfactant include alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, pyridinium salt, alkylisoquinolinium salt, benzethonium chloride and the like. . Among the cationic surfactants, aliphatic quaternary ammonium such as aliphatic primary, secondary or tertiary amine acids having a fluoroalkyl group, perfluoroalkyl (6 to 10 carbon atoms) sulfonamidopropyltrimethylammonium salt, etc. Salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts, and the like. Commercially available products of the cationic surfactant include, for example, Surflon S-121 (manufactured by Asahi Glass Co., Ltd.); Florard FC-135 (manufactured by Sumitomo 3M Co.); Unidyne DS-202 (manufactured by Daikin Industries Ltd.), MegaFuck F-150 F-824 (manufactured by Dainippon Ink Co., Ltd.); Xtop EF-132 (manufactured by Tochem Products); Footgent F-300 (manufactured by Neos).
[0100]
Examples of the nonionic surfactant include fatty acid amide derivatives and polyhydric alcohol derivatives.
Examples of the amphoteric surfactant include alanine, dodecyldi (aminoethyl) glycine, di (octylaminoethyl) glycine, N-alkyl-N, N-dimethylammonium betaine and the like.
[0101]
Examples of the poorly water-soluble inorganic compound dispersant include tricalcium phosphate, calcium carbonate, titanium oxide, colloidal silica, and hydroxyapatite.
Examples of the polymeric protective colloid include acids, (meth) acrylic monomers containing a hydroxyl group, vinyl alcohol or ethers of vinyl alcohol, esters of vinyl alcohol and a compound containing a carboxyl group, amides Examples thereof include homopolymers or copolymers such as compounds or their methylol compounds, chlorides, those having a nitrogen atom or a heterocyclic ring thereof, polyoxyethylenes, and celluloses.
Examples of the acids include acrylic acid, methacrylic acid, α-cyanoacrylic acid, α-cyanomethacrylic acid, itaconic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, and the like. Examples of the (meth) acrylic monomer containing a hydroxyl group include β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, β-hydroxypropyl acrylate, β-hydroxypropyl methacrylate, and γ-acrylate. -Hydroxypropyl, γ-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl acrylate, 3-chloro-2-hydroxypropyl methacrylate, diethylene glycol monoacrylate, diethylene glycol monomethacrylate, glycerol monoacrylate Glycerin monomethacrylate, N-methylol acrylamide, N-methylol methacrylamide and the like. Examples of the vinyl alcohol or ethers with vinyl alcohol include vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, and the like. Examples of the esters of vinyl alcohol and a compound containing a carboxyl group include vinyl acetate, vinyl propionate, and vinyl butyrate. Examples of the amide compound or these methylol compounds include acrylamide, methacrylamide, diacetone acrylamide acid, or these methylol compounds. Examples of the chlorides include acrylic acid chloride and methacrylic acid chloride. Examples of the homopolymer or copolymer such as those having a nitrogen atom or a heterocyclic ring thereof include vinyl pyridine, vinyl pyrrolidone, vinyl imidazole, and ethylene imine. Examples of the polyoxyethylene are polyoxyethylene, polyoxypropylene, polyoxyethylene alkylamine, polyoxypropylene alkylamine, polyoxyethylene alkylamide, polyoxypropylene alkylamide, polyoxyethylene nonylphenyl ether, polyoxyethylene Examples thereof include oxyethylene lauryl phenyl ether, polyoxyethylene stearyl phenyl ester, and polyoxyethylene nonyl phenyl ester. Examples of the celluloses include methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
[0102]
In the emulsification / dispersion, a dispersion stabilizer can be used as necessary.
Examples of the dispersion stabilizer include acids that are soluble in acids and alkalis such as calcium phosphate salts.
When the dispersion stabilizer is used, the calcium phosphate salt can be removed from the fine particles by a method of dissolving the calcium phosphate salt with an acid such as hydrochloric acid and then washing with water or a method of decomposing with an enzyme.
[0103]
In the emulsification / dispersion, a catalyst for the elongation reaction or the crosslinking reaction can be used. Examples of the catalyst include dibutyltin laurate and dioctyltin laurate.
[0104]
The organic solvent is removed from the emulsified slurry obtained in the emulsification / dispersion. The organic solvent is removed by (1) a method in which the entire reaction system is gradually heated to completely evaporate and remove the organic solvent in the droplets, and (2) the emulsion dispersion is sprayed in a dry atmosphere. And a method in which the water-insoluble organic solvent in the droplets is completely removed to form toner fine particles, and the aqueous dispersant is removed by evaporation.
[0105]
When the organic solvent is removed, toner particles are formed. The toner particles can be washed, dried, etc., and then classified as desired. The classification can be performed, for example, by removing fine particle portions by a cyclone, a decanter, centrifugation, or the like in a liquid, and the classification operation may be performed after obtaining a powder after drying.
[0106]
Thus, the obtained toner particles are mixed with particles of the colorant, release agent, charge control agent, etc., and further, a mechanical impact force is applied to the release agent from the surface of the toner particles. And the like can be prevented from being detached.
As a method of applying the mechanical impact force, for example, a method of applying an impact force to the mixture with a blade rotating at high speed, an appropriate collision between particles or composite particles by introducing the mixture into a high-speed air stream and accelerating the mixture is accelerated. The method of making it collide with a board etc. are mentioned. As an apparatus used for this method, for example, an ong mill (manufactured by Hosokawa Micron Co., Ltd.), an I-type mill (manufactured by Nippon Pneumatic Co., Ltd.) and a pulverization air pressure is lowered, and a hybridization system (Nara Machinery Co., Ltd.) Product), kryptron system (manufactured by Kawasaki Heavy Industries, Ltd.), automatic mortar, and the like.
[0107]
(Developer)
The developer of the present invention contains at least the toner of the present invention, and other components such as a carrier selected as appropriate. The developer may be a one-component developer or a two-component developer. However, when it is used for a high-speed printer or the like corresponding to the recent improvement in information processing speed, the life is improved. In view of the above, the two-component developer is preferable.
In the case of the one-component developer using the toner of the present invention, even if the balance of the toner is performed, there is little fluctuation in the particle diameter of the toner, and the filming of the toner on the developing roller or the toner is made thin. Therefore, the toner is not fused to a member such as a blade, and good and stable developability and image can be obtained even when the developing device is used (stirred) for a long time. Further, in the case of the two-component developer using the toner of the present invention, even if the balance of the toner over a long period of time is performed, the fluctuation of the toner particle diameter in the developer is small, and even in the long-term stirring in the developing device, Good and stable developability can be obtained.
[0108]
There is no restriction | limiting in particular as said carrier, Although it can select suitably according to the objective, What has a core material and the resin layer which coat | covers this core material is preferable.
[0109]
There is no restriction | limiting in particular as a material of the said core material, It can select suitably from well-known things, For example, 50-90 emu / g manganese-strontium (Mn-Sr) type material, manganese-magnesium (Mn-) Mg) -based materials and the like are preferable, and highly magnetized materials such as iron powder (100 emu / g or more) and magnetite (75 to 120 emu / g) are preferable in terms of securing image density. In addition, a weakly magnetized material such as a copper-zinc (Cu—Zn) -based (30 to 80 emu / g) is advantageous in that it can weaken the contact with the photoconductor in which the toner is in a spiked state and is advantageous in improving the image quality. Is preferred. These may be used alone or in combination of two or more.
[0110]
The core material has a volume average particle diameter of preferably 10 to 150 μm, more preferably 40 to 100 μm.
The average particle diameter (volume average particle diameter (D50)) Is less than 10 μm, in the distribution of carrier particles, there are many fine powder systems, the magnetization per particle is lowered and carrier scattering may occur, and if it exceeds 150 μm, the specific surface area decreases, Toner scattering may occur, and in the case of a full color with many solid portions, reproduction of the solid portions may be particularly deteriorated.
[0111]
The material of the resin layer is not particularly limited and can be appropriately selected from known resins according to the purpose. For example, amino resins, polyvinyl resins, polystyrene resins, halogenated olefin resins, Polyester resin, polycarbonate resin, polyethylene resin, polyvinyl fluoride resin, polyvinylidene fluoride resin, polytrifluoroethylene resin, polyhexafluoropropylene resin, copolymer of vinylidene fluoride and acrylic monomer, vinylidene fluoride And a copolymer of vinyl fluoride, a fluoroterpolymer such as a terpolymer of tetrafluoroethylene, vinylidene fluoride, and a non-fluorinated monomer, and a silicone resin. These may be used individually by 1 type and may use 2 or more types together.
[0112]
Examples of the amino resin include urea-formaldehyde resin, melamine resin, benzoguanamine resin, urea resin, polyamide resin, and epoxy resin. Examples of the polyvinyl resin include acrylic resin, polymethyl methacrylate resin, poly Examples include acrylonitrile resin, polyvinyl acetate resin, polyvinyl alcohol resin, and polyvinyl butyral resin. Examples of the polystyrene resin include polystyrene resin and styrene acrylic copolymer resin. Examples of the halogenated olefin resin include polyvinyl chloride. Examples of the polyester resin include polyethylene terephthalate resin and polybutylene terephthalate resin.
[0113]
The resin layer may contain conductive powder or the like as necessary. Examples of the conductive powder include metal powder, carbon black, titanium oxide, tin oxide, and zinc oxide. The average particle diameter of these conductive powders is preferably 1 μm or less. When the average particle diameter exceeds 1 μm, it may be difficult to control electric resistance.
[0114]
For example, the resin layer is prepared by dissolving the silicone resin or the like in a solvent to prepare a coating solution, and then uniformly coating the coating solution on the surface of the core material by a known coating method, drying, and baking. It can be formed by doing. Examples of the application method include an immersion method, a spray method, and a brush coating method.
There is no restriction | limiting in particular as said solvent, Although it can select suitably according to the objective, For example, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cersol butyl acetate, etc. are mentioned.
The baking is not particularly limited, and may be an external heating method or an internal heating method. For example, a stationary electric furnace, a fluid electric furnace, a rotary electric furnace, a burner furnace, etc. The method of using, the method of using a microwave, etc. are mentioned.
[0115]
The amount of the resin layer in the carrier is preferably 0.01 to 5.0% by mass.
When the amount is less than 0.01% by mass, the uniform resin layer may not be formed on the surface of the core material. When the amount exceeds 5.0% by mass, the resin layer becomes thick. In some cases, granulation of carriers occurs, and uniform carrier particles may not be obtained.
[0116]
When the developer is the two-component developer, the content of the carrier in the two-component developer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 90 to 98% by mass Is preferable, and 93-97 mass% is more preferable.
[0117]
Since the developer of the present invention contains the toner of the present invention, it is possible to achieve a balance between chargeability and fixability during image formation, and stably form high-quality images. .
The developer of the present invention can be suitably used for image formation by various known electrophotographic methods such as a magnetic one-component development method, a non-magnetic one-component development method, and a two-component development method. It can be particularly suitably used for containers, process cartridges, image forming apparatuses and image forming methods.
[0118]
(Toner container)
The toner-containing container of the present invention comprises the toner or the developer of the present invention contained in a container.
There is no restriction | limiting in particular as said container, It can select suitably from well-known things, For example, what has a container main body and a cap containing a toner etc. are mentioned suitably.
The size, shape, structure, material and the like of the container body containing toner are not particularly limited and can be appropriately selected according to the purpose. For example, the shape is preferably cylindrical. A spiral irregularity is formed on the peripheral surface, and the toner as the contents can be transferred to the discharge port side by rotating, and part or all of the spiral part has a bellows function, etc. Is particularly preferred. The material of the toner-containing container body is not particularly limited, and those having good dimensional accuracy are preferable. For example, a resin is preferably used. Among them, for example, polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, Preferable examples include vinyl chloride resin, polyacrylic acid, polycarbonate resin, ABS resin, polyacetal resin, and the like.
The toner-containing container of the present invention is easy to store and transport, has excellent handleability, and is preferably used for replenishing toner by being detachably attached to the process cartridge and image forming apparatus of the present invention described later. Can do.
[0119]
(Process cartridge)
The process cartridge of the present invention develops an electrostatic latent image carrier carrying an electrostatic latent image and the electrostatic latent image carried on the electrostatic latent image carrier using a developer to form a visible image. And at least developing means for forming the film, and other means appropriately selected as necessary.
The developing means includes a developer container that contains the toner or developer of the present invention, and a developer carrier that carries and transports the toner or developer contained in the developer container. And a layer thickness regulating member for regulating the thickness of the toner layer to be carried.
The process cartridge of the present invention can be detachably provided in various electrophotographic apparatuses, and is preferably provided detachably in the electrophotographic apparatus of the present invention described later.
[0120]
(Image forming apparatus and image forming method)
The image forming apparatus of the present invention includes at least an electrostatic latent image carrier, an electrostatic latent image forming unit, a developing unit, a transfer unit, and a fixing unit, and further appropriately selected as necessary. It has other means, for example, static elimination means, cleaning means, recycling means, control means and the like.
The image forming method of the present invention includes at least an electrostatic latent image forming step, a developing step, a transfer step, and a fixing step, and further other steps appropriately selected as necessary, for example, a static elimination step, a cleaning step, Includes recycling and control processes.
[0121]
The image forming method of the present invention can be preferably carried out by the image forming apparatus of the present invention, the electrostatic latent image forming step can be performed by the electrostatic latent image forming means, and the developing step is the developing The transfer step can be performed by the transfer unit, the fixing step can be performed by the fixing unit, and the other steps can be performed by the other unit.
[0122]
-Electrostatic latent image forming step and electrostatic latent image forming means-
The electrostatic latent image forming step is a step of forming an electrostatic latent image on the electrostatic latent image carrier.
There are no particular restrictions on the material, shape, structure, size, etc. of the electrostatic latent image carrier (sometimes referred to as “photoconductive insulator” or “photoconductor”), and among the known ones The shape is preferably a drum shape, and examples of the material include inorganic photoconductors such as amorphous silicon and selenium, and organic photoconductors such as polysilane and phthalopolymethine. It is done. Among these, amorphous silicon or the like is preferable in terms of long life.
[0123]
The formation of the electrostatic latent image can be performed, for example, by uniformly charging the surface of the electrostatic latent image carrier and then performing imagewise exposure, and is performed by the electrostatic latent image forming unit. be able to.
The electrostatic latent image forming means includes, for example, at least a charger that uniformly charges the surface of the electrostatic latent image carrier and an exposure device that exposes the surface of the electrostatic latent image carrier imagewise. Prepare.
[0124]
The charging can be performed, for example, by applying a voltage to the surface of the electrostatic latent image carrier using the charger.
The charger is not particularly limited and may be appropriately selected depending on the purpose. For example, a known contact charging device including a conductive or semiconductive roll, brush, film, rubber blade, etc. And non-contact chargers using corona discharge such as corotrons and corotrons.
[0125]
The exposure can be performed, for example, by exposing the surface of the latent electrostatic image bearing member imagewise using the exposure device.
The exposure device is not particularly limited as long as it can expose the surface of the electrostatic latent image carrier charged by the charger so as to form an image to be formed, and is appropriately selected according to the purpose. For example, various exposure devices such as a copying optical system, a rod lens array system, a laser optical system, and a liquid crystal shutter optical system can be used.
In the present invention, a back light system in which imagewise exposure is performed from the back side of the electrostatic latent image carrier may be employed.
[0126]
-Development process and development means-
The developing step is a step of developing the electrostatic latent image using the toner or the developer of the present invention to form a visible image.
The visible image can be formed, for example, by developing the electrostatic latent image using the toner or the developer of the present invention, and can be performed by the developing unit.
The developing unit is not particularly limited as long as it can be developed using, for example, the toner or the developer of the present invention, and can be appropriately selected from known ones. For example, the toner of the present invention Preferred examples include a developer containing at least a developer, and at least a developing device capable of contacting or non-contacting the toner or the developer with the electrostatic latent image. More preferred is a developing device.
[0127]
The developing unit may be a dry developing type, a wet developing type, a single color developing unit, or a multi-color developing unit. For example, a toner having a stirrer for charging the toner or the developer by frictional stirring and a rotatable magnet roller is preferable.
[0128]
In the developing device, for example, the toner and the carrier are mixed and agitated, and the toner is charged by friction at that time, and held on the surface of the rotating magnet roller in a raised state to form a magnetic brush. . Since the magnet roller is disposed in the vicinity of the electrostatic latent image carrier (photoconductor), a part of the toner constituting the magnetic brush formed on the surface of the magnet roller is electrically attracted. It moves to the surface of the electrostatic latent image carrier (photoconductor) by force. As a result, the electrostatic latent image is developed with the toner, and a visible image is formed with the toner on the surface of the electrostatic latent image carrier (photoconductor).
[0129]
The developer accommodated in the developing device is a developer containing the toner of the present invention, but the developer may be a one-component developer or a two-component developer. The toner contained in the developer is the toner of the present invention.
[0130]
-Transfer process and transfer means-
The transfer step is a step of transferring the visible image onto a recording medium. After the primary transfer of the visible image onto the intermediate transfer member using an intermediate transfer member, the visible image is transferred onto the recording medium. A primary transfer step of forming a composite transfer image by transferring a visible image onto an intermediate transfer body using two or more colors, preferably full color toner as the toner, and a composite transfer image; A mode including a secondary transfer step of transferring the transfer image onto the recording medium is more preferable.
The transfer can be performed, for example, by charging the latent electrostatic image bearing member (photoconductor) of the visible image using a transfer charger, and can be performed by the transfer unit. The transfer means includes a primary transfer means for transferring a visible image onto an intermediate transfer member to form a composite transfer image, and a secondary transfer means for transferring the composite transfer image onto a recording medium. Embodiments are preferred.
The intermediate transfer member is not particularly limited and may be appropriately selected from known transfer members according to the purpose. For example, a transfer belt and the like are preferable.
[0131]
The transfer means (the primary transfer means and the secondary transfer means) is a transfer for peeling and charging the visible image formed on the electrostatic latent image carrier (photoconductor) to the recording medium side. It is preferable to have at least a vessel. There may be one transfer means or two or more transfer means.
Examples of the transfer device include a corona transfer device using corona discharge, a transfer belt, a transfer roller, a pressure transfer roller, and an adhesive transfer device.
The recording medium is not particularly limited and can be appropriately selected from known recording media (recording paper).
[0132]
The fixing step is a step of fixing the visible image transferred to the recording medium using a fixing device, and may be performed each time the toner of each color is transferred to the recording medium, or for the toner of each color. You may perform this simultaneously in the state which laminated | stacked this.
There is no restriction | limiting in particular as said fixing device, Although it can select suitably according to the objective, A well-known heating-pressing means is suitable. Examples of the heating and pressing means include a combination of a heating roller and a pressure roller, a combination of a heating roller, a pressure roller, and an endless belt.
The heating in the heating and pressing means is usually preferably 80 ° C to 200 ° C.
In the present invention, for example, a known optical fixing device may be used together with or in place of the fixing step and the fixing unit depending on the purpose.
[0133]
The neutralization step is a step of performing neutralization by applying a neutralization bias to the electrostatic latent image carrier, and can be suitably performed by a neutralization unit.
The neutralization means is not particularly limited, and may be appropriately selected from known neutralizers as long as it can apply a neutralization bias to the electrostatic latent image carrier. Preferably mentioned.
[0134]
The cleaning step is a step of removing the electrophotographic toner remaining on the electrostatic latent image carrier, and can be suitably performed by a cleaning unit.
The cleaning means is not particularly limited as long as it can remove the electrophotographic toner remaining on the electrostatic latent image carrier, and can be appropriately selected from known cleaners. Suitable examples include brush cleaners, electrostatic brush cleaners, magnetic roller cleaners, blade cleaners, brush cleaners, web cleaners, and the like.
[0135]
The recycling step is a step of recycling the electrophotographic color toner removed in the cleaning step to the developing unit, and can be suitably performed by the recycling unit.
There is no restriction | limiting in particular as said recycling means, A well-known conveyance means etc. are mentioned.
[0136]
The control means is a process for controlling the respective steps, and can be suitably performed by the control means.
The control means is not particularly limited as long as the movement of each means can be controlled, and can be appropriately selected according to the purpose. Examples thereof include devices such as a sequencer and a computer.
[0137]
One mode for carrying out the image forming method of the present invention by the image forming apparatus of the present invention will be described with reference to FIG. An image forming apparatus 100 shown in FIG. 1 includes a photosensitive drum 10 (hereinafter referred to as “photosensitive member 10”) as the electrostatic latent image carrier, a charging roller 20 as the charging unit, and exposure as the exposure unit. The apparatus 30 includes a developing device 40 as the developing means, an intermediate transfer member 50, a cleaning device 60 as the cleaning means having a cleaning blade, and a static elimination lamp 70 as the static elimination means.
[0138]
The intermediate transfer member 50 is an endless belt, and is designed to be movable in the direction of an arrow by three rollers 51 that are arranged inside and stretched. Part of the three rollers 51 also functions as a transfer bias roller that can apply a predetermined transfer bias (primary transfer bias) to the intermediate transfer member 50. The intermediate transfer body 50 is provided with a cleaning device 90 having a cleaning blade in the vicinity thereof, and for transferring (secondary transfer) a developed image (toner image) to a transfer sheet 95 as a final transfer material. A transfer roller 80 serving as a transfer unit to which a transfer bias can be applied is disposed to face the transfer roller 80. Around the intermediate transfer member 50, a corona charger 58 for applying a charge to the toner image on the intermediate transfer member 50 is arranged between the photosensitive member 10 and the intermediate transfer member 50 in the rotation direction of the intermediate transfer member 50. It is disposed between the contact portion and the contact portion between the intermediate transfer member 50 and the transfer paper 95.
[0139]
The developing device 40 includes a developing belt 41 as the developer carrying member, and a black developing unit 45K, a yellow developing unit 45Y, a magenta developing unit 45M, and a cyan developing unit 45C provided around the developing belt 41. . The black developing unit 45K includes a developer accommodating portion 42K, a developer supplying roller 43K, and a developing roller 44K. The yellow developing unit 45Y includes a developer accommodating portion 42Y, a developer supplying roller 43Y, and a developing roller 44Y. The magenta developing unit 45M includes a developer accommodating portion 42M, a developer supplying roller 43M, and a developing roller 44M, and the cyan developing unit 45C includes a developer accommodating portion 42C and a developer supplying roller 43C. And a developing roller 44C. The developing belt 41 is an endless belt, is rotatably stretched around a plurality of belt rollers, and a part thereof is in contact with the photoconductor 10.
[0140]
In the image forming apparatus 100 shown in FIG. 1, for example, the charging roller 20 charges the photosensitive drum 10 uniformly. The exposure device 30 performs imagewise exposure on the photosensitive drum 10 to form an electrostatic latent image. The electrostatic latent image formed on the photosensitive drum 10 is developed by supplying toner from the developing device 40 to form a visible image (toner image). The visible image (toner image) is transferred (primary transfer) onto the intermediate transfer member 50 by the voltage applied from the roller 51, and further transferred (secondary transfer) onto the transfer paper 95. As a result, a transfer image is formed on the transfer paper 95. The residual toner on the photoconductor 10 is removed by the cleaning device 60, and the charge on the photoconductor 10 is temporarily removed by the charge eliminating lamp 70.
[0141]
Another mode for carrying out the image forming method of the present invention by the image forming apparatus of the present invention will be described with reference to FIG. The image forming apparatus 100 shown in FIG. 2 does not include the developing belt 41 in the image forming apparatus 100 shown in FIG. 1, and a black developing unit 45K, a yellow developing unit 45Y, a magenta developing unit 45M, and Except for the fact that the cyan developing unit 45C is disposed directly opposite, it has the same configuration as the image forming apparatus 100 shown in FIG. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals.
[0142]
Another mode for carrying out the image forming method of the present invention by the image forming apparatus of the present invention will be described with reference to FIG. A tandem image forming apparatus 120 shown in FIG. 3 is a tandem color image forming apparatus. The tandem image forming apparatus 120 includes a copying apparatus main body 150, a paper feed table 200, a scanner 300, and an automatic document feeder (ADF) 400.
The copying apparatus main body 150 is provided with an endless belt-like intermediate transfer member 50 at the center. The intermediate transfer member 50 is stretched around the support rollers 14, 15 and 16, and can be rotated clockwise in FIG. 3. An intermediate transfer member cleaning device 17 for removing residual toner on the intermediate transfer member 50 is disposed in the vicinity of the support roller 15. The intermediate transfer member 50 stretched between the support roller 14 and the support roller 15 is a tandem type in which four image forming units 18 of yellow, cyan, magenta, and black are arranged to face each other along the conveyance direction. A developing device 120 is disposed. An exposure device 21 is disposed in the vicinity of the tandem developing device 120. A secondary transfer device 22 is disposed on the side of the intermediate transfer member 50 opposite to the side on which the tandem developing device 120 is disposed. In the secondary transfer device 22, a secondary transfer belt 24, which is an endless belt, is stretched around a pair of rollers 23, and the transfer paper conveyed on the secondary transfer belt 24 and the intermediate transfer body 50 are in contact with each other. Is possible. A fixing device 25 is disposed in the vicinity of the secondary transfer device 22. The fixing device 25 includes a fixing belt 26 that is an endless belt, and a pressure roller 27 that is pressed against the fixing belt 26.
In the tandem image forming apparatus 120, a sheet reversing device 28 for reversing the transfer paper for image formation on both sides of the transfer paper is disposed in the vicinity of the secondary transfer device 22 and the fixing device 25. Yes.
[0143]
Next, formation of a full color image (color copy) using the tandem image forming apparatus 120 will be described. That is, first, a document is set on the document table 130 of the automatic document feeder (ADF) 400, or the automatic document feeder 400 is opened and the document is set on the contact glass 32 of the scanner 300. 400 is closed.
[0144]
When a start switch (not shown) is pressed, when the document is set on the automatic document feeder 400, the document is transported and moved onto the contact glass 32, and then the document is set on the contact glass 32. Immediately after that, the scanner 300 is driven, and the first traveling body 33 and the second traveling body 34 travel. At this time, light from the light source is irradiated by the first traveling body 33 and reflected light from the document surface is reflected by the mirror in the second traveling body 34 and is received by the reading sensor 36 through the imaging lens 35 to be color. An original (color image) is read and used as black, yellow, magenta, and cyan image information.
[0145]
Each image information of black, yellow, magenta and cyan is stored in each image forming unit 18 (black image forming unit, yellow image forming unit, magenta image forming unit and cyan image forming unit) in the tandem image forming apparatus 120. ) And black, yellow, magenta and cyan toner images are formed in the respective image forming means. That is, each image forming means 18 (black image forming means, yellow image forming means, magenta image forming means, and cyan image forming means) in the tandem image forming apparatus 120 is photosensitive as shown in FIG. On the basis of the body 10 (the black photoreceptor 10K, the yellow photoreceptor 10Y, the magenta photoreceptor 10M, and the cyan photoreceptor 10C), the charger 60 that uniformly charges the photoreceptor, and each color image information. The photosensitive member is exposed to each color image corresponding image (L in FIG. 4), and an electrostatic latent image corresponding to each color image is formed on the photosensitive member. Developing with color toner (black toner, yellow toner, magenta toner and cyan toner) to form a toner image with each color toner, and intermediate transfer of the toner image 50 includes a transfer charger 62 for transferring the toner image on the toner image 50, a photoconductor cleaning device 63, and a static eliminator 64, and each monochrome image (black image, yellow image, magenta) based on the image information of each color. Image and cyan image) can be formed. The black image, the yellow image, the magenta image, and the cyan image formed in this way are formed on the black photoconductor 10K on the intermediate transfer member 50 that is rotationally moved by the support rollers 14, 15, and 16, respectively. The black image, the yellow image formed on the yellow photoconductor 10Y, the magenta image formed on the magenta photoconductor 10M, and the cyan image formed on the cyan photoconductor 10C are sequentially transferred (primary transfer). Is done. Then, the black image, the yellow image, the magenta image, and the cyan image are superimposed on the intermediate transfer member 50 to form a composite color image (color transfer image).
