JP4287692B2 - Stress evaluation method for compound thin film of amorphous silicon - Google Patents

Stress evaluation method for compound thin film of amorphous silicon Download PDF

Info

Publication number
JP4287692B2
JP4287692B2 JP2003122476A JP2003122476A JP4287692B2 JP 4287692 B2 JP4287692 B2 JP 4287692B2 JP 2003122476 A JP2003122476 A JP 2003122476A JP 2003122476 A JP2003122476 A JP 2003122476A JP 4287692 B2 JP4287692 B2 JP 4287692B2
Authority
JP
Japan
Prior art keywords
stress
amorphous silicon
thin film
film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003122476A
Other languages
Japanese (ja)
Other versions
JP2004327843A (en
Inventor
秀典 蒲生
寿浩 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toppan Inc
Original Assignee
National Institute for Materials Science
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toppan Inc filed Critical National Institute for Materials Science
Priority to JP2003122476A priority Critical patent/JP4287692B2/en
Publication of JP2004327843A publication Critical patent/JP2004327843A/en
Application granted granted Critical
Publication of JP4287692B2 publication Critical patent/JP4287692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質シリコン化合物薄膜の応力評価方法に係り、更に詳しくは、例えば半導体デバイスにおける半導体層、抵抗層、ゲート絶縁膜、層間絶縁膜、パッシベーション膜として、あるいは、X線露光装置、荷電粒子線露光装置におけるマスク構成材料として用いられる非晶質シリコン化合物薄膜の応力評価方法に関する。
【0002】
【従来の技術】
半導体や金属からなる薄膜の作製技術および微細加工技術の発展を背景に、単結晶シリコンや化合物半導体を用いた集積回路、および非晶質半導体薄膜を用いたフラットパネルディスプレイデバイスや各種センサが、急速に普及している。
【0003】
上述のような機能デバイスにおいて、例えば非晶質シリコン薄膜は半導体層や抵抗層として、また、非晶質窒化シリコン薄膜は、ゲート絶縁膜、層間絶縁膜として広く用いられている。
【0004】
このような用途では、半導体特性、絶縁性、誘電性などの電気特性の他、異種材料との密着性の高さが必要とされる。この密着性は、界面の組成の他に、膜の応力が大きく影響を及ぼし、その応力が大きい場合、下地材料からの膜剥がれが発生する。これを防止するためには、素子毎の非晶質シリコン膜あるいは非晶質シリコン化合物膜の応力の計測とその制御が不可欠となる。
【0005】
また、上述のような半導体素子の微細化が急速に進んでいる。半導体のプロセス技術においては、そのような微細パターンを有する素子の製造技術として、様々な露光技術が開発されている。その中で、サブμmルールの露光技術として、電子やイオンなどを用いた荷電粒子線露光やX線露光が注目されている。
【0006】
このような露光技術には、荷電粒子線またはX線を成形するためにマスクが用いられる。これらのマスクには、マスク材料あるいはメンブレンなどのマスクの構成材料として、あるいは応力調整用膜として、非晶質シリコン薄膜や、非晶質窒化シリコン薄膜、あるいは非晶質炭化シリコン薄膜などの非晶質シリコン化合物薄膜が用いられる。
【0007】
この場合、非晶質シリコンあるいはその化合物薄膜の形態としては、自立膜として利用されることが多い。このような部材として非晶質シリコンあるいはその化合物薄膜を適用するためには、それらの膜の応力の計測とその制御が不可欠となる。
【0008】
【非特許文献1】
「応用物理学選書 薄膜」(127頁〜146頁)、金原 粲、藤原 英夫著、株式会社裳華房発行(昭和54年6月5日)
【0009】
【発明が解決しようとする課題】
膜の応力評価法としては、結晶性の膜では、X線あるいは電子線回折法やラマン分光法により、結晶格子の歪みを計測し応力を算出する方法が、例えば上記非特許文献1によって開示されている。しかしながら、実用化しているシリコンおよびその化合物薄膜は、通常、減圧化学気相成長法、または熱化学気相成長法、またはプラズマ化学気相成長法により成膜され、構造的には非晶質膜であり、それらは結晶性を持たないため上述の方法では応力の計測が不可能である。
【0010】
一方、膜の結晶性に依らない評価方法として、基板の反りの変化量による評価法や、膜をメンブレン状態に加工しその変形量により評価するバルジ法が知られている。
【0011】
しかしながら、基板の反りの変化量を見る評価法では、基板全体の応力の平均値しか評価することはできない。すなわち、微小領域の応力や面内の応力分布の評価は原理的に不可能である。
【0012】
また、バルジ法では、微細加工技術を利用して膜メンブレン状に加工することでサブミリオーダーの領域の応力評価と加工できる範囲の応力分布評価が可能であるが、基板を加工する必要があり、非破壊による計測は不可能である。また、μmオーダーの微小領域の評価や微細領域分割による応力分布評価は不可能である。
【0013】
本発明はこのような事情に鑑みてなされたものであり、非晶質シリコン化合物薄膜の微少領域における応力ならびに応力分布を、非破壊でかつ容易に評価することが可能な非晶質シリコン化合物薄膜の応力評価方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記の目的を達成するために、本発明では、以下のような手段を講じる。
【0015】
すなわち、請求項1の発明の応力評価方法は、基板上に形成された水素化非晶質窒化シリコン膜の応力を評価する方法である。ここで前記水素化非晶質窒化シリコン膜における窒素/シリコンの化学量論比=1.3である。そして、光源としてレーザーを用い、水素化非晶質窒化シリコン膜のフォトルミネッセンススペクトルを計測し、水素化非晶質窒化シリコン膜に含まれる水素とシリコンとの結合に起因する強度の大きなフォトルミネッセンスを検出し、このフォトルミネッセンスのピーク強度と水素化非晶質窒化シリコン膜の応力との相関関係を把握し、相関関係を用いて水素化非晶質窒化シリコン膜の応力または応力分布を評価する。
【0016】
従って、請求項1の発明の水素化非晶質窒化シリコン膜の応力評価方法においては、以上のような手段を講じることにより、基板上に形成された膜の微少領域でのスペクトルを非破壊によって容易に計測し、窒素/シリコンの化学量論比=1.3である非晶質窒化シリコン膜に含まれる水素とシリコンとの結合に起因する強度の大きなフォトルミネッセンスを検出することができる。そして、このフォトルミネッセンスのピーク強度と水素化非晶質窒化シリコン膜の応力との相関関係を用いて、水素化非晶質窒化シリコン膜の応力をより高い精度で評価することができる。特に、2.0eV〜2.4eVに明瞭かつ強度の高いピーク値を持つため、より高精度での膜応力の評価が可能となる。また、光源であるレーザーあるいは被評価膜の基板を走査することにより、膜のスペクトル分布を容易に得ることが可能となる。
【0021】
請求項の発明では、請求項1に記載の応力評価方法において、基板を、単結晶シリコンまたは石英としている。
【0022】
上述した請求項2の発明のように、基板を、単結晶シリコンまたは石英とした場合には、水素化非晶質窒化シリコン膜のフォトルミネッセンススペクトルが得られるエネルギー領域の何れにおいても、フォトルミネッセンスが全くないため、高いS/N比が得られ、より高精度での膜応力評価が可能となる。
【0023】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しながら説明する。
【0024】
図1は、本発明の実施の形態に係る応力評価方法によって応力が評価される非晶質シリコンの一例を示す立面図である。
【0025】
すなわち本発明の実施の形態に係る応力評価方法は、基板1上の非晶質シリコンおよびその化合物薄膜2の応力評価において、光源としてレーザーを用い、フォトルミネッセンススペクトルを計測し解析することにより、膜2の応力、特には微小領域の応力、または応力分布を評価する。
【0026】
これは、非晶質シリコンおよび非晶質シリコン化合物が1.5eVから2.5eVのエネルギー領域、すなわち可視光領域で強力なフォトルミネッセンスによる発光ピークが得られる特性を利用したものである。このような物性は、膜構造に起因しており、例えば光学的バンドギャップ、エレクトロルミネッセンスなどの他の光物性や、例えば電気伝導度などの電気物性についても、応力との相関関係を有している場合もある。
【0027】
しかしながら、上述の他の物性では、評価のために基板1の材料が限定される他、電極等の形成が必要であるなど、いずれも非破壊で微小領域の応力あるいは応力分布を評価することは困難である。
【0028】
それに対し、上述したようなレーザーを光源とするフォトルミネッセンスの計測では、基板1上に形成された薄膜2を非破壊で、かつ微小領域でのスペクトルを容易に得ることができる。また、光源であるレーザーあるいは被評価膜の基板1を走査することにより、薄膜2のスペクトル分布を容易に得ることが可能となる。
【0029】
そして、種々の非晶質シリコン系薄膜におけるフォトルミネッセンスのスペクトル計測とその解析および他の方法で計測した応力との関係を詳細に検討した結果、例えば図2に示すように、上記材料におけるフォトルミネッセンスと応力の相関関係を見いだした。すなわち、スペクトル強度またはピーク値と応力が強い相関関係を示すことがわかった。
【0030】
さらに、本発明の実施の形態に係る応力評価方法は、上記非晶質シリコンおよびその化合物薄膜が水素化非晶質シリコンおよびその化合物薄膜である場合に特に有効である。
【0031】
すなわち、膜2中に多くの水素を含有した非晶質シリコンおよびその化合物薄膜では、シリコン−水素または窒素−水素結合に起因するより強度の大きなフォトルミネッセンスが得られるため、より高い精度で膜応力を評価することが可能となる。
【0032】
また、非晶質シリコン化合物薄膜が、非晶質窒化シリコン薄膜または水素化非晶質窒化シリコン薄膜である場合に特に有効である。
【0033】
非晶質窒化シリコン薄膜および水素化非晶質窒化シリコン薄膜の場合には、特に2.0eV〜2.4eVに明瞭かつ強度の高いピーク値を持つため、より高精度での膜応力の評価が可能となる。
【0034】
更に、基板1が単結晶シリコンあるいは石英である場合により有効である。
【0035】
すなわち、基板1として単結晶シリコンおよび石英基板とする場合、何れも上記非晶質シリコンおよびその化合物薄膜のフォトルミネッセンススペクトルが得られるエネルギー領域において、フォトルミネッセンスが全くないため、高いS/N比が得られ、より高精度で薄膜2の応力評価が可能となる。
【0036】
次に、上述したような応力評価方法によって非晶質シリコンおよびその化合物の薄膜2の応力を評価する場合における具体例について説明する。
【0037】
まず、評価用サンプルの作製方法について説明する。ここでは、窒化シリコン膜を基板1上に形成した評価用サンプルについて説明する。このような評価サンプルを作製する場合には、まず、基板1である4インチ単結晶シリコンウェハー上に高周波プラズマ化学気相成長法により、窒化シリコンによる薄膜2を成膜する。
【0038】
高周波プラズマ化学気相成長条件は、次の通りである。
原料ガス:シラン、アンモニア、水素。
アンモニア流量(可変条件):3%〜15%(全ガス流量に対する体積流量%)。
反応圧力:133Pa(1Torr)。
高周波パワー:180W。
基板温度:400℃。
【0039】
膜厚:200nm。
【0040】
上記条件にて得られた薄膜2について各種分析を行った結果、いずれも化学量論(窒素/シリコン=1.3)に近い組成を持ち、10〜20原子%の水素を含有していることがわかった。また、X線回折からピークは認められず非晶質であることが判明した。
【0041】
次に、アンモニア流量の異なる条件で成膜した任意の4種類の窒化シリコン膜のフォトルミネッセンススペクトルの評価を行った。レーザーとして325nmのヘリウム−カドミウムレーザーを用いた。このレーザー光を集光光学系を有する顕微鏡を通して窒化シリコン膜に照射した。同時にグレーティングを用いてフォトルミネッセンス光を300nmから800nmの範囲でエネルギー分解しスペクトルを得た。照射面積は直径5μmとした。なお、最小の照射面積としては、直径1μmまでが可能である。
【0042】
その結果、図2に示すように、ウェハーの反りで計測した応力とフォトルミネッセンスピーク値(2.1eV)の強度の関係には、強い相関関係があることが示された。なお、2.1eVは、585nmに相当する。さらに、全流量に対するアンモニアによる流量の体積割合を6%、10%として作製し評価した結果もまた検量線Aに良く一致する。
【0043】
これらの結果から、得られた結果を検量線として用いることにより、フォトルミネッセンスピーク強度から、膜応力を見積もり、数値化することができることがわかる。
【0044】
すなわち、本発明の実施の形態に係る応力評価方法では、図2にその一例を示すような検量線Aを用いることによって、非破壊でより微小な直径1μmの領域の膜応力、および4インチウェハー上における応力分布を評価することが可能となる。
【0045】
以上、本発明の好適な実施の形態について、添付図面を参照しながら説明したが、本発明はかかる構成に限定されない。特許請求の範囲の発明された技術的思想の範疇において、当業者であれば、各種の変更例および修正例に想到し得るものであり、それら変更例および修正例についても本発明の技術的範囲に属するものと了解される。
【0046】
【発明の効果】
以上、詳細に説明したように、本発明によると、基板上に成膜した非晶質シリコン化合物薄膜に、レーザーを照射することにより計測したフォトルミネッセンスの結果に基づいて応力を評価することができる。したがって、非破壊で微小領域の応力、および応力の分布評価することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る応力評価方法によって応力が評価される非晶質シリコンの一例を示す立面図
【図2】 本発明の実施の形態に係る応力評価方法によって評価された応力とフォトルミネッセンス強度との相関図。
【符号の説明】
1…基板、2…薄膜、A…検量線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stress evaluation method for a compound thin film of amorphous silicon , and more particularly, for example, as a semiconductor layer, a resistance layer, a gate insulating film, an interlayer insulating film, a passivation film in a semiconductor device, or an X-ray exposure apparatus. The present invention relates to a stress evaluation method for a compound thin film of amorphous silicon used as a mask constituent material in a charged particle beam exposure apparatus.
[0002]
[Prior art]
Due to the development of semiconductor and metal thin film fabrication technology and microfabrication technology, integrated circuits using single crystal silicon and compound semiconductors, flat panel display devices using amorphous semiconductor thin films, and various sensors are rapidly emerging. Is popular.
[0003]
In the functional devices as described above, for example, an amorphous silicon thin film is widely used as a semiconductor layer or a resistance layer, and an amorphous silicon nitride thin film is widely used as a gate insulating film or an interlayer insulating film.
[0004]
In such applications, in addition to electrical characteristics such as semiconductor characteristics, insulating properties, and dielectric properties, high adhesion to different materials is required. In addition to the composition of the interface, the adhesion is greatly influenced by the stress of the film. When the stress is large, the film peels off from the base material. In order to prevent this, it is essential to measure and control the stress of the amorphous silicon film or the amorphous silicon compound film for each element.
[0005]
Further, the miniaturization of the semiconductor element as described above is rapidly progressing. In the semiconductor process technology, various exposure technologies have been developed as a technology for manufacturing an element having such a fine pattern. Among them, charged particle beam exposure and X-ray exposure using electrons, ions, and the like are attracting attention as exposure technology based on the sub-μm rule.
[0006]
In such an exposure technique, a mask is used to form a charged particle beam or X-ray. These masks include amorphous materials such as an amorphous silicon thin film, an amorphous silicon nitride thin film, or an amorphous silicon carbide thin film as a mask material or a constituent material of a mask such as a membrane, or as a stress adjusting film. A silicon compound thin film is used.
[0007]
In this case, the amorphous silicon or its compound thin film is often used as a free-standing film. In order to apply amorphous silicon or a compound thin film thereof as such a member, it is indispensable to measure and control the stress of those films.
[0008]
[Non-Patent Document 1]
"Applied physics selection thin film" (pages 127 to 146), published by Jun Kanbara and Hideo Fujiwara, Junkabo Co., Ltd. (June 5, 1979)
[0009]
[Problems to be solved by the invention]
As a method for evaluating the stress of a film, for a crystalline film, a method for measuring the strain of a crystal lattice by X-ray or electron diffraction or Raman spectroscopy and calculating the stress is disclosed in Non-Patent Document 1, for example. ing. However, silicon and its compound thin films in practical use are usually formed by low pressure chemical vapor deposition, thermal chemical vapor deposition, or plasma chemical vapor deposition, and are structurally amorphous films. Since they do not have crystallinity, the stress cannot be measured by the above-described method.
[0010]
On the other hand, as evaluation methods that do not depend on the crystallinity of the film, there are known an evaluation method based on the amount of change in warping of the substrate and a bulge method in which the film is processed into a membrane state and evaluated based on the amount of deformation.
[0011]
However, in the evaluation method in which the change amount of the warp of the substrate is observed, only the average value of the stress of the entire substrate can be evaluated. That is, it is impossible in principle to evaluate a stress in a minute region or an in-plane stress distribution.
[0012]
In addition, in the bulge method, it is possible to evaluate the stress in the submillimeter order region and the stress distribution in the range that can be processed by processing into a membrane membrane shape using micro processing technology, but it is necessary to process the substrate, Nondestructive measurement is impossible. Further, evaluation of a micro area on the order of μm and evaluation of stress distribution by fine area division are impossible.
[0013]
The present invention has been made in view of such circumstances, stress and stress distribution in the small region of the compound thin film of amorphous silicon, nondestructive and readily evaluated amorphous silicon capable of It aims at providing the stress evaluation method of a compound thin film.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention takes the following measures.
[0015]
That is, the stress evaluation method of the invention of claim 1, Ru method der to evaluate the stress of the hydrogenated amorphous silicon nitride film formed on a substrate. Here, the nitrogen / silicon stoichiometry in the hydrogenated amorphous silicon nitride film is 1.3. Then, using a laser as a light source, measuring the photoluminescence spectrum of the hydrogenated amorphous silicon nitride film, a large photoluminescence intensity due to binding of hydrogen and silicon contained in the hydrogenated amorphous silicon nitride film The correlation between the peak intensity of the photoluminescence and the stress of the hydrogenated amorphous silicon nitride film is grasped, and the stress or the stress distribution of the hydrogenated amorphous silicon nitride film is evaluated using the correlation.
[0016]
Thus, in the stress evaluation method of hydrogenated amorphous silicon nitride film of the invention of claim 1, by taking measures such as described above, the nondestructive spectra in the small region of the film formed on the substrate It is possible to easily measure and detect photoluminescence having high intensity due to the bond between hydrogen and silicon contained in the amorphous silicon nitride film in which the nitrogen / silicon stoichiometry ratio is 1.3 . Then, by using the correlation between the peak intensity of the photoluminescence and hydrogenated amorphous silicon nitride film stress, the stress of the hydrogenated amorphous silicon nitride film can be evaluated with high accuracy. In particular, since the peak value is clear and high in intensity from 2.0 eV to 2.4 eV, the film stress can be evaluated with higher accuracy. Further, it is possible to easily obtain the spectral distribution of the film by scanning the laser as the light source or the substrate of the film to be evaluated.
[0021]
According to a second aspect of the present invention, in the stress evaluation method according to the first aspect, the substrate is single crystal silicon or quartz.
[0022]
When the substrate is made of single crystal silicon or quartz as in the second aspect of the invention described above, the photoluminescence can be produced in any energy region where the photoluminescence spectrum of the hydrogenated amorphous silicon nitride film can be obtained. Since there is nothing, a high S / N ratio can be obtained, and the film stress can be evaluated with higher accuracy.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0024]
FIG. 1 is an elevation view showing an example of amorphous silicon whose stress is evaluated by the stress evaluation method according to the embodiment of the present invention.
[0025]
That is, the stress evaluation method according to the embodiment of the present invention uses a laser as a light source in the stress evaluation of amorphous silicon on the substrate 1 and its compound thin film 2, and measures and analyzes the photoluminescence spectrum. 2 stress, in particular, a stress in a minute region, or a stress distribution.
