JP4288020B2 - Molten metal flow controller - Google Patents

Molten metal flow controller Download PDF

Info

Publication number
JP4288020B2
JP4288020B2 JP2001118577A JP2001118577A JP4288020B2 JP 4288020 B2 JP4288020 B2 JP 4288020B2 JP 2001118577 A JP2001118577 A JP 2001118577A JP 2001118577 A JP2001118577 A JP 2001118577A JP 4288020 B2 JP4288020 B2 JP 4288020B2
Authority
JP
Japan
Prior art keywords
power
molten metal
coil
mold
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001118577A
Other languages
Japanese (ja)
Other versions
JP2002316241A (en
Inventor
敬介 藤崎
健司 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001118577A priority Critical patent/JP4288020B2/en
Publication of JP2002316241A publication Critical patent/JP2002316241A/en
Application granted granted Critical
Publication of JP4288020B2 publication Critical patent/JP4288020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は溶融金属流動制御装置に係り、特にモールド内の溶融金属のメニスカス部に発生する流動不安定を抑制することの可能な溶融金属流動制御装置に関する。
【0002】
【従来の技術】
溶鉱炉で溶融された溶鋼からスラブ又はビレットを生産する連続鋳造においては、レードル内の溶鋼はタンディシュを介して浸漬ノズルからモールド内に注入される。そして、溶鋼はモールド底面から引き出されスラブ又はビレットに成形される。
【0003】
成形の際、モールド内の溶鋼に水平方向の温度が不均一である場合には製品に表面割れやシェル破断が生じやすいので、モールド側壁上端にリニアモータコイルを設置し、溶鋼に循環力を付与させることが既に提案されている。
さらに製品の品質を一層向上させるために、メニスカス上に添加されたパウダの溶鋼とモールドの境界への巻き込みを促進するべく、所定周期ごとに高電圧と低電圧(零電圧も含む)を繰り返す交流電力による励磁を繰り返す、いわゆるパルス電磁攪拌も提案されている。
【0004】
図1はパルス電磁攪拌を適用した場合の1辺の長さが1600mmである正方形の従来のビレット製造用のモールドの上面図(イ)及びX−X断面図(ロ)であって、モールド10の周囲には電磁攪拌コイル11が胴巻きにされ、モールド10の中央には浸漬ノズル12が設置される。
パルス電磁攪拌を適用した場合はメニスカスはモールド10の両側壁から浸漬ノズル12に向かって盛り上がる形状となるため、メニスカス近傍の溶鋼に浸漬ノズル12からモールド周壁に向かう流れが発生する。
【0005】
そして、電磁攪拌コイル11は所定周期ごとに高電圧と低電圧を交互に繰り返す交流電力を出力する交流電源13によって励磁されるため、浸漬ノズル12からモールド周壁に向かう溶鋼の流れの速度は時間的に変動し、メニスカスに凹凸が発生し、ビレットに表面割れやシェル破断が発生し易くなる。
そこでメニスカスにおける流れの変動を抑制するために、浸漬ノズル12を例えば直径900mmと太くしてメニスカス表面積を小とする等の対策が立てられている。
【0006】
図2は直径900mmの浸漬ノズルを具備する一辺が1600mmの正方形のモールドの壁面に沿うメニスカスの基準レベルからの変動を示すグラフであって、横軸はモールド内周をA→B→C→D→Aの順に一周する距離を、縦軸はメニスカスの基準レベルからの変動を表す。
即ち、この場合は最大変動は+5mm、最小変動は−5mmであり、振幅は約10mmとなる。
【0007】
【発明が解決しようとする課題】
しかしながら、ビレットの生産性を高めるためにモールドの辺長を2200mmにまで長くした場合には最大変動は+15mm、最小変動は−20mm、振幅は35mmとなり、溶鋼の速度の変動を十分に抑制することが困難となり、ビレットの品質が劣化することを回避できない。
【0008】
本発明は上記課題に鑑みなされたものであって、メニスカス近傍における溶鋼の速度の変動を抑制することの可能な溶融金属の流動制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の溶融金属流動制御装置は、モールドの外周に胴巻きにされた交流磁束及び直流磁束を生成する共用コイルと、前記共用コイルを交流励磁する交流電源と、前記共用コイルを直流励磁する直流電源と、を具備し、前記直流電源は、前記交流電源が交流電力を出力している間は直流電力を停止し、前記交流電源が停止している間に直流電力を供給するものであり、かつ、前記交流電力と前記直流電力は交互に供給され、前記直流電力は交互に逆向きに流れる直流電流により供給されるものである。
【0010】
前記直流電源は、前記交流電源が停止している間は交互に逆向き電流の直流電力の供給することもできる。
【0011】
前記交流電源及び直流電源の双方の出力が休止する休止期間を備えることもできる。
【0012】
前記モールドが、辺長がLA[mm]、厚みがLB[mm]である矩形であり、
溶融金属を注入するための浸漬ノズルの直径D[mm]が次式を満足する請求項1から3のいずれか1項に記載の溶融金属流動制御装置。
(L−2×a)×0.7≦ D ≦ (L−2×a)×1.3
ただし、L = (LA×LB) 1/2 [mm]
aは交流電力で励磁したときの溶融金属の盛り上り高さ[mm]
【0016】
【発明の実施の形態】
図3は本発明の第1の実施形態に係る溶融金属の流動制御装置の構成図であって、(イ)は上面図、(ロ)はY−Y断面図である。
即ち、第1の実施形態に係る溶融金属の流動制御装置は、一辺の長さLが2200mmである正方形のモールド30に胴巻きにされた電磁攪拌コイル31及び浸漬ノズル32の他に、電磁攪拌コイル31の外側に電磁攪拌コイル31と同じくモールド30に胴巻きにされた直流コイル33を具備している。
【0017】
そして、電磁攪拌コイル31は交流電源34から供給される交流電力によって間欠的に励磁され、直流コイル33は直流電源35から供給される直流電力によって励磁される。
交流電力で励磁された電磁攪拌コイル31によって生成される交流磁束によって溶融金属は浸漬ノズル32を中心として凸形に盛り上がるため、溶融金属は浸漬ノズル32からモールド周壁に向かい流動する。
【0018】
しかし交流磁束はパルス状に変動するため、溶融金属の流速は時間的に変動する。そこでこの変動を抑制するために、直流コイル33を直流電力で励磁する。
図4は本発明の第1の実施形態に係る溶融金属の流動制御装置の動作説明図である。
即ち、メニスカスにおいて直流コイル33が発生する直流磁束Bz が溶融金属に対し垂直上向きに作用する。また溶融金属はモールド30の中央から周壁に向かい速度Vy で流動している。よって、溶融金属中にはフレミングの右手の法則に従って壁面と平行に流れる電流Ix が惹起される。
【0019】
すると、直流磁束Bz と電流Ix の相互作用によりフレミングの左手の法則に従って、速度Vy と逆方向、即ちモールド30の周壁から中央に向かうローレンツ力Fy が発生し、溶融金属の速度を減速する方向に作用する。
即ち、溶融金属の速度が大であればローレンツ力Fy も大となり、溶融金属の速度が小であればローレンツ力Fy も小となり、溶融金属の速度の変動が抑制される。
【0020】
図5は直流コイルの設置効果の説明図であって、横軸は時間を、縦軸は溶融金属の流速を示す。また、直線は直流コイルを励磁した場合を、破線は直流コイルを励磁しない場合を示す。
即ち、直流コイルを励磁した場合は溶融金属の流動変動が抑制されているが、これは溶融金属の速度Vy が大であると電流Ix が大となりその結果ローレンツ力Fy が大となり、溶融金属の速度Vy が小であると電流Ix が小となりその結果ローレンツ力Fy が小となるからである。
【0021】
