JP3036320B2 - Method of manufacturing transmission mask for charged beam exposure - Google Patents

Method of manufacturing transmission mask for charged beam exposure

Info

Publication number
JP3036320B2
JP3036320B2 JP24101293A JP24101293A JP3036320B2 JP 3036320 B2 JP3036320 B2 JP 3036320B2 JP 24101293 A JP24101293 A JP 24101293A JP 24101293 A JP24101293 A JP 24101293A JP 3036320 B2 JP3036320 B2 JP 3036320B2
Authority
JP
Japan
Prior art keywords
substrate
etching
mask
thin film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24101293A
Other languages
Japanese (ja)
Other versions
JPH0799150A (en
Inventor
正 松尾
健太 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP24101293A priority Critical patent/JP3036320B2/en
Publication of JPH0799150A publication Critical patent/JPH0799150A/en
Application granted granted Critical
Publication of JP3036320B2 publication Critical patent/JP3036320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LSI,VLSI,等
々の半導体集積回路の製造をはじめとする微細なパター
ンの製造や、素材の改質等の多様に用いられる荷電ビー
ム(電子線や荷電粒子線)露光に関し、具体的には、荷
電ビーム露光用として貫通孔を有する透過マスクとその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged beam (electron beam or charged) widely used for manufacturing fine patterns such as semiconductor integrated circuits such as LSIs, VLSIs, etc., and modifying materials. More specifically, the present invention relates to a transmission mask having through holes for charged beam exposure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来の透過マスクの代表的な製造方法を
図3に従って説明する。まず同図(a)に示すように熱
酸化等によって絶縁層が形成された支持Si基板と上部
Si基板とを熱接着等によって貼り合わせたSi基板を
用意し、上部Si基板を所定の透過孔の厚さとなるまで
研磨し薄膜化する。次に同図(b)に示すように貼り合
わせSi基板の表裏側の表面にSiN膜等を堆積してマ
スク層を形成した後、同図(c)に示すようにドライエ
ッチング等により支持Si基板裏面のマスク層をエッチ
ングして開口部を形成する。
2. Description of the Related Art A typical method of manufacturing a conventional transmission mask will be described with reference to FIG. First, as shown in FIG. 3A, a Si substrate is prepared by bonding a supporting Si substrate on which an insulating layer is formed by thermal oxidation or the like and an upper Si substrate by thermal bonding or the like, and the upper Si substrate is provided with a predetermined transmission hole. And thinned to a thickness of Next, as shown in FIG. 3B, a mask layer is formed by depositing a SiN film or the like on the front and back surfaces of the bonded Si substrate, and then, as shown in FIG. An opening is formed by etching the mask layer on the back surface of the substrate.

【0003】次に同図(d)に示すように上部Si基板
をエッチングして透過孔部を形成した後、同図(e)に
示すようにマスク層を保護層として開口部の支持Si基
板をKOH水溶液等によりエッチングして開口部を形成
する。その後同図(f)に示すようにマスク層を除去す
るとともに絶縁層をエッチングして透過孔を形成する。
最後に同図(g)に示すようにスパッタリング等により
上部Si基板上に導電層を形成することにより荷電ビー
ム露光用透過マスクを得ることができる。
Next, as shown in FIG. 1D, the upper Si substrate is etched to form a transmission hole, and then, as shown in FIG. 1E, a supporting Si substrate having an opening is formed using a mask layer as a protective layer. Is etched with a KOH aqueous solution or the like to form an opening. Thereafter, the mask layer is removed and the insulating layer is etched to form a transmission hole as shown in FIG.
Finally, a conductive mask for charged beam exposure can be obtained by forming a conductive layer on the upper Si substrate by sputtering or the like as shown in FIG.