[0026]
This utilizes the characteristic that amorphous silicon and an amorphous silicon compound can obtain a light emission peak due to strong photoluminescence in an energy region of 1.5 eV to 2.5 eV, that is, a visible light region. Such physical properties are attributed to the film structure, and other optical physical properties such as optical band gap and electroluminescence, and electrical physical properties such as electrical conductivity have a correlation with stress. There may be.
[0027]
However, in the other physical properties described above, the material of the substrate 1 is limited for evaluation, and it is necessary to form an electrode or the like. Have difficulty.
[0028]
On the other hand, in the photoluminescence measurement using the laser as the light source as described above, the spectrum in a minute region can be easily obtained without destructing the thin film 2 formed on the substrate 1. Further, it is possible to easily obtain the spectral distribution of the thin film 2 by scanning the laser as the light source or the substrate 1 of the film to be evaluated.
[0029]
Then, as a result of examining in detail the relationship between the photoluminescence spectrum measurement in various amorphous silicon-based thin films, the analysis thereof and the stress measured by other methods, for example, as shown in FIG. And found the correlation of stress. That is, it was found that the spectrum intensity or peak value and the stress showed a strong correlation.
[0030]
Furthermore, the stress evaluation method according to the embodiment of the present invention is particularly effective when the amorphous silicon and its compound thin film are hydrogenated amorphous silicon and its compound thin film.
[0031]
That is, in the amorphous silicon containing a large amount of hydrogen in the film 2 and its compound thin film, photoluminescence having a higher intensity due to the silicon-hydrogen or nitrogen-hydrogen bond can be obtained. Can be evaluated.
[0032]
This is particularly effective when the amorphous silicon compound thin film is an amorphous silicon nitride thin film or a hydrogenated amorphous silicon nitride thin film.
[0033]
In the case of an amorphous silicon nitride thin film and a hydrogenated amorphous silicon nitride thin film, since the peak value is clear and high in strength particularly from 2.0 eV to 2.4 eV, the film stress can be evaluated with higher accuracy. It becomes possible.
[0034]
Further, it is more effective when the substrate 1 is single crystal silicon or quartz.
[0035]
That is, when the substrate 1 is a single crystal silicon or quartz substrate, since there is no photoluminescence at all in the energy region where the photoluminescence spectrum of the amorphous silicon and the compound thin film is obtained, a high S / N ratio is obtained. As a result, the stress of the thin film 2 can be evaluated with higher accuracy.
[0036]
Next, a specific example in the case where the stress of the thin film 2 of amorphous silicon and its compound is evaluated by the stress evaluation method as described above will be described.
[0037]
First, a method for producing an evaluation sample will be described. Here, an evaluation sample in which a silicon nitride film is formed on the substrate 1 will be described. When producing such an evaluation sample, first, a thin film 2 made of silicon nitride is formed on a 4-inch single crystal silicon wafer as a substrate 1 by high-frequency plasma chemical vapor deposition.
[0038]
The high-frequency plasma chemical vapor deposition conditions are as follows.
Source gas: Silane, ammonia, hydrogen.
Ammonia flow rate (variable conditions): 3% to 15% (volume flow rate% relative to total gas flow rate).
Reaction pressure: 133 Pa (1 Torr).
High frequency power: 180 W.
Substrate temperature: 400 ° C.
[0039]
Film thickness: 200 nm.
[0040]
As a result of conducting various analyzes on the thin film 2 obtained under the above conditions, all have a composition close to stoichiometry (nitrogen / silicon = 1.3) and contain 10 to 20 atomic% hydrogen. I understood. Further, X-ray diffraction revealed no peak and was found to be amorphous.
[0041]
Next, photoluminescence spectra of arbitrary four types of silicon nitride films formed under conditions with different ammonia flow rates were evaluated. A 325 nm helium-cadmium laser was used as the laser. The silicon nitride film was irradiated with this laser light through a microscope having a condensing optical system. At the same time, photoluminescence light was energy-resolved in the range of 300 nm to 800 nm using a grating to obtain a spectrum. The irradiation area was 5 μm in diameter. The minimum irradiation area can be up to 1 μm in diameter.
