WO2017163299A1 - Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate - Google Patents

Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate Download PDF

Info

Publication number
WO2017163299A1
WO2017163299A1 PCT/JP2016/058905 JP2016058905W WO2017163299A1 WO 2017163299 A1 WO2017163299 A1 WO 2017163299A1 JP 2016058905 W JP2016058905 W JP 2016058905W WO 2017163299 A1 WO2017163299 A1 WO 2017163299A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
layer
steel plate
metal
amount
Prior art date
Application number
PCT/JP2016/058905
Other languages
French (fr)
Japanese (ja)
Inventor
賢明 谷
平野 茂
光 立木
偉男 柳原
誠 河端
横矢 博一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP16895337.0A priority Critical patent/EP3434811A4/en
Priority to US16/086,152 priority patent/US20200123661A1/en
Priority to PCT/JP2016/058905 priority patent/WO2017163299A1/en
Priority to CN201680083793.5A priority patent/CN108779561A/en
Priority to JP2018506647A priority patent/JP6583539B2/en
Priority to KR1020187026675A priority patent/KR20180113583A/en
Publication of WO2017163299A1 publication Critical patent/WO2017163299A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations

Definitions

  • the present invention relates to a chemical conversion treated steel sheet and a method for producing a chemical conversion treated steel sheet.
  • ⁇ Corrosion may occur due to continuous use of metal.
  • various techniques have been proposed to prevent corrosion generated in metal. Proposed techniques include a technique for plating a metal plate and a technique for performing various surface treatments on the surface of the metal plate or plating.
  • Patent Document 1 At least one of a vanadium compound, phosphoric acid and a phosphoric acid compound, or at least one of an epoxy group and an amino group is formed on the surface of an Al—Zn alloy-plated steel sheet used for building materials and home appliances.
  • a technique for forming an organic resin film containing as a main component an organic resin composed of at least one of a silane compound and a water-soluble organic resin and a water-dispersible organic resin is disclosed.
  • Ni-plated steel sheets, Sn-plated steel sheets, Sn-based alloy-plated steel sheets, and the like are used for manufacturing metal containers for the purpose of preserving beverages and foods.
  • the Al—Zn alloy-plated steel sheet disclosed in the following Patent Document 1 is a so-called sacrificial anti-corrosion plated steel sheet, whereas the Ni-plated steel sheet, Sn-plated steel sheet or Sn-based alloy plated steel sheet is a so-called barrier type. This is a plated steel sheet.
  • container steel sheets Sn-plated steel sheets or Sn-based alloy-plated steel sheets as steel sheets for metal containers (hereinafter referred to as container steel sheets) for the purpose of preserving beverages and foods, the adhesion between the steel sheet and the coating or film And in order to ensure corrosion resistance, the surface of a plated steel plate is often subjected to chemical conversion treatment with hexavalent chromium. Chemical conversion treatment using a solution containing hexavalent chromium is called chromate treatment.
  • Patent Document 2 discloses a steel plate for containers having a chemical conversion coating containing Zr, phosphoric acid, a phenol resin, and the like.
  • meat, vegetables, etc. are contained as a foodstuff preserve
  • Meat and vegetables contain various proteins, but these proteins may contain amino acids containing S (sulfur-containing amino acids represented by L-cysteine, L-methionine, L-(-)-cystine). .
  • S sulfur-containing amino acids represented by L-cysteine, L-methionine, L-(-)-cystine.
  • Patent Document 3 includes at least one reaction promoting component selected from the group consisting of Al ions, borate ions, Cu ions, Ca ions, metal Al, and metal Cu, Zr ions, and F ions.
  • a method for producing a steel plate for containers is disclosed in which a steel plate is immersed or electrolytically treated in a solution to form a Zr-containing film on the surface of the steel plate.
  • the film formed by the chromate treatment (hereinafter referred to as the chromate film) is dense even if the amount of coating is small, so the steel plate for containers with a chromate film formed on the surface has excellent corrosion resistance and resistance to sulfur blackening. Have. However, as described above, since hexavalent chromium is harmful to the environment, it is preferable that the steel plate for containers does not contain hexavalent chromium as much as possible. On the other hand, since the organic resin film described in Patent Document 1 and the chemical conversion film described in Patent Document 2 do not contain hexavalent chromium, they are environmentally suitable.
  • the present invention has been made in view of the above circumstances, and even when the amount of the chemical conversion coating layer is small, the chemical conversion processed steel sheet and the chemical conversion processed steel sheet have excellent corrosion resistance and sulfur blackening resistance.
  • An object is to provide a manufacturing method.
  • the present invention adopts the following means in order to solve the above problems and achieve the object.
  • a chemical conversion treated steel sheet is formed on a steel sheet, an Fe—Sn alloy layer formed on at least one surface of the steel sheet, and the Fe—Sn alloy layer.
  • a chemical conversion coating layer comprising: 2 Zr compound; a phosphoric acid compound having a P content of 1.0 to 100 mg / m 2 ; and an Al compound having a metal Al content of 0.10 to 30.0 mg / m 2 ; .
  • the chemical conversion coated film layer may contain 0.10 to 30.0 mg / m 2 of Al 2 O 3 in terms of metal Al content.
  • the chemical conversion coating layer has a metal Zr content of 1.0 to 120 mg / m 2 of the Zr compound and a P content of 2.0. It said phosphoric acid compound of ⁇ 70.0 mg / m 2, and the Al compound in 0.20 ⁇ 20.0mg / m 2 of metal Al content may contain.
  • the total Sn content of the Fe—Sn alloy layer and the Sn layer is 0 in terms of metal Sn amount. It may be 30 to 20.0 g / m 2 .
  • the surface of the chemical conversion treated film layer may not be coated with a film or paint.
  • plating is performed by forming a Sn plating layer containing Sn in an amount of 0.10 to 30.0 g / m 2 on the surface of the steel sheet.
  • the chemical conversion treatment solution includes a total of 200 to 17000 ppm of Zr ions, 200 to 17000 ppm of F ions, and 100 to 2000 ppm of phosphate ions. May contain 1000 to 23000 ppm of nitrate ions and sulfate ions, and 500 to 3000 ppm of Al ions.
  • 1 is a schematic view showing a chemical conversion treated steel sheet in which a Fe—Sn alloy layer, a Sn layer and a chemical conversion film layer are formed on one surface of a steel sheet.
  • 1 is a schematic view showing a chemical conversion treated steel sheet in which a Fe—Sn alloy layer, a Sn layer and a chemical conversion film layer are formed on both surfaces of a steel sheet. It is the flowchart which showed an example of the flow of the manufacturing method of a chemical conversion treatment steel plate.
  • 3 is a graph showing the results of Example 1.
  • FIGS. 1A and 1B are explanatory views schematically showing a layer structure of a chemical conversion treated steel sheet according to the present embodiment.
  • the chemical conversion treated steel sheet 10 includes a steel sheet 103, a Fe—Sn alloy layer 105a, a Sn layer 105b, and a chemical conversion film layer 107 as shown in FIGS. 1A and 1B.
  • the steel plate 103 is used as a base material of the chemical conversion treated steel plate 10 according to the present embodiment. It does not specifically limit about the steel plate 103 used by this embodiment, It is possible to use the well-known steel plate 103 used as a steel plate for containers.
  • the manufacturing method and material of the steel plate 103 are not particularly limited, and the steel plate 103 is manufactured from a normal steel slab manufacturing process through known processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling. Can be used.
  • the thickness of the steel plate 103 is preferably 0.05 to 1 mm in view of practicality and economy when used as a steel plate for containers.
  • Fe-Sn alloy layer 105a and Sn layer 105b On the surface of the steel plate 103, an Fe—Sn alloy layer 105a and an Sn layer 105b containing Sn are formed.
  • the Fe—Sn alloy layer 105a and the Sn layer 105b are barrier-type plating layers.
  • the barrier-type plating layer is formed by forming Sn metal film on the surface of the steel plate 103 using Sn that is electrochemically noble than Fe constituting the base material steel plate 103. It is a plating layer that prevents corrosion of the steel sheet 103 by preventing the corrosion factor from acting on the base material.
  • the sacrificial anticorrosion type plating layer has a function opposite to that of the barrier type plating layer.
  • a metal film is formed on the surface of the steel plate 103 using a metal that is electrochemically lower than Fe constituting the steel plate 103 as a base material (for example, Zn as in Patent Document 1).
  • the corrosion of the steel sheet 103 is suppressed by forming the plated steel layer and the metal such as Zn corroded earlier than the Fe forming the steel sheet 103.
  • the barrier type plating layer and the sacrificial anticorrosion type plating layer have different interactions with the chemical conversion coating layer 107.
  • the Fe—Sn alloy layer 105a and the Sn layer 105b according to the present embodiment will be specifically described with reference to FIGS. 1A and 1B.
  • the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion coating layer 107 may be formed on one surface of the steel plate 103, or as shown in FIG. Further, the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion treatment film layer 107 may be formed.
  • the Fe—Sn alloy layer 105a is formed on the surface of the steel plate 103, and the Sn layer 105b is formed on the Fe—Sn alloy layer 105a.
  • the Fe—Sn alloy layer 105 a and the Sn layer 105 b are formed by forming a Sn plating layer (not shown) on the surface of the steel plate 103 and then performing a molten tin treatment (reflow treatment). .
  • the Sn plating layer (not shown) is formed in order to ensure the corrosion resistance and weldability of the chemical conversion treated steel sheet 10.
  • Sn—Fe—Sn alloy contained in the Fe—Sn alloy layer 105a also has excellent corrosion resistance and weldability.
  • the Fe—Sn alloy layer 105a and the Sn layer 105b according to the present embodiment both contain Sn, but the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 0. 0 per metal surface. 10 to 30.0 g / m 2 .
  • Sn has excellent workability, weldability, and corrosion resistance. By performing molten tin treatment after Sn plating, the corrosion resistance of the chemical conversion steel sheet 10 is further improved, and the surface appearance (mirror appearance) of the chemical conversion steel sheet 10 is improved. ) Can be made more preferable.
  • the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b needs to be 0.10 g / m 2 or more per side in terms of the amount of metal Sn. Further, the workability, weldability, and corrosion resistance of the chemical conversion treated steel sheet 10 improve as the Sn content increases, but the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is one side with the amount of metal Sn. Exceeding 30.0 g / m 2 per saturates the effect described above with Sn.
  • the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b exceeds 30 g / m 2 per side in terms of the amount of metal Sn.
  • the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 30.0 g / m 2 or less per side in terms of the amount of metal Sn.
  • Sn total content of Fe-Sn alloy layer 105a and the Sn layer 105b is more preferably a per side 0.30g / m 2 ⁇ 20.0g / m 2 of metal Sn amount. Since the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 0.30 g / m 2 or more per one surface in terms of metal Sn, the above-described effects of Sn can be more reliably exhibited. It is. In addition, since the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 20.0 g / m 2 or less per side in terms of the metal Sn amount, the manufacturing cost can be further reduced.
  • the Fe—Sn alloy layer 105a contains 0.0010 to 100 g / m 2 of Fe in terms of the amount of metallic Fe. In addition to Sn and Fe, the Fe—Sn alloy layer 105a may contain inevitable impurities that are mixed in in trace elements or manufacturing processes. In the Fe—Sn alloy layer 105a, the total amount of Fe metal Fe and Sn metal Sn contained is 50 mass% or more. Preferably, in the Fe—Sn alloy layer 105a, the total amount of Fe metal Fe and Sn metal Sn contained is 70% by mass or more.
  • the Sn layer 105b may be composed only of Sn, and may contain 0.0010 to 6.0 g / m 2 of Fe in terms of metal Fe in addition to Sn. In addition, the Sn layer 105b may contain inevitable impurities that are mixed in in trace elements or manufacturing processes.
  • the proportion of Sn in the Sn layer 105b is 50% by mass or more in terms of the amount of metal Sn. Preferably, the proportion of Sn in the Sn layer 105b is 70% by mass or more in terms of the amount of metallic Sn.
  • the ratio of the thicknesses of the Fe—Sn alloy layer 105a and the Sn layer 105b is not particularly limited as long as the amount of metal Sn is ensured.
  • Fe—Sn alloy layer 105a and the Sn layer 105b are not densely formed, a part of the steel plate 103 as a base material is exposed.
  • Fe contained in the steel plate 103 and S contained in the beverage or food may be combined to form black FeS, Fe 2 S 3 , or Fe 2 S.
  • a chromate film has been mainly applied to the surfaces of the Fe—Sn alloy layer 105 a and the Sn layer 105 b so far. Was formed.
  • the chemical conversion treated steel sheet 10 has a Zr compound, a phosphoric acid compound, and an Al layer as an alternative to the conventional chromate film on the Fe-Sn alloy layer 105a and the Sn layer 105b.
  • a chemical conversion film layer 107 containing a compound is formed.
  • the chemical conversion film layer 107 is formed on the Sn layer 105b.
  • the chemical conversion coating layer 107 is a composite coating layer mainly composed of a Zr compound.
  • the amount of metal Zr is 1.0 to 150 mg / m 2 per side and the amount of P is 1.0 to 100 mg / m per side. 2 phosphoric acid compound and 0.10-30.0 mg / m 2 of Al compound per side in terms of metal Al content.
  • the composite coating layer refers to a coating layer in which the Zr compound, the phosphate compound and the Al compound are not completely mixed but are partially mixed.
  • the Zr compound contained in the chemical conversion coating layer 107 according to the present embodiment has a function of improving corrosion resistance, adhesion, and processing adhesion.
  • Examples of the Zr compound according to this embodiment include oxidized Zr, phosphoric acid Zr, hydroxylated Zr, and fluorided Zr.
  • the chemical conversion film layer 107 contains a plurality of the above-described Zr compounds.
  • a preferred combination of Zr compounds is Zr oxide, Zr phosphate and Zr fluoride.
  • the content of the Zr compound contained in the chemical conversion coating layer 107 is 1.0 mg / m 2 or more per side in terms of metal Zr, practically suitable corrosion resistance, adhesion and work adhesion are ensured.
  • the corrosion resistance, adhesion, and processing adhesion are improved.
  • the content of the Zr compound exceeds 150 mg / m 2 per side in terms of the amount of metal Zr, the chemical conversion coating layer 107 becomes too thick, mainly due to cohesive failure, and the Sn layer of the chemical conversion coating layer 107 While the adhesiveness with respect to 105b falls, an electrical resistance rises and weldability falls.
  • the content of Zr compound of the chemical conversion coating layer 107 is a per side 1.0mg / m 2 ⁇ 150mg / m 2 by metal Zr content.
  • the content of the Zr compound is more preferably 1.0 to 120 mg / m 2 per side in terms of the amount of metal Zr.
  • the chemical conversion treatment film layer 107 further includes one or more phosphate compounds in addition to the Zr compound described above.
  • the phosphoric acid compound according to this embodiment has a function of improving corrosion resistance, adhesion, and processing adhesion.
  • Examples of the phosphoric acid compound according to the present embodiment include phosphoric acid formed by a reaction between a phosphoric acid ion and a compound contained in the steel plate 103, the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion coating layer 107. Fe, phosphoric acid Ni, phosphoric acid Sn, phosphoric acid Zr, phosphoric acid Al, etc. are mentioned.
  • the chemical conversion film layer 107 may contain one or more of the above phosphoric acid compounds.
  • the corrosion resistance, adhesion and work adhesion of the chemical conversion treatment steel sheet 10 are improved. Specifically, when the content of the phosphoric acid compound in the chemical conversion coating layer 107 is 1.0 mg / m 2 or more in terms of the amount of P, practically suitable corrosion resistance, adhesion and work adhesion are ensured. Is done. On the other hand, as the content of the phosphoric acid compound increases, the corrosion resistance, adhesion and processing adhesion also improve.
  • the content of the phosphoric acid compound exceeds 100 mg / m 2 per side in terms of P amount, The treatment film layer 107 becomes too thick, mainly due to cohesive failure, and the adhesion of the chemical conversion treatment film layer 107 to the Sn layer 105b is lowered, and the electrical resistance is increased and the weldability is lowered.
  • the content of the phosphoric acid compound exceeds 100 mg / m 2 per side in terms of the P amount, the appearance may be non-uniform due to non-uniform adhesion of the chemical conversion coating layer 107. .
  • the content of the phosphoric acid compound in the chemical conversion coating layer 107 is 1.0 to 100 mg / m 2 per side in terms of the P amount.
  • the content of the phosphate compound in the chemical conversion coating layer 107 is more preferably 2.0 to 70.0 mg / m 2 per side in terms of P amount.
  • the chemical conversion film layer 107 further includes an Al compound in addition to the Zr compound and the phosphate compound described above.
  • the Al compound in the chemical conversion coating layer 107 exists mainly as an Al oxide in the chemical conversion coating layer 107. Since the Al oxide reinforces the film defect of the chemical conversion coating layer 107 containing Zr as a main component, the chemical conversion steel plate 10 can obtain excellent resistance to sulfur blackening. Since the chemical conversion treatment film layer 107 containing Zr as a main component is originally a very uniform film, the amount of Al compound added to the chemical conversion treatment film layer 107 to reinforce the film defects is the amount of metal Al per side. it may be at 0.10 mg / m 2 or more.
  • the content of the Al compound is 0.10 mg / m 2 or more per side in terms of the amount of metal Al, it is possible to suitably improve the sulfurization blackening resistance of the chemical conversion treated steel sheet 10.
  • the Al compound content of the chemical conversion coating layer 107 increases, the resistance to sulfur blackening also improves, but the Al compound content exceeds 30.0 mg / m 2 per side in terms of the amount of metal Al. As a result, the resistance to sulfur blackening is saturated and economically undesirable. Therefore, the content of the Al compound contained in the chemical conversion coating layer 107 is 30.0 mg / m 2 or less per side in terms of the amount of metal Al.
  • the content of the Al compound in the chemical conversion coating layer 107 is more preferably 0.20 to 20.0 mg / m 2 per side in terms of the amount of metallic Al.
  • the content of the Al compound in the chemical conversion coating layer 107 is more preferably 0.20 to 20.0 mg / m 2 per side in terms of the amount of metallic Al.
  • the content of Al oxide (Al 2 O 3 ) in the chemical conversion coating layer 107 is preferably 0.10 to 30.0 mg / m 2 in terms of metal Al.
  • the coating defects of the chemical conversion coating layer 107 can be suitably reinforced and excellent sulfurization resistance can be obtained.
  • the content of the phosphoric acid compound that improves the sulfur blackening resistance can be reduced in the same manner as Al.
  • the phosphoric acid compound contained in the chemical conversion treatment film layer 107 a large amount of phosphoric acid Zr produced by reaction of phosphate ions with Zr ions is contained in the chemical conversion treatment solution for forming the chemical conversion treatment coating layer 107. In the presence of water, it precipitates and the chemical conversion solution becomes cloudy.
  • the Al compound contributes to improvement of resistance to sulfur blackening as compared with the phosphoric acid compound.
  • the chemical conversion treatment film layer 107 contains an Al compound
  • the content of the phosphoric acid compound that causes white turbidity of the chemical conversion treatment liquid can be reduced while suitably improving the resistance to sulfur blackening.
  • the amount of F ions that inhibit the binding between Zr and phosphoric acid and the binding between Al and phosphoric acid can be reduced.
  • Zr can be deposited more easily, so that the electrolytic efficiency for forming the chemical conversion treatment film layer 107 can be improved.
  • the chemical conversion treatment film layer 107 may contain inevitable impurities that are mixed in during the manufacturing process. Moreover, when the chemical conversion treatment film layer 107 contains Cr, the upper limit of the Cr content is 2 mg / m 2 .
  • the chemical conversion treated steel sheet 10 according to the present embodiment exhibits excellent resistance to sulfur blackening even when the adhesion amount of the chemical conversion film 107 is reduced.
  • a coating material is made to adhere to the surface of the chemical conversion treatment steel plate 10, and is baked, and a coating film is formed.
  • a chemical conversion treated steel sheet 10 with a coating film formed on the surface is placed and fixed as a lid on the mouth of a heat-resistant bottle holding a 0.6 mass% L-cysteine liquid boiled for 1 hour, using a soaking furnace or the like. Heat treatment at 110 ° C. for 30 minutes.
  • the chemical conversion treated steel sheet 10 according to this embodiment has excellent corrosion resistance and sulfide blackening resistance. Therefore, even when the surface of the chemical conversion treatment film layer 107 is not covered with a film or paint, the chemical conversion treatment steel plate 10 can be used as a steel plate for containers.
  • the chemical conversion steel sheet 10 has the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion film layer 107 on the steel sheet 103. That is, in the chemical conversion treated steel sheet 10, the steel sheet 103 and the Fe—Sn alloy layer 105a are in contact with each other, and no other layer is provided between the steel sheet 103 and the Fe—Sn alloy layer 105a. Similarly, the Fe—Sn alloy layer 105a and the Sn layer 105b are in contact with each other, and no other layer is provided between the Fe—Sn alloy layer 105a and the Sn layer 105b. Further, the Sn layer 105 b and the chemical conversion treatment film layer 107 are in contact with each other, and no other layer is provided between the Sn layer 105 b and the chemical conversion treatment film layer 107.
  • the amount of metallic Sn and the amount of metallic Fe in the Fe—Sn alloy layer 105a and the Sn layer 105b can be measured by, for example, a fluorescent X-ray method.
  • a calibration curve relating to the amount of metal Sn or metal Fe is created in advance, and the amount of metal Sn or metal Fe is relatively determined using the created calibration curve. Identify.
  • the amount of metal Zr, the amount of P, and the amount of metal Al in the chemical conversion coating layer 107 can be measured by a quantitative analysis method such as fluorescent X-ray analysis, for example. Further, what kind of compound is present in the chemical conversion coating layer 107 can be specified by performing an analysis by X-ray photoelectron spectroscopy (XPS). . In addition, the content of Al 2 O 3 in the chemical conversion coating layer 107 is determined based on the peak intensity ratio of Al 2 O 3 , metal Al, and other Al compounds by X-ray photoelectron spectroscopy (XPS). Ask for. Then, the content of Al 2 O 3 in the chemical conversion coating layer 107 is calculated from the total metal Al amount obtained by the quantitative analysis method such as fluorescent X-ray analysis and the peak intensity ratio obtained by XPS as described above. calculate.
  • XPS X-ray photoelectron spectroscopy
  • the measuring method of each component is not limited to said method, It is possible to apply a well-known measuring method.
  • FIG. 2 is a flowchart for explaining an example of the flow of the manufacturing method of the chemical conversion treated steel sheet 10 according to the present embodiment.
  • Pretreatment process In the method for manufacturing the chemical conversion treated steel sheet 10 according to the present embodiment, first, a known pretreatment is performed on the steel sheet 103 as necessary (step S101).
  • an Sn plating layer (not shown) is formed on the surface of the steel plate 103 (step S103).
  • the formation method of Sn plating layer (not shown) is not specifically limited, The well-known electroplating method, the method of immersing the steel plate 103 in molten Sn, etc. can be used.
  • a molten tin treatment (reflow treatment process) is performed (step S104).
  • the Fe—Sn alloy layer 105 a and the Sn layer 105 b are formed on the surface of the steel plate 103.
  • the molten tin treatment is performed by forming an Sn plating layer (not shown) on the steel sheet 103, heating to 200 ° C. or higher, once melting the Sn plating layer (not shown), and then rapidly cooling.
  • Sn in the Sn plating layer (not shown) located on the steel plate 103 side is alloyed with Fe in the steel plate 103 to form the Fe—Sn alloy layer 105a, and the remaining Sn is Sn layer. 105b is formed.
  • the chemical conversion treatment film layer 107 is formed by cathodic electrolysis (step S105).
  • the chemical conversion treatment film layer 107 is formed by electrolytic treatment (for example, cathodic electrolytic treatment).
  • the chemical conversion treatment solution used to form the chemical conversion coating layer 107 by electrolytic treatment is 10 ppm or more and 20000 ppm or less of Zr ions, 10 ppm or more and 20000 ppm or less of F ions, and 10 ppm or more and 3000 ppm or less of phosphate ions. This includes nitrate ions and sulfate ions of 30000 ppm or less and Al ions of 500 ppm or more and 5000 ppm or less.
  • (NH 4 ) 3 AlF 6 is used as a supply source of Al ions.
  • the nitrate ion and the sulfate ion only need to be contained in the chemical conversion treatment liquid in a total of 10 ppm to 3000 ppm, and both the nitrate ion and the sulfate ion may be contained in the chemical conversion treatment liquid. Only one of nitrate ion and sulfate ion may be contained in the chemical conversion treatment liquid.
  • the chemical conversion treatment liquid is preferably 200 ppm or more and 17000 ppm or less of Zr ions, 200 ppm or more and 17000 ppm or less of F ions, 100 ppm or more and 2000 ppm or less of phosphate ions, and a total of 1000 ppm or more and 23000 ppm or less of nitrate ions and sulfate ions, It is preferable to contain 500 ppm or more and 3000 or less Al ions.
  • concentration of Zr ions By setting the concentration of Zr ions to 200 ppm or more, it is possible to more reliably prevent a decrease in the amount of Zr adhesion.
  • the cloudiness of the chemical conversion treatment film layer 107 accompanying precipitation of phosphate can be more reliably prevented by setting the concentration of F ions to 200 ppm or more.
  • the concentration of phosphate ions to 100 ppm or more, it is possible to more reliably prevent the clouding of the chemical conversion treatment film layer 107 accompanying the precipitation of phosphate. Moreover, the fall of the adhesion efficiency of the chemical conversion treatment film layer 107 can be prevented more reliably by setting the concentration of at least one of nitrate ions and sulfate ions to 1000 ppm or more. In addition, when the Al ion concentration is 500 ppm or more, the effect of improving sulfurization resistance can be more reliably realized. In addition, the manufacturing cost of the chemical conversion treatment film layer 107 can be reduced more reliably by setting the upper limit value of each component of the chemical conversion treatment liquid to the above values.
  • the temperature of a chemical conversion liquid is 5 degreeC or more and less than 90 degreeC.
  • the temperature of the chemical conversion treatment liquid is less than 5 ° C.
  • the formation efficiency of the chemical conversion treatment film layer 107 is poor and not economical, which is not preferable.
  • the temperature of the chemical conversion treatment liquid is 90 ° C. or higher, the structure of the chemical conversion treatment film layer 107 to be formed is non-uniform, and defects such as cracks and microcracks are generated. Since it is the starting point, it is not preferable.
  • the temperature of the chemical conversion treatment liquid is preferably higher than the surface temperature of the steel sheet 103 on which the Fe—Sn alloy layer 105a and the Sn layer 105b are formed.
  • the current density during the electrolytic treatment is preferably 1.0 A / dm 2 or more and 100 A / dm 2 or less.
  • the current density is less than 1.0 A / dm 2
  • the current density exceeds 100 A / dm 2
  • the amount of the chemical conversion treatment film layer 107 is excessive, and the chemical conversion treatment film layer 107 having insufficient adhesion among the formed chemical conversion treatment film layers 107.
  • the time for the electrolytic treatment is preferably 0.20 seconds or more and 150 seconds or less.
  • the electrolytic treatment time is less than 0.20 seconds, the amount of adhesion of the chemical conversion treatment film layer 107 decreases, and the desired performance cannot be obtained, which is not preferable.
  • the electrolytic treatment time exceeds 150 seconds, the amount of the chemical conversion treatment film layer 107 is excessive, and among the formed chemical conversion treatment film layers 107, the chemical conversion treatment film layer 107 with insufficient adhesion is formed. Since it may be washed away (peeled off) in a washing step such as washing with water after the electrolytic treatment, it is not preferable.
  • the pH of the chemical conversion solution is preferably in the range of 3.1 to 3.7, more preferably around 3.5.
  • nitric acid or ammonia may be added as necessary.
  • tannic acid may be further added to the chemical conversion treatment solution used for the electrolytic treatment.
  • the tannic acid reacts with Fe in the steel sheet 103 to form a film of Fe tannic acid on the surface of the steel sheet 103.
  • a film of Fe tannate is preferable because it improves rust resistance and adhesion.
  • the solvent for the chemical conversion treatment liquid for example, deionized water, distilled water or the like can be used.
  • the electrical conductivity of the chemical conversion solution solvent is preferably 10 ⁇ S / cm or less, more preferably 5 ⁇ S / cm or less, and further preferably 3 ⁇ S / cm or less.
  • the solvent of the said chemical conversion liquid is not limited to this, It is possible to select suitably according to the material to melt
  • a Zr source for example, a Zr complex such as H 2 ZrF 6 can be used.
  • Zr in the Zr complex as described above is present in the chemical conversion solution as Zr 4+ due to a hydrolysis reaction accompanying an increase in pH at the cathode electrode interface.
  • Such Zr ions form a compound such as ZrO 2 or Zr 3 (PO 4 ) 4 by a dehydration condensation reaction with a hydroxyl group (—OH) present on the metal surface in the chemical conversion solution.
  • (NH 4 ) 3 AlF 6 is used as an Al supply source.
  • AlF complex a state where it is complexed with F
  • Al in the AlF complex is precipitated together with Zr in the electrolytic treatment process to form the chemical conversion coating layer 107, thereby contributing to the resistance to sulfur blackening resistance as described above.
  • Al is present as a cation in the chemical conversion treatment liquid, like Zr. Therefore, by using (NH 4 ) 3 AlF 6 as the supply source of Al, it becomes possible to supply Al into the chemical conversion treatment liquid without increasing the concentration of phosphate ions in the chemical conversion treatment liquid.
  • step S107 a known post-treatment is performed on the steel sheet 103 on which the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion treatment film layer 107 are formed.
  • the chemical conversion treatment film layer 107 is formed by the electrolytic treatment. However, when it is allowed to take a sufficient time for the formation of the chemical conversion treatment coating, the immersion treatment is not performed.
  • the chemical conversion treatment film layer 107 may be formed by the treatment.
  • the chemical conversion treatment steel plate and the method for manufacturing the chemical conversion treatment steel plate according to the embodiment of the present invention will be specifically described with reference to examples.
  • the Example shown below is an example of the manufacturing method of the chemical conversion treatment steel plate and chemical conversion treatment steel plate which concern on embodiment of this invention, Comprising: The manufacturing method of the chemical conversion treatment steel plate and chemical conversion treatment steel plate which concern on embodiment of this invention is shown.
  • the present invention is not limited to the following examples.
  • Example 1 In Example 1, the content of the Zr compound and the phosphate compound in the chemical conversion coating layer was not changed, but the content of the Al compound was changed to verify how the sulfurization blackening resistance changed. .
  • Example 1 a steel plate generally used as a steel plate for containers was used as a base material.
  • An Fe—Sn alloy layer and an Sn layer were formed on the steel sheet by performing molten tin treatment in the state where the Sn plating layer was formed on the steel sheet.
  • the total Sn content of the Fe—Sn alloy layer and the Sn layer was 2.8 g / m 2 per side in terms of the amount of metallic Sn in all samples.
  • the concentration of the Al compound in the chemical conversion coating layer was changed for each sample to form a chemical conversion coating layer, and a plurality of samples were manufactured.
  • the Zr compound content was 8 mg / m 2 per side in terms of metal Zr
  • the phosphate compound content was 3 mg / m 2 per side in terms of P amount.
  • the evaluation of the resistance to sulfurization blackening was performed as follows. First, a 0.6 mass% L-cysteine solution boiled for 1 hour was placed in a heat-resistant bottle, and the sample ( ⁇ 40 mm) was placed and fixed as a lid on the mouth of the heat-resistant bottle. Next, the heat-resistant bottle covered as described above was subjected to heat treatment (retort treatment) at 110 ° C. for 15 minutes in a soaking furnace. Then, in each sample, the external appearance observation of the contact part with a heat-resistant bottle was performed, and 10 steps
  • the horizontal axis indicates the content of Al compound (amount of metal Al) in the chemical conversion coating layer in each sample
  • the vertical axis indicates the evaluation result of resistance to sulfur blackening.
  • the evaluation result of the resistance to sulfur blackening was a rating of 1.
  • the evaluation result of the resistance to sulfur blackening is a score of 7 or more, and it is clear that the resistance to sulfur blackening is extremely excellent. It became. From this result, it was shown that by containing a predetermined amount of Al compound in the chemical conversion coating layer, the sulfur blackening resistance of the chemical conversion steel plate having the chemical conversion coating was dramatically improved.
  • Example 2 Next, it verified about how sulfuration blackening resistance changes, changing the component amount of each component contained in the chemical conversion treatment film layer 107. More specifically, a chemical conversion treatment film layer was formed on the Sn layer using a steel sheet on which an Fe—Sn alloy layer and an Sn layer were formed.
  • a chemical conversion treatment film layer was formed on the Sn layer using a steel sheet on which an Fe—Sn alloy layer and an Sn layer were formed.
  • (NH 4 ) 3 AlF 6 was used as the Al ion supply source
  • Comparative Examples a5 and a6 Al 2 was used as the Al ion supply source.
  • a chemical conversion film layer was formed using (SO 4 ) 3 .
  • the amount of metal Zr, the amount of P and the amount of metal Al contained in the chemical conversion coating film layer are measured with a fluorescent X-ray adhesion meter, and the corrosion resistance and sulfide blackening resistance Evaluation was performed.
  • the content of Al 2 O 3 in the chemical conversion coating layer is determined by calculating the peak intensity ratio of Al 2 O 3 , metal Al, and other Al compounds by X-ray photoelectron spectroscopy (XPS). Asked. Then, the content of Al 2 O 3 in the chemical conversion coating layer is calculated from the total metal Al amount obtained by the quantitative analysis method such as fluorescent X-ray analysis and the peak intensity ratio obtained by XPS as described above. did.
  • ⁇ Evaluation of corrosion resistance> As the corrosion resistance test solution, 3% acetic acid was used. The chemical conversion treated steel plate of the sample was cut into ⁇ 35 mm and fixed on the mouth of a heat-resistant bottle containing a corrosion resistance test solution. After heat treatment at 121 ° C. for 60 minutes, the degree of corrosion of the sample was evaluated by observing the contact portion between the sample and the corrosion resistance test solution. Specifically, the following 10-step evaluation was performed according to the ratio of the area that did not corrode in the contact area between the sample and the corrosion resistance test solution. In addition, if a score is 5 points or more, it can be used as a steel plate for containers.
  • Corrosion resistance evaluation items are labeled “Very Good” for 10 to 9 points, “Good” for 8 to 5 points, and “Not Good” for 4 points and below.
  • Examples A1 to A18 all had excellent corrosion resistance and excellent resistance to sulfur blackening.
  • Comparative Examples a1 to a6 were inferior in either corrosion resistance or sulfurization blackening resistance.
  • the Al amount and Al 2 O 3 amount were remarkably small, and the resistance to sulfur blackening was “Not Good”.
  • Example 3 Next, it was verified how the sulfide blackening resistance changes depending on the Sn content and the content of each component included in the chemical conversion coating layer.
  • Table 2 shows the Sn content of each sample, and Table 3 shows the conditions for the chemical conversion treatment (the conditions for the chemical conversion treatment solution and the conditions for the electrolytic treatment).
  • Table 4 shows the amount of metal Zr, the amount of P, the amount of metal Al, and the amount of Al 2 O 3 contained in the chemical conversion coating layer formed on each sample. Further, each sample was evaluated for corrosion resistance and sulfur blackening resistance in the same manner as in Example 2. The results are shown in Table 4.