上記から明らかなように、直流コイルが発生する磁束密度は交流コイルによる溶融金属の攪拌を妨げずに溶融金属の速度の変動を抑制できればよく、0.05〜0.6テスラ程度で足りる。
なお交流コイル31と並列に共振コンデンサ35を挿入することにより交流電源34の電源容量を低減することも可能である。
【0022】
上記第1の実施形態においては、交流コイルと直流コイルを別個のコイルとしているが、共にモールドに胴巻きにしたコイルであるため交流電力と直流電力を重畳した電力で励磁することによりコイルを1つとすることが可能である。
図6は本発明の第2の実施形態に係る溶融金属の流動制御装置の構成図であって、(ハ)は上面図、(ニ)はY−Y断面図である。
【0023】
即ち第2の実施形態に係る溶融金属の流動制御装置は、一辺の長さLが2200mmである正方形のモールド30に胴巻きにされた共用コイル61及び浸漬ノズル32を具備している。
そして、共用コイル61は交流電源34から供給される交流電力によって間欠的に励磁されるとともに直流電源35から供給される直流電力によっても励磁される。
【0024】
図7及び図8は共用コイルの励磁方法の説明図(その1)及び(その2)であって、(ホ)は交流電源34と直流電源35を単純に直列接続した場合である。即ち、直流電源35は電圧VDCである直流電力を常時供給し、交流電源34はP−P電圧がVACである交流電力を50ミリ秒ごとに50ミリ秒間間欠的に供給する。
【0025】
この場合は共用コイル61の定格電流は交流電流と直流電流の和から決定されるため、共用コイル61の巻線を太くしなければならない。
(ヘ)は交流電力と直流電力を交互に印加する場合であって、共用コイル61の定格電流は交流電流と直流電流の大きい方(通常は交流電流)によって規定されるので、共用コイル61の巻線を必要以上に太しなくてもすむ。
【0026】
ただし、この場合直流電流は常に一方向に流れるため、電源に含まれる複数のスイッチング素子のなかで導通状態となる素子と阻止状態となる素子が固定されてしまい、導通状態となる素子の発熱が大となることを回避できない。
(ト)は上記課題を解決するためのもので、交流電力と直流電力を交互に印加するとともに、直流電流を交互に逆向きに供給する場合を示す。
【0027】
即ちこの場合は、
DC→VAC→−VDC→VAC→VDC
の順に電力を供給することによりスイッチング素子の発熱を均等にすることが可能となる。
(チ)はさらに共用コイルに電力を供給しない休止期間を設ける場合であって、例えば渦電流式湯面計で湯面レベルを計測する場合に交流電力及び直流電力による励磁の影響を排除することが可能となる。
【0028】
なお、第2の実施形態においても共振コンデンサ36を適用可能であることは明らかである。
さらに溶融金属の速度の変動を一層抑制するために、浸漬ノズル32の直径をモールドの辺長の増加割合以上に浸漬ノズルの直径を大きくしてメニスカスの表面積を減少することが有効である。
【0029】
即ち、辺長を1600mmから2000mmに増加した場合には、浸漬ノズルの直径を900mmから1240mmの増加すれば溶融金属の注入時間を一定に維持することが可能であるが、浸漬ノズルの直径を以下のように定めることにより溶融金属の速度の変動を一層抑制することが可能となる。
交流コイルによる励磁中溶鋼はモールド30の内壁から浸漬ノズル32に向かって盛り上がる。そこで、浸漬ノズル32の直径Dは次式によって決定すると、溶融金属の速度の変動が効果的に抑制される。
【0030】
(L−2×a)×0.7≦ D ≦ (L−2×a)×1.3
ただし、L = (LA×LB)1/2
LAはモールドの辺長
LBはモールドの壁厚
aは交流励磁したときの溶融金属の盛り上り高さ
モールドの一辺長が2200mm厚みが250mmである場合は、交流励磁による溶鋼の盛り上がり高さaは約250mmであるので、浸漬ノズル32の直径Dは、
D = 742 − 2×250 = 242
169≦ D ≦315
となる。
【0031】
図9は本発明の効果の説明図であって、横軸は一辺長が2200mmの正方形のモールドの内周をA→B→C→D→Aの順に一周する距離を、縦軸はメニスカスの基準レベルからの変動を表す。また、破線は浸漬ノズル32の直径が140mmで直流コイルを励磁しない場合を、実線は浸漬ノズル32の直径が200mmで直流コイルを励磁した場合を示す。
【0032】
即ち、浸漬ノズル32の直径が140mmで直流コイルを励磁しない場合のメニスカスの最大振幅は35mmに達するが、浸漬ノズル32の直径が200mmで直流コイルを励磁した場合は最大振幅を15mmに抑制することが可能となる。
なお、浸漬ノズル32の直径を上式により決定した場合には直流コイルを励磁しなくてもある程度溶融金属の流速変動は抑制される。
【0033】
【発明の効果】
第1の発明に係る溶融金属の流動制御装置によれば、溶融金属のメニスカスに垂直の直流磁束が作用し、モールド中心から周壁に向かう溶融金属の速度の変動を抑制することが可能となる。
また、交流磁束及び直流磁束を1つの共用コイルによって生成するので、構成を簡略化することが可能となる。
【0034】
さらに、共用コイルの定格電流を交流電力の電流及び直流電力の電流のうち大電流である一方のみによって決定すればよいので、共用コイルの大型化を防止できる。
さらにまた、直流電力は交互に逆向きに供給されるので、電源内のスイッチング素子の発熱を均一にすることができる。
【0035】
第2の発明に係る溶融金属の流動制御装置によれば、コイルに電力が供給されない期間が存在するので、湯面を正確に計測することが可能となる。
第3の発明に係る溶融金属の流動制御装置によれば、モールドを大型化した場合にもモールド周壁と浸漬ノズルの間の最小隙間が溶融金属の盛り上がり高さと等しくなるように浸漬ノズルの直径を定めることにより、溶融金属の速度の変動をさらに抑制することが可能となる。
【図面の簡単な説明】
【図1】従来のビレット製造用モールドの上面図及びX−X断面図である。
【図2】メニスカスの基準レベルからの変動を示すグラフである。
【図3】第1の実施形態に係る溶融金属の流動制御装置の構成図である。
【図4】第1の実施形態に係る溶融金属の流動制御装置の動作説明図である。
【図5】直流コイルの設置効果の説明図である。
【図6】第2の実施形態に係る溶融金属の流動制御装置の構成図である。
【図7】共用コイルの励磁方法の説明図(その1)である。
【図8】共用コイルの励磁方法の説明図(その2)である。
【図9】本発明の効果の説明図である。
【符号の説明】
30…モールド
31…交流磁束発生用コイル
32…浸漬ノズル
33…直流磁束発生用コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten metal flow control device, and more particularly to a molten metal flow control device capable of suppressing flow instability generated in a meniscus portion of a molten metal in a mold.
[0002]
[Prior art]
In continuous casting in which slabs or billets are produced from molten steel melted in a blast furnace, molten steel in a ladle is injected into a mold from a dipping nozzle through a tundish. Then, the molten steel is drawn from the bottom of the mold and formed into a slab or billet.
[0003]
During molding, if the molten steel in the mold is not uniform in the horizontal direction, surface cracks and shell fractures are likely to occur in the product. Therefore, a linear motor coil is installed at the upper end of the mold side wall to give circulation power to the molten steel. It has already been proposed.
In order to further improve the quality of the product, alternating current of high voltage and low voltage (including zero voltage) is repeated every predetermined period in order to promote the inclusion of powder added on the meniscus at the boundary between the molten steel and the mold. So-called pulse electromagnetic stirring, in which excitation by electric power is repeated, has also been proposed.
[0004]
FIG. 1 is a top view (A) and an XX sectional view (B) of a conventional mold for manufacturing a square billet having a side length of 1600 mm when pulsed electromagnetic stirring is applied. An electromagnetic stirring coil 11 is wound around the periphery of the mold 10 and an immersion nozzle 12 is installed at the center of the mold 10.
When pulse electromagnetic stirring is applied, the meniscus rises from both side walls of the mold 10 toward the immersion nozzle 12, so that a flow from the immersion nozzle 12 toward the mold peripheral wall is generated in the molten steel near the meniscus.
[0005]
And since the electromagnetic stirring coil 11 is excited by the alternating current power supply 13 which outputs alternating current power which repeats a high voltage and a low voltage alternately for every predetermined period, the speed of the flow of the molten steel which goes to the mold peripheral wall from the immersion nozzle 12 is temporal. As a result, irregularities occur in the meniscus, and surface cracks and shell breakage tend to occur in the billet.
Therefore, in order to suppress fluctuations in the flow at the meniscus, measures are taken such as making the immersion nozzle 12 thick, for example, 900 mm in diameter and reducing the meniscus surface area.
[0006]
FIG. 2 is a graph showing fluctuations from the reference level of the meniscus along the wall of a square mold having a dip nozzle of 900 mm in diameter and a side of 1600 mm, and the horizontal axis represents the inner periphery of the mold from A → B → C → D. → The distance that goes around in the order of A, and the vertical axis represents the fluctuation of the meniscus from the reference level.
That is, in this case, the maximum variation is +5 mm, the minimum variation is −5 mm, and the amplitude is about 10 mm.
[0007]
[Problems to be solved by the invention]
However, when the mold side length is increased to 2200 mm in order to increase the productivity of the billet, the maximum fluctuation is +15 mm, the minimum fluctuation is -20 mm, and the amplitude is 35 mm, which sufficiently suppresses fluctuations in the speed of the molten steel. It is difficult to avoid the deterioration of billet quality.
[0008]
This invention is made | formed in view of the said subject, Comprising: It aims at providing the flow control apparatus of the molten metal which can suppress the fluctuation | variation of the speed of the molten steel in the meniscus vicinity.
[0009]
[Means for Solving the Problems]
A molten metal flow control device according to the present invention includes a shared coil that generates AC magnetic flux and DC magnetic flux wound around the outer periphery of a mold, an AC power source that AC-excites the shared coil, and a DC power source that DC-excites the shared coil. If, comprising a, the DC power source, while the AC power is output AC power stops DC power state, and are not to supply the DC power while the AC power is stopped, and the DC power and the AC power is supplied alternately, the DC power is Ru der those supplied by direct current flowing in opposite directions alternately.
[0010]
The DC power supply can alternately supply DC power of reverse current while the AC power supply is stopped.
[0011]
It is also possible to provide a rest period in which the outputs of both the AC power source and the DC power source are suspended.
[0012]
The mold is a rectangle having a side length of LA [mm] and a thickness of LB [mm],
The molten metal flow control device according to any one of claims 1 to 3, wherein a diameter D [mm] of an immersion nozzle for injecting molten metal satisfies the following equation.
(L-2 × a) × 0.7 ≦ D ≦ (L-2 × a) × 1.3
However, L = (LA × LB) 1/2 [mm]
a is the raised height of the molten metal when excited by AC power [mm]
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 is a configuration diagram of the molten metal flow control device according to the first embodiment of the present invention, in which (A) is a top view and (B) is a YY sectional view.
That is, the molten metal flow control device according to the first embodiment includes an electromagnetic stirring coil 31 in addition to the electromagnetic stirring coil 31 and the immersion nozzle 32 wound around a square mold 30 having a side length L of 2200 mm. Similar to the electromagnetic stirring coil 31, a DC coil 33 wound around a mold 30 is provided on the outside of the coil 31.
[0017]
The electromagnetic stirring coil 31 is intermittently excited by AC power supplied from the AC power supply 34, and the DC coil 33 is excited by DC power supplied from the DC power supply 35.
Since the molten metal rises in a convex shape around the immersion nozzle 32 by the alternating magnetic flux generated by the electromagnetic stirring coil 31 excited by the alternating current power, the molten metal flows from the immersion nozzle 32 toward the mold peripheral wall.
[0018]
However, since the alternating magnetic flux fluctuates in a pulse shape, the flow rate of the molten metal fluctuates with time. Therefore, in order to suppress this fluctuation, the DC coil 33 is excited with DC power.
FIG. 4 is an operation explanatory diagram of the molten metal flow control device according to the first embodiment of the present invention.
That is, the DC magnetic flux B z generated by the DC coil 33 at the meniscus acts vertically upward on the molten metal. Further, the molten metal flows from the center of the mold 30 toward the peripheral wall at a velocity V y . Therefore, a current I x flowing parallel to the wall surface is induced in the molten metal in accordance with Fleming's right-hand rule.
[0019]
Then, in accordance with Fleming's left-hand rule due to the interaction between the DC magnetic flux B z and the current I x , a Lorentz force F y is generated in the direction opposite to the velocity V y , that is, from the peripheral wall of the mold 30 toward the center. Acts in the direction of deceleration.
That is, if the speed of the molten metal is large, the Lorentz force F y is also large, and if the speed of the molten metal is small, the Lorentz force F y is also small, and fluctuations in the speed of the molten metal are suppressed.
[0020]
FIG. 5 is an explanatory diagram of the DC coil installation effect, in which the horizontal axis represents time and the vertical axis represents the flow rate of molten metal. A straight line indicates a case where the DC coil is excited, and a broken line indicates a case where the DC coil is not excited.
That is, when the DC coil is excited, the flow fluctuation of the molten metal is suppressed. This is because when the velocity V y of the molten metal is large, the current I x becomes large, and as a result, the Lorentz force F y becomes large. This is because when the velocity V y of the molten metal is small, the current I x becomes small, and as a result, the Lorentz force F y becomes small.
[0021]
As is apparent from the above, the magnetic flux density generated by the DC coil may be about 0.05 to 0.6 Tesla as long as the fluctuation of the molten metal speed can be suppressed without disturbing the stirring of the molten metal by the AC coil.
It is also possible to reduce the power capacity of the AC power supply 34 by inserting a resonance capacitor 35 in parallel with the AC coil 31.
[0022]
In the first embodiment, the AC coil and the DC coil are separate coils. However, since the coils are both wound around the mold, the coil is made one by exciting with the power superposed of the AC power and the DC power. Is possible.
FIG. 6 is a configuration diagram of a molten metal flow control device according to a second embodiment of the present invention, in which (c) is a top view and (d) is a YY sectional view.
[0023]
In other words, the molten metal flow control device according to the second embodiment includes the common coil 61 and the immersion nozzle 32 wound around a square mold 30 having a side length L of 2200 mm.
The shared coil 61 is intermittently excited by AC power supplied from the AC power supply 34 and also excited by DC power supplied from the DC power supply 35.
[0024]
FIGS. 7 and 8 are explanatory views (No. 1) and (No. 2) of the excitation method of the shared coil, and (E) shows a case where the AC power source 34 and the DC power source 35 are simply connected in series. That is, the DC power source 35 constantly supplies DC power having a voltage V DC , and the AC power source 34 intermittently supplies AC power having a PP voltage of V AC every 50 milliseconds.
[0025]
In this case, since the rated current of the shared coil 61 is determined from the sum of the alternating current and the direct current, the winding of the shared coil 61 must be thickened.
(F) is a case where alternating current power and direct current power are applied alternately, and the rated current of the common coil 61 is defined by the larger of the alternating current and direct current (usually alternating current). It is not necessary to thicken the windings more than necessary.
[0026]
However, in this case, since direct current always flows in one direction, among the plurality of switching elements included in the power supply, the element that becomes conductive and the element that becomes blocked are fixed, and heat generation of the element that becomes conductive is generated. I can't avoid becoming big.
(G) is for solving the above-described problem, and shows a case where alternating current power and direct current power are alternately applied and direct current is alternately supplied in the opposite direction.
[0027]
In this case,
V DC → V AC → −V DC → V AC → V DC
By supplying power in this order, the heat generation of the switching elements can be made uniform.
(H) is a case where a rest period in which electric power is not supplied to the common coil is provided, and for example, when the hot water level is measured by an eddy current type hot water meter, the influence of excitation by AC power and DC power is eliminated. Is possible.
[0028]
It is obvious that the resonant capacitor 36 can also be applied in the second embodiment.
In order to further suppress fluctuations in the speed of the molten metal, it is effective to reduce the surface area of the meniscus by increasing the diameter of the immersion nozzle 32 to be equal to or greater than the rate of increase in the side length of the mold.
[0029]
That is, when the side length is increased from 1600 mm to 2000 mm, the injection time of the molten metal can be kept constant by increasing the diameter of the immersion nozzle from 900 mm to 1240 mm. By setting as described above, it is possible to further suppress fluctuations in the speed of the molten metal.
The molten steel excited by the AC coil rises from the inner wall of the mold 30 toward the immersion nozzle 32. Therefore, if the diameter D of the immersion nozzle 32 is determined by the following equation, fluctuations in the speed of the molten metal are effectively suppressed.
[0030]
(L-2 × a) × 0.7 ≦ D ≦ (L-2 × a) × 1.3
However, L = (LA × LB) 1/2
LA is the mold side length LB is the mold wall thickness a is the raised height of the molten metal when alternating current is excited When the mold side length is 2200 mm and the thickness is 250 mm, the raised height a of the molten steel by alternating current excitation is Since it is about 250 mm, the diameter D of the immersion nozzle 32 is
D = 742−2 × 250 = 242
169 ≦ D ≦ 315
It becomes.
[0031]
FIG. 9 is an explanatory diagram of the effect of the present invention, in which the horizontal axis indicates the distance of the inner circumference of a square mold having a side length of 2200 mm in the order of A → B → C → D → A, and the vertical axis indicates the meniscus. It represents the change from the reference level. A broken line indicates a case where the diameter of the immersion nozzle 32 is 140 mm and the DC coil is not excited, and a solid line indicates a case where the diameter of the immersion nozzle 32 is 200 mm and the DC coil is excited.
[0032]
That is, the maximum amplitude of the meniscus when the diameter of the immersion nozzle 32 is 140 mm and the DC coil is not excited reaches 35 mm, but the maximum amplitude is suppressed to 15 mm when the diameter of the immersion nozzle 32 is 200 mm and the DC coil is excited. Is possible.
When the diameter of the immersion nozzle 32 is determined by the above equation, fluctuations in the flow rate of the molten metal are suppressed to some extent without exciting the DC coil.
[0033]
【The invention's effect】
According to the molten metal flow control device of the first aspect of the invention, a perpendicular direct current magnetic flux acts on the meniscus of the molten metal, and fluctuations in the speed of the molten metal from the mold center toward the peripheral wall can be suppressed.
In addition , since the AC magnetic flux and the DC magnetic flux are generated by one common coil, the configuration can be simplified.
[0034]
Furthermore, since the rated current of the shared coil has only to be determined by one of the AC power current and the DC power current, which is a large current, an increase in size of the shared coil can be prevented.
Furthermore , since the DC power is alternately supplied in the opposite direction, the heat generation of the switching elements in the power supply can be made uniform.
[0035]
According to the molten metal flow control device of the second invention, there is a period during which no electric power is supplied to the coil, so that the molten metal surface can be accurately measured.
According to the molten metal flow control device according to the third aspect of the invention, the diameter of the immersion nozzle is adjusted so that the minimum gap between the mold peripheral wall and the immersion nozzle is equal to the rising height of the molten metal even when the mold is enlarged. By determining, it is possible to further suppress fluctuations in the speed of the molten metal.
[Brief description of the drawings]
1A and 1B are a top view and a cross-sectional view taken along line XX of a conventional billet mold.
FIG. 2 is a graph showing fluctuations of a meniscus from a reference level.
FIG. 3 is a configuration diagram of a molten metal flow control device according to the first embodiment.
FIG. 4 is an operation explanatory diagram of the molten metal flow control device according to the first embodiment.
FIG. 5 is an explanatory diagram of a DC coil installation effect.
FIG. 6 is a configuration diagram of a molten metal flow control device according to a second embodiment.
FIG. 7 is an explanatory diagram (No. 1) of a common coil excitation method;
FIG. 8 is an explanatory diagram (No. 2) of a method for exciting a shared coil.
FIG. 9 is an explanatory diagram of the effect of the present invention.
[Explanation of symbols]
30 ... Mold 31 ... Coil for generating AC magnetic flux 32 ... Immersion nozzle 33 ... Coil for generating DC magnetic flux

Claims (3)

モールドの外周に胴巻きにされた交流磁束及び直流磁束を生成する共用コイルと、
前記共用コイルを交流励磁する交流電源と、
前記共用コイルを直流励磁する直流電源と、を具備し、
前記直流電源は、前記交流電源が交流電力を出力している間は直流電力を停止し、前記交流電源が停止している間に直流電力を供給するものであり、かつ、前記交流電力と前記直流電力は交互に供給され、前記直流電力は交互に逆向きに流れる直流電流により供給される溶融金属流動制御装置。
A shared coil that generates AC magnetic flux and DC magnetic flux wound around the outer periphery of the mold;
An AC power source for AC exciting the common coil;
A DC power source for DC excitation of the shared coil,
The DC power source, while the AC power is output AC power stops DC power state, and are not to supply the DC power while the AC power is stopped, and the AC power and The molten metal flow control device , wherein the DC power is alternately supplied and the DC power is supplied by a DC current that flows alternately in the opposite direction .
前記交流電源及び直流電源の双方の出力が休止する休止期間を備える請求項に記載の溶融金属流動制御装置。The molten metal flow control device according to claim 1 , further comprising a rest period in which outputs of both the AC power source and the DC power source are suspended. 前記モールドが、辺長がLA[mm]、厚みがLB[mm]である矩形であり、
溶融金属を注入するための浸漬ノズルの直径D[mm]が次式を満足する請求項1または2に記載の溶融金属流動制御装置。
(L−2×a)×0.7≦ D ≦ (L−2×a)×1.3
ただし、L = (LA×LB)1/2[mm]
aは交流電力で励磁したときの溶融金属の盛り上り高さ[mm]
The mold is a rectangle having a side length of LA [mm] and a thickness of LB [mm],
The molten metal flow control device according to claim 1 or 2 , wherein a diameter D [mm] of an immersion nozzle for injecting molten metal satisfies the following formula.
(L-2 × a) × 0.7 ≦ D ≦ (L-2 × a) × 1.3
However, L = (LA × LB) 1/2 [mm]
a is the raised height of the molten metal when excited by AC power [mm]
JP2001118577A 2001-04-17 2001-04-17 Molten metal flow controller Expired - Lifetime JP4288020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118577A JP4288020B2 (en) 2001-04-17 2001-04-17 Molten metal flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118577A JP4288020B2 (en) 2001-04-17 2001-04-17 Molten metal flow controller

Publications (2)

Publication Number Publication Date
JP2002316241A JP2002316241A (en) 2002-10-29
JP4288020B2 true JP4288020B2 (en) 2009-07-01

Family

ID=18968947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118577A Expired - Lifetime JP4288020B2 (en) 2001-04-17 2001-04-17 Molten metal flow controller

Country Status (1)

Country Link
JP (1) JP4288020B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204945B1 (en) 2011-04-28 2012-11-26 현대제철 주식회사 Device for controlling flow of molten steel in mold and method therefor

Also Published As

Publication number Publication date
JP2002316241A (en) 2002-10-29

Similar Documents

Publication Publication Date Title
KR100946612B1 (en) A device and a method for continuous casting
JPS6254579B2 (en)
WO2012118396A1 (en) Method and apparatus for the continuous casting of aluminium alloys
KR20020063897A (en) Method for the vertical continuous casting of metals using electromagnetic fields and casting installation therefor
JP4288020B2 (en) Molten metal flow controller
EP0489202B1 (en) Method of controlling flow of molten steel in mold
JP4669367B2 (en) Molten steel flow control device
JP2004322120A (en) Continuous casting method of steel
JP3510101B2 (en) Flow controller for molten metal
JP2001219246A (en) Molten metal flow control device
EP1433550B1 (en) A method and a device for continuous casting of metals
JP4077807B2 (en) Method for continuous casting of molten metal
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP3033318B2 (en) Method of supplying lubricant in continuous casting apparatus
JP4910357B2 (en) Steel continuous casting method
JPH0515949A (en) Apparatus and method for continuously casting metal
JP6623826B2 (en) Electromagnetic force generator, continuous casting method and continuous casting machine
JP3388686B2 (en) Flow control method in continuous casting strand
JPH05318063A (en) Apparatus and method for continuously casting molten metal
JP3216312B2 (en) Metal continuous casting equipment
JP2002143995A (en) Device for controlling fluidity of molten metal
JPH09276999A (en) Method for continuously casting molten metal and electromagnetic coil for continuous casting
JPH08155611A (en) Method for continuously casting molten metal
JPH1080756A (en) Controller for fluidization of molten metal
JP2003103350A (en) Continuous casting device and continuous casting method for molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4288020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term