[0146]
On the other hand, in the paper feed table 200, one of the paper feed rollers 142 is selectively rotated to feed out a sheet (recording paper) from one of the paper feed cassettes 144 provided in multiple stages in the paper bank 143. Each sheet is separated and sent to the paper feed path 146, transported by the transport roller 147, guided to the paper feed path 148 in the copying machine main body 150, and abutted against the registration roller 49 and stopped. Alternatively, the sheet feeding roller 150 is rotated to feed out the sheets (recording paper) on the manual feed tray 51, separated one by one by the separation roller 52, put into the manual feed path 53, and abutted against the registration roller 49 and stopped. . The registration roller 49 is generally used while being grounded, but may be used in a state where a bias is applied to remove paper dust from the sheet.
Then, the registration roller 49 is rotated in synchronization with the synthesized color image (color transfer image) synthesized on the intermediate transfer member 50, and a sheet (recording paper) is interposed between the intermediate transfer member 50 and the secondary transfer device 22. The secondary color transfer device 22 transfers the composite color image (color transfer image) onto the sheet (recording paper), thereby transferring the color image onto the sheet (recording paper). Is formed. The residual toner on the intermediate transfer member 50 after image transfer is cleaned by the intermediate transfer member cleaning device 17.
[0147]
The sheet (recording paper) on which the color image has been transferred is conveyed by the secondary transfer device 22 and sent to the fixing device 25, where the combined color image (color) is generated by heat and pressure. (Transfer image) is fixed on the sheet (recording paper). Thereafter, the sheet (recording paper) is switched by the switching claw 55 and discharged by the discharge roller 56 and stacked on the discharge tray 57, or switched by the switching claw 55 and reversed by the sheet reversing device 28 and transferred again. After being guided to the position and recording an image on the back surface, the image is discharged by the discharge roller 56 and stacked on the discharge tray 57.
[0148]
In the image forming apparatus and the image forming method of the present invention, since the toner of the present invention having both heat resistant storage stability and low temperature fixability and good hot offset resistance is used, high image quality is efficiently obtained even under low temperature fixing conditions. can get.
[0149]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples.
[0150]
(Production Example 1)
-Preparation of fine particle dispersion (1)-
In a reaction vessel equipped with a stirrer and a thermometer, 683 parts by weight of water, 11 parts by weight of sodium salt of ethylene oxide methacrylate adduct sulfate ("Eleminol RS-30"; manufactured by Sanyo Chemical Industries), 83 parts by weight of styrene , 83 parts by weight of methacrylic acid, 110 parts by weight of butyl acrylate, and 1 part by weight of ammonium persulfate were charged and stirred at 400 rpm for 15 minutes to obtain a white emulsion. The emulsion was heated to raise the system temperature to 75 ° C. and reacted for 5 hours. Next, 30 parts by mass of a 1% by mass ammonium persulfate aqueous solution was added, and the mixture was aged at 75 ° C. for 5 hours, and then the vinyl resin particles (styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate sodium salt co Polymer) aqueous dispersion (fine particle dispersion (1)) was prepared.
It was 100 nm when the volume average particle diameter of the fine particles contained in the obtained fine particle dispersion (1) was measured. Moreover, when a part of the fine particle dispersion (1) was dried to isolate the resin, and the glass transition temperature (Tg) of the resin was measured, it was 80 ° C. and the number average molecular weight was measured. It was 1,700 and it was 10,000 when the weight average molecular weight was measured.
[0151]
(Production Example 2)
-Preparation of fine particle dispersion (2)-
In Production Example 1, styrene was changed from 83 parts by weight to 79 parts by weight, methacrylic acid was changed from 83 parts by weight to 79 parts by weight, butyl acrylate was changed from 110 parts by weight to 105 parts by weight, and 1,6-hexanediol An aqueous solution of vinyl resin particles (a copolymer of sodium salt of styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate), except that 13 parts by mass of diacrylate was added. A dispersion (fine particle dispersion (2)) was prepared.
The volume average particle diameter of the fine particles contained in the obtained fine particle dispersion (2) was measured and found to be 105 nm. Further, when a part of the fine particle dispersion (2) was dried to isolate the resin, and the glass transition temperature (Tg) of the resin was measured, it was 105 ° C. and the number average molecular weight was measured. The weight average molecular weight was 1,000,000 as measured by weight.
[0152]
(Production Example 3)
-Preparation of fine particle dispersion (3)-
In Production Example 1, the sodium salt of ethylene oxide methacrylate adduct sulfate ("Eleminol RS-30"; manufactured by Sanyo Chemical Industries) was changed from 11 parts by mass to 21 parts by mass, and 13 parts by mass of thiocalcol 20 was added. In the same manner as in Production Example 1, an aqueous dispersion (fine particle dispersion (3)) of vinyl resin particles (a copolymer of sodium salt of styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate) Was prepared.
The volume average particle diameter of the fine particles contained in the obtained fine particle dispersion (3) was measured and found to be 15 nm. Moreover, when a part of the fine particle dispersion (3) was dried to isolate the resin component and the glass transition temperature (Tg) of the resin component was measured, it was 95 ° C. and the number average molecular weight was measured. The weight average molecular weight was 5,000 when measured.
[0153]
(Production Example 4)
-Preparation of fine particle dispersion (4)-
In Production Example 1, the sodium salt of ethylene oxide methacrylate adduct sulfate ("Eleminol RS-30"; manufactured by Sanyo Chemical Industries) was changed from 11 parts by mass to 3 parts by mass, and styrene was changed from 83 parts by mass to 71 parts by mass. Except that methacrylic acid was changed from 83 parts by weight to 71 parts by weight, butyl acrylate was changed from 110 parts by weight to 98 parts by weight, and 14 parts by weight of 1,6-hexanediol diacrylate was added. In the same manner, an aqueous dispersion (fine particle dispersion (4)) of vinyl resin particles (styrene copolymer of styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate) was prepared.
It was 600 nm when the volume average particle diameter of the fine particles contained in the obtained fine particle dispersion (4) was measured. Further, when a part of the fine particle dispersion (1) was dried to isolate the resin, and the glass transition temperature (Tg) of the resin was measured, it was 105 ° C. and the number average molecular weight was measured. It was 225,000 and it was 1,800,000 when the weight average molecular weight was measured.
[0154]
(Production Example 5)
-Preparation of fine particle dispersion (5)-
In Production Example 1, the sodium salt of methacrylic acid ethylene oxide adduct sulfate ("Eleminol RS-30"; manufactured by Sanyo Chemical Industries) was changed from 11 parts by mass to 8 parts by mass, and styrene was changed from 83 parts by mass to 82 parts by mass. In the same manner as in Production Example 1 except that methacrylic acid was changed from 83 parts by weight to 82 parts by weight and butyl acrylate was changed from 110 parts by weight to 109 parts by weight, vinyl resin particles (styrene-methacrylic acid-acrylic An aqueous dispersion (fine particle dispersion (5)) of butyl acid-ethylene methacrylate ethylene oxide adduct sulfate sodium salt copolymer) was prepared.
It was 200 nm when the volume average particle diameter of the microparticles | fine-particles contained in the obtained microparticle dispersion liquid (5) was measured. Moreover, when a part of the fine particle dispersion (5) was dried to isolate the resin, and the glass transition temperature (Tg) of the resin was measured, it was 78 ° C., and the number average molecular weight was measured. It was 15,700, and when the weight average molecular weight was measured, it was 110,000.
[0155]
(Production Example 6)
-Preparation of fine particle dispersion (6)-
In Production Example 1, 11 parts by mass of sodium salt of ethylene oxide methacrylate adduct sulfate (“Eleminol RS-30”; manufactured by Sanyo Chemical Industries) is changed to 8 parts by mass, 83 parts by mass of styrene is changed to 79 parts by mass, Except for changing 83 parts by mass of methacrylic acid to 79 parts by mass, changing 110 parts by mass of butyl acrylate to 105 parts by mass, and adding 13 parts by mass of 1,6-hexanediol diacrylate, An aqueous dispersion (fine particle dispersion (6)) of vinyl resin particles (a copolymer of styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate sodium salt) was prepared.
It was 200 nm when the volume average particle diameter of the microparticles | fine-particles contained in the obtained microparticle dispersion liquid (6) was measured. Moreover, when a part of the fine particle dispersion (6) was dried to isolate the resin, and the glass transition temperature (Tg) of the resin was measured, it was 107 ° C., and the number average molecular weight was measured. It was 210,000 and it was 1,100,000 when the weight average molecular weight was measured.
[0156]
(Production Example 7)
-Preparation of fine particle dispersion (7)-
In Production Example 1, the sodium salt of methacrylic acid ethylene oxide adduct sulfate ("Eleminol RS-30"; manufactured by Sanyo Chemical Industries) was changed from 11 parts by mass to 6 parts by mass, and styrene was changed from 83 parts by mass to 85 parts by mass. In the same manner as in Production Example 1, except that methacrylic acid was changed from 83 parts by weight to 85 parts by weight and butyl acrylate was changed from 110 parts by weight to 111 parts by weight, vinyl resin particles (styrene-methacrylic acid-acrylic An aqueous dispersion (fine particle dispersion (7)) of butyl acid-ethylene methacrylate ethylene oxide adduct sulfate sodium salt copolymer) was prepared.
It was 300 nm when the volume average particle diameter of the microparticles | fine-particles contained in the obtained microparticle dispersion liquid (7) was measured. Moreover, when a part of the fine particle dispersion (7) was dried to isolate the resin component and the glass transition temperature (Tg) of the resin component was measured, it was 78 ° C. and the number average molecular weight was measured. It was 2,100, and when the weight average molecular weight was measured, it was 9,900.
[0157]
(Production Example 8)
-Preparation of fine particle dispersion (8)-
In Production Example 1, the sodium salt of methacrylic acid ethylene oxide adduct sulfate ("Eleminol RS-30"; manufactured by Sanyo Chemical Industries) was changed from 11 parts by mass to 5 parts by mass, and styrene was changed from 83 parts by mass to 81 parts by mass. Except that the methacrylic acid was changed from 83 parts by weight to 81 parts by weight, the butyl acrylate was changed from 110 parts by weight to 107 parts by weight, and 13 parts by weight of 1,6-hexanediol diacrylate was added. Similarly, an aqueous dispersion (fine particle dispersion (8)) of vinyl resin particles (a copolymer of sodium salt of styrene-methacrylic acid-butyl acrylate-methacrylic acid ethylene oxide adduct sulfate) was prepared.
It was 295 nm when the volume average particle diameter of the microparticles | fine-particles contained in the obtained microparticle dispersion liquid (8) was measured. Further, when a part of the fine particle dispersion (8) was dried to isolate the resin, and the glass transition temperature (Tg) of the resin was measured, it was 105 ° C. and the number average molecular weight was measured. The weight average molecular weight was measured to be 1,000,000.
[0158]
Here, Table 1 shows the raw material blend compositions of the fine particle dispersions (1) to (8).
[Table 1]
[0159]
The volume average particle diameter (Dv), glass transition temperature (Tg), number average molecular weight (Mn), and weight average molecular weight (Mw) were measured as follows.
[0160]
<Volume average particle diameter Dv)>
The volume average particle diameter (Dv) was measured using a laser diffraction particle size distribution analyzer (“LA-920”; manufactured by Horiba, Ltd.).
[0161]
<Glass transition temperature (Tg)>
The glass transition temperature (Tg) was measured by the following method using TG-DSC system TAS-100 (manufactured by Rigaku Corporation).
First, about 10 mg of a sample was placed in an aluminum sample container, and the sample container was placed on a holder unit and set in an electric furnace. After heating from room temperature to 150 ° C. at a heating rate of 10 ° C./min, the sample was allowed to stand at 150 ° C. for 10 min, and the sample was cooled to room temperature and left for 10 min. Then, the DSC curve was measured with a differential scanning calorimeter (DSC) after heating to 150 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. From the obtained DSC curve, using the analysis system in the TG-DSC system TAS-100 system, the glass transition temperature (Tg) is calculated from the contact point between the tangent line of the endothermic curve near the glass transition temperature (Tg) and the baseline. did.
[0162]
<Number average molecular weight (Mn) and weight average molecular weight (Mw)>
For the number average molecular weight and the weight average molecular weight, the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured from the molecular weight distribution by gel permeation chromatography (GPC) of the tetrahydrofuran-soluble matter.
Specifically, the column was stabilized in a 40 ° C. heat chamber, tetrahydrofuran as a column solvent at this temperature was flowed at a flow rate of 1 ml / min, and the sample concentration was adjusted to 0.05 to 0.6% by mass. Measurement was performed by injecting 50 to 200 μl of a tetrahydrofuran sample solution.
In measuring the molecular weight of the sample, the molecular weight distribution of the sample was calculated from the relationship between the logarithmic value of the calibration curve prepared from several monodisperse polystyrene standard samples and the count number. The standard polystyrene sample for creating a calibration curve has a molecular weight of 6 × 1022.1 × 1024 × 1021.75 × 1041.1 × 1053.9 × 1058.6 × 1052 × 106And 48 × 106(Made by Toyo Soda Industry Co., Ltd.) and at least about 10 standard polystyrene samples. An RI (refractive index) detector was used as the detector.
[0163]
[Table 2]
[0164]
Example 1
-Adhesive substrate production process-
Using the fine particle dispersion (1) obtained in Production Example 1 and the fine particle dispersion (2) obtained in Production Example 2, a toner was produced as follows.
[0165]
--Synthesis of unmodified polyester--
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 220 parts by mass of bisphenol A ethylene oxide 2 mol adduct, 561 parts by mass of bisphenol A propylene oxide 3 mol adduct, 218 parts by mass of terephthalic acid, 48 adipic acid 48 Part by mass and 2 parts by mass of dibutyltin oxide were charged and reacted at 230 ° C. for 8 hours under normal pressure. Next, after reacting the reaction solution under a reduced pressure of 10 to 15 mmHg for 5 hours, 45 parts by mass of trimellitic anhydride was added to the reaction vessel, and the reaction was performed at 180 ° C. for 2 hours under normal pressure. A modified polyester was synthesized.
The obtained unmodified polyester had a number average molecular weight (Mn) of 2,500, a weight average molecular weight (Mw) of 6,700, a glass transition temperature (Tg) of 43 ° C., and an acid value of 25.
[0166]
--Synthesis of prepolymer--
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 682 parts by mass of bisphenol A ethylene oxide 2 mol adduct, 81 parts by mass of bisphenol A propylene oxide 2 mol adduct, 283 parts by mass of terephthalic acid, trimellitic anhydride 22 parts by mass of acid and 2 parts by mass of dibutyltin oxide were charged and reacted at 230 ° C. for 8 hours under normal pressure. Subsequently, it was made to react under reduced pressure of 10-15mHg for 5 hours, and the intermediate polyester was synthesize | combined.
The resulting intermediate polyester has a number average molecular weight (Mn) of 2,100, a weight average molecular weight (Mw) of 9,500, a glass transition temperature (Tg) of 55 ° C., an acid value of 0.5, and a hydroxyl value of 49.
Next, 410 parts by mass of the intermediate polyester, 89 parts by mass of isophorone diisocyanate, and 500 parts by mass of ethyl acetate are charged in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and reacted at 100 ° C. for 5 hours. Thus, a prepolymer (polymer capable of reacting with the active hydrogen group-containing compound) was synthesized.
The free isocyanate content of the obtained prepolymer was 1.53% by mass.
[0167]
--Synthesis of ketimine (the active hydrogen group-containing compound)-
In a reaction vessel equipped with a stir bar and a thermometer, 170 parts by mass of isophoronediamine and 75 parts by mass of methyl ethyl ketone were charged and reacted at 50 ° C. for 5 hours to synthesize a ketimine compound (the active hydrogen group-containing compound).
The amine value of the obtained ketimine compound (the active hydrogen group-containing compound) was 418.
[0168]
-Preparation of masterbatch (MB)-
40 parts by mass of carbon black (“Regal 400R”; manufactured by Cabot) as a colorant, polyester resin (“RS801”; manufactured by Sanyo Chemical Industries, Ltd., acid value = 10, weight average molecular weight (Mw) = 20,000, glass transition Temperature (Tg) = 64 ° C.) and 30 parts by mass of water were mixed with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.). The mixture was kneaded for 45 minutes at 130 ° C. with two rolls, rolled and cooled, and pulverized to a size of 1 mm in diameter with a pulverizer (manufactured by Hosokawa Micron) to prepare a master batch.
[0169]
-Preparation of organic solvent phase-
In a reaction vessel in which a stir bar and a thermometer were set, 378 parts by mass of the unmodified polyester, 110 parts by mass of carnauba wax, 22 parts by mass of CCA (“salicylic acid metal complex E-84”; manufactured by Orient Chemical Industries), and ethyl acetate 947 parts by mass were charged, and the temperature was raised to 80 ° C. with stirring, maintained at 80 ° C. for 5 hours, and then cooled to 30 ° C. over 1 hour. Next, 500 parts by mass of the master batch and 500 parts by mass of ethyl acetate were charged into the reaction vessel and mixed for 1 hour to obtain a raw material solution.
1324 parts by mass of the obtained raw material solution was transferred to a reaction vessel, and using a bead mill (“Ultra Visco Mill”; manufactured by Imex Co., Ltd.), the liquid feeding speed was 1 kg / hr, the disk peripheral speed was 6 m / sec, and 0.5 mm zirconia. The carbon black and carnauba wax were dispersed by three passes under the condition of 80% by volume of beads. Next, 1324 parts by mass of a 65% by mass ethyl acetate solution of the unmodified polyester was added to the dispersion. One pass was performed in a bead mill under the same conditions as described above, and the mixture was dispersed to prepare an organic solvent phase.
The solid content concentration of the obtained organic solvent phase (130 ° C., 30 minutes) was 50% by mass.
[0170]
--Emulsification / Dispersion--
Into a reaction vessel, 648 parts by mass of the organic solvent phase, 154 parts by mass of the prepolymer, and 6.6 parts by mass of the ketimine compound are charged, and 5,000 rpm using a TK homomixer (manufactured by Tokushu Kika). Mixing for 1 minute gave an oil phase mixture.
Next, in a reaction vessel, 990 parts by mass of water, 72 parts by mass of the fine particle dispersion (1) (see Table 3), 8 parts by mass of the fine particle dispersion (2) (see Table 3), sodium dodecyl diphenyl ether disulfonate 4 mass% aqueous solution (“Eleminol MON-7”; Sanyo Chemical Industries, Ltd.) 40 parts by mass and ethyl acetate 90 parts by mass, and TK type homomixer (manufactured by Special Machine) for 1 minute at 3000 rpm Mixed. Next, 809 parts by mass of the oil phase mixed solution was added to the reaction vessel, and mixed with a TK homomixer at a rotation speed of 13,000 rpm for 20 minutes to prepare an emulsified slurry.
Next, the emulsified slurry was charged into a reaction vessel equipped with a stirrer and a thermometer, and after removing the solvent at 30 ° C. for 8 hours, aging was carried out at 45 ° C. for 4 hours to obtain a dispersed slurry.
The obtained dispersion slurry 1 had a volume average particle size of 4.95 μm and a number average particle size of 4.45 μm as measured by Multisizer II (manufactured by Beckman Coulter, Inc.).
[0171]
[Table 3]
[0172]
--- Washing and drying--
After filtering 100 parts by mass of the dispersion slurry under reduced pressure, adding 300 parts by mass of ion exchange water to the filter cake, mixing with a TK homomixer (at 12,000 rpm for 10 minutes), and then filtering three times. And a final filter cake was obtained.
Here, the obtained final filter cake was dried with a circulating dryer at 45 ° C. for 48 hours, and sieved with a mesh having an opening of 75 μm to obtain toner base particles of Example 1.
[0173]
--External additive treatment--
Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) was added 0.7 parts by weight of hydrophobic silica as an external additive and 0.3 parts by weight of hydrophobized titanium oxide with respect to 100 parts by weight of the obtained toner base particles of Example 1. The toner of Example 1 was manufactured by using the mixture.
For the toner of Example 1, the volume average particle size, number average particle size and particle size distribution, average circularity, resin fine particle coverage, resin fine particle content (residual rate), BET specific surface area, In addition, the toner physical properties of the glass transition temperature were measured. The results are shown in Table 8.
[0174]
(Comparative Example 1)
-Preparation of toner base particles-
In Example 1, except that the fine particle dispersion (1) was changed to the fine particle dispersion (3) and the fine particle dispersion (2) was changed to the fine particle dispersion (4) (Table 4), In the same manner as in Example 1, toner base particles of Comparative Example 1 were obtained.
[0175]
-External additive treatment-
External toner was added to the obtained toner base particles of Comparative Example 1 in the same manner as the toner base particles of Example 1 to produce the toner of Comparative Example 1. The physical properties and the like of the toner of Comparative Example 1 were measured in the same manner as in Example 1. The results are shown in Table 8.
[0176]
[Table 4]
[0177]
(Example 2)
-Preparation of toner base particles-
In Example 1, except that the fine particle dispersion (1) was changed from 72 parts by weight to 40 parts by weight and the fine particle dispersion (2) was changed from 8 parts by weight to 40 parts by weight (Table 5). In the same manner as in Example 1, toner base particles of Example 2 were obtained.
[0178]
-External additive treatment-
External toner was added to the obtained toner base particles of Example 2 in the same manner as the toner base particles of Example 1, and thus the toner of Example 2 was produced. The physical properties of the toner of Example 2 were measured in the same manner as in Example 1. The results are shown in Table 8.
[0179]
[Table 5]
[0180]
(Example 3)
-Preparation of toner base particles-
In Example 1, 72 parts by mass of the fine particle dispersion (1) is changed to 48 parts by mass of the fine particle dispersion (5), and 8 parts by mass of the fine particle dispersion (2) is 32 parts by mass of the fine particle dispersion (6). The toner base particles of Example 3 were obtained in the same manner as in Example 1 except for changing to (Table 6).
[0181]
-External additive treatment-
External toner was added to the obtained toner base particles of Example 3 in the same manner as the toner base particles of Example 1 to produce the toner of Example 3. The physical properties of the toner of Example 3 were measured in the same manner as in Example 1. The results are shown in Table 8.
[0182]
[Table 6]
[0183]
(Reference example 1)
-Preparation of toner base particles-
  In Example 1, 72 parts by mass of the fine particle dispersion (1) is changed to 48 parts by mass of the fine particle dispersion (7), and 8 parts by mass of the fine particle dispersion (2) is 32 parts by mass of the fine particle dispersion (8). Except that changed to (Table 7), in the same manner as in Example 1,Reference example 1Toner base particles were obtained.
[0184]
-External additive treatment-
  ObtainedReference example 1For the toner base particles, an external additive was added in the same manner as the toner base particles of Example 1,Reference example 1Toner was produced.Reference example 1For this toner, various physical properties and the like were measured in the same manner as in Example 1. The results are shown in Table 8.
[0185]
[Table 7]
[0186]
<Toner particle size>
The volume average particle diameter (Dv) and number average particle diameter (Dn) of each toner were measured using a particle size measuring device (“Multisizer II”; manufactured by Beckman Coulter, Inc.) at an aperture diameter of 100 μm. From these results, (volume average particle diameter (Dv / number average particle diameter (Dn))) was calculated.
[0187]
<Average circularity>
The average circularity of each toner was measured using a flow type particle image analyzer (“FPIA-2100”; manufactured by Sysmex Corporation). Specifically, 0.1 to 0.5 ml of a surfactant (alkylbenzene sulfonate) as a dispersant is added to 100 to 150 ml of water from which impure solids have been removed in advance, and each toner is further added. 0.1 to 0.5 g was added and dispersed. The obtained dispersion was dispersed for about 1 to 3 minutes with an ultrasonic disperser (manufactured by Honda Electronics Co., Ltd.), and the shape and distribution of the toner were measured at a dispersion concentration of 3000 to 10,000 / μl. . The average circularity was calculated from these measurement results.
[0188]
<Measurement method of resin fine particle coverage>
The coverage of the resin fine particles was obtained by taking several fields of electron micrographs at a magnification of 50,000 times on the surface of each toner, selecting a toner surface with no tilt or crack as much as possible, and using an image analyzer (“Luzex III”). ; Nireco Co.) was used to measure the coverage of resin fine particles on the toner surface.
[0189]
<Measurement method of resin fine particle content (residual rate)>
Using the styrene monomer derived from the resin fine particles of the styrene-acrylic copolymer as a label, the toner was thermally decomposed to measure the amount of the styrene monomer in the thermal decomposition product, and the content of the resin fine particles in the toner was calculated. That is, using resin fine particles of styrene-acrylic copolymer having a known composition as a label, the content of resin fine particles of styrene-acrylic copolymer in the toner is 0.01% by mass, 0.10% by mass, It added so that it might become 1.00 mass%, 3.00 mass%, and 10.0 mass%. Each model toner having a known composition is thermally decomposed under the conditions of 590 ° C. × 12 seconds, and the thermal decomposition products are analyzed according to the following measuring equipment and measurement conditions to obtain the peak area of the styrene monomer for each toner. The content of resin fine particles in the toner was calculated.
[Measurement equipment and measurement conditions]
Analytical instrument: Pyrolysis gas chromatograph mass spectrometer
Device body: QR-5000 (manufactured by Shimadzu Corporation)
Accessory pyrolysis furnace: JHP-3S (manufactured by Nippon Analytical Industry)
Thermal decomposition temperature: 590 ° C x 12 seconds
Column: “DB-1”
(L = 30 m ID = 0.25 mm Film = 0.25 μm)
Column temperature: 40 ° C. (holding 2 minutes) to 300 ° C. (temperature raising 10 ° C./min)
Vaporization chamber temperature: 300 ° C
[0190]
<Measurement method of BET specific surface area>
According to the BET method, nitrogen gas was adsorbed on the surface of each toner base (sample) using a specific surface area measuring device (“Tristar 3000”; manufactured by Shimadzu Corporation), and measurement was performed by the BET multipoint method.
[0191]
<Method of measuring glass transition temperature (Tg)>
The glass transition temperature (Tg) was measured by the following method using TG-DSC system TAS-100 (manufactured by Rigaku Corporation).
First, about 10 mg of each toner (sample) was placed in an aluminum sample container, and the sample container was placed on a holder unit and set in an electric furnace. After heating from room temperature to 150 ° C. at a heating rate of 10 ° C./min, the sample was allowed to stand at 150 ° C. for 10 min, and the sample was cooled to room temperature and left for 10 min. Then, the DSC curve was measured with a differential scanning calorimeter (DSC) after heating to 150 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. From the obtained DSC curve, using the analysis system in the TG-DSC system TAS-100 system, the glass transition temperature (Tg) is calculated from the contact point between the tangent line of the endothermic curve near the glass transition temperature (Tg) and the baseline. did.
[0192]
[Table 8]
[0193]
-Preparation of developer-
  Next, Examples 1 to 6 were prepared in a conventional manner from 5% by mass of each toner treated with an external additive and 95% by mass of a copper-zinc ferrite carrier having an average particle diameter of 40 μm coated with a silicone resin.3. Reference example 1And each developer of Comparative Example 1 was produced.
[0194]
Using each developer obtained, (a) fixability (fixing lower limit temperature and offset non-occurrence temperature), (b) heat-resistant storage stability (penetration), and (c) comprehensive evaluation Was measured. The results are shown in Table 9.
[0195]
(A) Fixability (offset non-occurrence temperature and fixing lower limit temperature)
Fixability (offset non-occurrence temperature and fixing lower limit temperature) was evaluated using an image forming apparatus including the belt fixing device 110 shown in FIG.
The belt-type fixing device 110 includes a heating roller 121, a fixing roller 122, a pressure roller 124, and a fixing belt 123.
The fixing belt 123 is stretched by a heating roller 121 and a fixing roller 122 that are rotatably arranged inside, and is heated to a predetermined temperature by the heating roller 121. The heating roller 121 has a built-in heating source 125 and is designed such that the temperature can be adjusted by a temperature sensor 127 attached in the vicinity of the heating roller 121. The fixing roller 122 is rotatably disposed inside the fixing belt 123 and in contact with the inner surface of the fixing belt 123. The pressure roller 124 is in contact with the outer side of the fixing belt 123 and the outer surface of the fixing belt 123 so as to press the fixing roller 122 so as to be rotatable.
In fixing belt device 110, first, recording medium (sheet) P on which a toner image to be fixed is formed is conveyed to heating roller 121. Then, the toner T on the sheet P is heated and melted by the heating roller 121 and the fixing belt 123 heated to a predetermined temperature by the action of the built-in heating source 125. In this state, the sheet P is inserted into a nip portion formed between the fixing roller 122 and the pressure roller 124. The sheet P inserted into the nip is brought into contact with the surface of the fixing belt 123 that rotates in conjunction with the rotation of the fixing roller 122 and the pressure roller 124, and passes through the nip by the pressing force of the pressure roller 124. When pressed, the toner T is fixed on the sheet P. Next, the sheet P on which the toner T is fixed passes between the fixing roller 122 and the pressure roller 124, is peeled off from the fixing belt 123, and is conveyed to a tray (not shown) through a guide G. The fixing belt 123 is cleaned by the cleaning roller 126.
[0196]
In the belt-type fixing device shown in FIG. 5, fixing conditions of a belt tension of 1.5 kg / piece, a belt speed of 170 mm / sec, and a nip width of 10 mm are obtained by the fixing roller 122, the pressure roller 124, the heating roller 121, and the fixing belt 123. Fixing was done at
The fixing roller 122 is a roller made of silicone foam having a diameter of 38 mm and an Asker C hardness of about 30 degrees. The pressure roller 124 has a diameter of 50 mm and a Asker C hardness of about 48 mm in diameter. It is a 75 degree roller. The heating roller 121 is an aluminum roller having a diameter of 30 mm and a wall thickness of 2 mm. The fixing belt 123 has a belt diameter of 60 mm and a belt width of 310 mm, and is stretched around a roller having a release layer made of silicone rubber having a thickness of about 150 μm on the surface of a nickel belt base having a thickness of about 40 μm.
[0197]
<Temperature without offset>
The temperature at which no offset occurred was measured using an image forming apparatus equipped with the belt fixing device shown in FIG. That is, for image formation, a color copying machine ("Pretail 550"; manufactured by Ricoh Co., Ltd.) is used to transfer yellow (magenta, cyan, and black) onto transfer paper ("Type 6000-70W"; manufactured by Ricoh Co., Ltd.). Each solid color, and solid images of red, blue, and green as intermediate colors, 1.0 ± 0.1 mg / cm for each single color2The toner was adjusted so as to be developed. The obtained image was fixed using the belt fixing device shown in FIG. 5 while changing the temperature of the fixing belt (heating roller), and the fixing temperature at which no offset occurred (temperature where no offset occurred) was measured.
[0198]
<Fixing temperature limit>
Using the image forming apparatus provided with the belt fixing device shown in FIG. 5, the image is transferred to a transfer paper (“Type 6200”; manufactured by Ricoh Co., Ltd.) using a color copying machine (“Pretail 550” manufactured by Ricoh Co., Ltd.). ) Was set and a copy test was conducted. The fixing roll temperature at which the residual ratio of the image density after rubbing the obtained fixed image with a pad was 70% or more was determined as the minimum fixing temperature. A fixing lower limit temperature higher than 150 ° C. was judged as defective.
[0199]
(B) Heat resistance storage (penetration)
Each toner was filled in a 50 ml glass container and left in a constant temperature bath at 50 ° C. for 20 hours. The toner was cooled to room temperature, and the penetration was measured by a penetration test (JIS K2235-1991). In addition, it shows that heat resistance preservability is excellent, so that the value of the said penetration is large.
[0200]
(C) Overall evaluation
From the results of all the performance evaluations, comprehensive evaluation was performed based on the following criteria.
〔Evaluation criteria〕
○: Overall excellent state
△: Overall normal state
X: Overall poor condition
[0201]
[Table 9]
[0202]
  From the results of Tables 8 to 9, the following is clear. That is, Examples 1 to3With respect to, the evaluation results of the respective qualities of low-temperature fixability, hot offset resistance, and heat-resistant storage stability were good, and the overall evaluation was good (◯). On the other hand, in Comparative Example 1, although the low-temperature fixability was good, the overall evaluation was poor (x) because the hot offset resistance and the heat-resistant storage stability were poor.
[0203]
【The invention's effect】
According to the present invention, conventional problems can be solved, excellent properties such as agglomeration resistance, chargeability, fluidity, transferability, and fixability, good hot offset resistance, and excellent heat-resistant storage. That can achieve high image quality with a combination of high temperature and low temperature fixability, and an efficient manufacturing method thereof, and a developer, a container containing toner, a process cartridge, and image formation that can achieve high image quality using the toner An apparatus and an image forming method can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example in which an image forming method of the present invention is carried out by an image forming apparatus of the present invention.
FIG. 2 is a schematic explanatory view showing another example in which the image forming method of the present invention is carried out by the image forming apparatus of the present invention.
FIG. 3 is a schematic explanatory view showing an example in which the image forming method of the present invention is implemented by the image forming apparatus (tandem type color image forming apparatus) of the present invention.
FIG. 4 is a partially enlarged schematic explanatory view of the image forming apparatus shown in FIG.
FIG. 5 is a schematic explanatory view showing an example of a belt-type fixing device in the image forming apparatus of the present invention.
[Explanation of symbols]
10 Photoconductor (Photoconductor drum)
10K black photoconductor
Photosensitive body for 10Y yellow
10M photoconductor for magenta
10C Cyan photoreceptor
14 Support roller
15 Support roller
16 Support roller
17 Intermediate transfer cleaning device
18 Image forming means
20 Charging roller
21 Exposure equipment
22 Secondary transfer device
23 Laura
24 Secondary transfer belt
25 Fixing device
26 Fixing belt
27 Pressure belt
28 Sheet reversing device
30 exposure equipment
32 Contact glass
33 First traveling body
34 Second traveling body
35 Imaging lens
36 Reading sensor
40 Developer
41 Development belt
42K developer container
42Y developer container
42M developer container
42C Developer container
43K developer supply roller
43Y developer supply roller
43M Developer supply roller
43C Developer supply roller
44K development roller
44Y Development roller
44M Development roller
44C Development roller
45K black developer
45Y Yellow developer
45M Magenta developer
45C Cyan developer
49 Registration Roller
50 Intermediate transfer member
51 Laura
52 Separation roller
53 Constant current source
55 switching claw
56 Discharge roller
57 Discharge tray
58 Corona charger
60 Cleaning device
61 Developer
62 Transfer charger
63 Photoconductor cleaning device
64 Static eliminator
70 Static elimination lamp
80 Transfer roller
90 Cleaning device
95 Transfer paper
100 Image forming apparatus
110 Belt-type fixing device
120 Tandem developer
121 Heating roller
122 Fixing roller
123 Fixing belt
124 Pressure roller
125 Heat source
126 Cleaning roller
127 Temperature sensor
130 Document platen
142 Feed roller
143 Paper Bank
144 Paper cassette
145 Separation roller
146 paper feed path
147 Conveying roller
148 paper feed path
150 Copying machine body
200 Feeding table
300 scanner
400 Automatic Document Feeder (ADF)

Claims (11)

活性水素基含有化合物及び該活性水素基含有化合物と反応可能な部位を有する重合体を含む有機溶媒相を、少なくとも2種の樹脂微粒子を含む水系媒体中に乳化分散させて、前記活性水素基含有化合物と前記活性水素基含有化合物と反応可能な重合体とを伸長反応乃至架橋反応させ、有機溶剤を除去して得られるトナーであって、
前記樹脂微粒子が、固着又は融着されることなく、
該樹脂微粒子における、ガラス転移温度が最も高いものを樹脂微粒子(A)、そのガラス転移温度を(TgA)とし、ガラス転移温度が最も低いものを樹脂微粒子(B)、そのガラス転移温度を(TgB)とした時、次式、温度差(TgA−TgB)≧20℃、を満たし、
前記樹脂微粒子のトナーに対する残存率が、熱分解クロマトグラフによる測定値で4.1〜8.0質量%であり、
前記樹脂微粒子(A)と前記樹脂微粒子(B)との質量比(樹脂微粒子(A):樹脂微粒子(B))が10:90〜50:50であることを特徴とするトナー。
An organic solvent phase containing an active hydrogen group-containing compound and a polymer having a site capable of reacting with the active hydrogen group-containing compound is emulsified and dispersed in an aqueous medium containing at least two kinds of resin fine particles, to thereby contain the active hydrogen group A toner obtained by subjecting a compound and a polymer capable of reacting with the active hydrogen group-containing compound to an extension reaction or a crosslinking reaction , and removing an organic solvent ,
Without the resin fine particles being fixed or fused,
Among the resin fine particles, those having the highest glass transition temperature are the resin fine particles (A), the glass transition temperature is (TgA), the one having the lowest glass transition temperature is the resin fine particles (B), and the glass transition temperature is (TgB). ), The following equation, temperature difference (TgA−TgB) ≧ 20 ° C. is satisfied,
The residual ratio of the resin fine particles to the toner is 4.1 to 8.0% by mass as measured by a pyrolysis chromatograph,
A toner having a mass ratio of the resin fine particles (A) to the resin fine particles (B) (resin fine particles (A): resin fine particles (B)) of 10:90 to 50:50.
樹脂微粒子における、テトラヒドロフラン可溶分の分子量分布における重量平均分子量を(Mw)とした時、次式、8,000≦(Mw)≦1,500,000、を満たす請求項1に記載のトナー。  The toner according to claim 1, wherein the toner satisfies the following formula: 8,000 ≦ (Mw) ≦ 1,500,000, where (Mw) is a weight average molecular weight in the molecular weight distribution of tetrahydrofuran-soluble matter in the resin fine particles. 樹脂微粒子のトナー被覆率が75〜100%である請求項1から2のいずれかに記載のトナー。  The toner according to claim 1, wherein the resin coverage of the resin fine particles is 75 to 100%. 樹脂微粒子の体積平均粒径が20〜400nmである請求項1から3のいずれかに記載のトナー。  The toner according to claim 1, wherein the resin fine particles have a volume average particle diameter of 20 to 400 nm. トナーのBET比表面積が、0.5〜8.0m/gである請求項1から4のいずれかに記載のトナー。The toner according to claim 1, wherein the toner has a BET specific surface area of 0.5 to 8.0 m 2 / g. トナーの体積平均粒径が、3〜8μmである請求項1から5のいずれかに記載のトナー。  The toner according to claim 1, wherein the toner has a volume average particle diameter of 3 to 8 μm. トナーの体積平均粒径/個数平均粒径が、1.00〜1.25である請求項1から6のいずれかに記載のトナー。  The toner according to claim 1, wherein the toner has a volume average particle diameter / number average particle diameter of 1.00 to 1.25. トナーの平均円形度が、0.90〜1.00である請求項1から7のいずれかに記載のトナー。  The toner according to claim 1, wherein the toner has an average circularity of 0.90 to 1.00. 請求項1から8のいずれかに記載のトナーの製造方法であって、活性水素基含有化合物と、該活性水素基含有化合物と反応可能な部位を有する重合体とを含む有機溶媒相を、少なくとも2種の樹脂微粒子を含む水系媒体中で乳化分散させて、前記活性水素基含有化合物と前記活性水素基含有化合物と反応可能な重合体とを伸長反応乃至架橋反応させることを特徴とするトナーの製造方法。  9. The method for producing a toner according to claim 1, wherein at least an organic solvent phase comprising an active hydrogen group-containing compound and a polymer having a site capable of reacting with the active hydrogen group-containing compound is contained. A toner characterized by being emulsified and dispersed in an aqueous medium containing two kinds of resin fine particles, and causing an extension reaction or a cross-linking reaction between the active hydrogen group-containing compound and a polymer capable of reacting with the active hydrogen group-containing compound. Production method. 請求項1から8のいずれかに記載のトナーを含むことを特徴とする現像剤。  A developer comprising the toner according to claim 1. 請求項1から8のいずれかに記載のトナーが充填されてなることを特徴とするトナー入り容器。  A toner-filled container filled with the toner according to claim 1.
JP2003206431A 2003-08-07 2003-08-07 Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method Expired - Lifetime JP4295034B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003206431A JP4295034B2 (en) 2003-08-07 2003-08-07 Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method
US10/910,764 US7348117B2 (en) 2003-08-07 2004-08-04 Toner, method for manufacturing the toner, developer including the toner, toner container containing the toner, and image forming method, image forming apparatus and process cartridge using the toner
US11/670,874 US7348121B2 (en) 2003-08-07 2007-02-02 Toner, method for manufacturing the toner, developer including the toner, toner container containing the toner, and image forming method, image forming apparatus and process cartridge using the toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206431A JP4295034B2 (en) 2003-08-07 2003-08-07 Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method

Publications (2)

Publication Number Publication Date
JP2005055534A JP2005055534A (en) 2005-03-03
JP4295034B2 true JP4295034B2 (en) 2009-07-15

Family

ID=34363297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206431A Expired - Lifetime JP4295034B2 (en) 2003-08-07 2003-08-07 Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method

Country Status (1)

Country Link
JP (1) JP4295034B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251359A (en) * 2005-03-10 2006-09-21 Ricoh Co Ltd Image forming method and image forming apparatus using this method
JP4625386B2 (en) * 2005-03-11 2011-02-02 株式会社リコー Toner for developing electrostatic image and method for producing the same
JP4657933B2 (en) * 2005-03-16 2011-03-23 株式会社リコー Toner for electrostatic image development and production method
JP2006301140A (en) * 2005-04-19 2006-11-02 Ricoh Co Ltd Image forming apparatus, process cartridge, method for manufacturing electrophotographic photoreceptor, and image forming method
JP4420861B2 (en) * 2005-06-15 2010-02-24 株式会社リコー Method for producing toner for developing electrostatic image, toner, image forming apparatus, and toner container
JP4787052B2 (en) * 2005-06-24 2011-10-05 株式会社リコー Image forming apparatus and image forming method
JP5266612B2 (en) * 2005-09-16 2013-08-21 株式会社リコー Image forming apparatus and image forming method
JP2007233030A (en) * 2006-03-01 2007-09-13 Ricoh Co Ltd Toner for electrostatic charge image development
JP2008225386A (en) 2007-03-15 2008-09-25 Ricoh Co Ltd Image forming method and image forming apparatus
JP5151493B2 (en) * 2007-03-23 2013-02-27 株式会社リコー Toner for developing electrostatic image, two-component developer, image forming method and image forming apparatus
US8771914B2 (en) 2007-03-23 2014-07-08 Ricoh Company, Ltd. Toner for developing latent electrostatic image, two-component developer, image forming method and image forming apparatus
US20090074467A1 (en) * 2007-09-13 2009-03-19 Takuya Seshita Image forming apparatus and image forming method
JP2009109661A (en) * 2007-10-29 2009-05-21 Ricoh Co Ltd Method for manufacturing toner, image forming method and process cartridge
JP2009168983A (en) * 2008-01-15 2009-07-30 Ricoh Co Ltd Toner
JP5444701B2 (en) * 2008-12-02 2014-03-19 株式会社リコー Toner, and full-color image forming method and process cartridge using the toner
JP5387071B2 (en) * 2009-03-13 2014-01-15 株式会社リコー Toner, toner manufacturing method, image forming method, image forming apparatus, and process cartridge
JP5534387B2 (en) * 2009-03-18 2014-06-25 株式会社リコー Black toner for electrophotography, two-component developer and image forming method
JP5545464B2 (en) * 2009-03-18 2014-07-09 株式会社リコー Image forming apparatus and toner for developing electrostatic image
JP5451129B2 (en) * 2009-03-23 2014-03-26 キヤノン株式会社 toner
JP5414339B2 (en) * 2009-04-23 2014-02-12 キヤノン株式会社 Toner and method for producing the toner
JP5560985B2 (en) 2009-08-03 2014-07-30 株式会社リコー Toner, developer, image forming method and image forming apparatus
JP5495177B2 (en) * 2009-11-17 2014-05-21 株式会社リコー Toner and image forming apparatus using the same
JP2011128349A (en) * 2009-12-17 2011-06-30 Ricoh Co Ltd Toner, and image forming method and image forming apparatus using the toner
JP5323000B2 (en) * 2010-05-28 2013-10-23 京セラドキュメントソリューションズ株式会社 Image forming apparatus
JP6011306B2 (en) * 2012-12-17 2016-10-19 富士ゼロックス株式会社 Electrostatic image developing toner, electrostatic image developer, toner cartridge, developing device, image forming apparatus, and image forming method
JP6493301B2 (en) * 2015-05-26 2019-04-03 京セラドキュメントソリューションズ株式会社 Toner for developing electrostatic latent image and method for producing the same
EP3098656B1 (en) * 2015-05-26 2018-06-20 Kyocera Document Solutions Inc. Electrostatic latent image developing toner and method for producing the same
JP6531584B2 (en) * 2015-09-15 2019-06-19 京セラドキュメントソリューションズ株式会社 Toner for developing electrostatic latent image
JP6369647B2 (en) * 2016-02-18 2018-08-08 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development
JP6436131B2 (en) * 2016-05-24 2018-12-12 京セラドキュメントソリューションズ株式会社 Toner for electrostatic latent image development
JP6838578B2 (en) * 2018-04-25 2021-03-03 京セラドキュメントソリューションズ株式会社 toner

Also Published As

Publication number Publication date
JP2005055534A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4295034B2 (en) Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method
JP4347174B2 (en) Toner and image forming method using the same
JP4541814B2 (en) Toner, method for producing the same, and image forming method
JP4658010B2 (en) Toner and manufacturing method thereof, developer, toner-containing container, process cartridge, image forming method, and image forming apparatus
JP4829489B2 (en) Toner, developer, toner container, process cartridge, image forming apparatus, and image forming method
JP5261202B2 (en) Toner manufacturing method, developer, toner-containing container, process cartridge, image forming apparatus, and image forming method
JP4681445B2 (en) Toner, method for producing the same, and image forming method
JP4494317B2 (en) Toner, method for producing the same, and image forming method
JP5086739B2 (en) Toner, production method thereof, and developer using the toner
JP2005107387A (en) Toner and method for manufacturing the same, crystalline polyester resin dispersion and method for manufacturing the same, developer, toner-containing vessel, process cartridge, image forming apparatus and image forming method
JP4838570B2 (en) Toner, method for producing the same, and image forming method
JP4319634B2 (en) Toner, method for producing the same, and image forming method
JP4295182B2 (en) Color toner, color toner set, and image forming method and image forming apparatus using the same
JP4322801B2 (en) Toner, method for producing the same, and image forming method
JP4180457B2 (en) Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method
JP4208132B2 (en) Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method
JP4365151B2 (en) Toner and method for producing the same, developer, toner container, process cartridge, image forming apparatus, and image forming method
JP4331662B2 (en) Toner, method for producing the same, and image forming method
JP4327053B2 (en) Toner, method for producing the same, and image forming method
JP4607228B2 (en) Toner, method for producing the same, and image forming method
JP4316455B2 (en) Toner and image forming method using the same
JP4401914B2 (en) Toner, method for producing the same, and image forming method
JP2005266614A (en) Toner and its manufacturing method, developer, toner container, processing cartridge, image forming device, and image forming method
JP5720745B2 (en) Toner manufacturing method, developer, toner-containing container, process cartridge, image forming apparatus, and image forming method
JP5429312B2 (en) Toner, developer, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

EXPY Cancellation because of completion of term