Abstract

This chemical conversion coating-equipped steel plate is equipped with: a steel plate; an Fe-Sn alloy layer formed on one or more surfaces of the steel plate; an Sn layer formed on the Fe-Sn alloy layer, the total Sn content of which in combination with that in the Fe-Sn alloy layer is 0.10-30 g/m2 by metal Sn content; and a chemical conversion coating film layer that is formed on the Sn layer and contains a Zr compound in the amount of 1.0-150 mg/m2 by metal Zr content, a phosphate compound in the amount of 1.0-100 mg/m2 by P content, and an Al compound in the amount of 0.10-30.0 mg/m2 by metal Al content.

Description

化成処理鋼板及び化成処理鋼板の製造方法Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
 本発明は、化成処理鋼板及び化成処理鋼板の製造方法に関する。 The present invention relates to a chemical conversion treated steel sheet and a method for producing a chemical conversion treated steel sheet.
 金属を継続的に使用することにより、腐食が発生する場合がある。金属に発生する腐食を防止するために、従来から様々な技術が提案されている。提案されている技術としては、金属板に対してめっきを施す技術や、金属板又はめっきの表面に対して各種の表面処理を行う技術が挙げられる。 ∙ Corrosion may occur due to continuous use of metal. Conventionally, various techniques have been proposed to prevent corrosion generated in metal. Proposed techniques include a technique for plating a metal plate and a technique for performing various surface treatments on the surface of the metal plate or plating.
 例えば下記特許文献1では、建材や家電製品に用いられるAl-Zn系合金めっき鋼板の表面に、バナジウム化合物、リン酸とリン酸系化合物との少なくとも一方、エポキシ基とアミノ基との少なくとも一方を有するシラン化合物、及び、水溶性有機樹脂と水分散性有機樹脂との少なくとも一方からなる有機樹脂を主成分とする有機樹脂皮膜を形成する技術が開示されている。 For example, in Patent Document 1 below, at least one of a vanadium compound, phosphoric acid and a phosphoric acid compound, or at least one of an epoxy group and an amino group is formed on the surface of an Al—Zn alloy-plated steel sheet used for building materials and home appliances. A technique for forming an organic resin film containing as a main component an organic resin composed of at least one of a silane compound and a water-soluble organic resin and a water-dispersible organic resin is disclosed.
 一方、飲料や食品の保存を目的とした金属容器の製造には、Niめっき鋼板、Snめっき鋼板又はSn系合金めっき鋼板等が用いられている。下記特許文献1に開示されているAl-Zn系合金めっき鋼板は、いわゆる犠牲防食型のめっき鋼板であるのに対して、Niめっき鋼板、Snめっき鋼板又はSn系合金めっき鋼板は、いわゆるバリア型のめっき鋼板である。
 Niめっき鋼板、Snめっき鋼板又はSn系合金めっき鋼板を、飲料や食品の保存を目的とした金属容器用の鋼板(以下、容器用鋼板という)として用いる場合、鋼板と塗装又はフィルムとの密着性及び耐食性を確保するために、めっき鋼板の表面に6価クロムによる化成処理が施されることが多い。6価クロムを含む溶液を用いた化成処理を、クロメート処理という。
On the other hand, Ni-plated steel sheets, Sn-plated steel sheets, Sn-based alloy-plated steel sheets, and the like are used for manufacturing metal containers for the purpose of preserving beverages and foods. The Al—Zn alloy-plated steel sheet disclosed in the following Patent Document 1 is a so-called sacrificial anti-corrosion plated steel sheet, whereas the Ni-plated steel sheet, Sn-plated steel sheet or Sn-based alloy plated steel sheet is a so-called barrier type. This is a plated steel sheet.
When using Ni-plated steel sheets, Sn-plated steel sheets or Sn-based alloy-plated steel sheets as steel sheets for metal containers (hereinafter referred to as container steel sheets) for the purpose of preserving beverages and foods, the adhesion between the steel sheet and the coating or film And in order to ensure corrosion resistance, the surface of a plated steel plate is often subjected to chemical conversion treatment with hexavalent chromium. Chemical conversion treatment using a solution containing hexavalent chromium is called chromate treatment.
 しかしながら、クロメート処理に用いられる6価クロムは環境上有害であることから、従来容器用鋼板に施されていたクロメート処理の代替として、Zr-リン皮膜等の化成処理皮膜が開発されている。例えば下記特許文献2には、Zr、リン酸及びフェノール樹脂等を含む化成処理皮膜を有する容器用鋼板が開示されている。 However, since hexavalent chromium used for chromate treatment is harmful to the environment, a chemical conversion treatment film such as a Zr-phosphorus film has been developed as an alternative to the chromate treatment conventionally applied to steel plates for containers. For example, Patent Document 2 below discloses a steel plate for containers having a chemical conversion coating containing Zr, phosphoric acid, a phenol resin, and the like.
 ここで、容器用鋼板を用いた金属容器中に保存される食品としては、肉や野菜等が含まれる。肉や野菜は様々なタンパク質を含有するが、これらのタンパク質がSを含むアミノ酸(L-システイン、L-メチオニン、L-(-)-シスチンに代表される含硫アミノ酸)を含有する場合がある。
 含硫アミノ酸を含有する食品に対して殺菌処理時に熱を加えると、含硫アミノ酸中のSが容器用鋼板に含まれるSnやFe等と結合して黒く変色する現象が生じる。この現象を、硫化黒変という。硫化黒変が生じると金属容器内面の意匠性が低下するため、硫化黒変が生じないように対策が求められている。
Here, meat, vegetables, etc. are contained as a foodstuff preserve | saved in the metal container using the steel plate for containers. Meat and vegetables contain various proteins, but these proteins may contain amino acids containing S (sulfur-containing amino acids represented by L-cysteine, L-methionine, L-(-)-cystine). .
When heat is applied to a food containing a sulfur-containing amino acid during sterilization, a phenomenon occurs in which S in the sulfur-containing amino acid is combined with Sn, Fe, or the like contained in the steel plate for containers and turned black. This phenomenon is called sulfide blackening. When sulfide blackening occurs, the design of the inner surface of the metal container deteriorates. Therefore, measures are required to prevent sulfide blackening.
 また、特許文献3では、Alイオン、ホウ酸イオン、Cuイオン、Caイオン、金属Al、および、金属Cuからなる群から選ばれる少なくとも一つの反応促進成分と、Zrイオンと、Fイオンとを含む溶液中で、鋼板の浸漬または電解処理を行い、鋼板表面にZr含有皮膜を形成する容器用鋼板の製造方法が開示されている。 Patent Document 3 includes at least one reaction promoting component selected from the group consisting of Al ions, borate ions, Cu ions, Ca ions, metal Al, and metal Cu, Zr ions, and F ions. A method for producing a steel plate for containers is disclosed in which a steel plate is immersed or electrolytically treated in a solution to form a Zr-containing film on the surface of the steel plate.
日本国特開2005-290535号公報Japanese Unexamined Patent Publication No. 2005-290535 日本国特開2007-284789号公報Japanese Unexamined Patent Publication No. 2007-284789 日本国特開2012-62521号公報Japanese Unexamined Patent Publication No. 2012-62521
 クロメート処理により形成される皮膜(以下、クロメート皮膜という)は、皮膜の付着量が少なくても緻密であるため、表面にクロメート皮膜が形成された容器用鋼板は優れた耐食性及び耐硫化黒変性を有する。しかしながら、上述したように、6価クロムは環境上有害であるため、容器用鋼板は可能な限り6価クロムを含有しないことが好ましい。
 一方、特許文献1に記載されている有機樹脂皮膜や特許文献2に記載されている化成処理皮膜は、6価クロムを含有しないため、環境上好適である。しかしながら、特許文献1に記載されている有機樹脂皮膜や特許文献2に記載されている化成処理皮膜では、好適な耐硫化黒変性を得る、つまり緻密な皮膜を形成するためには、皮膜の付着量を多くする必要がある。皮膜の付着量を多くした場合には、皮膜と皮膜の下層のめっき層との密着性が低下するとともに、溶接性が低下するため好ましくない。また、皮膜の付着量を多くすることは、経済的にも好ましくない。
The film formed by the chromate treatment (hereinafter referred to as the chromate film) is dense even if the amount of coating is small, so the steel plate for containers with a chromate film formed on the surface has excellent corrosion resistance and resistance to sulfur blackening. Have. However, as described above, since hexavalent chromium is harmful to the environment, it is preferable that the steel plate for containers does not contain hexavalent chromium as much as possible.
On the other hand, since the organic resin film described in Patent Document 1 and the chemical conversion film described in Patent Document 2 do not contain hexavalent chromium, they are environmentally suitable. However, in the organic resin film described in Patent Document 1 and the chemical conversion film described in Patent Document 2, in order to obtain suitable sulfur blackening resistance, that is, in order to form a dense film, the adhesion of the film It is necessary to increase the amount. When the adhesion amount of the film is increased, the adhesion between the film and the plating layer under the film is lowered and the weldability is lowered, which is not preferable. Moreover, it is not economically preferable to increase the coating amount.
 特許文献3に記載の容器用鋼板の製造方法では、化成処理皮膜中のAl含有量が少ないため、好適な耐硫化黒変性を得るのが難しい場合がある。 In the method for producing a steel plate for containers described in Patent Document 3, since the Al content in the chemical conversion coating is low, it may be difficult to obtain suitable sulfur blackening resistance.
 本発明は、上記の事情に鑑みてなされたものであり、化成処理皮膜層の付着量が少ない場合であっても、優れた耐食性及び耐硫化黒変性を有する、化成処理鋼板及び化成処理鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and even when the amount of the chemical conversion coating layer is small, the chemical conversion processed steel sheet and the chemical conversion processed steel sheet have excellent corrosion resistance and sulfur blackening resistance. An object is to provide a manufacturing method.
 本発明は、上記課題を解決して、係る目的を達成するために以下の手段を採用する。 The present invention adopts the following means in order to solve the above problems and achieve the object.
(1)本発明の一態様に係る化成処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面に形成されたFe-Sn合金層と、前記Fe-Sn合金層上に形成され、前記Fe-Sn合金層との合計のSn含有量が金属Sn量で0.10~30.0g/mであるSn層と、前記Sn層上に形成され、金属Zr量で1.0~150mg/mのZr化合物と、P量で1.0~100mg/mのリン酸化合物と、金属Al量で0.10~30.0mg/mのAl化合物と、を含有する化成処理皮膜層と、を備える。 (1) A chemical conversion treated steel sheet according to one aspect of the present invention is formed on a steel sheet, an Fe—Sn alloy layer formed on at least one surface of the steel sheet, and the Fe—Sn alloy layer. An Sn layer having a total Sn content with the Sn alloy layer of 0.10 to 30.0 g / m 2 in terms of metal Sn, and 1.0 to 150 mg / m in terms of metal Zr formed on the Sn layer. A chemical conversion coating layer comprising: 2 Zr compound; a phosphoric acid compound having a P content of 1.0 to 100 mg / m 2 ; and an Al compound having a metal Al content of 0.10 to 30.0 mg / m 2 ; .
(2)上記(1)に記載の化成処理鋼板において、前記化成処理皮膜層が、金属Al量で0.10~30.0mg/mのAlを含有してもよい。 (2) In the chemical conversion treated steel sheet described in (1) above, the chemical conversion coated film layer may contain 0.10 to 30.0 mg / m 2 of Al 2 O 3 in terms of metal Al content.
(3)上記(1)又は(2)に記載の化成処理鋼板において、前記化成処理皮膜層が、金属Zr量で1.0~120mg/mの前記Zr化合物と、P量で2.0~70.0mg/mの前記リン酸化合物と、金属Al量で0.20~20.0mg/mの前記Al化合物と、を含有してもよい。 (3) In the chemical conversion treated steel sheet according to the above (1) or (2), the chemical conversion coating layer has a metal Zr content of 1.0 to 120 mg / m 2 of the Zr compound and a P content of 2.0. It said phosphoric acid compound of ~ 70.0 mg / m 2, and the Al compound in 0.20 ~ 20.0mg / m 2 of metal Al content may contain.
(4)上記(1)~(3)のいずれか一態様に記載の化成処理鋼板において、前記Fe-Sn合金層と前記Sn層との合計の前記Sn含有量が、金属Sn量で、0.30~20.0g/mであってもよい。 (4) In the chemical conversion treated steel sheet according to any one of the above (1) to (3), the total Sn content of the Fe—Sn alloy layer and the Sn layer is 0 in terms of metal Sn amount. It may be 30 to 20.0 g / m 2 .
(5)上記(1)~(4)のいずれか一態様に記載の化成処理鋼板において、前記化成処理皮膜層の表面が、フィルム又は塗料で被覆されていなくてもよい。 (5) In the chemical conversion treated steel sheet according to any one of the above (1) to (4), the surface of the chemical conversion treated film layer may not be coated with a film or paint.
(6)本発明の一態様に係る化成処理鋼板の製造方法は、鋼板の表面に、金属Sn量で、0.10~30.0g/mのSnを含有するSnめっき層を形成するめっき工程と、前記Snめっき層に溶融溶錫処理を行うことにより、Fe-Sn合金層及びSn層を形成する溶融溶錫処理工程と、10~20000ppmのZrイオンと、10~20000ppmのFイオンと、10~3000ppmのリン酸イオンと、合計で100~30000ppmの硝酸イオン及び硫酸イオンと、500~5000ppmのAlイオンと、を含み、前記Alイオンの供給源が(NHAlFであり、温度が5℃以上90℃未満である化成処理液を用いて、1.0~100A/dmの電流密度及び0.20~150秒間の電解処理時間の条件下で電解処理を行うことにより、前記Sn層上に化成処理皮膜層を形成する電解処理工程と、を有する。 (6) In the method for producing a chemical conversion treated steel sheet according to one aspect of the present invention, plating is performed by forming a Sn plating layer containing Sn in an amount of 0.10 to 30.0 g / m 2 on the surface of the steel sheet. A molten tin treatment process for forming a Fe—Sn alloy layer and a Sn layer by performing a molten tin treatment on the Sn plating layer, 10 to 20000 ppm of Zr ions, and 10 to 20000 ppm of F ions. 10 to 3000 ppm of phosphate ions, a total of 100 to 30000 ppm of nitrate ions and sulfate ions, and 500 to 5000 ppm of Al ions, and the source of the Al ions is (NH 4 ) 3 AlF 6 Using a chemical conversion treatment solution having a temperature of 5 ° C. or more and less than 90 ° C. under conditions of a current density of 1.0 to 100 A / dm 2 and an electrolytic treatment time of 0.20 to 150 seconds. And an electrolytic treatment step of forming a chemical conversion treatment film layer on the Sn layer.
(7)上記(6)に記載の化成処理鋼板の製造方法において、前記化成処理液が、200~17000ppmのZrイオンと、200~17000ppmのFイオンと、100~2000ppmのリン酸イオンと、合計で1000~23000ppmの硝酸イオン及び硫酸イオンと、500~3000ppmのAlイオンと、を含有してもよい。 (7) In the method for producing a chemical conversion treated steel sheet according to the above (6), the chemical conversion treatment solution includes a total of 200 to 17000 ppm of Zr ions, 200 to 17000 ppm of F ions, and 100 to 2000 ppm of phosphate ions. May contain 1000 to 23000 ppm of nitrate ions and sulfate ions, and 500 to 3000 ppm of Al ions.
 上記各態様によれば、化成処理皮膜層の付着量が少ない場合であっても、優れた耐食性及び耐硫化黒変性を有する、化成処理鋼板及び化成処理鋼板の製造方法を提供することができる。 According to each of the above aspects, it is possible to provide a chemical conversion treated steel sheet and a method for producing a chemical conversion treated steel sheet having excellent corrosion resistance and sulfide blackening resistance even when the amount of the chemical conversion film layer is small.
鋼板の片面にFe-Sn合金層、Sn層及び化成処理皮膜層が形成された化成処理鋼板を示す模式図である。1 is a schematic view showing a chemical conversion treated steel sheet in which a Fe—Sn alloy layer, a Sn layer and a chemical conversion film layer are formed on one surface of a steel sheet. 鋼板の両面にFe-Sn合金層、Sn層及び化成処理皮膜層が形成された化成処理鋼板を示す模式図である。1 is a schematic view showing a chemical conversion treated steel sheet in which a Fe—Sn alloy layer, a Sn layer and a chemical conversion film layer are formed on both surfaces of a steel sheet. 化成処理鋼板の製造方法の流れの一例を示した流れ図である。It is the flowchart which showed an example of the flow of the manufacturing method of a chemical conversion treatment steel plate. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本実施形態において、同様の構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this embodiment, about the component which has the same structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
<化成処理鋼板の構成について>
 まず、図1A及び図1Bを参照しながら、本実施形態に係る化成処理鋼板の構成について詳細に説明する。図1A及び図1Bは、本実施形態に係る化成処理鋼板の層構造を模式的に示した説明図である。
<About the composition of the chemical conversion treated steel plate>
First, the structure of the chemical conversion treatment steel plate according to the present embodiment will be described in detail with reference to FIGS. 1A and 1B. 1A and 1B are explanatory views schematically showing a layer structure of a chemical conversion treated steel sheet according to the present embodiment.
 本実施形態に係る化成処理鋼板10は、図1A及び図1Bに示すように、鋼板103と、Fe-Sn合金層105aと、Sn層105bと、化成処理皮膜層107と、を備える。 The chemical conversion treated steel sheet 10 according to the present embodiment includes a steel sheet 103, a Fe—Sn alloy layer 105a, a Sn layer 105b, and a chemical conversion film layer 107 as shown in FIGS. 1A and 1B.
[鋼板103について]
 鋼板103は、本実施形態に係る化成処理鋼板10の母材として用いられる。本実施形態で用いられる鋼板103については特に限定されず、容器用鋼板として用いられる公知の鋼板103を使用することが可能である。鋼板103の製造方法や材質についても特に限定されず、通常の鋼片製造工程から、熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の公知の工程を経て製造された鋼板103を用いることが可能である。
 鋼板103の板厚は、容器用鋼板として用いる場合の実用性及び経済性を鑑み、0.05~1mmが好ましい。
[About steel plate 103]
The steel plate 103 is used as a base material of the chemical conversion treated steel plate 10 according to the present embodiment. It does not specifically limit about the steel plate 103 used by this embodiment, It is possible to use the well-known steel plate 103 used as a steel plate for containers. The manufacturing method and material of the steel plate 103 are not particularly limited, and the steel plate 103 is manufactured from a normal steel slab manufacturing process through known processes such as hot rolling, pickling, cold rolling, annealing, and temper rolling. Can be used.
The thickness of the steel plate 103 is preferably 0.05 to 1 mm in view of practicality and economy when used as a steel plate for containers.
[Fe-Sn合金層105a及びSn層105bについて]
 鋼板103の表面には、Snを含有するFe-Sn合金層105a及びSn層105bが形成される。Fe-Sn合金層105a及びSn層105bは、バリア型のめっき層である。ここで、バリア型のめっき層とは、母材である鋼板103を構成するFeよりも電気化学的に貴な金属であるSnを用い、鋼板103の表面にSnの金属膜を形成することで腐食因子を母材に作用させないようにして、鋼板103の腐食を抑制するめっき層である。
[Fe-Sn alloy layer 105a and Sn layer 105b]
On the surface of the steel plate 103, an Fe—Sn alloy layer 105a and an Sn layer 105b containing Sn are formed. The Fe—Sn alloy layer 105a and the Sn layer 105b are barrier-type plating layers. Here, the barrier-type plating layer is formed by forming Sn metal film on the surface of the steel plate 103 using Sn that is electrochemically noble than Fe constituting the base material steel plate 103. It is a plating layer that prevents corrosion of the steel sheet 103 by preventing the corrosion factor from acting on the base material.
 一方、犠牲防食型のめっき層は、バリア型のめっき層とは反対の機能を有する。犠牲防食型のめっき層では、母材である鋼板103を構成するFeよりも電気化学的に卑な金属(例えば、上記特許文献1のようにZn)を用いて鋼板103の表面に金属膜を形成し、鋼板103を構成するFeよりもめっき層を構成するZn等の金属が先に腐食することで、鋼板103の腐食を抑制する。
 なお、バリア型のめっき層と犠牲防食型のめっき層とでは、化成処理皮膜層107との相互作用が異なる。
On the other hand, the sacrificial anticorrosion type plating layer has a function opposite to that of the barrier type plating layer. In the sacrificial anticorrosion type plating layer, a metal film is formed on the surface of the steel plate 103 using a metal that is electrochemically lower than Fe constituting the steel plate 103 as a base material (for example, Zn as in Patent Document 1). The corrosion of the steel sheet 103 is suppressed by forming the plated steel layer and the metal such as Zn corroded earlier than the Fe forming the steel sheet 103.
Note that the barrier type plating layer and the sacrificial anticorrosion type plating layer have different interactions with the chemical conversion coating layer 107.
 以下では、図1A及び図1Bを参照しながら、本実施形態に係るFe-Sn合金層105a及びSn層105bの例について、具体的に説明する。
 なお、図1Aに示すように、鋼板103の片面にFe-Sn合金層105a、Sn層105b及び化成処理皮膜層107が形成されていてもよいし、図1Bに示すように、鋼板103の両面にFe-Sn合金層105a、Sn層105b及び化成処理皮膜層107が形成されていてもよい。
Hereinafter, an example of the Fe—Sn alloy layer 105a and the Sn layer 105b according to the present embodiment will be specifically described with reference to FIGS. 1A and 1B.
As shown in FIG. 1A, the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion coating layer 107 may be formed on one surface of the steel plate 103, or as shown in FIG. Further, the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion treatment film layer 107 may be formed.
 図1A及び図1Bに示すように、Fe-Sn合金層105aは、鋼板103の表面に形成され、Sn層105bは、Fe-Sn合金層105a上に形成される。詳細は後述するが、Fe-Sn合金層105a及びSn層105bは、鋼板103の表面にSnめっき層(不図示)を形成した後、溶融溶錫処理(リフロー処理)を行うことにより形成される。
 Snめっき層(不図示)は、化成処理鋼板10の耐食性と溶接性とを確保するために形成される。Snは、Sn自体が高い耐食性を有しているだけでなく、Fe-Sn合金層105aに含まれるFe-Sn合金も、優れた耐食性及び溶接性を有する。
As shown in FIGS. 1A and 1B, the Fe—Sn alloy layer 105a is formed on the surface of the steel plate 103, and the Sn layer 105b is formed on the Fe—Sn alloy layer 105a. Although details will be described later, the Fe—Sn alloy layer 105 a and the Sn layer 105 b are formed by forming a Sn plating layer (not shown) on the surface of the steel plate 103 and then performing a molten tin treatment (reflow treatment). .
The Sn plating layer (not shown) is formed in order to ensure the corrosion resistance and weldability of the chemical conversion treated steel sheet 10. In addition to Sn itself having high corrosion resistance, Sn—Fe—Sn alloy contained in the Fe—Sn alloy layer 105a also has excellent corrosion resistance and weldability.
 本実施形態に係るFe-Sn合金層105a及びSn層105bはいずれもSnを含有するが、Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり0.10~30.0g/mである。
 Snは、優れた加工性、溶接性及び耐食性を有し、Snめっき後に溶融溶錫処理を行うことで、化成処理鋼板10の耐食性を更に向上させるとともに、化成処理鋼板10の表面外観(鏡面外観)をより好ましくすることが可能である。上述の効果を奏するためには、Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり0.10g/m以上であることが必要である。
 また、Snの含有量が増加するほど化成処理鋼板10の加工性、溶接性及び耐食性は向上するが、Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり30.0g/mを超過すると、Snによる上述の効果は飽和する。また、Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり30g/mを超過すると、経済的に好ましくない。上述の理由から、Fe-Sn合金層105a及びSn層105bの合計のSn含有量は、金属Sn量で片面当たり30.0g/m以下とする。
The Fe—Sn alloy layer 105a and the Sn layer 105b according to the present embodiment both contain Sn, but the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 0. 0 per metal surface. 10 to 30.0 g / m 2 .
Sn has excellent workability, weldability, and corrosion resistance. By performing molten tin treatment after Sn plating, the corrosion resistance of the chemical conversion steel sheet 10 is further improved, and the surface appearance (mirror appearance) of the chemical conversion steel sheet 10 is improved. ) Can be made more preferable. In order to achieve the above-mentioned effects, the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b needs to be 0.10 g / m 2 or more per side in terms of the amount of metal Sn.
Further, the workability, weldability, and corrosion resistance of the chemical conversion treated steel sheet 10 improve as the Sn content increases, but the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is one side with the amount of metal Sn. Exceeding 30.0 g / m 2 per saturates the effect described above with Sn. In addition, it is not economically preferable that the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b exceeds 30 g / m 2 per side in terms of the amount of metal Sn. For the above reasons, the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 30.0 g / m 2 or less per side in terms of the amount of metal Sn.
 Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり0.30g/m~20.0g/mであることがより好ましい。Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり0.30g/m以上であることで、Snによる上述の効果をより確実に発揮することが可能である。また、Fe-Sn合金層105a及びSn層105bの合計のSn含有量が、金属Sn量で片面当たり20.0g/m以下であることで、製造コストをより削減することが可能となる。 Sn total content of Fe-Sn alloy layer 105a and the Sn layer 105b is more preferably a per side 0.30g / m 2 ~ 20.0g / m 2 of metal Sn amount. Since the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 0.30 g / m 2 or more per one surface in terms of metal Sn, the above-described effects of Sn can be more reliably exhibited. It is. In addition, since the total Sn content of the Fe—Sn alloy layer 105a and the Sn layer 105b is 20.0 g / m 2 or less per side in terms of the metal Sn amount, the manufacturing cost can be further reduced.
 Fe-Sn合金層105aは、金属Fe量で、0.0010~100g/mのFeを含有する。また、Fe-Sn合金層105aは、Sn及びFe以外に、微量元素や製造工程などで混入してしまう不可避的不純物を含んでもよい。
 Fe-Sn合金層105aにおいて、含有するFeの金属Fe量及びSnの金属Sn量の合計が、50質量%以上である。好ましくは、Fe-Sn合金層105aにおいて、含有するFeの金属Fe量及びSnの金属Sn量の合計が、70質量%以上である。
The Fe—Sn alloy layer 105a contains 0.0010 to 100 g / m 2 of Fe in terms of the amount of metallic Fe. In addition to Sn and Fe, the Fe—Sn alloy layer 105a may contain inevitable impurities that are mixed in in trace elements or manufacturing processes.
In the Fe—Sn alloy layer 105a, the total amount of Fe metal Fe and Sn metal Sn contained is 50 mass% or more. Preferably, in the Fe—Sn alloy layer 105a, the total amount of Fe metal Fe and Sn metal Sn contained is 70% by mass or more.
 Sn層105bは、Snのみから構成されていてもよく、Snに加えて、金属Fe量で0.0010~6.0g/mのFeを含有してもよい。また、Sn層105bは、微量元素や製造工程などで混入してしまう不可避的不純物を含んでもよい。
 また、Sn層105bでSnが占める割合は、金属Sn量で50質量%以上である。好ましくは、Sn層105bでSnが占める割合は、金属Sn量で70質量%以上である。
The Sn layer 105b may be composed only of Sn, and may contain 0.0010 to 6.0 g / m 2 of Fe in terms of metal Fe in addition to Sn. In addition, the Sn layer 105b may contain inevitable impurities that are mixed in in trace elements or manufacturing processes.
The proportion of Sn in the Sn layer 105b is 50% by mass or more in terms of the amount of metal Sn. Preferably, the proportion of Sn in the Sn layer 105b is 70% by mass or more in terms of the amount of metallic Sn.
 Fe-Sn合金層105a及びSn層105bの厚みの比は特に限定されるものではなく、上記の金属Sn量が確保されていればよい。 The ratio of the thicknesses of the Fe—Sn alloy layer 105a and the Sn layer 105b is not particularly limited as long as the amount of metal Sn is ensured.
 しかしながら、表面にFe-Sn合金層105a及びSn層105bが形成された鋼板103を容器用鋼板として用いる場合、Sn層105bの表面にフィルムをラミネートしても、または塗料を塗布しても、硫化黒変を防止することは難しい。その原因としては、内容物である飲料や食品等に含まれるSがSnと結合し、黒色のSnS、SnS等が形成されていることが考えられる。
 なお、Sは、L-システイン、L-(-)-シスチン、L-メチオニン等)の含硫アミノ酸の構成成分として飲料や食品に含まれている。
 また、Fe-Sn合金層105a及びSn層105bが緻密に形成されていない場合には、母材である鋼板103の一部が露出している。このような場合には、鋼板103中のFeと飲料や食品等に含まれるSとが結合し、黒色のFeS、Fe、FeSが形成される場合がある。
 上述のSnS、SnS、FeS、Fe、FeS等に起因する黒変を低減するために、これまでは主にFe-Sn合金層105a及びSn層105bの表面にクロメート皮膜が形成されていた。
However, when the steel plate 103 having the Fe—Sn alloy layer 105a and the Sn layer 105b formed on the surface is used as a steel plate for containers, a film is laminated on the surface of the Sn layer 105b, or a paint is applied. It is difficult to prevent blackening. As the cause, it is considered that S contained in beverages, foods, and the like, which are the contents, is combined with Sn to form black SnS, SnS 2 and the like.
S is contained in beverages and foods as a constituent of sulfur-containing amino acids such as L-cysteine, L-(−)-cystine, L-methionine).
In addition, when the Fe—Sn alloy layer 105a and the Sn layer 105b are not densely formed, a part of the steel plate 103 as a base material is exposed. In such a case, Fe contained in the steel plate 103 and S contained in the beverage or food may be combined to form black FeS, Fe 2 S 3 , or Fe 2 S.
In order to reduce blackening caused by the above-described SnS, SnS 2 , FeS, Fe 2 S 3 , Fe 2 S, etc., a chromate film has been mainly applied to the surfaces of the Fe—Sn alloy layer 105 a and the Sn layer 105 b so far. Was formed.
 本実施形態に係る化成処理鋼板10は、耐硫化黒変性を向上するため、Fe-Sn合金層105a及びSn層105bの上層に、従来のクロメート皮膜の代替として、Zr化合物、リン酸化合物及びAl化合物を含有する化成処理皮膜層107が形成される。 In order to improve the sulfurization blackening resistance, the chemical conversion treated steel sheet 10 according to the present embodiment has a Zr compound, a phosphoric acid compound, and an Al layer as an alternative to the conventional chromate film on the Fe-Sn alloy layer 105a and the Sn layer 105b. A chemical conversion film layer 107 containing a compound is formed.
[化成処理皮膜層107について]
 図1A及び図1Bに示したように、Sn層105b上に、化成処理皮膜層107が形成される。化成処理皮膜層107は、Zr化合物を主体とする複合皮膜層であり、金属Zr量で片面当たり1.0~150mg/mのZr化合物と、P量で片面当たり1.0~100mg/mのリン酸化合物と、金属Al量で片面当たり0.10~30.0mg/mのAl化合物と、を含有する。
 なお、本実施形態において、複合皮膜層とは、Zr化合物、リン酸化合物及びAl化合物が完全には混合せずに、部分的に混合した状態で存在している皮膜層を表す。
[Chemical conversion treatment film layer 107]
As shown in FIGS. 1A and 1B, the chemical conversion film layer 107 is formed on the Sn layer 105b. The chemical conversion coating layer 107 is a composite coating layer mainly composed of a Zr compound. The amount of metal Zr is 1.0 to 150 mg / m 2 per side and the amount of P is 1.0 to 100 mg / m per side. 2 phosphoric acid compound and 0.10-30.0 mg / m 2 of Al compound per side in terms of metal Al content.
In the present embodiment, the composite coating layer refers to a coating layer in which the Zr compound, the phosphate compound and the Al compound are not completely mixed but are partially mixed.
 Zr化合物を含有するZr皮膜、リン酸化合物を含有するリン酸皮膜及びAl化合物を含有するAl皮膜の3つの皮膜を重ねてSn層105b上に形成した場合、耐食性や密着性に関してある程度の効果は得られるが、実用的には十分ではない。しかしながら、本実施形態のように、化成処理皮膜層107中でZr化合物とリン酸化合物とAl化合物とが部分的に混合していることにより、上述のように3つの皮膜が重ねて形成されている場合よりも、優れた耐食性や密着性を得ることができる。 When three films of a Zr film containing a Zr compound, a phosphoric acid film containing a phosphoric acid compound, and an Al film containing an Al compound are stacked on the Sn layer 105b, a certain degree of effect on corrosion resistance and adhesion is obtained. Although obtained, it is not practical enough. However, as in the present embodiment, the Zr compound, the phosphate compound, and the Al compound are partially mixed in the chemical conversion treatment film layer 107, so that the three films are overlaid as described above. Excellent corrosion resistance and adhesion can be obtained compared with the case of the present invention.
 本実施形態に係る化成処理皮膜層107に含まれるZr化合物は、耐食性、密着性及び加工密着性を向上させる機能を有する。本実施形態に係るZr化合物としては、例えば、酸化Zr、リン酸Zr、水酸化Zr及びフッ化Zr等が挙げられ、化成処理皮膜層107は、上述のZr化合物を複数含有する。好ましいZr化合物の組合せは、酸化Zr、リン酸Zr及びフッ化Zrである。 The Zr compound contained in the chemical conversion coating layer 107 according to the present embodiment has a function of improving corrosion resistance, adhesion, and processing adhesion. Examples of the Zr compound according to this embodiment include oxidized Zr, phosphoric acid Zr, hydroxylated Zr, and fluorided Zr. The chemical conversion film layer 107 contains a plurality of the above-described Zr compounds. A preferred combination of Zr compounds is Zr oxide, Zr phosphate and Zr fluoride.
 化成処理皮膜層107に含まれるZr化合物の含有量が、金属Zr量で片面当たり1.0mg/m以上の場合には、実用上好適な耐食性、密着性及び加工密着性が確保される。
 一方、Zr化合物の含有量の増加に伴い、耐食性、密着性及び加工密着性が向上する。しかしながら、Zr化合物の含有量が、金属Zr量で片面当たり150mg/mを超えると、化成処理皮膜層107が厚くなりすぎて、主に凝集破壊が原因となり、化成処理皮膜層107のSn層105bに対する密着性が低下するとともに、電気抵抗が上昇して溶接性が低下する。また、Zr化合物の含有量が金属Zr量で150mg/mを超えると、化成処理皮膜層107の付着が不均一であることに起因して、外観が不均一になる場合がある。
 従って、本実施形態に係る化成処理皮膜層107のZr化合物の含有量(すなわち、Zrの含有量)は、金属Zr量で片面当たり1.0mg/m~150mg/mとする。Zr化合物の含有量は、より好ましくは、金属Zr量で片面当たり1.0~120mg/mである。金属Zr量を120g/m以下とすることで、化成処理皮膜層107の製造コストをより削減することが可能となる。
When the content of the Zr compound contained in the chemical conversion coating layer 107 is 1.0 mg / m 2 or more per side in terms of metal Zr, practically suitable corrosion resistance, adhesion and work adhesion are ensured.
On the other hand, as the content of the Zr compound increases, the corrosion resistance, adhesion, and processing adhesion are improved. However, if the content of the Zr compound exceeds 150 mg / m 2 per side in terms of the amount of metal Zr, the chemical conversion coating layer 107 becomes too thick, mainly due to cohesive failure, and the Sn layer of the chemical conversion coating layer 107 While the adhesiveness with respect to 105b falls, an electrical resistance rises and weldability falls. On the other hand, when the content of the Zr compound exceeds 150 mg / m 2 in terms of metal Zr, the appearance may be non-uniform due to non-uniform adhesion of the chemical conversion coating layer 107.
Accordingly, the content of Zr compound of the chemical conversion coating layer 107 according to the present embodiment (i.e., the content of Zr) is a per side 1.0mg / m 2 ~ 150mg / m 2 by metal Zr content. The content of the Zr compound is more preferably 1.0 to 120 mg / m 2 per side in terms of the amount of metal Zr. By making the amount of metal Zr 120 g / m 2 or less, it is possible to further reduce the manufacturing cost of the chemical conversion coating layer 107.
 化成処理皮膜層107は、上述したZr化合物に加えて、1種又は2種以上のリン酸化合物をさらに含む。 The chemical conversion treatment film layer 107 further includes one or more phosphate compounds in addition to the Zr compound described above.
 本実施形態に係るリン酸化合物は、耐食性、密着性、及び加工密着性を向上させる機能を有する。本実施形態に係るリン酸化合物の例としては、リン酸イオンと鋼板103、Fe-Sn合金層105a、Sn層105b及び化成処理皮膜層107に含まれる化合物とが反応して形成されるリン酸Fe、リン酸Ni、リン酸Sn、リン酸Zr、リン酸Al等が挙げられる。化成処理皮膜層107は、上述のリン酸化合物を1種含んでもよく、2種以上含んでもよい。 The phosphoric acid compound according to this embodiment has a function of improving corrosion resistance, adhesion, and processing adhesion. Examples of the phosphoric acid compound according to the present embodiment include phosphoric acid formed by a reaction between a phosphoric acid ion and a compound contained in the steel plate 103, the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion coating layer 107. Fe, phosphoric acid Ni, phosphoric acid Sn, phosphoric acid Zr, phosphoric acid Al, etc. are mentioned. The chemical conversion film layer 107 may contain one or more of the above phosphoric acid compounds.
 化成処理皮膜層107に含まれるリン酸化合物の含有量が多いほど、化成処理鋼板10の耐食性、密着性及び加工密着性が向上する。具体的には、化成処理皮膜層107におけるリン酸化合物の含有量がP量に換算して1.0mg/m以上の場合には、実用上好適な耐食性、密着性及び加工密着性が確保される。
 一方、リン酸化合物の含有量が増加するのに伴い、耐食性、密着性及び加工密着性も向上するが、リン酸化合物の含有量が、P量で片面当たり100mg/mを超えると、化成処理皮膜層107が厚くなりすぎて、主に凝集破壊が原因となり、化成処理皮膜層107のSn層105bに対する密着性が低下するとともに、電気抵抗が上昇して溶接性が低下する。また、リン酸化合物の含有量が、P量で片面当たり100mg/mを超えると、化成処理皮膜層107の付着が不均一であることに起因して、外観が不均一になる場合がある。
 従って、本実施形態に係る化成処理皮膜層107のリン酸化合物の含有量は、P量で片面当たり1.0~100mg/mとする。
 化成処理皮膜層107のリン酸化合物の含有量は、より好ましくは、P量で片面当たり2.0~70.0mg/mである。化成処理皮膜層107のリン酸化合物の含有量を、P量で片面当たり2.0mg/m以上とすることで、より好ましい耐硫化黒変性を得ることが可能となる。また、化成処理皮膜層107のリン酸化合物の含有量を、P量で片面当たり70.0mg/m以下とすることで、化成処理皮膜層107の製造コストをより削減することが可能となる。
As the content of the phosphoric acid compound contained in the chemical conversion treatment film layer 107 increases, the corrosion resistance, adhesion and work adhesion of the chemical conversion treatment steel sheet 10 are improved. Specifically, when the content of the phosphoric acid compound in the chemical conversion coating layer 107 is 1.0 mg / m 2 or more in terms of the amount of P, practically suitable corrosion resistance, adhesion and work adhesion are ensured. Is done.
On the other hand, as the content of the phosphoric acid compound increases, the corrosion resistance, adhesion and processing adhesion also improve. However, if the content of the phosphoric acid compound exceeds 100 mg / m 2 per side in terms of P amount, The treatment film layer 107 becomes too thick, mainly due to cohesive failure, and the adhesion of the chemical conversion treatment film layer 107 to the Sn layer 105b is lowered, and the electrical resistance is increased and the weldability is lowered. Moreover, when the content of the phosphoric acid compound exceeds 100 mg / m 2 per side in terms of the P amount, the appearance may be non-uniform due to non-uniform adhesion of the chemical conversion coating layer 107. .
Accordingly, the content of the phosphoric acid compound in the chemical conversion coating layer 107 according to this embodiment is 1.0 to 100 mg / m 2 per side in terms of the P amount.
The content of the phosphate compound in the chemical conversion coating layer 107 is more preferably 2.0 to 70.0 mg / m 2 per side in terms of P amount. By setting the content of the phosphoric acid compound in the chemical conversion coating layer 107 to 2.0 mg / m 2 or more per side in terms of the P amount, more preferable sulfur blackening resistance can be obtained. Moreover, it becomes possible to further reduce the manufacturing cost of the chemical conversion coating layer 107 by setting the content of the phosphoric acid compound in the chemical conversion coating layer 107 to 70.0 mg / m 2 or less per side in terms of P amount. .
 化成処理皮膜層107は、上述したZr化合物及びリン酸化合物に加えて、Al化合物をさらに含む。化成処理皮膜層107のAl化合物は、化成処理皮膜層107中で主にAl酸化物として存在する。Zrを主成分とする化成処理皮膜層107の皮膜欠陥をAl酸化物が補強することで、化成処理鋼板10は優れた耐硫化黒変性を得ることができる。
 Zrを主成分とする化成処理皮膜層107は、元々極めて均一な皮膜であるため、皮膜欠陥を補強するために化成処理皮膜層107中に添加するAl化合物の量は、金属Al量で片面当たり0.10mg/m以上であればよい。Al化合物の含有量が、金属Al量で片面当たり0.10mg/m以上であることで、化成処理鋼板10の耐硫化黒変性を好適に向上することが可能となる。
 一方、化成処理皮膜層107のAl化合物の含有量が増加するのに伴い、耐硫化黒変性も向上するが、Al化合物の含有量が、金属Al量で片面当たり30.0mg/mを超過すると、耐硫化黒変性が飽和するとともに経済的に好ましくない。そのため、化成処理皮膜層107に含まれるAl化合物の含有量を、金属Al量で片面当たり30.0mg/m以下とする。
 化成処理皮膜層107のAl化合物の含有量は、より好ましくは、金属Al量で片面当たり0.20~20.0mg/mである。Al化合物の含有量を金属Al量で片面当たり0.20mg/m以上とすることで、耐硫化黒変性を好適に向上させることが可能となる。また、Al化合物の含有量を、金属Al量で片面当たり20.0mg/m以下とすることで、化成処理皮膜層107の製造コストをより削減することが可能となる。
The chemical conversion film layer 107 further includes an Al compound in addition to the Zr compound and the phosphate compound described above. The Al compound in the chemical conversion coating layer 107 exists mainly as an Al oxide in the chemical conversion coating layer 107. Since the Al oxide reinforces the film defect of the chemical conversion coating layer 107 containing Zr as a main component, the chemical conversion steel plate 10 can obtain excellent resistance to sulfur blackening.
Since the chemical conversion treatment film layer 107 containing Zr as a main component is originally a very uniform film, the amount of Al compound added to the chemical conversion treatment film layer 107 to reinforce the film defects is the amount of metal Al per side. it may be at 0.10 mg / m 2 or more. When the content of the Al compound is 0.10 mg / m 2 or more per side in terms of the amount of metal Al, it is possible to suitably improve the sulfurization blackening resistance of the chemical conversion treated steel sheet 10.
On the other hand, as the Al compound content of the chemical conversion coating layer 107 increases, the resistance to sulfur blackening also improves, but the Al compound content exceeds 30.0 mg / m 2 per side in terms of the amount of metal Al. As a result, the resistance to sulfur blackening is saturated and economically undesirable. Therefore, the content of the Al compound contained in the chemical conversion coating layer 107 is 30.0 mg / m 2 or less per side in terms of the amount of metal Al.
The content of the Al compound in the chemical conversion coating layer 107 is more preferably 0.20 to 20.0 mg / m 2 per side in terms of the amount of metallic Al. By setting the content of the Al compound to 0.20 mg / m 2 or more per side in terms of the amount of metallic Al, it is possible to suitably improve the resistance to sulfur blackening. Moreover, the manufacturing cost of the chemical conversion treatment film layer 107 can be further reduced by setting the content of the Al compound to 20.0 mg / m 2 or less per side in terms of the amount of metal Al.
 化成処理皮膜層107中のAl酸化物(Al)の含有量は、金属Al量で0.10~30.0mg/mであることが好ましい。化成処理皮膜層107中のAl酸化物の含有量が上述の範囲であることにより、化成処理皮膜層107の皮膜欠陥を好適に補強し、優れた耐硫化黒変性を得ることができる。 The content of Al oxide (Al 2 O 3 ) in the chemical conversion coating layer 107 is preferably 0.10 to 30.0 mg / m 2 in terms of metal Al. When the content of the Al oxide in the chemical conversion coating layer 107 is in the above range, the coating defects of the chemical conversion coating layer 107 can be suitably reinforced and excellent sulfurization resistance can be obtained.
 また、Al化合物を化成処理皮膜層107中に含有させることにより、Alと同様に耐硫化黒変性を向上させるリン酸化合物の含有量を低減することができる。
 化成処理皮膜層107中に含有されるリン酸化合物のうち、リン酸イオンがZrイオンと反応して生成されるリン酸Zrは、化成処理皮膜層107を形成するための化成処理液中に多量に存在する場合には沈殿し、化成処理液が白濁する。
 ここで、Al化合物は、リン酸化合物よりも耐硫化黒変性の向上に寄与する。そのため、化成処理皮膜層107がAl化合物を含有することで、耐硫化黒変性を好適に向上しつつ、化成処理液の白濁の原因となるリン酸化合物の含有量を低減することができる。
 また、リン酸化合物の含有量を低減することで、Zrとリン酸との結合及びAlとリン酸との結合を阻害するFイオンの量を削減することができる。その結果、より容易にZrを析出させることができるため、化成処理皮膜層107を形成するための電解効率を向上することができる。
Further, by containing the Al compound in the chemical conversion coating layer 107, the content of the phosphoric acid compound that improves the sulfur blackening resistance can be reduced in the same manner as Al.
Of the phosphoric acid compound contained in the chemical conversion treatment film layer 107, a large amount of phosphoric acid Zr produced by reaction of phosphate ions with Zr ions is contained in the chemical conversion treatment solution for forming the chemical conversion treatment coating layer 107. In the presence of water, it precipitates and the chemical conversion solution becomes cloudy.
Here, the Al compound contributes to improvement of resistance to sulfur blackening as compared with the phosphoric acid compound. Therefore, when the chemical conversion treatment film layer 107 contains an Al compound, the content of the phosphoric acid compound that causes white turbidity of the chemical conversion treatment liquid can be reduced while suitably improving the resistance to sulfur blackening.
Further, by reducing the content of the phosphoric acid compound, the amount of F ions that inhibit the binding between Zr and phosphoric acid and the binding between Al and phosphoric acid can be reduced. As a result, Zr can be deposited more easily, so that the electrolytic efficiency for forming the chemical conversion treatment film layer 107 can be improved.
 なお、化成処理皮膜層107は、上述のZr化合物、リン酸化合物及びAl化合物の他に、製造工程などで混入してしまう不可避的不純物を含んでもよい。また、化成処理皮膜層107がCrを含有する場合には、Crの含有量の上限は2mg/mである。 In addition to the above-described Zr compound, phosphoric acid compound, and Al compound, the chemical conversion treatment film layer 107 may contain inevitable impurities that are mixed in during the manufacturing process. Moreover, when the chemical conversion treatment film layer 107 contains Cr, the upper limit of the Cr content is 2 mg / m 2 .
 本実施形態に係る化成処理鋼板10は、化成処理皮膜層107の付着量を低減した場合であっても、優れた耐硫化黒変性を示す。
 例えば、化成処理鋼板10の表面に塗料を付着させ、焼き付けて塗膜を形成する。1時間沸騰させた0.6質量%L-システイン液を保持する耐熱瓶の口に、表面に塗膜を形成した化成処理鋼板10を蓋として載置して固定し、均熱炉等を用いて110℃で30分間の熱処理を施す。上述の熱処理後の化成処理鋼板10において、耐熱瓶との接触部分の外観を観察すると、本実施形態に係る化成処理鋼板10を用いた場合には、接触部分の面積の50%以上で黒変が生じない。
The chemical conversion treated steel sheet 10 according to the present embodiment exhibits excellent resistance to sulfur blackening even when the adhesion amount of the chemical conversion film 107 is reduced.
For example, a coating material is made to adhere to the surface of the chemical conversion treatment steel plate 10, and is baked, and a coating film is formed. A chemical conversion treated steel sheet 10 with a coating film formed on the surface is placed and fixed as a lid on the mouth of a heat-resistant bottle holding a 0.6 mass% L-cysteine liquid boiled for 1 hour, using a soaking furnace or the like. Heat treatment at 110 ° C. for 30 minutes. In the chemical conversion treated steel sheet 10 after the heat treatment described above, when the appearance of the contact portion with the heat-resistant bottle is observed, when the chemical conversion treated steel plate 10 according to the present embodiment is used, blackening occurs at 50% or more of the area of the contact portion. Does not occur.
 上述のように、本実施形態に係る化成処理鋼板10は、優れた耐食性及び耐硫化黒変性を有する。そのため、化成処理皮膜層107の表面をフィルムまたは塗料で被覆しない場合でも、化成処理鋼板10を容器用鋼板として用いることが可能である。 As described above, the chemical conversion treated steel sheet 10 according to this embodiment has excellent corrosion resistance and sulfide blackening resistance. Therefore, even when the surface of the chemical conversion treatment film layer 107 is not covered with a film or paint, the chemical conversion treatment steel plate 10 can be used as a steel plate for containers.
<化成処理鋼板10の層構造について>
 化成処理鋼板10は、上述のように、鋼板103上にFe-Sn合金層105a、Sn層105b及び化成処理皮膜層107を有する。つまり、化成処理鋼板10において、鋼板103とFe-Sn合金層105aとは接しており、鋼板103とFe-Sn合金層105aとの間に別の層を有さない。同様に、Fe-Sn合金層105aとSn層105bとは接しており、Fe-Sn合金層105aとSn層105bとの間に別の層を有さない。さらに、Sn層105bと化成処理皮膜層107とは接しており、Sn層105bと化成処理皮膜層107との間に別の層を有さない。
<Regarding the layer structure of the chemical conversion treated steel sheet 10>
As described above, the chemical conversion steel sheet 10 has the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion film layer 107 on the steel sheet 103. That is, in the chemical conversion treated steel sheet 10, the steel sheet 103 and the Fe—Sn alloy layer 105a are in contact with each other, and no other layer is provided between the steel sheet 103 and the Fe—Sn alloy layer 105a. Similarly, the Fe—Sn alloy layer 105a and the Sn layer 105b are in contact with each other, and no other layer is provided between the Fe—Sn alloy layer 105a and the Sn layer 105b. Further, the Sn layer 105 b and the chemical conversion treatment film layer 107 are in contact with each other, and no other layer is provided between the Sn layer 105 b and the chemical conversion treatment film layer 107.
<成分含有量の測定方法について>
 ここで、Fe-Sn合金層105a及びSn層105b中の金属Sn量及び金属Fe量は、例えば、蛍光X線法によって測定することができる。この場合、金属Sn量または金属Fe量既知の試料を用いて、金属Sn量または金属Fe量に関する検量線をあらかじめ作成し、作成した検量線を用いて相対的に金属Sn量または金属Fe量を特定する。
<About measuring method of component content>
Here, the amount of metallic Sn and the amount of metallic Fe in the Fe—Sn alloy layer 105a and the Sn layer 105b can be measured by, for example, a fluorescent X-ray method. In this case, using a sample with a known amount of metal Sn or metal Fe, a calibration curve relating to the amount of metal Sn or metal Fe is created in advance, and the amount of metal Sn or metal Fe is relatively determined using the created calibration curve. Identify.
 化成処理皮膜層107中の金属Zr量、P量及び金属Al量は、例えば、蛍光X線分析等の定量分析法により測定することが可能である。また、化成処理皮膜層107中にどのような化合物が存在しているかについては、X線光電子分光測定法(X-ray Photoelectron Spectroscopy:XPS)による分析を行うことで、特定することが可能である。
 また、化成処理皮膜層107中のAlの含有量は、まずX線光電分光法(X-ray Photoelectron Spectroscopy、XPS)によりAl、金属Al及びその他のAl化合物のピーク強度比を求める。その上で、上述のように蛍光X線分析等の定量分析法により求めた全金属Al量とXPSにより求めたピーク強度比とから、化成処理皮膜層107中のAlの含有量を算出する。
The amount of metal Zr, the amount of P, and the amount of metal Al in the chemical conversion coating layer 107 can be measured by a quantitative analysis method such as fluorescent X-ray analysis, for example. Further, what kind of compound is present in the chemical conversion coating layer 107 can be specified by performing an analysis by X-ray photoelectron spectroscopy (XPS). .
In addition, the content of Al 2 O 3 in the chemical conversion coating layer 107 is determined based on the peak intensity ratio of Al 2 O 3 , metal Al, and other Al compounds by X-ray photoelectron spectroscopy (XPS). Ask for. Then, the content of Al 2 O 3 in the chemical conversion coating layer 107 is calculated from the total metal Al amount obtained by the quantitative analysis method such as fluorescent X-ray analysis and the peak intensity ratio obtained by XPS as described above. calculate.
 なお、各成分の測定方法は上記の方法に限定されず、公知の測定方法を適用することが可能である。 In addition, the measuring method of each component is not limited to said method, It is possible to apply a well-known measuring method.
<化成処理鋼板の製造方法について>
 次に、図2を参照しながら、本実施形態に係る化成処理鋼板10の製造方法について、詳細に説明する。図2は、本実施形態に係る化成処理鋼板10の製造方法の流れの一例について説明するための流れ図である。
<About the manufacturing method of a chemical conversion treatment steel plate>
Next, the manufacturing method of the chemical conversion treatment steel plate 10 which concerns on this embodiment is demonstrated in detail, referring FIG. FIG. 2 is a flowchart for explaining an example of the flow of the manufacturing method of the chemical conversion treated steel sheet 10 according to the present embodiment.
 [前処理工程]
 本実施形態に係る化成処理鋼板10の製造方法では、まず、必要に応じて、鋼板103に対して公知の前処理が実施される(ステップS101)。
[Pretreatment process]
In the method for manufacturing the chemical conversion treated steel sheet 10 according to the present embodiment, first, a known pretreatment is performed on the steel sheet 103 as necessary (step S101).
 [めっき工程]
 その後、鋼板103の表面にSnめっき層(不図示)を形成する(ステップS103)。Snめっき層(不図示)の形成方法は特に限定されず、公知の電気めっき法や、溶融したSnに鋼板103を浸漬する方法等を用いることができる。
[Plating process]
Thereafter, an Sn plating layer (not shown) is formed on the surface of the steel plate 103 (step S103). The formation method of Sn plating layer (not shown) is not specifically limited, The well-known electroplating method, the method of immersing the steel plate 103 in molten Sn, etc. can be used.
 [溶融溶錫処理(リフロー処理工程)工程]
 Snめっき層(不図示)を形成した後、溶融溶錫処理(リフロー処理)を行う(ステップS104)。これにより、鋼板103の表面にFe-Sn合金層105aおよびSn層105bを形成する。
 溶融溶錫処理は、鋼板103上にSnめっき層(不図示)を形成した後に、200℃以上に加熱し、Snめっき層(不図示)を一旦溶融させ、その後急冷することにより行われる。この溶融溶錫処理により、鋼板103側に位置するSnめっき層(不図示)中のSnが鋼板103中のFeと合金化して、Fe-Sn合金層105aが形成され、残部のSnがSn層105bを形成する。
[Molten tin treatment (reflow treatment process) process]
After forming the Sn plating layer (not shown), a molten tin treatment (reflow treatment) is performed (step S104). Thereby, the Fe—Sn alloy layer 105 a and the Sn layer 105 b are formed on the surface of the steel plate 103.
The molten tin treatment is performed by forming an Sn plating layer (not shown) on the steel sheet 103, heating to 200 ° C. or higher, once melting the Sn plating layer (not shown), and then rapidly cooling. By this molten tin treatment, Sn in the Sn plating layer (not shown) located on the steel plate 103 side is alloyed with Fe in the steel plate 103 to form the Fe—Sn alloy layer 105a, and the remaining Sn is Sn layer. 105b is formed.
 [電解処理工程]
 その後、陰極電解処理により、化成処理皮膜層107を形成する(ステップS105)。
 化成処理皮膜層107は、電解処理(例えば、陰極電解処理)により形成される。電解処理により化成処理皮膜層107を形成するために用いる化成処理液は、10ppm以上20000ppm以下のZrイオンと、10ppm以上20000ppm以下のFイオンと、10ppm以上3000ppm以下のリン酸イオンと、合計で100ppm以上30000ppm以下の硝酸イオン及び硫酸イオンと、500ppm以上5000ppm以下のAlイオンと、を含む。また、化成処理液では、Alイオンの供給源として(NHAlFを用いる。
 なお、硝酸イオン及び硫酸イオンは、化成処理液に両イオンの合計で10ppm以上3000ppm以下含まれていればよく、硝酸イオンと硫酸イオンとの両イオンが化成処理液に含まれていてもよいし、硝酸イオンと硫酸イオンとのいずれか一方のみが化成処理液に含まれていてもよい。
[Electrolytic treatment process]
Thereafter, the chemical conversion treatment film layer 107 is formed by cathodic electrolysis (step S105).
The chemical conversion treatment film layer 107 is formed by electrolytic treatment (for example, cathodic electrolytic treatment). The chemical conversion treatment solution used to form the chemical conversion coating layer 107 by electrolytic treatment is 10 ppm or more and 20000 ppm or less of Zr ions, 10 ppm or more and 20000 ppm or less of F ions, and 10 ppm or more and 3000 ppm or less of phosphate ions. This includes nitrate ions and sulfate ions of 30000 ppm or less and Al ions of 500 ppm or more and 5000 ppm or less. In the chemical conversion solution, (NH 4 ) 3 AlF 6 is used as a supply source of Al ions.
The nitrate ion and the sulfate ion only need to be contained in the chemical conversion treatment liquid in a total of 10 ppm to 3000 ppm, and both the nitrate ion and the sulfate ion may be contained in the chemical conversion treatment liquid. Only one of nitrate ion and sulfate ion may be contained in the chemical conversion treatment liquid.
 化成処理液は、好ましくは、200ppm以上17000ppm以下のZrイオンと、200ppm以上17000ppm以下のFイオンと、100ppm以上2000ppm以下のリン酸イオンと、合計で1000ppm以上23000ppm以下の硝酸イオン及び硫酸イオンと、500ppm以上3000以下のAlイオンと、を含むことが好ましい。
 Zrイオンの濃度を200ppm以上とすることで、Zrの付着量低下をより確実に防止することが可能となる。また、Fイオンの濃度を200ppm以上とすることで、リン酸塩の沈殿に伴う化成処理皮膜層107の白濁をより確実に防止することができる。
The chemical conversion treatment liquid is preferably 200 ppm or more and 17000 ppm or less of Zr ions, 200 ppm or more and 17000 ppm or less of F ions, 100 ppm or more and 2000 ppm or less of phosphate ions, and a total of 1000 ppm or more and 23000 ppm or less of nitrate ions and sulfate ions, It is preferable to contain 500 ppm or more and 3000 or less Al ions.
By setting the concentration of Zr ions to 200 ppm or more, it is possible to more reliably prevent a decrease in the amount of Zr adhesion. Moreover, the cloudiness of the chemical conversion treatment film layer 107 accompanying precipitation of phosphate can be more reliably prevented by setting the concentration of F ions to 200 ppm or more.
 同様に、リン酸イオンの濃度を100ppm以上とすることで、リン酸塩の沈殿に伴う化成処理皮膜層107の白濁をより確実に防止することができる。また、硝酸イオンと硫酸イオンとの少なくとも一方の濃度を1000ppm以上とすることで、化成処理皮膜層107の付着効率の低下をより確実に防止することができる。また、Alイオンの濃度を500ppm以上とすることで、より確実に耐硫化黒変性の向上効果を実現することができる。
 なお、化成処理液の各成分の上限値を上記のような値とすることで、化成処理皮膜層107の製造コストをより確実に削減することができる。
Similarly, by setting the concentration of phosphate ions to 100 ppm or more, it is possible to more reliably prevent the clouding of the chemical conversion treatment film layer 107 accompanying the precipitation of phosphate. Moreover, the fall of the adhesion efficiency of the chemical conversion treatment film layer 107 can be prevented more reliably by setting the concentration of at least one of nitrate ions and sulfate ions to 1000 ppm or more. In addition, when the Al ion concentration is 500 ppm or more, the effect of improving sulfurization resistance can be more reliably realized.
In addition, the manufacturing cost of the chemical conversion treatment film layer 107 can be reduced more reliably by setting the upper limit value of each component of the chemical conversion treatment liquid to the above values.
 化成処理液の温度は、5℃以上90℃未満であることが好ましい。化成処理液の温度が5℃未満である場合には、化成処理皮膜層107の形成効率が悪く、経済的ではないため、好ましくない。また、化成処理液の温度が90℃以上である場合には、形成される化成処理皮膜層107の組織が不均一であり、割れ、マイクロクラック等の欠陥が発生しこれらの欠陥が腐食等の起点となるため、好ましくない。
 なお、化成処理液の温度を、Fe-Sn合金層105a及びSn層105bが形成された鋼板103の表面温度よりも高くすることにより、界面における化成処理液の反応性が高まるため、化成処理皮膜層107の付着効率が向上する。そのため、化成処理液の温度は、Fe-Sn合金層105a及びSn層105bが形成された鋼板103の表面温度よりも高い方が好ましい。
It is preferable that the temperature of a chemical conversion liquid is 5 degreeC or more and less than 90 degreeC. When the temperature of the chemical conversion treatment liquid is less than 5 ° C., the formation efficiency of the chemical conversion treatment film layer 107 is poor and not economical, which is not preferable. In addition, when the temperature of the chemical conversion treatment liquid is 90 ° C. or higher, the structure of the chemical conversion treatment film layer 107 to be formed is non-uniform, and defects such as cracks and microcracks are generated. Since it is the starting point, it is not preferable.
In addition, since the reactivity of the chemical conversion treatment liquid at the interface increases by making the temperature of the chemical conversion treatment liquid higher than the surface temperature of the steel plate 103 on which the Fe—Sn alloy layer 105a and the Sn layer 105b are formed, the chemical conversion treatment film The deposition efficiency of the layer 107 is improved. Therefore, the temperature of the chemical conversion treatment liquid is preferably higher than the surface temperature of the steel sheet 103 on which the Fe—Sn alloy layer 105a and the Sn layer 105b are formed.
 電解処理を行う際の電流密度は、1.0A/dm以上100A/dm以下であることが好ましい。電流密度が1.0A/dm未満である場合には、化成処理皮膜層107の付着量が低下するとともに、電解処理時間が長くなる場合があるため、好ましくない。また、電流密度が100A/dm超過である場合には、化成処理皮膜層107の付着量が過剰になり、形成された化成処理皮膜層107のうち、付着が不十分な化成処理皮膜層107が、電解処理後の水洗等による洗浄工程で洗い流される(剥離する)可能性があるため、好ましくない。
 電解処理を行う時間(電解処理時間)は、0.20秒以上150秒以下であることが好ましい。電解処理時間が0.20秒未満である場合には、化成処理皮膜層107の付着量が低下し、所望の性能が得られないため好ましくない。一方、電解処理時間が150秒超過である場合には、化成処理皮膜層107の付着量が過剰になり、形成された化成処理皮膜層107のうち、付着が不十分な化成処理皮膜層107が、電解処理後の水洗等による洗浄工程で洗い流される(剥離する)可能性があるため、好ましくない。
The current density during the electrolytic treatment is preferably 1.0 A / dm 2 or more and 100 A / dm 2 or less. When the current density is less than 1.0 A / dm 2, it is not preferable because the amount of the chemical conversion film 107 is reduced and the electrolytic treatment time may be increased. Further, when the current density exceeds 100 A / dm 2 , the amount of the chemical conversion treatment film layer 107 is excessive, and the chemical conversion treatment film layer 107 having insufficient adhesion among the formed chemical conversion treatment film layers 107. However, it is not preferable because it may be washed away (peeled off) in a washing step such as washing with water after electrolytic treatment.
The time for the electrolytic treatment (electrolytic treatment time) is preferably 0.20 seconds or more and 150 seconds or less. When the electrolytic treatment time is less than 0.20 seconds, the amount of adhesion of the chemical conversion treatment film layer 107 decreases, and the desired performance cannot be obtained, which is not preferable. On the other hand, when the electrolytic treatment time exceeds 150 seconds, the amount of the chemical conversion treatment film layer 107 is excessive, and among the formed chemical conversion treatment film layers 107, the chemical conversion treatment film layer 107 with insufficient adhesion is formed. Since it may be washed away (peeled off) in a washing step such as washing with water after the electrolytic treatment, it is not preferable.
 化成処理液のpHは3.1~3.7の範囲が好ましく、より好ましくは3.5前後である。化成処理液のpHの調整には、必要に応じて、硝酸あるいはアンモニア等を加えてもよい。
 上記の条件で電解処理を行うことにより、Sn層105bの表面に、本実施形態に係る化成処理皮膜層107を形成することができる。
The pH of the chemical conversion solution is preferably in the range of 3.1 to 3.7, more preferably around 3.5. For adjusting the pH of the chemical conversion treatment liquid, nitric acid or ammonia may be added as necessary.
By performing the electrolytic treatment under the above conditions, the chemical conversion treatment film layer 107 according to the present embodiment can be formed on the surface of the Sn layer 105b.
 本実施形態に係る化成処理皮膜層107の形成にあたっては、電解処理に用いる化成処理液中に、更にタンニン酸を添加してもよい。化成処理液にタンニン酸を添加することで、タンニン酸が鋼板103中のFeと反応し、鋼板103の表面にタンニン酸Feの皮膜を形成する。タンニン酸Feの皮膜は、耐錆性及び密着性を向上させるため、好ましい。 In forming the chemical conversion treatment film layer 107 according to this embodiment, tannic acid may be further added to the chemical conversion treatment solution used for the electrolytic treatment. By adding tannic acid to the chemical conversion treatment liquid, the tannic acid reacts with Fe in the steel sheet 103 to form a film of Fe tannic acid on the surface of the steel sheet 103. A film of Fe tannate is preferable because it improves rust resistance and adhesion.
 化成処理液の溶媒としては、例えば、脱イオン水、蒸留水等を使用できる。化成処理液の溶媒の好ましい電気伝導度は10μS/cm以下で、さらに好ましくは5μS/cm以下、さらに好ましくは3μS/cm以下である。ただし、上記化成処理液の溶媒は、これに限定されず、溶解する材料や形成方法及び化成処理皮膜層107の形成条件等に応じて、適宜選択することが可能である。ただし、安定的な各成分の付着量安定性に基づく工業生産性、コスト、環境面から、脱イオン水または蒸留水を用いることが好ましい。 As the solvent for the chemical conversion treatment liquid, for example, deionized water, distilled water or the like can be used. The electrical conductivity of the chemical conversion solution solvent is preferably 10 μS / cm or less, more preferably 5 μS / cm or less, and further preferably 3 μS / cm or less. However, the solvent of the said chemical conversion liquid is not limited to this, It is possible to select suitably according to the material to melt | dissolve, a formation method, the formation conditions of the chemical conversion treatment film layer 107, etc. However, it is preferable to use deionized water or distilled water from the viewpoint of industrial productivity, cost, and environment based on the stable adhesion amount of each component.
 Zrの供給源としては、例えば、HZrFのようなZr錯体を使用することが可能である。上記のようなZr錯体中のZrは、カソード電極界面におけるpHの上昇に伴う加水分解反応により、Zr4+として化成処理液中に存在する。このようなZrイオンは、化成処理液中で金属表面に存在する水酸基(-OH)と脱水縮合反応をすることによりZrOやZr(PO等の化合物を形成する。 As a Zr source, for example, a Zr complex such as H 2 ZrF 6 can be used. Zr in the Zr complex as described above is present in the chemical conversion solution as Zr 4+ due to a hydrolysis reaction accompanying an increase in pH at the cathode electrode interface. Such Zr ions form a compound such as ZrO 2 or Zr 3 (PO 4 ) 4 by a dehydration condensation reaction with a hydroxyl group (—OH) present on the metal surface in the chemical conversion solution.
 また、化成処理液においては、(NHAlFをAlの供給源として使用する。(NHAlFをAlの供給源として使用することで、AlはFと錯体を形成した状態(以下、AlF錯体と呼称する)で化成処理液中に存在する。AlF錯体中のAlは電解処理工程においてZrと共に析出して化成処理皮膜層107を構成することで、上述したように耐硫化黒変性に寄与する。
 また、Alは、Zrと同様に、化成処理液中でカチオンとして存在する。そのため、Alの供給源として(NHAlFを用いることで、化成処理液中のリン酸イオンの濃度を増加させることなく、Alを化成処理液中に供給することが可能となる。
 一方、特許文献3のように、Alの供給源としてAl(SO等を用いた場合には、AlF錯体が形成されないため、電解処理工程時にAlが好適に析出せず、化成処理皮膜層107中のAlの含有量が非常に少なくなる。この場合には、化成処理皮膜層107が好適な耐硫化黒変性を有さないため、好ましくない。
In the chemical conversion solution, (NH 4 ) 3 AlF 6 is used as an Al supply source. By using (NH 4 ) 3 AlF 6 as a supply source of Al, Al is present in the chemical conversion solution in a state where it is complexed with F (hereinafter referred to as AlF complex). Al in the AlF complex is precipitated together with Zr in the electrolytic treatment process to form the chemical conversion coating layer 107, thereby contributing to the resistance to sulfur blackening resistance as described above.
Further, Al is present as a cation in the chemical conversion treatment liquid, like Zr. Therefore, by using (NH 4 ) 3 AlF 6 as the supply source of Al, it becomes possible to supply Al into the chemical conversion treatment liquid without increasing the concentration of phosphate ions in the chemical conversion treatment liquid.
On the other hand, when Al 2 (SO 4 ) 3 or the like is used as a supply source of Al as in Patent Document 3, AlF complex is not formed, so that Al is not suitably deposited during the electrolytic treatment process, and chemical conversion treatment is performed. The Al content in the coating layer 107 is very low. In this case, since the chemical conversion treatment film layer 107 does not have suitable sulfurization blackening resistance, it is not preferable.
 [後処理工程]
 その後、必要に応じて、Fe-Sn合金層105a、Sn層105b及び化成処理皮膜層107の形成された鋼板103に対して、公知の後処理が実施される(ステップS107)。
 上述の流れで処理が行われることで、本実施形態に係る化成処理鋼板10が製造される。
[Post-processing process]
Thereafter, if necessary, a known post-treatment is performed on the steel sheet 103 on which the Fe—Sn alloy layer 105a, the Sn layer 105b, and the chemical conversion treatment film layer 107 are formed (step S107).
By performing the processing in the above-described flow, the chemical conversion treated steel sheet 10 according to the present embodiment is manufactured.
 なお、上記説明では、電解処理により化成処理皮膜層107を形成する場合について説明を行ったが、化成処理皮膜の形成に十分な時間を掛けることが許容される場合には、電解処理ではなく浸漬処理により、化成処理皮膜層107を形成してもよい。 In the above description, the case where the chemical conversion treatment film layer 107 is formed by the electrolytic treatment has been described. However, when it is allowed to take a sufficient time for the formation of the chemical conversion treatment coating, the immersion treatment is not performed. The chemical conversion treatment film layer 107 may be formed by the treatment.
 以下に、実施例を示しながら、本発明の実施形態に係る化成処理鋼板及び化成処理鋼板の製造方法について、具体的に説明する。なお、以下に示す実施例は、本発明の実施形態に係る化成処理鋼板及び化成処理鋼板の製造方法の一例であって、本発明の実施形態に係る化成処理鋼板及び化成処理鋼板の製造方法が、下記の例に限定されるものではない。 Hereinafter, the chemical conversion treatment steel plate and the method for manufacturing the chemical conversion treatment steel plate according to the embodiment of the present invention will be specifically described with reference to examples. In addition, the Example shown below is an example of the manufacturing method of the chemical conversion treatment steel plate and chemical conversion treatment steel plate which concern on embodiment of this invention, Comprising: The manufacturing method of the chemical conversion treatment steel plate and chemical conversion treatment steel plate which concern on embodiment of this invention is shown. However, the present invention is not limited to the following examples.
(実施例1)
 実施例1では、化成処理皮膜層におけるZr化合物及びリン酸化合物の含有量を変えずに、Al化合物の含有量を変えて、耐硫化黒変性がどのように変化するかについて、検証を行った。
Example 1
In Example 1, the content of the Zr compound and the phosphate compound in the chemical conversion coating layer was not changed, but the content of the Al compound was changed to verify how the sulfurization blackening resistance changed. .
 実施例1では、容器用の鋼板として一般的に用いられる鋼板を母材として利用した。鋼板上にSnめっき層を形成した状態で溶融溶錫処理を行うことにより、鋼板上にFe-Sn合金層及びSn層を形成した。Fe-Sn合金層及びSn層の合計のSnの含有量は、全ての試料において、金属Sn量で片面当たり2.8g/mとした。
 その上で、化成処理皮膜層中のAl化合物の濃度を試料ごとに変えて化成処理皮膜層を形成し、複数の試料を製造した。ここで、各試料において、Zr化合物の含有量は、金属Zr量で片面当たり8mg/mであり、リン酸化合物の含有量は、P量で片面当たり3mg/mであった。
In Example 1, a steel plate generally used as a steel plate for containers was used as a base material. An Fe—Sn alloy layer and an Sn layer were formed on the steel sheet by performing molten tin treatment in the state where the Sn plating layer was formed on the steel sheet. The total Sn content of the Fe—Sn alloy layer and the Sn layer was 2.8 g / m 2 per side in terms of the amount of metallic Sn in all samples.
Then, the concentration of the Al compound in the chemical conversion coating layer was changed for each sample to form a chemical conversion coating layer, and a plurality of samples were manufactured. Here, in each sample, the Zr compound content was 8 mg / m 2 per side in terms of metal Zr, and the phosphate compound content was 3 mg / m 2 per side in terms of P amount.
 耐硫化黒変性の評価は、次のように行った。まず、1時間沸騰させた0.6質量%L-システイン液を耐熱瓶の中に入れ、この耐熱瓶の口に蓋として上記の試料(φ40mm)を載置及び固定した。次に、上述のように蓋をした耐熱瓶に対して、110℃で15分間の熱処理(レトルト処理)を均熱炉にて行った。その後、各試料において、耐熱瓶との接触部分の外観観察を行い、以下の基準に基づいて、10段階の評価を行った。なお、下記の評価基準において、評点5点以上であれば、実際の使用に耐えうる。 The evaluation of the resistance to sulfurization blackening was performed as follows. First, a 0.6 mass% L-cysteine solution boiled for 1 hour was placed in a heat-resistant bottle, and the sample (φ40 mm) was placed and fixed as a lid on the mouth of the heat-resistant bottle. Next, the heat-resistant bottle covered as described above was subjected to heat treatment (retort treatment) at 110 ° C. for 15 minutes in a soaking furnace. Then, in each sample, the external appearance observation of the contact part with a heat-resistant bottle was performed, and 10 steps | paragraphs of evaluation were performed based on the following references | standards. In addition, in the following evaluation criteria, if it is 5 points or more, it can endure actual use.
 <耐硫化黒変性評価基準>
 試料と0.6質量%L-システイン液との接触面積のうち、黒色に変化しなかった面積の割合で、1~10点の評点をつけた。
  10点:100%~90%以上
   9点:90%未満~80%以上
   8点:80%未満~70%以上
   7点:70%未満~60%以上
   6点:60%未満~50%以上
   5点:50%未満~40%以上
   4点:40%未満~30%以上
   3点:30%未満~20%以上
   2点:20%未満~10%以上
   1点:10%未満~0%以上
<Evaluation criteria for sulfur blackening resistance>
Of the contact area between the sample and the 0.6 mass% L-cysteine solution, a score of 1 to 10 points was given by the ratio of the area that did not change to black.
10 points: 100% to 90% or more 9 points: less than 90% to 80% or more 8 points: less than 80% to 70% or more 7 points: less than 70% to 60% or more 6 points: less than 60% to 50% or more 5 Points: less than 50% to 40% or more 4 points: less than 40% to 30% or more 3 points: less than 30% to 20% or more 2 points: less than 20% to 10% or more 1 point: less than 10% to 0% or more
 得られた評価結果を、図3に示した。図3において、横軸は、各試料中の化成処理皮膜層におけるAl化合物の含有量(金属Al量)を示し、縦軸は、耐硫化黒変性の評価結果を示している。
 図3に示すように、Al化合物の含有量が、金属Al量で片面当たり0.10mg/m未満では、耐硫化黒変性の評価結果は評点1であった。一方、Al化合物の含有量が、金属Al量で片面当たり0.10mg/m以上では、耐硫化黒変性の評価結果は評点7以上であり、極めて優れた耐硫化黒変性を有することが明らかとなった。
 この結果から、化成処理皮膜層中に所定量のAl化合物を含有させることで、化成処理皮膜を有する化成処理鋼板の耐硫化黒変性が飛躍的に向上することが示された。
The obtained evaluation results are shown in FIG. In FIG. 3, the horizontal axis indicates the content of Al compound (amount of metal Al) in the chemical conversion coating layer in each sample, and the vertical axis indicates the evaluation result of resistance to sulfur blackening.
As shown in FIG. 3, when the content of the Al compound is less than 0.10 mg / m 2 per side in terms of the amount of metallic Al, the evaluation result of the resistance to sulfur blackening was a rating of 1. On the other hand, when the content of the Al compound is 0.10 mg / m 2 or more per side in terms of the amount of metal Al, the evaluation result of the resistance to sulfur blackening is a score of 7 or more, and it is clear that the resistance to sulfur blackening is extremely excellent. It became.
From this result, it was shown that by containing a predetermined amount of Al compound in the chemical conversion coating layer, the sulfur blackening resistance of the chemical conversion steel plate having the chemical conversion coating was dramatically improved.
(実施例2)
 次に、化成処理皮膜層107に含有される各成分の成分量を変化させながら、耐硫化黒変性がどのように変化するかについて、検証を行った。
 より詳細には、Fe-Sn合金層及びSn層が形成された鋼板を利用し、Sn層上に化成処理皮膜層を形成した。
 また、発明例A1~A18及び比較例a1~a4では、Alイオンの供給源として(NHAlFを用いたのに対し、比較例a5及びa6では、Alイオンの供給源としてAl(SOを用いて化成処理皮膜層を形成した。
(Example 2)
Next, it verified about how sulfuration blackening resistance changes, changing the component amount of each component contained in the chemical conversion treatment film layer 107.
More specifically, a chemical conversion treatment film layer was formed on the Sn layer using a steel sheet on which an Fe—Sn alloy layer and an Sn layer were formed.
In Invention Examples A1 to A18 and Comparative Examples a1 to a4, (NH 4 ) 3 AlF 6 was used as the Al ion supply source, whereas in Comparative Examples a5 and a6, Al 2 was used as the Al ion supply source. A chemical conversion film layer was formed using (SO 4 ) 3 .
 A1~A18及びa1~a6の化成処理鋼板について、化成処理皮膜層中に含まれる金属Zr量、P量及び金属Al量を蛍光X線付着量計により測定するとともに、耐食性及び耐硫化黒変性の評価を行った。
 また、化成処理皮膜層中のAlの含有量は、まずX線光電分光法(X-ray Photoelectron Spectroscopy、XPS)によりAl、金属Al及びその他のAl化合物のピーク強度比を求めた。その上で、上述のように蛍光X線分析等の定量分析法により求めた全金属Al量とXPSにより求めたピーク強度比とから、化成処理皮膜層中のAlの含有量を算出した。
For the chemically treated steel sheets A1 to A18 and a1 to a6, the amount of metal Zr, the amount of P and the amount of metal Al contained in the chemical conversion coating film layer are measured with a fluorescent X-ray adhesion meter, and the corrosion resistance and sulfide blackening resistance Evaluation was performed.
In addition, the content of Al 2 O 3 in the chemical conversion coating layer is determined by calculating the peak intensity ratio of Al 2 O 3 , metal Al, and other Al compounds by X-ray photoelectron spectroscopy (XPS). Asked. Then, the content of Al 2 O 3 in the chemical conversion coating layer is calculated from the total metal Al amount obtained by the quantitative analysis method such as fluorescent X-ray analysis and the peak intensity ratio obtained by XPS as described above. did.
 <耐食性の評価>
 耐食性試験液は、3%酢酸を用いた。試料の化成処理鋼板をφ35mmに切り出して、耐食性試験液を入れた耐熱瓶の口に乗せて固定した。121℃で60分の熱処理を行った後、試料と耐食性試験液との接触部分を観察することにより試料の腐食度合いを評価した。具体的には、試料と耐食性試験液との接触面積における、腐食しなかった面積の割合により、以下の10段階評価を行った。なお、評点が5点以上であれば、容器用鋼板として使用することが可能である。
<Evaluation of corrosion resistance>
As the corrosion resistance test solution, 3% acetic acid was used. The chemical conversion treated steel plate of the sample was cut into φ35 mm and fixed on the mouth of a heat-resistant bottle containing a corrosion resistance test solution. After heat treatment at 121 ° C. for 60 minutes, the degree of corrosion of the sample was evaluated by observing the contact portion between the sample and the corrosion resistance test solution. Specifically, the following 10-step evaluation was performed according to the ratio of the area that did not corrode in the contact area between the sample and the corrosion resistance test solution. In addition, if a score is 5 points or more, it can be used as a steel plate for containers.
  10点:100%~90%以上
   9点:90%未満~80%以上
   8点:80%未満~70%以上
   7点:70%未満~60%以上
   6点:60%未満~50%以上
   5点:50%未満~40%以上
   4点:40%未満~30%以上
   3点:30%未満~20%以上
   2点:20%未満~10%以上
   1点:10%未満~0%以上
10 points: 100% to 90% or more 9 points: less than 90% to 80% or more 8 points: less than 80% to 70% or more 7 points: less than 70% to 60% or more 6 points: less than 60% to 50% or more 5 Points: less than 50% to 40% or more 4 points: less than 40% to 30% or more 3 points: less than 30% to 20% or more 2 points: less than 20% to 10% or more 1 point: less than 10% to 0% or more
 耐食性評価の項目には、10点~9点を「Very Good」、8点~5点を「Good」、4点以下は「Not Good」と標記した。 Corrosion resistance evaluation items are labeled “Very Good” for 10 to 9 points, “Good” for 8 to 5 points, and “Not Good” for 4 points and below.
 <耐硫化黒変性の評価>
 耐硫化黒変性の評価は、次のように行った。1時間沸騰させた0.6質量%L-システイン液を耐熱瓶の中に入れ、この耐熱瓶の口に蓋として上記の試料(φ40mm)を載置及び固定した。試料で蓋をした耐熱瓶に対して、均熱炉にて、110℃で15分間の熱処理(レトルト処理)を行った。その後、各試料において、耐熱瓶との接触部分の外観を観察し、上記と同様の基準に基づいて、10段階の評価を行った。以下に示す表1では、10点~8点を「Very Good」、7点~5点は「Good」4点以下は「Not Good」と標記した。
<Evaluation of anti-sulfur blackening>
Evaluation of resistance to sulfur blackening was performed as follows. A 0.6 mass% L-cysteine solution boiled for 1 hour was placed in a heat-resistant bottle, and the sample (φ40 mm) was placed and fixed as a lid on the mouth of the heat-resistant bottle. The heat-resistant bottle capped with the sample was subjected to heat treatment (retort treatment) at 110 ° C. for 15 minutes in a soaking furnace. Then, in each sample, the external appearance of the contact part with a heat-resistant bottle was observed, and 10 steps | paragraphs of evaluation were performed based on the same reference | standard as the above. In Table 1 below, 10 to 8 points are labeled “Very Good”, 7 to 5 points are “Good”, and 4 points and below are “Not Good”.
 得られた結果を、以下の表1に示した。 The results obtained are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例A1~A18は、いずれも優れた耐食性及び優れた耐硫化黒変性を有していた。一方、比較例a1~a6は、耐食性と耐硫化黒変性とのいずれか一方が劣っていた。なお、Alイオンの供給源としてAl(SOを用いた比較例a5及びa6では、Al量及びAl量が著しく少なく、耐硫化黒変性も「Not Good」であった。 As is clear from Table 1, Examples A1 to A18 all had excellent corrosion resistance and excellent resistance to sulfur blackening. On the other hand, Comparative Examples a1 to a6 were inferior in either corrosion resistance or sulfurization blackening resistance. In Comparative Examples a5 and a6 using Al 2 (SO 4 ) 3 as the Al ion supply source, the Al amount and Al 2 O 3 amount were remarkably small, and the resistance to sulfur blackening was “Not Good”.
(実施例3)
 次に、Snの含有量や、化成処理皮膜層が含む各成分の含有量により、耐硫化黒変性がどのように変化するかについて、検証した。
 各試料のSnの含有量を表2に、化成処理の条件(化成処理液の条件及び電解処理の条件)を表3に示した。各試料に形成された化成処理皮膜層の有する金属Zr量、P量、金属Al量及びAl量を表4に示した。
 また、各試料に対して、実施例2と同様に耐食性及び耐硫化黒変性を評価した。結果を表4に示した。
 なお、発明例B1~B31及び比較例b1~b8では、Alイオンの供給源として(NHAlFを用いたのに対し、比較例b9及びb10では、Alイオンの供給源としてAl(SOを用いて化成処理皮膜層を形成した。
(Example 3)
Next, it was verified how the sulfide blackening resistance changes depending on the Sn content and the content of each component included in the chemical conversion coating layer.
Table 2 shows the Sn content of each sample, and Table 3 shows the conditions for the chemical conversion treatment (the conditions for the chemical conversion treatment solution and the conditions for the electrolytic treatment). Table 4 shows the amount of metal Zr, the amount of P, the amount of metal Al, and the amount of Al 2 O 3 contained in the chemical conversion coating layer formed on each sample.
Further, each sample was evaluated for corrosion resistance and sulfur blackening resistance in the same manner as in Example 2. The results are shown in Table 4.
In Invention Examples B1 to B31 and Comparative Examples b1 to b8, (NH 4 ) 3 AlF 6 was used as the Al ion supply source, whereas in Comparative Examples b9 and b10, Al 2 was used as the Al ion supply source. A chemical conversion film layer was formed using (SO 4 ) 3 .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されているように、本実施形態に係る化成処理鋼板の製造方法で製造された本発明例B1~B31は、いずれも優れた耐食性及び耐硫化黒変性を有していた。一方、比較例b1~b10は、いずれも優れた耐食性を有していたが、耐硫化黒変性が劣っていた。なお、Alイオンの供給源としてAl(SOを用いた比較例b9及びb10では、Al量及びAl量が著しく少なく、耐硫化黒変性も「Not Good」であった。 As shown in Table 4, Invention Examples B1 to B31 produced by the method for producing a chemical conversion treated steel sheet according to this embodiment all had excellent corrosion resistance and sulfur blackening resistance. On the other hand, Comparative Examples b1 to b10 all had excellent corrosion resistance but were poor in resistance to sulfur blackening. In Comparative Examples b9 and b10 using Al 2 (SO 4 ) 3 as an Al ion supply source, the amount of Al and Al 2 O 3 was remarkably small, and the resistance to sulfur blackening was “Not Good”.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 上記一実施形態によれば、化成処理皮膜層の付着量が少ない場合であっても、優れた耐食性及び耐硫化黒変性を有する、化成処理鋼板及び化成処理鋼板の製造方法を提供することができる。 According to the one embodiment, it is possible to provide a chemical conversion-treated steel sheet and a method for producing a chemical conversion-treated steel sheet that have excellent corrosion resistance and resistance to sulfur blackening even when the amount of the chemical conversion film layer is small. .
  10  化成処理鋼板
 103  鋼板
 105a Fe-Sn合金層
 105b Sn層
 107  化成処理皮膜層
DESCRIPTION OF SYMBOLS 10 Chemical conversion treatment steel plate 103 Steel plate 105a Fe-Sn alloy layer 105b Sn layer 107 Chemical conversion treatment film layer

Claims (7)

  1.  鋼板と;
     前記鋼板の少なくとも一方の表面に形成されたFe-Sn合金層と;
     前記Fe-Sn合金層上に形成され、前記Fe-Sn合金層との合計のSn含有量が金属Sn量で0.10~30.0g/mであるSn層と;
     前記Sn層上に形成され、金属Zr量で1.0~150mg/mのZr化合物と、P量で1.0~100mg/mのリン酸化合物と、金属Al量で0.10~30.0mg/mのAl化合物と、を含有する化成処理皮膜層と;
    を備える
    ことを特徴とする、化成処理鋼板。
    With steel plate;
    An Fe—Sn alloy layer formed on at least one surface of the steel sheet;
    An Sn layer formed on the Fe—Sn alloy layer and having a total Sn content with the Fe—Sn alloy layer of 0.10 to 30.0 g / m 2 in terms of metal Sn;
    It formed on the Sn layer, and a Zr compound of 1.0 ~ 150 mg / m 2 of metal Zr content, the phosphate compound of 1.0 ~ 100 mg / m 2 in the amount of P, 0.10 to a metal Al amount A chemical conversion film layer containing 30.0 mg / m 2 of an Al compound;
    A chemical conversion treated steel sheet, comprising:
  2.  前記化成処理皮膜層が、金属Al量で0.10~30.0mg/mのAlを含有する
    ことを特徴とする、請求項1に記載の化成処理鋼板。
    The chemical conversion treatment steel sheet according to claim 1, wherein the chemical conversion treatment film layer contains 0.10 to 30.0 mg / m 2 of Al 2 O 3 in terms of metal Al.
  3.  前記化成処理皮膜層が、
     金属Zr量で1.0~120mg/mの前記Zr化合物と;
     P量で2.0~70.0mg/mの前記リン酸化合物と;
     金属Al量で0.20~20.0mg/mの前記Al化合物と;
    を含有する
    ことを特徴とする、請求項1又は2に記載の化成処理鋼板。
    The chemical conversion treatment film layer is
    Said Zr compound in an amount of metal Zr of 1.0 to 120 mg / m 2 ;
    2.0 to 70.0 mg / m 2 of the phosphoric acid compound in an amount of P;
    Said Al compound in an amount of metal Al of 0.20 to 20.0 mg / m 2 ;
    The chemical conversion treatment steel plate of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記Fe-Sn合金層と前記Sn層との合計の前記Sn含有量が、金属Sn量で、0.30~20.0g/mである
    ことを特徴とする、請求項1~3のいずれか1項に記載の化成処理鋼板。
    4. The Sn content in total of the Fe—Sn alloy layer and the Sn layer is 0.30 to 20.0 g / m 2 in terms of metal Sn amount. The chemical conversion treatment steel plate of Claim 1.
  5.  前記化成処理皮膜層の表面が、フィルム又は塗料で被覆されていない
    ことを特徴とする、請求項1~4のいずれか1項に記載の化成処理鋼板。
    The chemical conversion treated steel sheet according to any one of claims 1 to 4, wherein the surface of the chemical conversion treated film layer is not coated with a film or a paint.
  6.  鋼板の表面に、金属Sn量で、0.10~30.0g/mのSnを含有するSnめっき層を形成するめっき工程と;
     前記Snめっき層に溶融溶錫処理を行うことにより、Fe-Sn合金層及びSn層を形成する溶融溶錫処理工程と;
     10~20000ppmのZrイオンと、10~20000ppmのFイオンと、10~3000ppmのリン酸イオンと、合計で100~30000ppmの硝酸イオン及び硫酸イオンと、500~5000ppmのAlイオンと、を含み、前記Alイオンの供給源が(NHAlFであり、温度が5℃以上90℃未満である化成処理液を用いて、1.0~100A/dmの電流密度及び0.20~150秒間の電解処理時間の条件下で電解処理を行うことにより、前記Sn層上に化成処理皮膜層を形成する電解処理工程と;
    を有する
    ことを特徴とする、化成処理鋼板の製造方法。
    A plating step of forming a Sn plating layer containing 0.10 to 30.0 g / m 2 of Sn on the surface of the steel plate;
    A molten tin treatment step of forming an Fe—Sn alloy layer and an Sn layer by performing a molten tin treatment on the Sn plating layer;
    10 to 20000 ppm of Zr ions, 10 to 20000 ppm of F ions, 10 to 3000 ppm of phosphate ions, a total of 100 to 30000 ppm of nitrate ions and sulfate ions, and 500 to 5000 ppm of Al ions, A source of Al ions is (NH 4 ) 3 AlF 6 and a chemical conversion treatment liquid having a temperature of 5 ° C. or higher and lower than 90 ° C. is used, and a current density of 1.0 to 100 A / dm 2 and An electrolytic treatment step of forming a chemical conversion treatment film layer on the Sn layer by performing an electrolytic treatment under conditions of an electrolytic treatment time of seconds;
    The manufacturing method of a chemical conversion treatment steel plate characterized by having.
  7.  前記化成処理液が、
     200~17000ppmのZrイオンと;
     200~17000ppmのFイオンと;
     100~2000ppmのリン酸イオンと;
     合計で1000~23000ppmの硝酸イオン及び硫酸イオンと;
     500~3000ppmのAlイオンと;
    を含有する
    ことを特徴とする、請求項6に記載の化成処理鋼板の製造方法。
    The chemical conversion treatment liquid is
    200 to 17000 ppm of Zr ions;
    200 to 17000 ppm of F ions;
    100-2000 ppm phosphate ions;
    A total of 1000-23000 ppm nitrate and sulfate ions;
    With 500-3000 ppm of Al ions;
    The manufacturing method of the chemical conversion treatment steel plate of Claim 6 characterized by the above-mentioned.
PCT/JP2016/058905 2016-03-22 2016-03-22 Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate WO2017163299A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16895337.0A EP3434811A4 (en) 2016-03-22 2016-03-22 Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate
US16/086,152 US20200123661A1 (en) 2016-03-22 2016-03-22 Chemical treatment steel sheet and method for manufacturing chemical treatment steel sheet
PCT/JP2016/058905 WO2017163299A1 (en) 2016-03-22 2016-03-22 Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate
CN201680083793.5A CN108779561A (en) 2016-03-22 2016-03-22 The manufacturing method of chemical conversion treatment steel plate and chemical conversion treatment steel plate
JP2018506647A JP6583539B2 (en) 2016-03-22 2016-03-22 Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
KR1020187026675A KR20180113583A (en) 2016-03-22 2016-03-22 Chemical-treated steel sheet and manufacturing method of chemical-treated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058905 WO2017163299A1 (en) 2016-03-22 2016-03-22 Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate

Publications (1)

Publication Number Publication Date
WO2017163299A1 true WO2017163299A1 (en) 2017-09-28

Family

ID=59900119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058905 WO2017163299A1 (en) 2016-03-22 2016-03-22 Chemical conversion coating-equipped steel plate, and method for producing chemical conversion coating-equipped steel plate

Country Status (6)

Country Link
US (1) US20200123661A1 (en)
EP (1) EP3434811A4 (en)
JP (1) JP6583539B2 (en)
KR (1) KR20180113583A (en)
CN (1) CN108779561A (en)
WO (1) WO2017163299A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325402A (en) * 2004-05-13 2005-11-24 Nippon Paint Co Ltd Surface treatment method for tin or tin based alloy plated steel
JP2011231404A (en) * 2011-04-27 2011-11-17 Toyo Seikan Kaisha Ltd Surface-treated metallic plate, surface treatment method of the same, resin-coated metallic plate, can, and can lid
JP2012062521A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Method for production of steel sheet for container

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524133A (en) * 2002-03-06 2004-08-25 杰富意钢铁株式会社 Surface treating steel plate and method for manufacturing same
JP4291204B2 (en) 2004-03-31 2009-07-08 Jfeスチール株式会社 Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
US20080057336A1 (en) * 2004-06-22 2008-03-06 Toyo Seikan Kaisha, Ltd Surface-Treated Metal Materials, Method of Treating the Surfaces Thereof, Resin-Coated Metal Materials, Cans and Can Lids
JP5093797B2 (en) 2006-03-24 2012-12-12 新日本製鐵株式会社 Steel plate for containers with excellent can processability
JP4972240B2 (en) * 2006-09-07 2012-07-11 Jfeスチール株式会社 Surface-treated steel sheet
TWI391530B (en) * 2007-04-04 2013-04-01 Nippon Steel Corp A plated steel sheet for use in a tank and a method for manufacturing the same
JP5186816B2 (en) * 2007-06-20 2013-04-24 新日鐵住金株式会社 Steel plate for containers and manufacturing method thereof
JP5633117B2 (en) * 2008-05-12 2014-12-03 Jfeスチール株式会社 Method for producing tin-plated steel sheet, tin-plated steel sheet and chemical conversion treatment liquid
JP5338163B2 (en) * 2008-07-10 2013-11-13 Jfeスチール株式会社 Method for producing tin-plated steel sheet
JP5600417B2 (en) * 2009-11-25 2014-10-01 Jfeスチール株式会社 Surface treatment composition and surface treated steel sheet
TWI449813B (en) * 2010-06-29 2014-08-21 Nippon Steel & Sumitomo Metal Corp Steel sheet for container and manufacturing method thereof
MY162565A (en) * 2010-09-15 2017-06-30 Jfe Steel Corp Steel sheet for containers and manufacturing method for same
CN103261465B (en) * 2010-12-17 2015-06-03 新日铁住金株式会社 Hot-dip zinc-plated steel sheet and process for production thereof
US10443141B2 (en) * 2013-05-21 2019-10-15 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for containers
TWI580798B (en) * 2014-10-09 2017-05-01 新日鐵住金股份有限公司 Chemically-treated steel sheet, production method thereof, and metal container
CN107429419B (en) * 2015-04-16 2019-06-07 新日铁住金株式会社 The manufacturing method of steel plate for container and steel plate for container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325402A (en) * 2004-05-13 2005-11-24 Nippon Paint Co Ltd Surface treatment method for tin or tin based alloy plated steel
JP2012062521A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Method for production of steel sheet for container
JP2011231404A (en) * 2011-04-27 2011-11-17 Toyo Seikan Kaisha Ltd Surface-treated metallic plate, surface treatment method of the same, resin-coated metallic plate, can, and can lid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3434811A4 *

Also Published As

Publication number Publication date
KR20180113583A (en) 2018-10-16
CN108779561A (en) 2018-11-09
JPWO2017163299A1 (en) 2019-01-31
EP3434811A4 (en) 2019-11-27
EP3434811A1 (en) 2019-01-30
US20200123661A1 (en) 2020-04-23
JP6583539B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5861249B2 (en) Manufacturing method of steel plate for containers
EP2551377A1 (en) Steel sheet for container and method for producing same
JP6128280B2 (en) Chemically treated steel sheet for acidic contents storage container and method for producing chemical treated steel sheet for acidic contents storage container
WO2012036204A1 (en) Steel plate for containers
JP6103139B2 (en) Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
JP5186817B2 (en) Steel plate for containers
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
JP5186816B2 (en) Steel plate for containers and manufacturing method thereof
JP6119930B2 (en) Steel plate for container and method for producing steel plate for container
JP6583538B2 (en) Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
JP6119931B2 (en) Steel plate for container and method for producing steel plate for container
JP6583539B2 (en) Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
TWI589732B (en) Chemically-treated steel sheet and production method thereof
JP5994960B1 (en) Steel plate for container and method for producing steel plate for container
TWI588295B (en) Chemically-treated steel sheet and production method thereof
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020187026675

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2018506647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016895337

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016895337

Country of ref document: EP

Effective date: 20181022

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895337

Country of ref document: EP

Kind code of ref document: A1