[0042]
As a result, as shown in FIG. 2, it was shown that there is a strong correlation between the stress measured by the warpage of the wafer and the intensity of the photoluminescence peak value (2.1 eV). 2.1 eV corresponds to 585 nm. Furthermore, the results of the production and evaluation with the volume ratio of the flow rate of ammonia with respect to the total flow rate of 6% and 10% also agree well with the calibration curve A.
[0043]
From these results, it is understood that the film stress can be estimated and quantified from the photoluminescence peak intensity by using the obtained result as a calibration curve.
[0044]
That is, in the stress evaluation method according to the embodiment of the present invention, by using the calibration curve A as shown in FIG. 2 as an example, the film stress in the non-destructive and smaller 1 μm diameter region and the 4-inch wafer It is possible to evaluate the stress distribution above.
[0045]
As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to this structure. Within the scope of the invented technical idea of the claims, those skilled in the art will be able to conceive various changes and modifications, and these changes and modifications are also within the technical scope of the present invention. It is understood that it belongs to.
[0046]
【The invention's effect】
As described above in detail, according to the present invention, the compound thin film of amorphous silicon was deposited on the substrate, to evaluate the stress based on the results of photoluminescence measured by irradiating a laser it can. Therefore, it is possible to evaluate the stress in the micro area and the distribution of the stress in a non-destructive manner.
[Brief description of the drawings]
FIG. 1 is an elevation view showing an example of amorphous silicon whose stress is evaluated by the stress evaluation method according to the embodiment of the present invention. FIG. 2 is evaluated by the stress evaluation method according to the embodiment of the present invention. FIG. 6 is a correlation diagram between the stress and the photoluminescence intensity.
[Explanation of symbols]
1 ... Substrate, 2 ... Thin film, A ... Calibration curve

Claims (2)

基板上に形成された水素化非晶質窒化シリコン膜の応力評価方法において、
前記水素化非晶質窒化シリコン膜における窒素/シリコンの化学量論比=1.3であり、
光源としてレーザーを用い、前記水素化非晶質窒化シリコン膜のフォトルミネッセンススペクトルを計測し、前記水素化非晶質窒化シリコン膜に含まれる水素とシリコンとの結合に起因する強度の大きなフォトルミネッセンスを検出し、このフォトルミネッセンスのピーク強度と前記水素化非晶質窒化シリコン薄膜の応力との相関関係を把握し、前記相関関係を用いて前記水素化非晶質窒化シリコン膜の応力または応力分布を評価するようにした応力評価方法。
In the stress evaluation method of the hydrogenated amorphous silicon nitride film formed on the substrate,
The nitrogen / silicon stoichiometric ratio in the hydrogenated amorphous silicon nitride film is 1.3.
Using a laser as a light source, the photoluminescence spectrum of the hydrogenated amorphous silicon nitride film is measured, and photoluminescence with high intensity due to the bond between hydrogen and silicon contained in the hydrogenated amorphous silicon nitride film is obtained. And detecting the correlation between the peak intensity of the photoluminescence and the stress of the hydrogenated amorphous silicon nitride thin film, and using the correlation, the stress or stress distribution of the hydrogenated amorphous silicon nitride film is determined. Stress evaluation method to be evaluated.
前記基板を、単結晶シリコンまたは石英とした請求項1に記載の応力評価方法。  The stress evaluation method according to claim 1, wherein the substrate is single crystal silicon or quartz.
JP2003122476A 2003-04-25 2003-04-25 Stress evaluation method for compound thin film of amorphous silicon Expired - Fee Related JP4287692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122476A JP4287692B2 (en) 2003-04-25 2003-04-25 Stress evaluation method for compound thin film of amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122476A JP4287692B2 (en) 2003-04-25 2003-04-25 Stress evaluation method for compound thin film of amorphous silicon

Publications (2)

Publication Number Publication Date
JP2004327843A JP2004327843A (en) 2004-11-18
JP4287692B2 true JP4287692B2 (en) 2009-07-01

Family

ID=33500693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122476A Expired - Fee Related JP4287692B2 (en) 2003-04-25 2003-04-25 Stress evaluation method for compound thin film of amorphous silicon

Country Status (1)

Country Link
JP (1) JP4287692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899120B2 (en) * 2006-01-13 2012-03-21 凸版印刷株式会社 Composition evaluation method and physical property evaluation method of silicon nitride oxide film
JP5034295B2 (en) 2006-03-31 2012-09-26 富士通株式会社 Stress measuring method and apparatus
JP5732120B2 (en) * 2013-09-13 2015-06-10 株式会社神戸製鋼所 Evaluation equipment for oxide semiconductor thin films

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179215A (en) * 1990-11-14 1992-06-25 Oki Electric Ind Co Ltd Amorphous thin film and manufacture thereof
JP2740903B2 (en) * 1992-11-09 1998-04-15 株式会社ジャパンエナジー Evaluation method for compound semiconductor substrate
JPH1019693A (en) * 1996-06-27 1998-01-23 New Japan Radio Co Ltd Method of measuring stress of semiconductor device
JPH1032233A (en) * 1996-07-15 1998-02-03 Seiko Epson Corp Silicon wafer, glass wafer and measurement of stress using them
JP3979611B2 (en) * 1998-04-09 2007-09-19 株式会社島津製作所 Stress measuring device
JP3709430B2 (en) * 2000-02-02 2005-10-26 独立行政法人産業技術総合研究所 Method of measuring stress or stress distribution using stress luminescent material
JP2002176009A (en) * 2000-12-06 2002-06-21 Hitachi Ltd Laser annealing crystallization in-situ analyzing apparatus

Also Published As

Publication number Publication date
JP2004327843A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
Choi et al. Ultrasensitive detection of VOCs using a high‐resolution CuO/Cu2O/Ag nanopattern sensor
Shi et al. Structural and optical properties of amorphous Al 2 O 3 thin film deposited by atomic layer deposition
Gautam et al. Gas sensing properties of graphene synthesized by chemical vapor deposition
Mishra et al. First-and second-order Raman scattering in nanocrystalline silicon
Park et al. High concentration of nitrogen doped into graphene using N 2 plasma with an aluminum oxide buffer layer
Davydov et al. Study of the crystal and electronic structure of graphene films grown on 6 H-SiC (0001)
Arguirov et al. Residual stress in Si nanocrystals embedded in a SiO2 matrix
i Morral et al. Etching and hydrogen diffusion mechanisms during a hydrogen plasma treatment of silicon thin films
Chu et al. Nanostructures and sensing properties of ZnO prepared using normal and oblique angle deposition techniques
Tabassum et al. Time-resolved analysis of the white photoluminescence from chemically synthesized SiCxOy thin films and nanowires
JP4287692B2 (en) Stress evaluation method for compound thin film of amorphous silicon
König et al. Self-organized growth of graphene nanomesh with increased gas sensitivity
Mhamdi et al. Study of n-WO 3/p-porous silicon structures for gas-sensing applications
Panahi et al. Fabrication, characterization and hydrogen gas sensing performance of nanostructured V 2 O 5 thin films prepared by plasma focus method
JP4899120B2 (en) Composition evaluation method and physical property evaluation method of silicon nitride oxide film
Huber et al. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy
JP4639334B2 (en) Diamond film, manufacturing method thereof, electrochemical device, and manufacturing method thereof
US20130337195A1 (en) Method of growing graphene nanocrystalline layers
Mane et al. Nanostructured composite thin films with tailored resistivity by atomic layer deposition
JP6457766B2 (en) Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material
JP2004327844A (en) Silicon nitride film, its producing process, and functional device
US20040132317A1 (en) Method for oxidation of silicon substrate
Baek et al. Characterization of PECVD Si3N4 thin film in multiple oxide–nitride stack for 3D-NAND flash memory
Borsoni et al. Ultrathin SiO2 layers formation by ultraslow single-and multicharged ions
Bahari Deconvoluted Si 2p Photoelectron Spectra of Ultra thin SiO2 film with FitXPS method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees