JPH04179215A - Amorphous thin film and manufacture thereof - Google Patents

Amorphous thin film and manufacture thereof

Info

Publication number
JPH04179215A
JPH04179215A JP2306051A JP30605190A JPH04179215A JP H04179215 A JPH04179215 A JP H04179215A JP 2306051 A JP2306051 A JP 2306051A JP 30605190 A JP30605190 A JP 30605190A JP H04179215 A JPH04179215 A JP H04179215A
Authority
JP
Japan
Prior art keywords
film
thin film
crystalline
amorphous thin
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2306051A
Other languages
Japanese (ja)
Inventor
Satoru Nishikawa
哲 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2306051A priority Critical patent/JPH04179215A/en
Publication of JPH04179215A publication Critical patent/JPH04179215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure a stress of an amorphous thin film by an X-ray diffraction method or by a Raman scattering method by depositing a crystalline thin film or scattering crystalline fine particles on the amorphous thin film. CONSTITUTION:On a substrate 3, an SiN film 2 is deposited to the specified thickness and then polycrystalline Si is deposited in the specified thickness to form a crystalline film 1. After that, an SiN film is formed on the crystalline film 1. Or, after the polycrystalline Si film 1 is formed, the film 1 is processed to a beltlike one or islandlike one by photolithography and etching and then an SiN film is formed on the film 1. The crystalline film or particle is deformed by a stress which is applied by the SiN film. Therefore, the amount it deforms is measured by measuring X-ray diffraction or Raman scattering of a crystal of the crystalline film or particle. The stress of the SiN film can measured by measuring the amount the crystalline film or particle deforms.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体素子の製造に用いられる非晶質薄膜の
構造及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of an amorphous thin film used in the manufacture of semiconductor devices and its manufacturing method.

(従来技術) 半導体素子の微細化に対応するために、X線を用いた新
しいリングラフィ技術の検討が行なわれている。XMリ
ングラフィに用いられるマスクはたトエばニス・オーギ
の「ザブハーフミクロンLSI用Ta/SiN構造Xa
マスクTa/SiN StructureXray M
asks for Sub−half−micron 
LSI jダイジェスト・オフ・ペーパース、1989
セコンドマイクロプロセスコンファレンス(Diges
t’ of Papersl 989 2nd Mic
roprocess Conf、) PP 94−95
に示されているような構造及びプロセスにより製造され
るのが通常である。
(Prior Art) In order to respond to the miniaturization of semiconductor devices, a new phosphorography technique using X-rays is being studied. The mask used in XM phosphorography is Ta/SiN structure Xa for half-micron LSI by Toebanis Ogi
Mask Ta/SiN StructureXray M
asks for Sub-half-micron
LSI J Digest Off Papers, 1989
Second Microprocess Conference (Diges)
t' of Papersl 989 2nd Mic
roprocess Conf,) PP 94-95
It is usually manufactured using the structure and process shown in .

すなわち、3インチ径の結晶シリコン基板に減圧CVD
法によりSiN膜を2μm厚で形成し、その後スパンタ
リング法によりタンタル膜を0.65μ形成後電子サイ
クルトロン共鳴CvD法によシSiO2膜を形成し、レ
ジスト膜を塗布後、電子ビーム露光によりレジスト膜や
ターンを形成し、ドライエツチングによりSiO2膜を
エツチングし、さらに5IO2膜をマスクとしてタンタ
ル膜をエツチングする。
In other words, low pressure CVD was applied to a 3-inch diameter crystalline silicon substrate.
After that, a tantalum film of 0.65 μm was formed by a sputtering method, an SiO2 film was formed by an electron cycle tron resonance CvD method, and a resist film was applied, and the resist was removed by electron beam exposure. After forming films and turns, the SiO2 film is etched by dry etching, and the tantalum film is further etched using the 5IO2 film as a mask.

次にSi基板の裏側についたSiN膜をウェットエツチ
ングにより除去し、さらにSiN膜をマスクとしてシリ
コン基板をウェットエツチングしてシリコノ基板の中空
リングに、SiN膜が支持されさらにSiN膜上にパタ
ーニングされたタンタル膜が支持されるごとくなった、
X線マスクを得る。
Next, the SiN film attached to the back side of the Si substrate was removed by wet etching, and the silicon substrate was further wet etched using the SiN film as a mask, so that the SiN film was supported in the hollow ring of the silicon substrate and further patterned on the SiN film. Tantalum membrane is now supported,
Obtain an X-ray mask.

このときタンタル膜のパターンが歪んだり、又剥れたり
しないようにするため、上記文献に示されている如(S
iN膜の応力を1(応力)×(膜厚)1く10 X 1
0  dynA−rnでかつ圧縮応力とするように制御
する必要がある。
At this time, in order to prevent the pattern of the tantalum film from becoming distorted or peeling off, as shown in the above-mentioned document (S
The stress of the iN film is 1 (stress) × (film thickness) 1 × 10 × 1
It is necessary to control the stress so that the stress is 0 dynA-rn and the stress is compressive.

(発明が解決しようとする課題) 上記の従来のマスク製造方法によれば、例えばSiN膜
の応力の正確な制御が必要でありそのためには応力を測
定しそれをフィードバックする必要がある。一般にこの
応力の測定は基板の反りを測定することにより行われる
が、 SiN膜の形成後にシリコン基板の両面にSiN
膜が形成されるために。
(Problems to be Solved by the Invention) According to the conventional mask manufacturing method described above, it is necessary to accurately control the stress of the SiN film, for example, and for this purpose, it is necessary to measure the stress and feed it back. Generally, this stress is measured by measuring the warpage of the substrate, but after the SiN film is formed, SiN is applied to both sides of the silicon substrate.
for a membrane to form.

基板の反シからこのような非晶質膜の応力測定を行う通
常の方法を用いる事ができない。
It is not possible to use the usual method of measuring the stress of such an amorphous film from the surface of the substrate.

さらに上記従来のマスク製造方法において、裏面のSi
N膜をタンタル膜形成前にエツチングにより除去するこ
とも考えられるがタンタル膜形成前に必要とする表面側
のSiN膜が汚染される可能性がありまたその上のタン
タル膜の剥離の原因となりやすい。
Furthermore, in the conventional mask manufacturing method described above, the Si on the back side
It is possible to remove the N film by etching before forming the tantalum film, but this may contaminate the SiN film on the surface side, which is required before forming the tantalum film, and may easily cause peeling of the tantalum film above it. .

さらに基板の反シによる応力測定では面内に分布する応
力は測定できない。
Furthermore, stress distributed within the plane cannot be measured by measuring stress by bending the substrate.

この発明では、以上述べたように、非晶質の薄膜の製造
中、その応力およびその分布を測定しうる薄膜の構造及
びその製造方法を提供することを目的とする。
As described above, it is an object of the present invention to provide a thin film structure and a method for manufacturing the same, in which stress and its distribution can be measured during the manufacture of an amorphous thin film.

(課題を解決するための手段) 非晶質の薄膜に、結晶性薄膜又は微粒子を積層又は分散
させる。
(Means for solving the problem) A crystalline thin film or fine particles are laminated or dispersed on an amorphous thin film.

(作用) 応力測定の対象である非晶質薄膜中に結晶性粒子を分散
または非晶質薄膜上に結晶性薄膜を積層すもことによシ
、基板の反りではなく、X線回折又はラマン散乱法等を
用いて非晶質薄膜の応力の測定が可能となる。
(Function) By dispersing crystalline particles in an amorphous thin film that is the object of stress measurement, or by stacking a crystalline thin film on top of an amorphous thin film, X-ray diffraction or Raman It becomes possible to measure stress in amorphous thin films using scattering methods and the like.

(実施例) 第1図、第2図および第3図はこの発明の実施例を夫々
示す図である。ここではX線マスク用薄膜として非晶質
膜であるSiN膜を用いる場合について説明する。
(Example) FIG. 1, FIG. 2, and FIG. 3 are diagrams showing examples of the present invention, respectively. Here, a case will be described in which an SiN film, which is an amorphous film, is used as a thin film for an X-ray mask.

第1図に示す実施例においては基板3の上に応力測定を
受けるべき非晶質薄膜2が設けられており、この薄膜2
内に結晶質膜1がそう人されている。
In the embodiment shown in FIG. 1, an amorphous thin film 2 to be subjected to stress measurement is provided on a substrate 3.
There is a crystalline film 1 inside.

第2図の実施例では第1図における結晶質膜1を分析し
た形の結晶質膜1′が非晶質膜2にそう人されており、
また第3図の実施例では結晶質粒子1〃が非晶質膜2内
に分散されている。
In the embodiment shown in FIG. 2, a crystalline film 1', which is an analysis of the crystalline film 1 shown in FIG. 1, is replaced by an amorphous film 2.
Further, in the embodiment shown in FIG. 3, crystalline particles 1 are dispersed within an amorphous film 2. In the embodiment shown in FIG.

Xaマスク用薄膜としての機能を損わずにX線回折また
はラマン散乱をその応力測定に適用しうるようにするた
めにはこの結晶質の膜または粒子のX線波長(〜10X
)におけるX線吸収係数がSiNと同程度がそれ以下の
ものである必要がある。
In order to be able to apply X-ray diffraction or Raman scattering to the stress measurement without impairing the function of the Xa mask thin film, the X-ray wavelength (~10X
) must have an X-ray absorption coefficient equal to or lower than that of SiN.

このような物質としてSi+ Be +A71203 
+ 5ICI BNなどの物質を用いる事ができる。
Such a substance is Si+ Be +A71203
A substance such as +5ICI BN can be used.

これらの物質を結晶性の薄膜又は薄膜でかつ帯状又は島
状又は粒子状にSiN膜内に形成する。このように形成
された結晶質膜又は粒子はSiN膜により印加される応
力により変形をうけるためこの結晶のX線回折又はラマ
ン散乱を測定することによりその変形量を測定すること
、そしてそれによりSiN膜の応力を測定することが可
能となる。
These substances are formed in the SiN film in the form of a crystalline thin film or thin film in the form of bands, islands, or particles. Since the crystalline film or particles formed in this way are deformed by the stress applied by the SiN film, the amount of deformation is measured by measuring X-ray diffraction or Raman scattering of this crystal, and thereby the SiN It becomes possible to measure the stress in the membrane.

さらにその測定を微少領域に限定できろX線回折又は顕
微ラマン散乱法を用いることにより応力の面内分布の測
定も可能となる。
Furthermore, by using X-ray diffraction or microscopic Raman scattering, which can limit the measurement to a minute area, it is also possible to measure the in-plane stress distribution.

次に第1図、第2図、第3図に示す構造を有する非晶質
膜の製造方法を結晶質膜が多結晶S1である場合につい
て述べる。
Next, a method for manufacturing an amorphous film having the structure shown in FIGS. 1, 2, and 3 will be described for the case where the crystalline film is polycrystalline S1.

第1図の構造を得るには、SiN膜2を一定厚み(a)
まで形成した後に、減圧CVDにより多結晶Siを一定
厚み形成して結晶性の膜lを形成し、その後にSiN膜
を更に形成すればよい。
In order to obtain the structure shown in Fig. 1, the SiN film 2 is
After forming the SiN film, polycrystalline Si is formed to a certain thickness by low pressure CVD to form a crystalline film 1, and then an SiN film is further formed.

第2図の構造を得るには上記プロセスで多結晶Si膜1
を形成後ホトリソグラフィとエツチングにより多結晶S
j膜1を帯状又は島状に加工し、更にSiN膜を形成す
ればよい。又多結晶Siを減圧CVDではなく方向性を
もって形成のできる電子ビーム蒸着法やスiPツタリン
グ法、 ECRプラズマCVD法などにより形成する場
合には、SiN膜2上2上属膜に適当な形状の穴をあけ
たいわゆるメタル・マスクを通して形成することにより
ホI・リングラフィ・エツチングのプロセスを用いずに
第2図の構造を実現することができる。
To obtain the structure shown in Fig. 2, the polycrystalline Si film 1 is
After forming polycrystalline S by photolithography and etching
J film 1 may be processed into a band shape or an island shape, and then a SiN film may be formed. In addition, when forming polycrystalline Si using an electron beam evaporation method, SiP tuttering method, ECR plasma CVD method, etc., which can form the polycrystalline silicon with directionality instead of low-pressure CVD, an appropriate shape is applied to the upper layer on the SiN film 2. The structure shown in FIG. 2 can be realized without using a hole, phosphorography, or etching process by forming the structure through a so-called metal mask having holes.

第3図の構造は、SiN膜2の形成中に適当な微粒子形
成法で結晶性微粒子l”を供給することで容易に実現さ
れる。このような方法は結晶質がSi以外のものについ
ても同様に適用することができる。
The structure shown in FIG. 3 can be easily realized by supplying crystalline fine particles l'' by an appropriate fine particle formation method during the formation of the SiN film 2.Such a method can also be used for materials other than Si. The same can be applied.

以上薄膜をX線マスク薄膜に用いるものとして述べたが
他の応力制御の必要な用途についても使用することがで
きる。
Although the thin film has been described above as being used as an X-ray mask thin film, it can also be used for other applications requiring stress control.

(発明の効果) 以上、詳細に説明したように、この発明によれば、非晶
質性の薄膜に結晶質の薄膜又は微粒子を積層又は分散さ
せる構造としたので、X線回折やラマン散乱などの方法
により、薄膜の応力分布を基板の有無などに関係なく測
定できる。従って非晶質薄膜の応力の精密な制御の必要
な、たとえばX線マスク用薄膜の製造に適用可能である
(Effects of the Invention) As described above in detail, according to the present invention, the structure is such that crystalline thin films or fine particles are laminated or dispersed in an amorphous thin film, so that X-ray diffraction, Raman scattering, etc. By this method, the stress distribution of a thin film can be measured regardless of the presence or absence of a substrate. Therefore, it is applicable to the production of thin films for X-ray masks, for example, which requires precise control of stress in amorphous thin films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は本発明による非晶質薄膜
の実施例を夫々示す図である。 1・・・結晶性物質、2・・・非晶質薄膜、3・・・半
導体基板。 特許出願人 沖電気工業株式会社
FIG. 1, FIG. 2, and FIG. 3 are diagrams showing examples of amorphous thin films according to the present invention, respectively. 1... Crystalline substance, 2... Amorphous thin film, 3... Semiconductor substrate. Patent applicant Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 1、結晶性物質を含む非晶質薄膜。 2、前記結晶性物質は連続する薄膜である請求項1記載
の非晶質薄膜。 3、前記連続する結晶性薄膜は前記非晶質薄膜に積層す
るごとくなった請求項2記載の非晶質薄膜。 4、前記連続する結晶性薄膜は前記非晶質薄膜内に配置
されるごとくなった請求項2記載の非晶質薄膜。 5、前記結晶性物質は粒子状であって前記非晶質薄膜内
にほぼ均一に分散するごとくなった請求項1記載の非晶
質薄膜。 6、前記結晶性物質は薄膜片であり、前記非晶質薄膜内
にほぼ均一に分散するごとくなった請求項1記載の非晶
質薄膜。 7、半導体基板に非晶質薄膜を形成する第1工程および
この非晶質薄膜上に結晶性薄膜を形成する第2項からな
る非晶質薄膜の形成方法。 8、前記結晶性薄膜の上に更に非晶質薄膜を形成する第
3工程を含む請求項7記載の方法。 9、前記結晶性薄膜はほぼ均一に分布した開口を有する
請求項8記載の方法。 10、半導体基板に非晶質薄膜を形成しつつ、その非晶
質薄膜に結晶性物質をほぼ均一に分散させることからな
る非晶質薄膜の形成方法。
[Claims] 1. An amorphous thin film containing a crystalline substance. 2. The amorphous thin film according to claim 1, wherein the crystalline substance is a continuous thin film. 3. The amorphous thin film according to claim 2, wherein the continuous crystalline thin film is laminated on the amorphous thin film. 4. The amorphous thin film according to claim 2, wherein the continuous crystalline thin film is disposed within the amorphous thin film. 5. The amorphous thin film according to claim 1, wherein the crystalline substance is in the form of particles and is substantially uniformly dispersed within the amorphous thin film. 6. The amorphous thin film according to claim 1, wherein the crystalline substance is a thin film piece and is substantially uniformly dispersed within the amorphous thin film. 7. A method for forming an amorphous thin film comprising a first step of forming an amorphous thin film on a semiconductor substrate and a second step of forming a crystalline thin film on the amorphous thin film. 8. The method according to claim 7, further comprising a third step of forming an amorphous thin film on the crystalline thin film. 9. The method of claim 8, wherein the crystalline thin film has substantially uniformly distributed apertures. 10. A method for forming an amorphous thin film, which comprises forming an amorphous thin film on a semiconductor substrate and substantially uniformly dispersing a crystalline substance in the amorphous thin film.
JP2306051A 1990-11-14 1990-11-14 Amorphous thin film and manufacture thereof Pending JPH04179215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2306051A JPH04179215A (en) 1990-11-14 1990-11-14 Amorphous thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2306051A JPH04179215A (en) 1990-11-14 1990-11-14 Amorphous thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04179215A true JPH04179215A (en) 1992-06-25

Family

ID=17952465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2306051A Pending JPH04179215A (en) 1990-11-14 1990-11-14 Amorphous thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04179215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327843A (en) * 2003-04-25 2004-11-18 Toppan Printing Co Ltd Method of evaluating stress of amorphous silicon and its compound thin film
US7571653B2 (en) 2006-03-31 2009-08-11 Fujitsu Limited Stress measuring method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327843A (en) * 2003-04-25 2004-11-18 Toppan Printing Co Ltd Method of evaluating stress of amorphous silicon and its compound thin film
US7571653B2 (en) 2006-03-31 2009-08-11 Fujitsu Limited Stress measuring method and system

Similar Documents

Publication Publication Date Title
US6669807B2 (en) Method for reactive ion etching and apparatus therefor
US5500312A (en) Masks with low stress multilayer films and a process for controlling the stress of multilayer films
KR102527313B1 (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
EP0381467A1 (en) Method of manufacturing an x-ray mask
JP2020095248A (en) Photomask blank, method for manufacturing photomask blank, method for manufacturing photomask, and method for manufacturing display device
US6749968B2 (en) Method for fabricating a thin-membrane stencil mask and method for making a semiconductor device using the same
JPH04179215A (en) Amorphous thin film and manufacture thereof
TWI782237B (en) Photomask blank, method of manufacturing photomask, and method of manufacturing display device
JP4333107B2 (en) Transfer mask and exposure method
JPS60176235A (en) Masking original plate for x-ray exposure
US6197457B1 (en) X-ray mask and method of fabricating the same
JP2007085899A (en) X-ray absorber
JP2694140B2 (en) X-ray mask and manufacturing method thereof
JPH01283830A (en) Mask for x-ray exposure
JPS60202441A (en) Mask for forming pattern for semiconductor device
JP2003007590A (en) Stencil mask, its manufacturing method and exposing method
JPH0915831A (en) Manufacture of exposing mask
JP2002217094A (en) Mask for electron beam exposure and its manufacturing method
US20210090893A1 (en) Pattern forming method and method of manufacturing semiconductor device
JPH04320320A (en) Manufacture of mask for x-ray exposure and device used for the same
JP3451431B2 (en) X-ray exposure mask and method of manufacturing the same
JPH01256128A (en) Dry etching method
KR20010098723A (en) High contrast ratio membrane mask
JPS5827655B2 (en) Manufacturing method of aperture diaphragm
JPS58207048A (en) Production of mask