JP4291204B2 - Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same - Google Patents

Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP4291204B2
JP4291204B2 JP2004132157A JP2004132157A JP4291204B2 JP 4291204 B2 JP4291204 B2 JP 4291204B2 JP 2004132157 A JP2004132157 A JP 2004132157A JP 2004132157 A JP2004132157 A JP 2004132157A JP 4291204 B2 JP4291204 B2 JP 4291204B2
Authority
JP
Japan
Prior art keywords
compound
alloy
organic resin
steel sheet
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004132157A
Other languages
Japanese (ja)
Other versions
JP2005290535A (en
Inventor
隆文 山地
晃 松崎
和久 岡井
祐一 福島
俊之 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Galvanizing and Coating Co Ltd
Original Assignee
JFE Steel Corp
JFE Galvanizing and Coating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Galvanizing and Coating Co Ltd filed Critical JFE Steel Corp
Priority to JP2004132157A priority Critical patent/JP4291204B2/en
Publication of JP2005290535A publication Critical patent/JP2005290535A/en
Application granted granted Critical
Publication of JP4291204B2 publication Critical patent/JP4291204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、建材や家電分野の用途において主として無塗装で用いられるAl−Zn系合金めっき鋼板の表面処理材、特に、所謂55%Al−Zn系合金めっき鋼板に代表される高Al−Zn系合金めっき鋼板に好適な、皮膜中にCrを含まないクロメートフリー表面処理材に関する。  The present invention relates to a surface treatment material for an Al-Zn alloy-plated steel sheet that is mainly used unpainted in applications in the field of building materials and home appliances, in particular, a high Al-Zn-based material represented by a so-called 55% Al-Zn alloy-plated steel sheet The present invention relates to a chromate-free surface treatment material suitable for alloy-plated steel sheets and containing no Cr in the film.

所謂55%Al−Zn系合金めっき鋼板に代表される高Al−Zn系合金めっき鋼板は、めっき外観が美麗で且つ耐食性にも優れていることから、建材用途として屋根材や外壁材等に、また家電用途として例えば冷蔵庫の裏板等に、いずれも無塗装のままで用いられている。これらの用途では、めっき鋼板に長期にわたる防食性が必要となり、湿潤環境に曝されても優れた密着性、耐食性を有することが求められる。また、建材用途の場合には、めっき鋼板がロールフォーミングにより成形されるため、めっきがロールにピックアップしないこと(すなわち、ロールフォーミング性が良好であること)が求められ、また家電用途の場合には、プレス成形後の外観が金型との摺動により黒化しない特性が必要である。さらに、屋根材に適用される場合には、ペフと呼ばれる断熱材と貼り合わせた場合の密着性、特に湿気等により湿った環境で濡れた状態での密着性が求められる。  The high Al-Zn alloy-plated steel sheet represented by the so-called 55% Al-Zn alloy-plated steel sheet has a beautiful plating appearance and is excellent in corrosion resistance. Also, as home appliances, for example, they are used without coating on the back plate of a refrigerator. In these uses, the plated steel sheet needs long-term corrosion resistance, and is required to have excellent adhesion and corrosion resistance even when exposed to a humid environment. In addition, in the case of building materials, the plated steel sheet is formed by roll forming, so it is required that the plating is not picked up by the roll (that is, the roll forming property is good). The appearance after press molding must be such that it does not blacken by sliding with the mold. Furthermore, when applied to a roofing material, adhesion when bonded to a heat insulating material called pef, particularly adhesion in a wet environment due to moisture or the like, is required.

従来、このような用途に対しては、有機樹脂とCr6+を含むクロム化合物を含有する表面処理層をめっき表面に形成することにより対応してきた(例えば、特許文献1〜3)。しかしその一方で、最近では環境に対する影響度の観点からCrの規制が進みつつあり、これに伴い表面処理のクロメートフリー化が指向されている。また、Cr3+は無害であるが実際に市場で使用された場合、皮膜中のCr6+とCr3+を見分けることは困難である。このような背景から、Cr化合物を含まず、しかもクロメート処理に匹敵する優れた耐食性等の性能を有するクロメートフリー皮膜が強く望まれている。
特公平1−53353号公報 特公平4−2672号公報 特公平6−146001号公報
Conventionally, such applications have been dealt with by forming a surface treatment layer containing an organic resin and a chromium compound containing Cr 6+ on the plating surface (for example, Patent Documents 1 to 3). However, on the other hand, recently, regulation of Cr is progressing from the viewpoint of environmental impact, and accordingly, surface treatment is becoming chromate-free. Further, Cr 3+ is harmless, but when actually used in the market, it is difficult to distinguish between Cr 6+ and Cr 3+ in the film. From such a background, a chromate-free film that does not contain a Cr compound and has excellent performance such as corrosion resistance comparable to chromate treatment is strongly desired.
Japanese Patent Publication No. 1-53353 Japanese Patent Publication No.4-2672 Japanese Patent Publication No. 6-146001

そのなかで、クロムに代わる成分としてバナジウム化合物を含有した処理液を用い、浸漬、塗布、電解処理等の方法によってめっき表面に薄膜を形成させる技術が数多く開示されている。具体的には、(a)主にリン酸イオンとバナジン酸イオンを含有する塗料で処理を行う方法(例えば、特許文献4,5)、(b)有機樹脂とチオカルボニル基含有化合物、バナジウム化合物を含む塗膜を形成する方法(特許文献6)、(c)特殊変性フェノール樹脂とバナジウム化合物とジルコニウム、チタニウム等の金属化合物を含む表面処理剤により処理を行う方法(特許文献7)、(d)バナジウム化合物とジルコニウム化合物、チタニウム化合物等を含む表面処理液で処理を行う方法(特許文献8)などが挙げられる。  Among them, many techniques for forming a thin film on a plating surface by a method such as dipping, coating, electrolytic treatment using a treatment liquid containing a vanadium compound as a component replacing chromium are disclosed. Specifically, (a) a method of treating with a paint mainly containing phosphate ions and vanadate ions (for example, Patent Documents 4 and 5), (b) an organic resin, a thiocarbonyl group-containing compound, and a vanadium compound (Patent Document 6), (c) A method of treating with a surface treatment agent containing a specially modified phenolic resin, a vanadium compound, and a metal compound such as zirconium or titanium (Patent Document 7), (d ) A method of performing treatment with a surface treatment solution containing a vanadium compound, a zirconium compound, a titanium compound and the like (Patent Document 8).

特開平1−92279号公報  JP-A-1-92279 特開平1−131281号公報  JP-A-1-131281 特開2000−248380号公報  JP 2000-248380 A 特開2001−181860号公報  JP 2001-181860 A 特開2002−30460号公報  JP 2002-30460 A

しかしながら、特許文献4、特許文献5の方法は、主に5価のバナジウム化合物による防錆効果を狙ったものであるため、大きな防食効果は得られない。また、特許文献6の場合、耐食性向上効果を発揮しているのはチオカルボニル基を含む化合物であり、バナジウム化合物は主に5価のバナジウム化合物であるため、これも大きな防食効果は得られない。特許文献7の場合も、最も耐食性に効果のあるのは特殊変性フェノール樹脂であって、バナジウム、ジルコニウム等の金属塩の効果は小さく、クロメート処理皮膜に比べ耐食性が十分とは言えない。さらに、特許文献8の場合は、2〜5価のバナジウム化合物とジルコニウム化合物やチタニウム化合物との複合皮膜を形成したものであり、2〜4価のバナジウム化合物を用いることにより皮膜の溶解性はある程度まで向上するが、特に高耐食性を要求される高Al−Zn系合金めっき鋼板に適用するまでの耐食性レベルには至っていない。  However, since the methods of Patent Document 4 and Patent Document 5 are mainly aimed at the rust prevention effect by the pentavalent vanadium compound, a large anticorrosion effect cannot be obtained. In the case of Patent Document 6, the corrosion resistance improving effect is exhibited by a compound containing a thiocarbonyl group, and the vanadium compound is mainly a pentavalent vanadium compound. . Also in Patent Document 7, the specially modified phenol resin is most effective in corrosion resistance, and the effect of metal salts such as vanadium and zirconium is small, and it cannot be said that the corrosion resistance is sufficient as compared with the chromate-treated film. Further, in the case of Patent Document 8, a composite film of a 2-5 pentavalent vanadium compound and a zirconium compound or a titanium compound is formed. By using a 2-4 tetravalent vanadium compound, the solubility of the film is to some extent. However, it has not reached the level of corrosion resistance until it is applied to a high Al—Zn alloy-plated steel sheet that requires particularly high corrosion resistance.

このように従来技術によるクロメートフリーの表面処理皮膜では、従来から高Al−Zn合金めっき鋼板に用いられてきたクロメート処理皮膜に匹敵するような耐食性は得られない。
したがって本発明の目的は、クロメート処理皮膜による表面処理材に匹敵する優れた耐食性を有するとともに、外観品質、加工性及び耐水密着性等の性能にも優れたAl−Zn合金めっき鋼板のクロメートフリー表面処理材及びその製造方法を提供することにある。
Thus, the conventional chromate-free surface-treated film cannot provide corrosion resistance comparable to the chromate-treated film conventionally used for high Al—Zn alloy-plated steel sheets.
Accordingly, the object of the present invention is to provide a chromate-free surface of an Al-Zn alloy-plated steel sheet having excellent corrosion resistance comparable to that of a surface-treated material made of a chromate-treated film, and excellent performance such as appearance quality, workability, and water adhesion. It is in providing a processing material and its manufacturing method.

上記課題を解決するための本発明の特徴は以下のとおりである。
[1]Alを25〜75質量%含有するAl−Zn系合金めっき皮膜を有するAl−Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、エポキシ基又は/及びアミノ基を有するシラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)とを主成分とし、前記バナジウム化合物(A)が硫酸酸化バナジウム又はバナジン酸還元生成物からなり、前記バナジウム化合物(A)の金属V換算での付着量が1〜100mg/m、前記有機樹脂(D)の付着量が0.5〜5g/mである表面処理皮膜を有することを特徴とする耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板。
The features of the present invention for solving the above-described problems are as follows.
[1] A vanadium compound (A) having a tetravalent valence on the surface of the plated film of an Al-Zn based alloy plated steel sheet having an Al-Zn based alloy plated film containing 25 to 75% by mass of Al, phosphorus An acid or / and phosphoric acid compound (B), a silane compound (C) having an epoxy group or / and an amino group, and an organic resin (D) comprising a water-soluble organic resin or / and a water-dispersible organic resin The vanadium compound (A) is composed of a vanadium sulfate oxide or a vanadate reduction product, and the amount of adhesion of the vanadium compound (A) in terms of metal V is 1 to 100 mg / m 2 , the organic resin (D). A chromate-free surface-treated Al—Zn alloy-plated steel sheet excellent in corrosion resistance, characterized in that it has a surface-treated film having an adhesion amount of 0.5 to 5 g / m 2 .

[2]Alを25〜75質量%含有するAl−Zn系合金めっき皮膜を有するAl−Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、エポキシ基又は/及びアミノ基を有するシラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)とを主成分とし、前記バナジウム化合物(A)が硫酸酸化バナジウム又はバナジン酸還元生成物からなる処理液を塗布した後、水洗することなく乾燥することを特徴とする、耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板の製造方法。 [2] A vanadium compound (A) having a tetravalent valence on the surface of the plated film of the Al-Zn based alloy plated steel sheet having an Al-Zn based alloy plated film containing 25 to 75% by mass of Al, phosphorus An acid or / and phosphoric acid compound (B), a silane compound (C) having an epoxy group or / and an amino group, and an organic resin (D) comprising a water-soluble organic resin or / and a water-dispersible organic resin Chromate-free surface-treated Al with excellent corrosion resistance, characterized in that the vanadium compound (A) as a main component is coated with a treatment solution comprising a vanadium sulfate oxide or vanadate reduction product, and then dried without being washed with water. -Manufacturing method of Zn type alloy plating steel plate.

[3]Alを25〜75質量%含有するAl−Zn系合金めっき皮膜を有するAl−Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有するバナジウム化合物(A)とリン酸又は/及びリン酸系化合物(B)とを主成分とし、前記バナジウム化合物(A)が硫酸酸化バナジウム又はバナジン酸還元生成物からなる処理液(イ)を塗布した後、水洗することなく乾燥し、さらにその上部に、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)を主成分とする処理液(ロ)を塗布した後、水洗することなく乾燥し、前記処理液(イ)又は/及び処理液(ロ)に、エポキシ基又は/及びアミノ基を有するシラン化合物(C)が含まれていることを特徴とする、耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板の製造方法。 [3] A vanadium compound (A) having a valence of 4 and phosphoric acid on the surface of the plated film of an Al-Zn based alloy plated steel sheet having an Al-Zn based alloy plated film containing 25 to 75% by mass of Al. Alternatively, after applying a treatment liquid (ii) containing the phosphoric acid compound (B) as a main component and the vanadium compound (A) comprising a vanadium sulfate oxide or a vanadic acid reduction product, drying without washing with water. Furthermore, after applying a treatment liquid (b) whose main component is an organic resin (D) made of a water-soluble organic resin and / or a water-dispersible organic resin to the upper part, the treatment liquid is dried without washing, (A) or / and the treatment liquid (b) contains a silane compound (C) having an epoxy group or / and an amino group, and is a chromate-free surface-treated Al—Zn system having excellent corrosion resistance alloy Manufacturing method of plated steel sheet.

本発明によれば、耐食性に優れ、且つ外観品質、加工性及び耐水性にも優れたクロメートフリーの表面処理Al−Zn系合金めっき鋼板を安定して得ることができる。  According to the present invention, it is possible to stably obtain a chromate-free surface-treated Al—Zn alloy-plated steel sheet having excellent corrosion resistance and excellent appearance quality, workability and water resistance.

本発明のクロメートフリー表面処理Al−Zn系合金めっき鋼板のベースとなるめっき鋼板は、めっき皮膜中にAlが25〜75mass%含まれるAl−Zn系合金めっき鋼板であり、所謂55%Al−Zn系合金めっき鋼板が最も代表的なものとして知られている。通常、この種のめっき皮膜中には、SiがAl量の0.5mass%以上含まれている。また、所謂55%Al−Zn系合金めっき鋼板とは、通常、Al−Zn系合金めっき皮膜中にAlが50〜60mass%程度含まれるAl−Zn系合金めっき鋼板(以下の説明において、「高Al−Zn系合金めっき鋼板」という場合、上記Al含有量のAl−Zn合金めっき鋼板を指すものとする)を指し、そのめっき皮膜中には通常Siが1〜3mass%程度含まれている。  The plated steel sheet used as the base of the chromate-free surface-treated Al—Zn alloy-plated steel sheet of the present invention is an Al—Zn-based alloy plated steel sheet containing 25 to 75 mass% of Al in the plating film, so-called 55% Al—Zn. An alloy-plated steel sheet is known as the most typical one. Usually, this type of plating film contains Si in an amount of 0.5 mass% or more of the Al amount. In addition, the so-called 55% Al—Zn alloy-plated steel sheet is usually an Al—Zn-based alloy plated steel sheet in which Al is contained in an Al—Zn alloy plating film in an amount of about 50 to 60 mass% (in the following description, “high The term “Al—Zn alloy-plated steel sheet” refers to an Al—Zn alloy-plated steel sheet having the above-mentioned Al content), and the plating film usually contains about 1 to 3 mass% of Si.

本発明において、めっき皮膜中のAl含有量が25〜75mass%のAl−Zn系合金めっき鋼板を対象とするのは、このAl含有量の範囲において、特に優れた耐食性(耐赤錆性)が得られるためである。但し、このめっき鋼板には、めっき皮膜中にAlを多く含むことに由来する問題として、Alに腐食が生じると黒錆が発生し、赤錆に対しては防錆性を保つものの外観品質が著しく損なわれるという難点がある。また、このめっき鋼板を無塗装で用いる場合、めっきままの外観であることが好まれるためにスキンパスによる表面の著しい平滑化が行われず、このためめっき表面は微細な凹凸が形成されたままの状態になっている。この状態で例えばロールフォーミング加工を受けると、ロールとの接触によってめっき表面にかじりが生じ、ロール損傷の原因となるほか、成形後の外観が劣るという品質面での問題がある。したがって、これらを解消するために、めっき表面にさらに皮膜を形成することが必要となる。
以下に述べるように、本発明による特性改善効果は、めっき皮膜中のAl含有量が25〜75mass%のAl−Zn系合金めっき鋼板において顕著に得られるものであるが、そのなかでも上記高Al−Zn系合金めっき鋼板において特に顕著な特性改善効果が得られる。
In the present invention, an Al-Zn alloy-plated steel sheet having an Al content in the plating film of 25 to 75 mass% is targeted, and in this range of Al content, particularly excellent corrosion resistance (red rust resistance) is obtained. Because it is. However, in this plated steel sheet, as a problem derived from the fact that the plating film contains a lot of Al, black rust is generated when corrosion occurs in Al, and the appearance quality of the rust-proofing material is remarkably high against red rust. There is a difficulty that it is damaged. In addition, when this plated steel sheet is used without coating, it is preferred that the appearance is as plated, so that the surface is not significantly smoothed by the skin pass, so that the plated surface remains finely uneven. It has become. In this state, for example, when subjected to roll forming, there is a problem in terms of quality that the plating surface is galling due to contact with the roll and causes damage to the roll, and the appearance after molding is inferior. Therefore, in order to eliminate these, it is necessary to form a film further on the plating surface.
As will be described below, the characteristic improvement effect according to the present invention is remarkably obtained in an Al—Zn alloy-plated steel sheet having an Al content of 25 to 75 mass% in the plating film. -A particularly remarkable characteristic improvement effect is obtained in a Zn-based alloy-plated steel sheet.

次に、Al−Zn系合金めっき皮膜の表面に形成する表面処理皮膜について説明する。
本発明において、Al−Zn系合金めっき皮膜の表面に形成する表面処理皮膜は、クロム化合物を含まず、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、エポキシ基又は/及びアミノ基を有するシラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)とを主成分とするものである。
Next, the surface treatment film formed on the surface of the Al—Zn alloy plating film will be described.
In the present invention, the surface treatment film formed on the surface of the Al—Zn alloy plating film does not contain a chromium compound, and has a tetravalent valence vanadium compound (A) and phosphoric acid or / and a phosphoric acid compound. The main component is (B), a silane compound (C) having an epoxy group or / and an amino group, and an organic resin (D) made of a water-soluble organic resin or / and a water-dispersible organic resin.

本発明が対象とするAl−Zn系合金めっき鋼板(特に、高Al−Zn系合金めっき鋼板)の耐食性を向上させるためには、Znめっき鋼板、低Al−Zn系合金めっき鋼板(例えば、5%Al−Zn系合金めっき鋼板)、Al系めっき鋼板とは異なり、めっき皮膜中のAl、Zn双方の耐食性を向上させることが必要となる。無機化合物の防食効果について検討を行った結果、本発明が対象となるするようなAl−Zn系合金めっき、とりわけ高Al−Zn系合金めっきに対しては、周期表5Aに属する元素(V,Nb,Ta)の化合物に顕著な防食効果があることを見出した。これら特定元素の化合物による顕著な防食効果は、本発明が対象とするAl−Zn系合金めっき(特に、高Al−Zn系合金めっき)に特有のものであり、Znめっき等の他めっき種においては認められない効果である。すなわち、Znめっき等の他めっき種においては、上記化合物と周期表5Aに属さない他の元素の化合物の効果の違いは認められない。  In order to improve the corrosion resistance of an Al—Zn alloy-plated steel sheet (particularly, a high Al—Zn alloy-plated steel sheet) targeted by the present invention, a Zn-plated steel sheet, a low Al—Zn-based alloy plated steel sheet (for example, 5 % Al—Zn alloy-plated steel sheet) and Al-based plated steel sheet, it is necessary to improve the corrosion resistance of both Al and Zn in the plating film. As a result of examining the anticorrosive effect of the inorganic compound, the elements belonging to the periodic table 5A (V, V, etc.) for Al—Zn alloy plating, particularly high Al—Zn alloy plating, to which the present invention is applied. It has been found that Nb, Ta) compounds have a significant anticorrosive effect. The remarkable anticorrosion effect by the compounds of these specific elements is peculiar to Al—Zn alloy plating (particularly, high Al—Zn alloy plating) targeted by the present invention. Is an unacceptable effect. That is, in other plating species such as Zn plating, there is no difference in the effect between the above compounds and compounds of other elements not belonging to the periodic table 5A.

以上の理由から、表面処理皮膜中には周期表5Aに属する元素の化合物を用いることが好ましいが、そのなかでもTa系化合物とNb系化合物は、V系化合物と較べて非常に高価であるため、V系化合物が実用性(防食効果及びコスト)の面から最も有望である。そこで、このバナジウム化合物に着目した検討を行った結果、バナジウム化合物の中でも、バナジウムの価数によって得られる耐食性に著しい違いがあることが判明した。具体的には、5価のバナジウム化合物(例えば、バナジン酸アンモン、バナジン酸ナトリウム等)では大きな耐食性向上効果は認められないのに対して、4価のバナジウム化合物(例えば、硫酸酸化バナジウム、水溶液中で5価のバナジウム化合物を還元したもの)では耐食性が顕著に向上することが判明した。また、4価のバナジウム化合物は、5価のバナジウム化合物に較べて溶解性が低く、このため耐水性に優れた皮膜を形成できる特徴を有している。このため、5価のバナジウム化合物を含む表面処理皮膜は水に濡れることによりVが溶解し、外観品質が著しく低下するが、4価のバナジウム化合物を含む表面処理皮膜は耐水性が向上し、外観品質の向上効果が認められる。以上の理由から本発明では、表面処理皮膜中に4価の価数を有するバナジウム化合物(A)を添加する。  For the above reasons, it is preferable to use a compound of an element belonging to the periodic table 5A in the surface treatment film, but among them, the Ta-based compound and the Nb-based compound are very expensive compared to the V-based compound. V-based compounds are most promising in terms of practicality (anticorrosive effect and cost). Thus, as a result of investigations focusing on this vanadium compound, it was found that among the vanadium compounds, there is a significant difference in the corrosion resistance obtained by the valence of vanadium. Specifically, pentavalent vanadium compounds (for example, ammonium vanadate, sodium vanadate, etc.) do not have a significant effect of improving corrosion resistance, whereas tetravalent vanadium compounds (for example, vanadium sulfate, in aqueous solution) It was found that the corrosion resistance of the pentavalent vanadium compound was significantly improved. Further, the tetravalent vanadium compound has a characteristic that it has a lower solubility than the pentavalent vanadium compound, and can form a film having excellent water resistance. For this reason, the surface-treated film containing the pentavalent vanadium compound dissolves V when wetted with water and the appearance quality is remarkably deteriorated. However, the surface-treated film containing the tetravalent vanadium compound has improved water resistance and appearance. A quality improvement effect is recognized. For the above reasons, in the present invention, the vanadium compound (A) having a tetravalent valence is added to the surface treatment film.

4価の価数を有するバナジウム化合物としては、バナジウムの酸化物、水酸化物、硫化物、硫酸物、炭酸物、ハロゲン化物、窒化物、フッ化物、炭化物、シアン化物(チオシアン化物)及びこれらの塩などが挙げられ、これらの1種又は2種以上を用いることができる。具体的には、硫酸酸化バナジウム水溶液中で5価のバナジウム化合物を還元したバナジン酸還元生成物等が挙げられる。  Examples of vanadium compounds having a tetravalent valence include vanadium oxide, hydroxide, sulfide, sulfate, carbonate, halide, nitride, fluoride, carbide, cyanide (thiocyanide), and these A salt etc. are mentioned, These 1 type (s) or 2 or more types can be used. Specific examples include vanadic acid reduction products obtained by reducing pentavalent vanadium compounds in a vanadium sulfate oxide aqueous solution.

表面処理皮膜中にリン酸又は/及びリン酸系化合物(B)を添加する理由は、リン酸又は/及びリン酸系化合物の添加により、4価のバナジウム化合物による防食効果をさらに飛躍的に高めることができるからである。
リン酸及びリン酸系化合物としては、例えば、オルトリン酸、ピロリン酸、ポリリン酸、メタリン酸などのほか、リン酸とMg、Zn、Ni、Co等の1種以上の金属との金属塩、その他のリン酸化合物(いずれも処理液中に溶解可能なもの)の1種又は2種以上を用いることができる。
The reason for adding phosphoric acid or / and a phosphoric acid compound (B) in the surface treatment film is that the anticorrosion effect of the tetravalent vanadium compound is further enhanced by adding phosphoric acid or / and the phosphoric acid compound. Because it can.
Examples of phosphoric acid and phosphoric acid compounds include orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid, etc., metal salts of phosphoric acid and one or more metals such as Mg, Zn, Ni, Co, etc. 1 type (s) or 2 or more types of these can be used.

4価のバナジウム化合物(A)とともにリン酸又は/及びリン酸系化合物(B)を添加することによって耐食性が飛躍的に向上する理由は必ずしも明らかではないが、リン酸又は/及びリン酸系化合物が4価のバナジウム化合物とめっき皮膜との反応性を高める作用をすること、4価のバナジウム化合物とリン酸又は/及びリン酸系化合物の複合皮膜が形成されること、等の理由が考えられる。また、4価のバナジウム化合物とリン酸又は/及びリン酸系化合物を複合添加した皮膜では、上記のような耐食性の向上効果が得られるだけでなく、皮膜の耐溶解性が向上する結果、皮膜の外観品質(着色防止)及び耐黒変性も向上し、さらにペフ密着性も向上する。  The reason why the corrosion resistance is drastically improved by adding phosphoric acid or / and the phosphoric acid compound (B) together with the tetravalent vanadium compound (A) is not necessarily clear, but phosphoric acid or / and phosphoric acid compound The reason for this is that it acts to increase the reactivity between the tetravalent vanadium compound and the plating film, and that a composite film of the tetravalent vanadium compound and phosphoric acid or / and a phosphoric acid compound is formed. . In addition, in a film in which a tetravalent vanadium compound and phosphoric acid or / and a phosphoric acid compound are added in combination, not only the above-described effect of improving the corrosion resistance is obtained, but also the dissolution resistance of the film is improved. Appearance quality (anti-coloring) and blackening resistance are improved, and Pef adhesion is also improved.

シラン化合物(C)の添加により、皮膜密着性、耐食性を高める効果がある。エポキシ基又は/及びアミノ基を有するシラン化合物のうち、エポキシ基を有するシラン化合物としては、例えば、3−グリシドキシプロピルトリメトキシキラン、3−グリシドキシプロピルトリエトキシキラン、3−グリシドキシプロピルトリメチルジエトキシキラン等が挙げられ、また、アミノ基を有するシラン化合物としては、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン等が挙げられ、これらの1種又は2種以上を用いることができる。このようなシラン化合物をアクリル系樹脂に重合することにより、アクリル系樹脂による防食効果が飛躍的に高められることが判った。これに対して、エポキシ基又はアミノ基を有しないシラン化合物、例えば、メタクリロキシ基やアクリロキシ基を有するシラン化合物をアクリル系樹脂に重合した場合には、逆に皮膜特性が低下する。したがって、エポキシ基又は/及びアミノ基を有するシラン化合物を配合することが必要である。  The addition of the silane compound (C) has an effect of improving film adhesion and corrosion resistance. Among the silane compounds having an epoxy group or / and an amino group, examples of the silane compound having an epoxy group include 3-glycidoxypropyltrimethoxyxylene, 3-glycidoxypropyltriethoxyxylane, and 3-glycidoxy. Examples of the silane compound having an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and the like. The above can be used. It has been found that by polymerizing such a silane compound into an acrylic resin, the anticorrosion effect of the acrylic resin can be dramatically improved. On the other hand, when a silane compound having no epoxy group or amino group, for example, a silane compound having a methacryloxy group or an acryloxy group is polymerized to an acrylic resin, the film characteristics are adversely affected. Therefore, it is necessary to blend a silane compound having an epoxy group or / and an amino group.

有機樹脂の添加理由は、主に加工性と耐食性の向上であり、皮膜中に有機樹脂を含むことによりロールフォーミング、あるいはプレス加工における金型との摺動傷の生成を防止することが可能となる。樹脂の種類は特に制約されるものではなく、エポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂、アクリル−エチレン共重合体、アクリル−スチレン共重合体、アルキド樹脂、ポリエステル樹脂、エチレン樹脂、フッ素樹脂等を用いることができるが、特に耐食性の観点からは、OH基、COOH基、エポキシ基、アミド基の1種以上を有する有機高分子樹脂を用いることが好ましい。これらの官能基を有する有機高分子樹脂としては、例えば、エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、アクリル系共重合体樹脂、エチレン−アクリル酸共重合体樹脂、アルキド樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアミン樹脂、ポリフェニレン樹脂類およびこれらの樹脂2種以上の混合物もしくは付加重合物等が挙げられる。
水分散系有機樹脂D
The reason for the addition of organic resin is mainly improvement of workability and corrosion resistance, and by including organic resin in the film, it is possible to prevent the formation of sliding scratches with the mold in roll forming or press working Become. The type of resin is not particularly limited, and epoxy resin, urethane resin, acrylic resin, acrylic-ethylene copolymer, acrylic-styrene copolymer, alkyd resin, polyester resin, ethylene resin, fluorine resin, etc. However, from the viewpoint of corrosion resistance, it is preferable to use an organic polymer resin having one or more of OH group, COOH group, epoxy group and amide group. Examples of organic polymer resins having these functional groups include epoxy resins, polyhydroxy polyether resins, acrylic copolymer resins, ethylene-acrylic acid copolymer resins, alkyd resins, polybutadiene resins, phenol resins, and polyurethanes. Examples thereof include resins, polyamine resins, polyphenylene resins, and mixtures or addition polymers of two or more of these resins.
Water-dispersed organic resin D

エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ノボラック等をグリシジルエーテル化したエポキシ樹脂、ビスフェノールAにプロピレンオキサイド、エチレンオキサイドまたはポリアルキレングリコールを付加し、グリシジルエーテル化したエポキシ樹脂、さらには脂肪族エポキシ樹脂、脂環族エポキシ樹脂、ポリエーテル系エポキシ樹脂等を用いることができる。これらエポキシ樹脂は、特に低温での硬化を必要とする場合には、数平均分子量1500以上のものが望ましい。なお、上記エポキシ樹脂は単独または異なる種類のものを混合して使用することもできる。また、変性エポキシ樹脂とすることも可能であり、上記エポキシ樹脂中のエポキシ基またはヒドロキシル基に各種変性剤を反応させた樹脂が挙げられる。例えば乾性油脂肪酸中のカルボキシル基を反応させたエポキシエステル樹脂、アクリル酸、メタクリル酸等で変性したエポキシアクリレート樹脂、イソシアネート化合物を反応させたウレタン変性エポキシ樹脂、エポキシ樹脂にイソシアネート化合物を反応させたウレタン変性エポキシ樹脂にアルカノールアミンを付加したアミン付加ウレタン変性エポキシ樹脂等を挙げることができる。  As epoxy resins, epoxy resins obtained by glycidyl etherification of bisphenol A, bisphenol F, novolak, etc., epoxy resins obtained by adding propylene oxide, ethylene oxide or polyalkylene glycol to bisphenol A, and aliphatic epoxy resins An alicyclic epoxy resin, a polyether epoxy resin, or the like can be used. These epoxy resins preferably have a number average molecular weight of 1500 or more, particularly when curing at low temperatures is required. In addition, the said epoxy resin can also be used individually or in mixture of a different kind. Moreover, it can also be set as a modified epoxy resin, and the resin which made various modifiers react with the epoxy group or hydroxyl group in the said epoxy resin is mentioned. For example, epoxy ester resin reacted with carboxyl group in drying oil fatty acid, epoxy acrylate resin modified with acrylic acid, methacrylic acid, etc., urethane modified epoxy resin reacted with isocyanate compound, urethane obtained by reacting epoxy compound with isocyanate compound An amine-added urethane-modified epoxy resin obtained by adding an alkanolamine to a modified epoxy resin can be used.

上記ポリヒドロキシポリエーテル樹脂は、単核型若しくは2核型の2価フェノールまたは単核型と2核型との混合2価フェノールを、アルカリ触媒の存在下にほぼ等モル量のエピハロヒドリンと重縮合させて得られる重合体である。単核型2価フェノールの代表例としてはレゾルシン、ハイドロキノン、カテコールが挙げられ、2核型フェノールの代表例としてはビスフェノールAが挙げられ、これらは1種または2種以上を混合して用いることができる。
ウレタン樹脂としては、例えば、油変性ポリウレタン樹脂、アルキド系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ポリウレタン樹脂等を挙げることができる。
アルキド樹脂としては、例えば、油変性アルキド樹脂、ロジン変性アルキド樹脂、フェノール変性アルキド樹脂、スチレン化アルキド樹脂、シリコン変性アルキド樹脂、アクリル変性アルキド樹脂、オイルフリーアルキド樹脂、高分子量オイルフリーアルキド樹脂等を挙げることができる。
The polyhydroxy polyether resin is a polycondensation of a mononuclear or binuclear dihydric phenol or a mixed dihydric phenol of mononuclear and binuclear with an approximately equimolar amount of epihalohydrin in the presence of an alkali catalyst. It is a polymer obtained by making it. Representative examples of mononuclear dihydric phenols include resorcin, hydroquinone, and catechol. Typical examples of dinuclear phenols include bisphenol A. These may be used alone or in combination of two or more. it can.
Examples of the urethane resin include an oil-modified polyurethane resin, an alkyd polyurethane resin, a polyester polyurethane resin, a polyether urethane resin, and a polycarbonate polyurethane resin.
Examples of alkyd resins include oil-modified alkyd resins, rosin-modified alkyd resins, phenol-modified alkyd resins, styrenated alkyd resins, silicon-modified alkyd resins, acrylic-modified alkyd resins, oil-free alkyd resins, and high molecular weight oil-free alkyd resins. Can be mentioned.

アクリル系樹脂としては、例えば、ポリアクリル酸およびその共重合体、ポリアクリル酸エステルおよびその共重合体、ポリメタクリル酸およびその共重合体、ポリメタクリル酸エステルおよびその共重合体、ウレタン−アクリル酸共重合体(またはウレタン変性アクリル樹脂)、スチレン−アクリル酸共重合体等が挙げられ、さらにこれらの樹脂を(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、グリシジルメタクリレート、アクリロニトリルと共重合させた樹脂、あるいは他のエポキシ樹脂、ウレタン樹脂等によって変性させた樹脂を用いてもよい。  Examples of the acrylic resin include polyacrylic acid and its copolymer, polyacrylic acid ester and its copolymer, polymethacrylic acid and its copolymer, polymethacrylic acid ester and its copolymer, urethane-acrylic acid Copolymers (or urethane-modified acrylic resins), styrene-acrylic acid copolymers, and the like. Further, these resins are used as (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid hydroxypropyl, acrylamide, N -A resin copolymerized with methylol acrylamide, diacetone acrylamide, glycidyl methacrylate, acrylonitrile, or a resin modified with another epoxy resin, urethane resin or the like may be used.

エチレン樹脂としては、例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、カルボキシル変性ポリオレフィン樹脂などのエチレン系共重合体、エチレン−不飽和カルボン酸共重合体、エチレン系アイオノマー等が挙げられ、さらに、これらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂等によって変性させた樹脂を用いてもよい。
フッ素樹脂としては、フルオロオレフィン系共重合体があり、これには例えば、モノマーとしてアルキルビニルエーテル、シンクロアルキルビニルエーテル、カルボン酸変性ビニルエステル、ヒドロキシアルキルアリルエーテル、テトラフルオロプロピルビニルエーテル等と、フッ素モノマー(フルオロオレフィン)とを共重合させた共重合体がある。これらフッ素樹脂を用いた場合には、優れた耐候性と優れた疎水性が期待できる。
Examples of ethylene resins include ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene copolymers such as carboxyl-modified polyolefin resins, ethylene-unsaturated carboxylic acid copolymers, ethylene ionomers, and the like. Furthermore, resins obtained by modifying these resins with other alkyd resins, epoxy resins, phenol resins, or the like may be used.
Examples of fluororesins include fluoroolefin copolymers, which include, for example, alkyl vinyl ether, synchroalkyl vinyl ether, carboxylic acid-modified vinyl ester, hydroxyalkyl allyl ether, tetrafluoropropyl vinyl ether, and the like as monomers. There is a copolymer obtained by copolymerizing an olefin). When these fluororesins are used, excellent weather resistance and excellent hydrophobicity can be expected.

また、樹脂の乾燥温度の低温化を狙いとして、樹脂粒子のコア部分とシェル部分とで異なる樹脂種類、または異なるガラス転移温度の樹脂からなるコア・シェル型水分散性樹脂を用いることも可能である。
上記の有機樹脂は1種または2種類以上を混合して用いることができる。
さらに、有機皮膜の耐食性や加工性の向上を狙いとして、特に熱硬化性樹脂を用いることが望ましいが、この場合、尿素樹脂(ブチル化尿素樹脂等)、メラミン樹脂(ブチル化メラミン樹脂)、ブチル化尿素・メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂、ブロックイソシアネート、オキサゾリン化合物、フェノール樹脂等の硬化剤を配合することができる。
本発明においては、特に樹脂組成を限定するものではなく、耐食性、加工性、断熱材等の貼り合わせ物との密着性等、あるいは皮膜コスト等の必要特性に合わせて選択することが可能であるが、これらの特性においてウレタン系樹脂、あるいはアクリル系樹脂、あるいはこれらを主成分とした変性物を適用することが好ましい。
For the purpose of lowering the drying temperature of the resin, it is also possible to use a core / shell type water-dispersible resin made of different resin types or resins having different glass transition temperatures in the core part and the shell part of the resin particles. is there.
Said organic resin can be used 1 type or in mixture of 2 or more types.
Furthermore, in order to improve the corrosion resistance and workability of the organic film, it is particularly desirable to use a thermosetting resin. In this case, urea resin (butylated urea resin, etc.), melamine resin (butylated melamine resin), butyl A curing agent such as an amino resin such as fluorinated urea / melamine resin or benzoguanamine resin, a blocked isocyanate, an oxazoline compound, or a phenol resin can be blended.
In the present invention, the resin composition is not particularly limited, and can be selected according to necessary properties such as corrosion resistance, workability, adhesion to a bonded material such as a heat insulating material, and film costs. However, in these characteristics, it is preferable to apply a urethane resin, an acrylic resin, or a modified product containing these as a main component.

表面処理皮膜は、上記(A)〜(D)の成分を主成分とするものであるが、それ以外に、耐食性のさらなる向上等を目的として適宜な添加成分を添加してもよい。例えば、コロイダルシリカ及びその派生化合物、リン酸塩系防錆剤及びその複合化化合物、Zn,Mg,Co,Ni,Fe,Sr,Y,Nb,Ta,Ca,Ba系の金属化合物等を添加することが可能である。また、Ta系化合物、Nb系化合物、4価のバナジウム化合物以外のバナジウム化合物を添加してもよい。  The surface-treated film is mainly composed of the above components (A) to (D), but other appropriate components may be added for the purpose of further improving the corrosion resistance. For example, colloidal silica and its derivatives, phosphate rust preventives and composite compounds thereof, Zn, Mg, Co, Ni, Fe, Sr, Y, Nb, Ta, Ca, Ba based metal compounds, etc. Is possible. Moreover, you may add vanadium compounds other than Ta type compound, Nb type compound, and a tetravalent vanadium compound.

次に、表面処理皮膜の付着量について述べると、まず、表面処理皮膜中の有機樹脂(C)の付着量は0.5〜5g/mとする。有機樹脂の付着量が0.5g/m未満では耐食性、加工性が著しく低下する。一方、有機樹脂を5g/mを超えて付着させると、ロールフォーミングやプレス加工の際のロールや金型に皮膜が付着しやすくなる。また、以上の観点から有機樹脂(C)の付着量のより好ましい範囲は1.0〜4.5g/m、さらに望ましくは1.5〜4.0g/mである。
また、バナジウム化合物(A)の付着量は、金属V換算で1〜100mg/mとする。バナジウム化合物の付着量が1mg/m未満では耐食性向上効果が認められず、一方、100mg/mを超えて付着させても耐食性向上効果が飽和し、逆に、皮膜の耐水性、加工性が低下する傾向が認められる。また、以上の観点からバナジウム化合物(A)の金属V換算での付着量のより好ましい範囲は3〜50mg/m、さらに望ましくは5〜40mg/mである。
Next, the adhesion amount of the surface treatment film will be described. First, the adhesion amount of the organic resin (C) in the surface treatment film is set to 0.5 to 5 g / m 2 . When the adhesion amount of the organic resin is less than 0.5 g / m 2 , the corrosion resistance and workability are remarkably lowered. On the other hand, when organic resin is made to adhere exceeding 5 g / m < 2 >, a film | membrane will adhere easily to the roll and metal mold | die in the case of roll forming or press work. Moreover, the more preferable range of the adhesion amount of organic resin (C) from the above viewpoint is 1.0-4.5 g / m < 2 >, More desirably, it is 1.5-4.0 g / m < 2 >.
Moreover, the adhesion amount of a vanadium compound (A) shall be 1-100 mg / m < 2 > in conversion of the metal V. FIG. If the amount of vanadium compound deposited is less than 1 mg / m 2 , the effect of improving corrosion resistance is not recognized. On the other hand, even if the amount exceeds 100 mg / m 2 , the effect of improving corrosion resistance is saturated. There is a tendency to decrease. Moreover, the more preferable range of the adhesion amount in conversion of the metal V of a vanadium compound (A) from the above viewpoint is 3-50 mg / m < 2 >, More desirably, it is 5-40 mg / m < 2 >.

また、リン酸又は/及びリン酸系化合物(B)の付着量は、PO換算で5〜200mg/mとすることが好ましい。付着量が5mg/m未満では耐食性やペフ密着性の向上効果が十分ではなく、一方、過剰に添加すると皮膜の耐水性が低下し、水との接触により皮膜が白化する傾向がある。但し、この白化に関しては樹脂の物性によっても大きく影響されるため、これらの観点から添加量を選択することができる。
さらに、Zn、Ni、Mg等のリン酸塩を用いる場合は、処理液に溶解することが必要であり、また、過剰に多いと処理液安定性が低下するため、適正範囲に収めることが必要である。
Further, adhesion of the phosphoric acid or / and phosphoric acid compound (B) is preferably set to 5 to 200 mg / m 2 at PO 4 terms. If the adhesion amount is less than 5 mg / m 2 , the effect of improving the corrosion resistance and Pef adhesion is not sufficient, while if added excessively, the water resistance of the film is lowered and the film tends to be whitened by contact with water. However, since this whitening is greatly influenced by the physical properties of the resin, the addition amount can be selected from these viewpoints.
Furthermore, when using phosphates such as Zn, Ni, Mg, etc., it is necessary to dissolve in the treatment liquid, and if it is excessively large, the stability of the treatment liquid will be lowered, so it is necessary to keep it within an appropriate range. It is.

次に、本発明の表面処理材の製造方法について説明する。
本発明の第1の製造方法では、上述したようなAl−Zn系合金めっき鋼板のめっき皮膜表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、エポキシ基又は/及びアミノ基を有するシラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)とを主成分とする処理液(上記成分(A)〜(D)を水に溶解又は/及び分散させた処理液)を塗布した後、水洗することなく乾燥する。
また、本発明の第2の製造方法では、上述したようなAl−Zn系合金めっき鋼板のめっき皮膜表面に、まず、4価の価数を有するバナジウム化合物(A)とリン酸又は/及びリン酸系化合物(B)とを主成分とする処理液(イ)(上記成分(A)及び(B)を水に溶解又は/及び分散させた処理液)を塗布した後、水洗することなく乾燥し、さらにその上部に、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)を主成分する処理液(ロ)(有機樹脂(D)を水に溶解又は/及び分散させた処理液)を塗布した後、水洗することなく乾燥する。その際、処理液(イ)又は/及び(ロ)にシラン化合物(C)を配合する。
Next, the manufacturing method of the surface treatment material of this invention is demonstrated.
In the first production method of the present invention, a vanadium compound (A) having a tetravalent valence and phosphoric acid or / and a phosphoric acid-based compound on the surface of the plating film of the Al-Zn alloy-plated steel sheet as described above. (B), a silane compound (C) having an epoxy group or / and an amino group, and a treatment liquid mainly composed of a water-soluble organic resin or / and an organic resin (D) made of a water-dispersible organic resin (above-mentioned) After applying the component (A) to (D), a treatment solution in which water is dissolved or / and dispersed), it is dried without being washed with water.
In the second production method of the present invention, the vanadium compound (A) having a tetravalent valence and phosphoric acid or / and phosphorus are first formed on the surface of the plating film of the Al—Zn alloy-plated steel sheet as described above. After applying the treatment liquid (a) containing the acid compound (B) as a main component (treatment liquid in which the above components (A) and (B) are dissolved or / and dispersed) in water, drying is performed without washing. Further, a treatment liquid (b) containing an organic resin (D) composed of a water-soluble organic resin and / or a water-dispersible organic resin as a main component (the organic resin (D) is dissolved or / and dispersed in water) And then dried without washing with water. In that case, a silane compound (C) is mix | blended with processing liquid (I) or / and (B).

この2つの製造方法のうち、耐食性の観点からは第2の製造方法の方が優れる傾向を示すが、設備的負荷の観点では第1の製造方法が有利である。但し、いずれにおいても必要レベルの品質が得られる。
また、上記第2の製造方法においては、有機樹脂(D)を主成分とする処理液中に、バナジウム化合物(A)とリン酸又は/及びリン酸系化合物(B)のうちの1種以上を添加することも可能である。
処理液は、水に対して各成分(A)〜(D)を添加することにより調整される。各成分(A)〜(D)の種類、各成分を添加する際の化合物の形態や添加方法は先に述べたとおりである。また、処理液には、上記成分(A)〜(D)以外に、必要に応じて先に述べた添加成分を添加することができる。
Of these two manufacturing methods, the second manufacturing method tends to be superior from the viewpoint of corrosion resistance, but the first manufacturing method is advantageous from the viewpoint of equipment load. However, in either case, the required level of quality can be obtained.
Moreover, in the said 2nd manufacturing method, 1 or more types of a vanadium compound (A) and phosphoric acid or / and a phosphoric acid type compound (B) in the process liquid which has organic resin (D) as a main component. It is also possible to add.
A processing liquid is adjusted by adding each component (A)-(D) with respect to water. The kind of each component (A)-(D), the form of the compound when adding each component, and the addition method are as described above. Moreover, in addition to the said components (A)-(D), the additive component described previously can be added to a process liquid as needed.

処理液の塗布方法は、例えば、スプレー+ロール絞り、ロールコーターなど任意であり、また、塗布後の乾燥方式についても、例えば、熱風方式、誘導加熱方式、電気炉方式など任意である。
処理液の乾燥温度は60〜250℃程度とすることが好ましい。乾燥温度が60℃未満では、皮膜形成が不十分となり耐食性等に劣る皮膜となる。一方、250℃を超える板温で乾燥させても耐食性等の品質を高める効果が得られず、逆に低下する場合がある。これは、特に有機樹脂の耐熱限界を超えているために皮膜が熱により損傷されるためであると考えられる。
The application method of the treatment liquid is arbitrary, for example, spray + roll squeezing, roll coater, and the drying method after application is arbitrary, for example, a hot air method, an induction heating method, an electric furnace method, and the like.
The drying temperature of the treatment liquid is preferably about 60 to 250 ° C. When the drying temperature is less than 60 ° C., the film formation is insufficient and the film is inferior in corrosion resistance and the like. On the other hand, even if it is dried at a plate temperature exceeding 250 ° C., the effect of improving the quality such as corrosion resistance cannot be obtained, and it may be lowered. This is presumably because the film is damaged by heat because the heat resistance limit of the organic resin is exceeded.

[実施例1]
表1及び表2に示す金属化合物及び有機樹脂とリン酸(オルトリン酸)が添加された処理液を55%Al−Zn系合金めっき鋼板と電気亜鉛めっき鋼板に塗布し、板温120℃で乾燥したものを供試材とした。処理液中のシラン化合物としては、3−グリシドキシプロピルトリメトキシシランを用いた。
[Example 1]
The treatment liquid to which the metal compound and organic resin and phosphoric acid (orthophosphoric acid) shown in Tables 1 and 2 are added is applied to 55% Al—Zn alloy-plated steel sheet and electrogalvanized steel sheet, and dried at a plate temperature of 120 ° C. This was used as a test material. As the silane compound in the treatment liquid, 3-glycidoxypropyltrimethoxysilane was used.

Figure 0004291204
Figure 0004291204

Figure 0004291204
Figure 0004291204

得られた供試材について、以下の試験条件で耐食性、耐水性及び加工性を評価した(但し、電気亜鉛めっき鋼板の供試材は耐食性のみ)。
(1)耐食性
塩水噴霧試験(SST:JIS Z 2371)を、高Al−Zn系合金めっき鋼板の供試材では240時間、電気亜鉛めっき鋼板の供試材では48時間で各々実施し、白錆の発生状況を下記基準にて評価した。
○:白錆(黒錆)発生面積率10%未満
△:白錆(黒錆)発生面積率10%以上、50%未満
×:白錆(黒錆)発生面積率50%以上
About the obtained test material, corrosion resistance, water resistance, and workability were evaluated on the following test conditions (however, the test material of an electrogalvanized steel sheet is only corrosion resistance).
(1) Corrosion resistance The salt spray test (SST: JIS Z 2371) was conducted for 240 hours for the high Al-Zn alloy-plated steel sheet and 48 hours for the electro-galvanized steel sheet, respectively. The occurrence status of the was evaluated according to the following criteria.
○: White rust (black rust) generation area rate of less than 10% △: White rust (black rust) generation area rate of 10% or more, less than 50% ×: White rust (black rust) generation area rate of 50% or more

(2)耐水性
上記耐食性試験で“○”又は“△”の評価を示した高Al−Zn系合金めっき鋼板の供試材についてのみ、耐水性の評価試験を行った。
耐水性は処理面同士を合わせてスタックした状態で、50℃、>98%RHの環境下に1週間放置した後の外観を下記基準により目視で評価した。
○:異常なし
△:薄い着色あり
×:著しい着色、黒変、あるいは皮膜剥離あり
(2) Water resistance The water resistance evaluation test was performed only on the specimens of the high Al—Zn alloy-plated steel sheets that showed “◯” or “Δ” in the corrosion resistance test.
The water resistance was evaluated by visual observation according to the following criteria after standing for 1 week in an environment of 50 ° C. and> 98% RH with the treated surfaces stacked together.
○: No abnormality △: Light coloration ×: Significant coloration, blackening, or film peeling

(3)加工性
上記耐食性試験で“○”及び“△”の評価を示した高Al−Zn系合金めっき鋼板の供試材についてのみ、加工性の評価試験を行った。
ドロービード試験機を用い、先端5mmRのビードを幅30mmの供試材表面に150kgfの荷重で押し付けて引抜き試験を行い、目視により下記基準にて評価した。
○:異常なし
△:供試材表面が黒化するか、若しくは供試材の外観は良好であるがビードに著しい付着物あり
×:明らかに皮膜が剥離
(3) Workability The workability evaluation test was performed only on the specimens of the high Al—Zn alloy-plated steel sheets that were evaluated as “◯” and “Δ” in the corrosion resistance test.
Using a draw bead tester, a bead with a tip of 5 mmR was pressed against the surface of the test material with a width of 30 mm with a load of 150 kgf, and a pull-out test was performed.
○: No abnormality △: The surface of the test material is blackened, or the appearance of the test material is good, but there is a significant deposit on the bead.

各供試材の皮膜構成を表1及び表2に、上記試験の結果を表3及び表4に示す。
No.1〜No.16は表面処理皮膜中に添加した金属化合物による防食効果を比較したものであり、高Al−Zn系合金めっき鋼板の表面処理皮膜中に4価のバナジウム化合物を添加したNo.7(発明例)のみが優れた耐食性を示している。また、このような4価のバナジウム化合物による効果は、亜鉛めっき鋼板では得られておらず、高Al−Zn系合金めっき鋼板に特有の効果であることが判る。
Tables 1 and 2 show the coating composition of each test material, and Tables 3 and 4 show the results of the above tests.
No. 1-No. No. 16 is a comparison of the anticorrosive effect of the metal compound added to the surface treatment film. No. 16 in which a tetravalent vanadium compound was added to the surface treatment film of the high Al—Zn alloy-plated steel sheet. Only 7 (invention example) shows excellent corrosion resistance. Moreover, it turns out that the effect by such a tetravalent vanadium compound is an effect peculiar to a high Al-Zn type alloy plating steel plate, and is not acquired with a galvanization steel plate.

No.17〜No.19は皮膜付着量の影響を調べたものであり、皮膜付着量が本発明範囲未満であるNo.17(比較例)は耐食性が劣り、一方、皮膜付着量が本発明範囲を超えるNo.19(比較例)は耐水性、加工性が劣っている。No.20、No.21は、有機樹脂の種類を変えたものであり、アクリル系、ウレタン系の樹脂においても優れた特性を示している。
No.22(発明例)は、上記No.1〜No.21とは製造条件が異なり、4価のバナジウム化合物とリン酸を含む処理液を塗布・乾燥した後、有機樹脂を含む処理液を塗布・乾燥することにより表面処理皮膜を形成したものであり、No.7(発明例)と同様の優れた特性が得られている。
No. 17-No. No. 19 is an investigation of the effect of the coating amount. No. 19 having a coating amount less than the range of the present invention. No. 17 (Comparative Example) is inferior in corrosion resistance, while No. 17 in which the coating amount exceeds the range of the present invention. 19 (Comparative Example) is inferior in water resistance and workability. No. 20, no. No. 21 is obtained by changing the type of organic resin, and shows excellent characteristics even in acrylic and urethane resins.
No. No. 22 (invention example) 1-No. No. 21 is different in production conditions, and after applying and drying a treatment liquid containing a tetravalent vanadium compound and phosphoric acid, a surface treatment film is formed by applying and drying a treatment liquid containing an organic resin. No. Excellent characteristics similar to those of No. 7 (Invention Example) are obtained.

Figure 0004291204
Figure 0004291204

Figure 0004291204
Figure 0004291204

[実施例2]
表5に示す金属化合物とリン酸又はリン酸系化合物、実施例1の有機樹脂(a)が添加された処理液を55%Al−Zn系合金めっき鋼板に塗布し、板温120℃で乾燥したものを供試材とした。各供試材の耐食性、ペフ密着性、加工性について、実施例1と同じ方法及び基準で評価した。
各供試材の皮膜構成を表5に、上記試験の結果を表6に示す。
No.1(比較例)は表面処理皮膜中にリン酸が添加されていない例であり、耐食性と耐水性が劣っている。
No.2〜No.5(いずれも発明例)は表面処理皮膜中に添加するリン酸又はリン酸系化合物の種類の影響を調べたものであり、オルトリン酸、リン酸Mg、リン酸Znのいずれについても優れた特性が得られている。
No.6(発明例)は4価のバナジウム化合物として、5価のバナジウム化合物の還元生成物を用いた例であり、No.2〜No.5で用いた硫酸酸化バナジウムと同様の優れた特性が得られている。
[Example 2]
The treatment liquid to which the metal compound and phosphoric acid or phosphoric acid compound shown in Table 5 and the organic resin (a) of Example 1 were added was applied to a 55% Al—Zn alloy-plated steel sheet and dried at a plate temperature of 120 ° C. This was used as a test material. The corrosion resistance, pef adhesion, and workability of each test material were evaluated by the same method and standard as in Example 1.
Table 5 shows the coating composition of each test material, and Table 6 shows the results of the above test.
No. No. 1 (Comparative Example) is an example in which phosphoric acid is not added to the surface treatment film, and the corrosion resistance and water resistance are inferior.
No. 2-No. No. 5 (all invention examples) investigated the effect of the type of phosphoric acid or phosphoric acid compound added to the surface treatment film, and was excellent in all of orthophosphoric acid, phosphoric acid Mg and Zn phosphate. Is obtained.
No. No. 6 (invention example) is an example using a reduction product of a pentavalent vanadium compound as a tetravalent vanadium compound. 2-No. The same excellent characteristics as the vanadium sulfate oxide used in No. 5 were obtained.

Figure 0004291204
Figure 0004291204

Figure 0004291204
Figure 0004291204

[実施例3]
表7に示す金属化合物及び有機樹脂とリン酸(オルトリン酸)が添加された処理液を55%Al−Zn系合金めっき鋼板に塗布し、板温120℃で乾燥したものを供試材とした。これらサンプルの耐食性、耐水性、加工性について実施例1と同基準で評価した。
なお、シラン化合物(i)としては下記A〜Fの中から選ばれる1種を用いた。
A:3−メタクリロキシプロピルトリメトキシシラン
B:3−アクリロキシプロピルトリメトキシシラン
C:3−グリシドキシプロピルトリメトキシシラン
D:3−グリシドキシプロピルトリエトキシシラン
E:3−アミノプロピルトリメトキシシラン
F:3−アミノプロピルトリエトキシシラン
[Example 3]
A test liquid was prepared by applying a treatment liquid to which a metal compound and an organic resin and phosphoric acid (orthophosphoric acid) shown in Table 7 were added to a 55% Al—Zn alloy-plated steel sheet and drying at a plate temperature of 120 ° C. . The corrosion resistance, water resistance, and processability of these samples were evaluated according to the same standards as in Example 1.
In addition, 1 type chosen from the following AF was used as a silane compound (i).
A: 3-methacryloxypropyltrimethoxysilane B: 3-acryloxypropyltrimethoxysilane C: 3-glycidoxypropyltrimethoxysilane D: 3-glycidoxypropyltriethoxysilane E: 3-aminopropyltrimethoxy Silane F: 3-Aminopropyltriethoxysilane

No.1はシラン化合物の添加を行わない例であり、その結果、耐食性、耐水性、加工性に劣る皮膜になっている。No.2〜7は、エポキシ基あるいはアミノ基を含まないシラン化合物を適用した例であるが、添加により耐食性の低下が認められる。No.8〜10は、エポキシ基を含むシラン化合物、No.11〜17はアミノ基を含むシラン化合物を適用した例であるが、添加量により効果に差があるもののいずれも効果が認められ、また、適正量の添加により著しい効果が認められる。  No. No. 1 is an example in which no silane compound is added, and as a result, the film is inferior in corrosion resistance, water resistance and workability. No. Nos. 2 to 7 are examples in which a silane compound containing no epoxy group or amino group is applied, but a decrease in corrosion resistance is observed by addition. No. Nos. 8 to 10 are silane compounds containing an epoxy group; Although 11 to 17 are examples in which a silane compound containing an amino group is applied, the effect is recognized although there is a difference in effect depending on the addition amount, and a remarkable effect is recognized when an appropriate amount is added.

Figure 0004291204
Figure 0004291204

Figure 0004291204
Figure 0004291204

Claims (3)

Alを25〜75質量%含有するAl−Zn系合金めっき皮膜を有するAl−Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、エポキシ基又は/及びアミノ基を有するシラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)とを主成分とし、前記バナジウム化合物(A)が硫酸酸化バナジウム又はバナジン酸還元生成物からなり、前記バナジウム化合物(A)の金属V換算での付着量が1〜100mg/m、前記有機樹脂(D)の付着量が0.5〜5g/mである表面処理皮膜を有することを特徴とする耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板。 A vanadium compound (A) having a tetravalent valence and phosphoric acid or / on the surface of the plated film of an Al-Zn based alloy plated steel sheet having an Al-Zn based alloy plated film containing 25 to 75% by mass of Al. And a phosphoric acid compound (B), a silane compound (C) having an epoxy group or / and an amino group, and an organic resin (D) composed of a water-soluble organic resin and / or a water-dispersible organic resin. The vanadium compound (A) comprises a vanadium sulfate oxide or vanadate reduction product, and the amount of the vanadium compound (A) deposited in terms of metal V is 1 to 100 mg / m 2 , and the organic resin (D) is deposited. A chromate-free surface-treated Al—Zn alloy-plated steel sheet excellent in corrosion resistance, characterized by having a surface-treated film having an amount of 0.5 to 5 g / m 2 . Alを25〜75質量%含有するAl−Zn系合金めっき皮膜を有するAl−Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有するバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、エポキシ基又は/及びアミノ基を有するシラン化合物(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)とを主成分とし、前記バナジウム化合物(A)が硫酸酸化バナジウム又はバナジン酸還元生成物からなる処理液を塗布した後、水洗することなく乾燥することを特徴とする、耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板の製造方法。 A vanadium compound (A) having a tetravalent valence and phosphoric acid or / on the surface of the plated film of an Al-Zn based alloy plated steel sheet having an Al-Zn based alloy plated film containing 25 to 75% by mass of Al. and phosphoric acid-based compound (B), and silane compound having an epoxy group and / or amino group (C), and a main component and an organic resin (D) comprising a water-soluble organic resin and / or water-dispersible organic resin Chromate-free surface-treated Al-Zn system with excellent corrosion resistance, characterized in that the vanadium compound (A) is coated with a treatment solution comprising a vanadium sulfate oxide or vanadate reduction product and then dried without washing. Manufacturing method of alloy-plated steel sheet. Alを25〜75質量%含有するAl−Zn系合金めっき皮膜を有するAl−Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有するバナジウム化合物(A)とリン酸又は/及びリン酸系化合物(B)とを主成分とし、前記バナジウム化合物(A)が硫酸酸化バナジウム又はバナジン酸還元生成物からなる処理液(イ)を塗布した後、水洗することなく乾燥し、さらにその上部に、水溶性有機樹脂又は/及び水分散性有機樹脂からなる有機樹脂(D)を主成分とする処理液(ロ)を塗布した後、水洗することなく乾燥し、前記処理液(イ)又は/及び処理液(ロ)に、エポキシ基又は/及びアミノ基を有するシラン化合物(C)が含まれていることを特徴とする、耐食性に優れたクロメートフリー表面処理Al−Zn系合金めっき鋼板の製造方法。 A vanadium compound (A) having a valence of 4 and phosphoric acid or / and on the surface of the plating film of an Al-Zn alloy-plated steel sheet having an Al-Zn-based alloy plating film containing 25 to 75 mass% of Al. After applying the treatment liquid ( ii) comprising the phosphoric acid compound (B) as a main component and the vanadium compound (A) comprising a vanadium sulfate oxide or a vanadic acid reduction product, drying without washing with water, After applying a treatment liquid (b) mainly composed of an organic resin (D) composed of a water-soluble organic resin and / or a water-dispersible organic resin on the top, the treatment liquid (ii) is dried without washing with water. Or / and the treatment liquid (b) contains a silane compound (C) having an epoxy group or / and an amino group, and is a chromate-free surface-treated Al—Zn alloy alloy having excellent corrosion resistance. Method of manufacturing a steel plate.
JP2004132157A 2004-03-31 2004-03-31 Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same Expired - Lifetime JP4291204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132157A JP4291204B2 (en) 2004-03-31 2004-03-31 Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132157A JP4291204B2 (en) 2004-03-31 2004-03-31 Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005290535A JP2005290535A (en) 2005-10-20
JP4291204B2 true JP4291204B2 (en) 2009-07-08

Family

ID=35323797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132157A Expired - Lifetime JP4291204B2 (en) 2004-03-31 2004-03-31 Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4291204B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844128B2 (en) * 2006-01-14 2011-12-28 Jfeスチール株式会社 High corrosion resistance surface-treated steel sheet and manufacturing method thereof
JP4323530B2 (en) * 2007-03-12 2009-09-02 関西ペイント株式会社 Coating composition with excellent corrosion resistance
JP5595305B2 (en) * 2011-02-25 2014-09-24 日新製鋼株式会社 Welded steel pipe
WO2017163299A1 (en) 2016-03-22 2017-09-28 新日鐵住金株式会社 Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate

Also Published As

Publication number Publication date
JP2005290535A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
CN109804102B (en) Surface treatment solution composition, galvanized steel sheet surface-treated with the composition, and method for producing the same
JP5144660B2 (en) Aqueous surface treatment solution for galvanized steel sheet and galvanized steel sheet
US7842400B2 (en) Surface-treated steel sheet and method for manufacturing the same
JP7447245B2 (en) A surface treatment composition for a ternary hot-dip zinc alloy coated steel sheet that imparts excellent blackening resistance and alkali resistance, a ternary hot-dip zinc alloy coated steel sheet surface-treated using the composition, and a method for producing the same.
KR100456403B1 (en) Surface treated steel plate and method for production thereof
JP3903740B2 (en) Organic coated steel plate with excellent corrosion resistance
JP2005048199A (en) Surface-treated steel plate of excellent corrosion resistance, conductivity and film appearance
JP2005048200A (en) Surface-treated steel plate of excellent corrosion resistance and film appearance
JP4291204B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
CN107250434B (en) Metal surface treating agent for zinc-plated steel material or zinc-based alloy-plated steel material, coating method, and coated steel material
JP2007321223A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn-BASED ALLOY-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND ITS PRODUCTION METHOD
JP4517737B2 (en) Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP4455223B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance, workability and appearance quality and method for producing the same
JP4298575B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
JP2007204769A (en) Surface treated steel sheet having excellent corrosion resistance, flawing resistance, discoloration resistance and water resistance and its production method
JP2007321224A (en) CHROMATE-FREE SURFACE-TREATED Al-Zn-BASED ALLOY-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND ITS PRODUCTION METHOD
JP4419533B2 (en) Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance
JP4298567B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
JP4298563B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
JP3412541B2 (en) Organic coated steel sheet with excellent corrosion resistance
JP4500132B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance, workability and appearance quality and method for producing the same
JP3845441B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP3892642B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP2007320269A (en) Chromate-free al-zn alloy plated steel plate excellent in corrosion resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4291204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term