【0004】しかし、従来の透過マスクの製造方法は、
前記のようにまた図3にも示したように工程数が多く、
また長時間を費やす必要がある研磨の工程や加熱を要す
る貼り合わせ工程を含んでいた。このため、手間が多
く、製造時間も長くかかることから、生産コストは高く
なり、工程数の多さに伴う歩留りの低下も避け難いもの
になっていた。
However, the conventional method of manufacturing a transmission mask is as follows.
As described above and also shown in FIG. 3, the number of steps is large,
In addition, a polishing step requiring a long time and a bonding step requiring heating were included. For this reason, since a lot of labor and a long manufacturing time are required, the production cost is increased, and a decrease in the yield due to a large number of processes is inevitable.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる従来の
問題点に鑑みなされたものでありその目的とするところ
は、従来よりも製造工程数が少なく製造所要時間も短く
て済み且つ歩留りも高い透過マスクを、容易に且つ安定
して製造できるようにすること、すなわち高生産性を有
する透過マスクの製造ができるようにすることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to reduce the number of manufacturing steps, reduce the time required for manufacturing, and increase the yield as compared with the prior art. An object of the present invention is to make it possible to easily and stably manufacture a transmission mask, that is, to manufacture a transmission mask having high productivity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明が提供する手段とは、すなわち、基板の面内に
所定のパターン形状と配置をもつ貫通孔及び導電性の薄
膜を設ける荷電ビーム露光用透過マスクの製造方法にお
いて、(イ)荷電ビーム露光用透過マスクの構造体とな
るSi基板に対して、面内を選択的に基板厚みの途中の
深さまでエッチング除去する工程、(ロ)該基板をエッ
チング可能な液に対して耐性を持つSiCあるいは金を
用いて、少なくとも、該基板の前記と同じ面側は表面を
被覆しエッチング停止用薄膜とし、また該基板の反対面
側は開口パターンを選択的に残して表面を被覆してエッ
チング用保護膜とする工程、(ハ)基板の該反対面側の
該開口パターンから該基板をエッチングし、該エッチン
グ停止用薄膜に達するまでエッチングすること、少なく
とも以上の(イ)から(ハ)の工程を具備することを特
徴とする荷電ビーム露光用透過マスクの製造方法であ
る。
In order to achieve the above-mentioned object, the present invention provides a means for providing a through-hole having a predetermined pattern shape and arrangement and a conductive thin film in a plane of a substrate. In the method of manufacturing a transmission mask for beam exposure, (a) a step of selectively removing an Si substrate, which is a structure of the transmission mask for charged beam exposure, in a plane to an intermediate depth of the substrate thickness; The substrate is made of SiC or gold having resistance to an etchable liquid, and at least the same surface side of the substrate is coated as a thin film for stopping etching, and the opposite surface side of the substrate is (C) etching the substrate from the opening pattern on the opposite side of the substrate to reach the etching stop thin film, selectively covering the surface while leaving the opening pattern selectively; That until etching is a method for producing a charged beam exposure transmissive mask, characterized by comprising at least more than the (i) of (c) step.

【0007】また、基板の面内に所定のパターン形状と
配置をもつ貫通孔及び導電層を設ける荷電ビーム露光用
透過マスクの製造方法において、(イ)荷電ビーム露光
用透過マスクの構造体となるSi基板に対して、面内を
選択的に基板厚みの途中の深さまでエッチング除去する
工程、(ロ)該基板をエッチング可能な液に対して耐性
を持つSiNを用いて、少なくとも、該基板の前記と同
じ面側は表面を被覆しエッチング停止用薄膜とし、また
該基板の反対面側は開口パターンを選択的に残して表面
を被覆してエッチング用保護膜とする工程、(ハ)基板
の該反対面側の該開口パターンから該基板をエッチング
し、該エッチング停止用薄膜に達するまでエッチングす
ること、(ニ)荷電ビーム露光用透過マスクの構造体に
導電層を形成すること、少なくとも以上の(イ)から
(ニ)の工程を具備することを特徴とする荷電ビーム露
光用透過マスクの製造方法である。
Further, in a method of manufacturing a charged mask for light transmission mask, in which a through hole and a conductive layer having a predetermined pattern shape and arrangement are provided in the plane of the substrate, (a) the structure of the charged mask exposure mask is provided. A step of selectively removing an in-plane portion of the Si substrate by etching to a depth in the middle of the thickness of the substrate; (b) using SiN having resistance to a liquid capable of etching the substrate; (C) a step of covering the surface on the same side as the above to form a thin film for stopping etching, and covering the surface on the opposite side of the substrate selectively leaving an opening pattern to form a protective film for etching; Etching the substrate from the opening pattern on the opposite side until the etching stop thin film is reached; (d) forming a conductive layer on the structure of the transmission mask for charged beam exposure When a method for producing a charged beam exposure transmissive mask, characterized by comprising at least more than the (i) of (d) step.

【0008】特に、基板としてSiの単結晶を選択した
場合には、その結晶性に起因するエッチング異方性の性
質を製造工程中で利用することができ、これによるとテ
ーパー面を有する開口部をエッチングで形成することが
容易に出来る。またSiの単結晶基板が特に半導体集積
回路の製造によく利用されるシリコンウェハである場合
には、とりわけ欠陥が少ないことから、荷電ビームが透
過する微細な貫通孔を形成するのに、精度の高いものを
つくり易いことになり都合がよい。
[0008] In particular, when a single crystal of Si is selected as a substrate, the property of etching anisotropy caused by its crystallinity can be utilized in a manufacturing process. Can be easily formed by etching. In addition, when the Si single crystal substrate is a silicon wafer that is often used particularly in the manufacture of semiconductor integrated circuits, since there are particularly few defects, it is difficult to form a fine through-hole through which a charged beam is transmitted. This is convenient because it makes it easy to make expensive ones.

【0009】以下では、図面を参照しつつ本発明をさら
に詳細に説明する。まず、図1は本発明に係わる透過マ
スクの製造方法の一実施態様を工程順に示す断面図であ
る。シリコンウェハなどのSi基板の表面にレジストを
塗布し、通常のフォトリソグラフィ若しくは電子線リソ
グラフィの手段により透過マスクの荷電ビームの透過孔
となる部分のレジストパターンを形成する(同図
(a))。次に上記レジストパターンをマスクとしてS
i基板を反応性イオンエッチング等の手段により所定の
透過孔の深さに等しい分だけエッチングし、その後レジ
ストパターンを剥離してSi基板の表面に荷電ビームの
透過孔となる部分のSiパターンを形成する(同図
(b))。
Hereinafter, the present invention will be described in more detail with reference to the drawings. First, FIG. 1 is a sectional view showing one embodiment of a method of manufacturing a transmission mask according to the present invention in the order of steps. A resist is applied to the surface of an Si substrate such as a silicon wafer, and a resist pattern is formed on a portion of the transmission mask, which is to be a transmission hole for a charged beam, by ordinary photolithography or electron beam lithography (FIG. 1A). Next, using the resist pattern as a mask, S
The i-substrate is etched by an amount equal to the depth of a predetermined transmission hole by means such as reactive ion etching, and then the resist pattern is peeled off to form a Si pattern on a surface of the Si substrate, which becomes a transmission hole of a charged beam. (FIG. 2B).

【0010】次に、透過孔部が形成されたSi基板の全
表面を薄膜で被覆する。成膜方法は特に限定しないが、
例えば減圧CVD法を用いると一度に全表面を被覆でき
ることから便利ではある。なお、ここで薄膜の材料は、
この後の工程であるSi基板の裏面側からのエッチング
の際に、Siと比較してエッチングレートが十分に低い
かあるいはエッチングされない性質を有する材料を用い
る。(同図(c))。
Next, the entire surface of the Si substrate on which the transmission hole is formed is covered with a thin film. The film forming method is not particularly limited,
For example, the use of a low pressure CVD method is convenient because the entire surface can be coated at once. The material of the thin film here is
In the subsequent step of etching from the rear surface side of the Si substrate, a material having an etching rate sufficiently lower than that of Si or having a property of not being etched is used. (Figure (c)).

【0011】ついで、Si基板の反対面側にレジストを
塗布し、フォトリソグラフィ(紫外線や電子線あるいは
その他の電磁波でよい)の手段により、透過マスクの開
口部(貫通孔部)となる部分に開口レジストパターンを
形成する。そして、このレジストパターンをマスクとし
て前記薄膜をエッチングする。このとき、エッチング方
法は当然のことながら、この薄膜材料に対して蝕刻性が
あり且つレジストパターンは蝕刻されない(または極め
て蝕刻され難い)手段を選択して用いればよい。(反応
性イオンエッチング等の手段により)しかる後に、レジ
ストパターンを剥離してSi基板のエッチング保護用開
口パターンを形成する(同図(d))。
Then, a resist is applied to the opposite surface of the Si substrate, and an opening is formed in a portion to be an opening (through hole) of the transmission mask by means of photolithography (which may be ultraviolet rays, electron beams or other electromagnetic waves). A resist pattern is formed. Then, the thin film is etched using the resist pattern as a mask. At this time, as a matter of course, an etching method may be used by selecting a means which has an etching property for the thin film material and a resist pattern is not etched (or extremely hardly etched). Thereafter, the resist pattern is peeled off (by means such as reactive ion etching) to form an opening pattern for etching protection of the Si substrate (FIG. 4D).

【0012】次に、上記エッチング保護用開口パターン
の薄膜部をエッチングマスクとして、KOH水溶液等に
よりSi基板をエッチングしてゆく。すると、透過孔と
相対した部分のエッチングは、透過孔の底部に形成され
てあったエッチング停止用薄膜(予め、Siと比較して
エッチングレートが十分に低いか、全くエッチングされ
ない材質を選定して形成しておいた薄膜)に達したとこ
ろで自己整合的に停止し、透過孔部は薄膜を残すのみと
なる(同図(e))。
Next, the Si substrate is etched with a KOH aqueous solution or the like using the thin film portion of the etching protection opening pattern as an etching mask. Then, the etching of the portion facing the transmission hole is performed by selecting an etching stop thin film formed on the bottom of the transmission hole (in advance, selecting a material whose etching rate is sufficiently lower than Si or which is not etched at all). When the film reaches the formed thin film), it stops in a self-aligned manner, and only the thin film remains in the transmission hole portion (FIG. 9E).

【0013】透過孔と相対した部分のエッチングが停止
したところでKOH水溶液等によるSi基板のエッチン
グを終了する。その後は透過孔部に残った薄膜を除去す
ることにより目的とする透過マスク構造体を得ることが
できる。(同図(f))なお、薄膜がSiN膜などの絶
縁膜である場合は帯電防止のために、通常行われている
ようにマスク構造体の表面の薄膜を除去した後、導電層
を形成する。また、後述しているが、薄膜が導電性を有
する場合には敢えてこれとは別に導電層を形成する必要
はない。
When the etching of the portion facing the transmission hole is stopped, the etching of the Si substrate with the KOH aqueous solution or the like is completed. Thereafter, by removing the thin film remaining in the transmission hole portion, a desired transmission mask structure can be obtained. (FIG. 6F) When the thin film is an insulating film such as a SiN film, a conductive layer is formed after removing the thin film on the surface of the mask structure as usual, in order to prevent electrification. I do. Also, as described later, when the thin film has conductivity, it is not necessary to dare to form a conductive layer separately.

【0014】さて、図2は本発明に係わる製造方法によ
る別の実施態様の透過マスクを示す断面図である。
FIG. 2 is a cross-sectional view showing a transmission mask of another embodiment according to the manufacturing method according to the present invention.

【0015】図1とほぼ同様にして本発明の荷電ビーム
露光用透過マスクが出来上がるが、図1で説明した工程
とは違って、透過孔部が形成されたSi基板の全表面を
被覆する薄膜がSiC膜や金属膜のように導電性の薄膜
である場合は、図1(f)のように除去して導電層を形
成する必要はなく、Si基板の表面に薄膜を残したまま
でよい。
A transmission mask for charged beam exposure according to the present invention is completed in substantially the same manner as in FIG. 1. However, unlike the process described with reference to FIG. 1, a thin film covering the entire surface of a Si substrate having a transmission hole formed therein. Is a conductive thin film such as a SiC film or a metal film, there is no need to remove and form a conductive layer as shown in FIG. 1F, and the thin film may be left on the surface of the Si substrate.

【0016】また透過孔部が形成されたSi基板の表面
を薄膜で被覆する際に成膜法によっては表裏同時に被覆
することが困難な場合があるが、その場合は透過孔パタ
ーン側をSi基板のエッチング停止層として被覆した
後、別途に裏側をSi基板のエッチングマスク層として
被覆すればよい。なお、この場合裏表に被覆する薄膜は
必ずしも同じ種類の薄膜である必要はない。
Further, when coating the surface of the Si substrate on which the transmission hole portion is formed with a thin film, it may be difficult to simultaneously cover the front and back surfaces depending on the film formation method. After that, the back side may be separately coated as an etching mask layer of the Si substrate. In this case, the thin films coated on the front and back sides do not necessarily need to be the same type of thin film.

【0017】[0017]

【作用】本発明の製造方法によると、最初に(Si)基
板の表面に透過孔となるパターンを形成した後にSi基
板のエッチング停止層の形成を行う。このため、従来は
必要とされ、長い製造所要時間と多大な手間の元になっ
ていた貼り合わせ工程が不要となるうえ、貼り合わせの
ために必要だった上下のSi基板の研磨工程も省略する
ことができることになる。その結果、工程数と作製時間
の大幅な減少が可能となる。またこれと相まって、且つ
製造が容易となることから、歩留まりの向上に繋がるこ
とになる。
According to the manufacturing method of the present invention, an etching stop layer is formed on a Si substrate after first forming a pattern to be a transmission hole on the surface of the (Si) substrate. For this reason, the bonding step, which was conventionally required and required a long manufacturing time and a great deal of labor, is not required, and the polishing step of the upper and lower Si substrates required for bonding is also omitted. You can do it. As a result, the number of steps and the manufacturing time can be significantly reduced. In addition to this, since the manufacturing becomes easy, it leads to the improvement of the yield.

【0018】[0018]

【実施例】<実施例1> 3インチ径500μm厚で面方位<100>のSiウェ
ハ基板の表面上に、ポジ型フォトレジストMP1400
を5μm回転塗布し、公知のフォトリソグラフィの手段
によりフォトマスク上の透過孔パターンを転写形成し
た。このときのg線の露光量は300mJ/cm2 であ
った。次にレジストパターンをマスクとしてSi基板を
ECR(電子サイクロトロン共鳴)イオンビームエッチ
ング装置によって20μmの深さまでエッチングした。
このとき、エッチングガスはCl2にSF6 を10%添
加したものを使い、マイクロ波出力は200Wとした。
この後O2 プラズマによってレジストを除去してSi基
板表面に透過孔となるSiパターンを形成した。
<Example 1> A positive photoresist MP1400 was formed on the surface of a Si wafer substrate having a diameter of 3 inches and a thickness of 500 μm and a plane orientation of <100>.
Was spin-coated by 5 μm, and a transmission hole pattern on a photomask was transferred and formed by known photolithography. At this time, the exposure dose of the g-line was 300 mJ / cm 2 . Next, the Si substrate was etched to a depth of 20 μm by an ECR (Electron Cyclotron Resonance) ion beam etching apparatus using the resist pattern as a mask.
At this time, the etching gas used was a mixture of Cl 2 and SF 6 added at 10%, and the microwave output was 200 W.
Thereafter, the resist was removed by O 2 plasma to form a Si pattern to be a transmission hole on the surface of the Si substrate.

【0019】次に透過孔パターンが形成されたSi基板
を減圧CVD装置に入れ、C2 2とSiH2 Cl2
を原料ガスとしてSi基板の全表面に厚さ1000Åの
SiCx 膜を形成した。この後、Si基板の裏面側には
通常のフォトリソグラフィの手段によって開口用パター
ンを形成し、レジストパターンをマスクとしてRIE
(反応性イオンエッチング)により裏面側のSiCx 膜
をエッチングした後、レジストを除去してSiCx 膜か
ら成るSi基板のエッチング保護用開口パターンを形成
した。
Next, the Si substrate on which the through-hole pattern was formed was placed in a low-pressure CVD apparatus, and a 1000 ° -thick SiCx film was formed on the entire surface of the Si substrate using C 2 H 2 and SiH 2 Cl 2 as source gases. . Thereafter, an opening pattern is formed on the back side of the Si substrate by ordinary photolithography, and RIE is performed using the resist pattern as a mask.
After etching the backside SiCx film by (reactive ion etching), the resist was removed to form an etching protection opening pattern of the Si substrate made of the SiCx film.

【0020】次に、上記エッチング保護用開口パターン
をマスクとして液温90℃の濃度30%のKOH水溶液
によりSi基板をエッチングしてゆくと、透過孔部はS
iCNx 膜のみを残してメンブレン化した。この後、洗
浄を行いつつ透過孔部に残ったSiCx 膜を除去して図
2に示す透過マスクが完成した。
Next, the Si substrate is etched with a 30% KOH aqueous solution at a liquid temperature of 90 ° C. using the etching protection opening pattern as a mask.
The membrane was formed while leaving only the iCNx film. Thereafter, the SiCx film remaining in the transmission hole was removed while performing cleaning, thereby completing the transmission mask shown in FIG.

【0021】<実施例2> まず、実施例1と同じ仕様のSiウェハ基板の表面に実
施例1と同じ方法で透過孔となるSiパターンを形成し
た。この後、このSi基板を電子線加熱蒸着装置に入
れ、透過孔パターン側表面に厚さ1000ÅのAu膜を
形成した。Si基板の裏面側にはスパッタリング法によ
り厚さ1000ÅのSiNx 膜を形成した後、実施例1
と同じ方法でSiNx 膜から成るSi基板のエッチング
保護用開口パターンを形成した。
<Example 2> First, a Si pattern to be a transmission hole was formed on the surface of a Si wafer substrate having the same specifications as in Example 1 by the same method as in Example 1. Thereafter, the Si substrate was placed in an electron beam heating vapor deposition apparatus, and a 1000-Å-thick Au film was formed on the surface of the through-hole pattern side. Example 1 After forming an SiNx film having a thickness of 1000 ° on the back surface of the Si substrate by sputtering,
An opening pattern for etching protection of a Si substrate made of a SiNx film was formed in the same manner as described above.

【0022】次に、上記エッチング保護用開口パターン
をマスクとして液温110℃の50%ヒドラジン(N2
4 )水溶液によりSi基板をエッチングした。ヒドラ
ジン水溶液はKOH水溶液同様Siを異方性エッチング
するが、KOH水溶液と違い前記の薄膜であるAuは殆
どエッチングされないので、透過孔部にAu膜のみを残
してメンブレン化することができた。この後、洗浄を行
いつつ透過孔部に残ったAu膜を除去して透過マスクが
完成した。
Next, 50% hydrazine (N 2) at a liquid temperature of 110 ° C. is used by using the etching protection opening pattern as a mask.
The Si substrate was etched with an H 4 ) aqueous solution. The hydrazine aqueous solution anisotropically etches Si as in the case of the KOH aqueous solution, but unlike the KOH aqueous solution, the thin film of Au is hardly etched, so that it was possible to form a membrane while leaving only the Au film in the through-hole portion. Thereafter, the Au film remaining in the transmission hole was removed while performing cleaning, thereby completing the transmission mask.

【0023】<実施例1>および<実施例2>による透
過マスクの透過孔部のエッヂ形状を電子顕微鏡で検査し
たところ、透過孔部が薄膜で被覆されている分だけ、従
来の技術の場合のような、単結晶Siの面包囲に沿った
微小な我によるエッヂのギザつきが少なかった。導電性
についても、従来の技術の場合よりも導電性膜に覆われ
た表面積が広く、また絶縁膜を途中に含まない分だけ良
好な結果が得られた。そして、寸法精度や孔形状はもち
ろん、良好なものが得られていた。また、製造方法に関
しては、従来の技術と比較して簡便であり時間短縮にも
繋がった。総じて、製造所要時間が短く、工程数も少な
くいうえに、良品質な透過マスクを容易に安定して製造
することが出来た。
When the edge shape of the transmission hole of the transmission mask according to <Example 1> and <Example 2> was inspected with an electron microscope, it was found that the transmission hole was covered with the thin film and the conventional technology was used. As described above, there is little jagged edge caused by a minute edge along the surface of single crystal Si. As for the conductivity, a better result was obtained as compared with the conventional technique because the surface area covered with the conductive film was wider and the insulating film was not included in the middle. And good thing was obtained as well as dimensional accuracy and hole shape. In addition, the manufacturing method is simpler than that of the related art, and has led to a reduction in time. As a whole, the manufacturing time was short, the number of steps was small, and a high-quality transmission mask could be easily and stably manufactured.

【0024】[0024]

【発明の効果】以上のように、本発明に係わる透過マス
クの製造方法によれば、最初にSi基板の表面に透過孔
となるパターン部を形成した後、Si基板のエッチング
停止層の形成を行うことから、従来は必要であった貼り
合わせ工程が不要となり、従って貼り合わせのための上
下Si基板の研磨工程も省略することができる。この貼
り合わせ工程や研磨工程は、製造所要時間を長く費やす
ばかりか工程数も増すことになっており、また手間がか
かることから歩留まりの低下を招く原因にもなるもので
あった。また、成膜法によってはSi基板のエッチング
停止層と、エッチングマスク層を同時に成膜することが
できたり、あるいはエッチング停止層として導電膜を用
いれば新たな導電層の成膜は不要となってくる。
As described above, according to the method for manufacturing a transmission mask according to the present invention, after a pattern portion serving as a transmission hole is first formed on the surface of a Si substrate, an etching stop layer of the Si substrate is formed. Since the bonding is performed, the bonding step that has been conventionally required is not required, and therefore, the polishing step of the upper and lower Si substrates for bonding can be omitted. The laminating step and the polishing step not only require a long manufacturing time but also increase the number of steps, and are troublesome, which also causes a reduction in yield. Further, depending on the film formation method, the etching stop layer and the etching mask layer of the Si substrate can be simultaneously formed, or if a conductive film is used as the etching stop layer, the formation of a new conductive layer becomes unnecessary. come.

【0025】これらにより、大幅な工程数と作製時間の
減少が可能となり、歩留まりの向上と生産コストの低下
に大きな効果が上がる。結果として、従来よりも製造工
程数が少なく製造所要時間も短くて済み且つ歩留りも高
い透過マスクを、容易に且つ安定して製造できること、
すなわち、その製造に高生産性を発揮できるという透過
マスクの製造方法を提供することが出来た。
As a result, it is possible to greatly reduce the number of steps and the manufacturing time, thereby greatly improving the yield and reducing the production cost. As a result, it is possible to easily and stably manufacture a transmission mask having a smaller number of manufacturing steps, a shorter required manufacturing time and a higher yield than before.
That is, it was possible to provide a method of manufacturing a transmission mask capable of exhibiting high productivity in its manufacture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる透過マスクの製造方法の一実施
例について、断面図を用いて工程順に示す説明図であ
る。
FIG. 1 is an explanatory view showing a step of a method of manufacturing a transmission mask according to the present invention in the order of steps using cross-sectional views.

【図2】本発明に係わる透過マスクの製造方法の別の一
実施例について、断面図を用いて工程順に示す説明図で
ある。
FIG. 2 is an explanatory view showing another embodiment of the method of manufacturing a transmission mask according to the present invention in the order of steps using cross-sectional views.

【図3】従来の技術に係わる透過マスクの製造方法の一
例をについて、断面図を用いて工程順に示す説明図であ
る。
FIG. 3 is an explanatory view showing an example of a method of manufacturing a transmission mask according to a conventional technique in the order of steps using cross-sectional views.

【符号の説明】[Explanation of symbols]

1・・・シリコン基板 2・・・レジストパターン 3・・・透過孔部 4・・・薄膜 4’・・・エッチング停止層 5・・・開口パターン 6・・・透過マスク構造体 7・・・導電層 8・・・支持シリコン基板 9・・・上部シリコン基板 10・・・絶縁層 11・・・貼り合わせシリコン基板 12・・・マスク層 13・・・開口パターン 14・・・透過孔部 14’・・・透過孔部 15・・・開口部 16・・・導電層 DESCRIPTION OF SYMBOLS 1 ... Silicon substrate 2 ... Resist pattern 3 ... Transmission hole part 4 ... Thin film 4 '... Etching stop layer 5 ... Opening pattern 6 ... Transmission mask structure 7 ... Conductive layer 8: Supporting silicon substrate 9: Upper silicon substrate 10: Insulating layer 11: Bonded silicon substrate 12: Mask layer 13: Opening pattern 14: Transmission hole 14 '... Transmission hole 15 ... Opening 16 ... Conductive layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−109608(JP,A) 特開 平4−106923(JP,A) 特開 昭62−76621(JP,A) 特開 昭62−106625(JP,A) 特開 平4−137520(JP,A) 特開 平6−37000(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-109608 (JP, A) JP-A-4-106923 (JP, A) JP-A-62-276621 (JP, A) JP-A-62 106625 (JP, A) JP-A-4-137520 (JP, A) JP-A-6-37000 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/027 G03F 1 / 16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板の面内に所定のパターン形状と配置を
もつ貫通孔及び導電性の薄膜を設ける荷電ビーム露光用
透過マスクの製造方法において、 (イ)荷電ビーム露光用透過マスクの構造体となるSi
基板に対して、面内を選択的に基板厚みの途中の深さま
でエッチング除去する工程、 (ロ)該基板をエッチング可能な液に対して耐性を持つ
SiCあるいは金を用いて、少なくとも、該基板の前記
と同じ面側は表面を被覆しエッチング停止用薄膜とし、
また該基板の反対面側は開口パターンを選択的に残して
表面を被覆してエッチング用保護膜とする工程、 (ハ)基板の該反対面側の該開口パターンから該基板を
エッチングし、該エッチング停止用薄膜に達するまでエ
ッチングすること、 少なくとも以上の(イ)から(ハ)の工程を具備するこ
とを特徴とする荷電ビーム露光用透過マスクの製造方
法。
1. A method for manufacturing a charged mask for transmitting a charged beam, comprising: providing a through-hole having a predetermined pattern and arrangement in a plane of a substrate and a conductive thin film ; Si
A step of selectively removing the surface of the substrate by etching to an intermediate depth of the substrate thickness; (b) having a resistance to a liquid capable of etching the substrate;
Using SiC or gold , at least the same surface side of the substrate as described above covers the surface to form an etching stop thin film,
And (c) etching the substrate from the opening pattern on the opposite side of the substrate by covering the surface on the opposite side of the substrate selectively leaving an opening pattern to form a protective film for etching. A method of manufacturing a transmission mask for charged beam exposure, comprising: performing etching until the etching stop thin film is reached; and at least the above steps (a) to (c).
【請求項2】基板の面内に所定のパターン形状と配置を
もつ貫通孔及び導電層を設ける荷電ビーム露光用透過マ
スクの製造方法において、 (イ)荷電ビーム露光用透過マスクの構造体となるSi
基板に対して、面内を選択的に基板厚みの途中の深さま
でエッチング除去する工程、 (ロ)該基板をエッチング可能な液に対して耐性を持つ
SiNを用いて、少なくとも、該基板の前記と同じ面側
は表面を被覆しエッチング停止用薄膜とし、また該基板
の反対面側は開口パターンを選択的に残して表面を被覆
してエッチング用保護膜とする工程、 (ハ)基板の該反対面側の該開口パターンから該基板を
エッチングし、該エッチング停止用薄膜に達するまでエ
ッチングすること、 (ニ)荷電ビーム露光用透過マスクの構造体に導電層を
形成すること、 少なくとも以上の(イ)から(ニ)の工程を具備するこ
とを特徴とする荷電ビー ム露光用透過マスクの製造方
法。
2. A predetermined pattern shape and arrangement in a plane of a substrate.
Beam mask with charged through-hole and conductive layer
In the method of manufacturing a mask , (a) Si as a structure of a transmission mask for charged beam exposure
Selective in-plane with respect to the substrate
Having in the step of etching away, resistance to etching possible solution to (b) the substrate
At least the same surface side of the substrate as described above using SiN
Is coated on the surface to form a thin film for stopping etching.
The other side covers the surface, leaving the opening pattern selectively
The step of the etching protection film to the substrate through the opening pattern (c) the reflected face of the substrate
Etch until the etch stop thin film is reached.
(D) Applying a conductive layer to the structure of the transmission mask for charged beam exposure
Forming, having at least the above steps (a) to (d).
Production side of the charged beam exposure transmissive mask, wherein bets
Law.
JP24101293A 1993-09-28 1993-09-28 Method of manufacturing transmission mask for charged beam exposure Expired - Fee Related JP3036320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24101293A JP3036320B2 (en) 1993-09-28 1993-09-28 Method of manufacturing transmission mask for charged beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24101293A JP3036320B2 (en) 1993-09-28 1993-09-28 Method of manufacturing transmission mask for charged beam exposure

Publications (2)

Publication Number Publication Date
JPH0799150A JPH0799150A (en) 1995-04-11
JP3036320B2 true JP3036320B2 (en) 2000-04-24

Family

ID=17068023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24101293A Expired - Fee Related JP3036320B2 (en) 1993-09-28 1993-09-28 Method of manufacturing transmission mask for charged beam exposure

Country Status (1)

Country Link
JP (1) JP3036320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923313B1 (en) * 2017-06-20 2018-11-28 서병우 sealing cap for vacuum
KR101957649B1 (en) * 2018-11-21 2019-07-04 서병우 sealing cap for vacuum

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720021B2 (en) * 2001-05-29 2011-07-13 凸版印刷株式会社 Manufacturing method of charged beam projection exposure mask
JP4649780B2 (en) * 2001-06-20 2011-03-16 凸版印刷株式会社 Stencil mask, manufacturing method thereof and exposure method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923313B1 (en) * 2017-06-20 2018-11-28 서병우 sealing cap for vacuum
KR101957649B1 (en) * 2018-11-21 2019-07-04 서병우 sealing cap for vacuum

Also Published As

Publication number Publication date
JPH0799150A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
US6821451B2 (en) Dry etching method, microfabrication process and dry etching mask
JPH07183194A (en) Multilayer resist pattern formation method
JP3161040B2 (en) Method for manufacturing semiconductor device
US6030540A (en) Method for producing tapered waveguide
US5291536A (en) X-ray mask, method for fabricating the same, and pattern formation method
US6689283B2 (en) Dry etching method, microfabrication process and dry etching mask
JP3036320B2 (en) Method of manufacturing transmission mask for charged beam exposure
JP2001100395A (en) Mask for exposure and method for manufacturing the same
JP3271390B2 (en) Transmission mask for charged beam exposure and method of manufacturing the same
KR19990011457A (en) Manufacturing method of stencil mask for semiconductor device manufacturing
CN113314404B (en) Bonding method
US5824453A (en) Fabricating method of GaAs substrate having V-shaped grooves
JP3428169B2 (en) Dry etching method for niobium thin film
JPH09186067A (en) Transmission mask for charged beam gang exposure
JPH09181077A (en) Semiconductor device and manufacturing method thereof
JPH0536591A (en) Manufacture of x-ray mask
JP3195328B2 (en) X-ray mask and method of manufacturing X-ray mask
JPH06168919A (en) Patterning of semiconductor device
JPS59213131A (en) Manufacture of x-ray exposing mask
JP4792666B2 (en) Stencil mask, manufacturing method thereof and exposure method
JPH04307735A (en) Manufacture of semiconductor device
JPH01173716A (en) Manufacture of x-ray mask
KR100253586B1 (en) Method of forming cell aperture mask of semiconductor device
JPH04137718A (en) Manufacture of x-ray mask
JPH0294439A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees