JP6457766B2 - Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material - Google Patents

Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material Download PDF

Info

Publication number
JP6457766B2
JP6457766B2 JP2014189349A JP2014189349A JP6457766B2 JP 6457766 B2 JP6457766 B2 JP 6457766B2 JP 2014189349 A JP2014189349 A JP 2014189349A JP 2014189349 A JP2014189349 A JP 2014189349A JP 6457766 B2 JP6457766 B2 JP 6457766B2
Authority
JP
Japan
Prior art keywords
insulating material
dimensional thin
atomic structure
thin film
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189349A
Other languages
Japanese (ja)
Other versions
JP2016061657A (en
Inventor
中山 敦子
敦子 中山
豪 星野
豪 星野
山田 裕
裕 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2014189349A priority Critical patent/JP6457766B2/en
Publication of JP2016061657A publication Critical patent/JP2016061657A/en
Application granted granted Critical
Publication of JP6457766B2 publication Critical patent/JP6457766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、絶縁材料上に支持されたグラフェン等の2次元薄膜原子構造の積層数決定装置及び積層数決定方法に関する。   The present invention relates to a stack number determining apparatus and a stack number determining method for a two-dimensional thin-film atomic structure such as graphene supported on an insulating material.

グラフェンは、2004年にNovoselovらが、スコッチテープを用いてグラファイトから機械的に剥離し、酸化膜付きシリコン基板に転写する方法を発見して以来、物性実験からその価値を見出された。   Graphene has found its value in physical properties experiments since 2004 when Novoselov et al. Discovered a method of mechanically peeling it from graphite using scotch tape and transferring it to a silicon substrate with an oxide film.

その後、基礎科学、電子デバイス、センサー、電池等の幅広い分野で研究開発が活発に行われている。グラフェンは、その理想的な2次元構造に起因して様々な特異的性質を有し、各種分野への応用が期待されている物質である。   Since then, research and development has been actively conducted in a wide range of fields such as basic science, electronic devices, sensors, and batteries. Graphene is a substance that has various specific properties due to its ideal two-dimensional structure and is expected to be applied in various fields.

また、グラフェンを筆頭に、原子の2次元的結合構造、あるいは、それと等価な2次元的電子状態を表面、界面などに有する機能性を持った薄膜物質は、従来のバルク物質や単なる薄膜とは異なる特性・構造を持つことで、新たな機能や従来材料の特性を凌駕する機能を発現することが可能であり、新規材料やデバイスの開発につながることが期待される。   In addition, thin film materials that have the functionality of having graphene as the leading element and the two-dimensional bonding structure of atoms, or equivalent two-dimensional electronic states at the surface and interface, are the conventional bulk materials and mere thin films. By having different characteristics and structures, it is possible to develop new functions and functions that surpass the characteristics of conventional materials, which is expected to lead to the development of new materials and devices.

このような2次元薄膜原子構造は、その産業上の利用において、精密な積層数の評価が不可欠である。すなわちグラフェン等の2次元薄膜原子構造は、積層数に依存して電子物性や光学特性が顕著に変化するので、所望の機能を発揮させるためには、予め積層数を決定してデバイスを作製することが要求される。例えばグラフェン積層数の評価法は、キャパシター特性をはじめ、各種デバイスの性能向上に不可欠な技術である。   Such a two-dimensional thin-film atomic structure requires an accurate evaluation of the number of stacked layers for industrial use. In other words, the two-dimensional thin film atomic structure such as graphene changes significantly in the electronic properties and optical characteristics depending on the number of layers. Therefore, in order to exert a desired function, the number of layers is determined in advance to manufacture a device. Is required. For example, the evaluation method of the number of graphene stacks is an indispensable technique for improving the performance of various devices including capacitor characteristics.

従来、絶縁材料上に転写したグラフェンの積層数を評価するものとして、次のような方法が知られている。   Conventionally, the following methods are known for evaluating the number of graphene layers transferred onto an insulating material.

(a)ラマン分光法によるグラフェン2Dバンド(G’バンド)の線形フィッティング(非特許文献1、2)。
この方法では、グラフェンのGバンドと2Dバンドの相対強度比、2Dバンドの波数(エネルギー)、2Dバンドの形状などを基にグラフェン積層数を決定する。
(A) Linear fitting of graphene 2D band (G ′ band) by Raman spectroscopy (Non-Patent Documents 1 and 2).
In this method, the number of graphene layers is determined based on the relative intensity ratio between the G band and 2D band of graphene, the wave number (energy) of 2D band, the shape of 2D band, and the like.

(b)反射光学顕微鏡観察によるコントラスト測定(非特許文献3)。
この方法における観察の原理は、基板と基板上のグラフェンの光学反射によるコントラスト差である。グラフェンを酸化膜付きシリコン基板に貼り付け、そのグラフェンの光学顕微鏡像を取得した後、SiO表面とグラフェンの光学顕微鏡像のコントラスト比を比較する。
(B) Contrast measurement by observation with a reflection optical microscope (Non-patent Document 3).
The principle of observation in this method is a contrast difference due to optical reflection between the substrate and graphene on the substrate. After graphene is attached to a silicon substrate with an oxide film and an optical microscope image of the graphene is acquired, the contrast ratio of the SiO 2 surface and the optical microscope image of graphene is compared.

(c)透過型電子顕微鏡(TEM)、原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM、特許文献1)による方法。 (C) A method using a transmission electron microscope (TEM), an atomic force microscope (AFM), or a scanning electron microscope (SEM, Patent Document 1).

また、六方晶窒化ホウ素は、グラフェンとよく似た蜂の巣構造を持つ絶縁材料で、窒素とホウ素が形成する非常に強いsp結合の2次元平面構造が弱い結合で積層した構造になっている。この六方晶窒化ホウ素でも、ラマン分光法による積層数の評価(非特許文献4)、反射光学顕微鏡観察によるコントラスト測定に基づく積層数の評価(非特許文献5)が報告されている。 Hexagonal boron nitride is an insulating material having a honeycomb structure similar to that of graphene, and has a structure in which a very strong sp 2 bond two-dimensional planar structure formed by nitrogen and boron is laminated with a weak bond. Even with this hexagonal boron nitride, evaluation of the number of layers by Raman spectroscopy (Non-patent Document 4) and evaluation of the number of layers based on contrast measurement by reflection optical microscope observation (Non-Patent Document 5) have been reported.

A. C. Ferrari, et al., Phys. Rev. Lett. 97, 187401 (2006).A. C. Ferrari, et al., Phys. Rev. Lett. 97, 187401 (2006). D. Graf et al., Nano Lett. 7, 238 (2007).D. Graf et al., Nano Lett. 7, 238 (2007). P. Blake et al., Appl. Phys. Lett. 91, 063124 (2007).P. Blake et al., Appl. Phys. Lett. 91, 063124 (2007). E. V. Grobachev et al., Small 7, 465 (2011).E. V. Grobachev et al., Small 7, 465 (2011). 日浦英文他、NEW DIAMOND 27, 42 (2011).Hidefumi Hiura et al., NEW DIAMOND 27, 42 (2011).

国際公開第2011/162411号International Publication No. 2011-162411

しかしながら、従来の(a)〜(c)による積層数の評価は、以下の点で研究開発のボトルネックとなっていた。   However, the conventional evaluation of the number of layers by (a) to (c) has been a bottleneck for research and development in the following points.

上記(a)の方法は、グラフェンを支持する絶縁材料の種類によっては、絶縁材料上に転写したグラフェンのラマンピークが絶縁材料のピークと重なってしまう。例えば、ダイヤモンド基板上に転写したグラフェンのラマンピークは、ダイヤモンド(2次)のピークと重なるため、線形解析による積層数評価が困難である。また、5枚以上積層したグラフェンでは、積層数が増すにつれて、各積層数のグラフェンを特徴付けるラマンバンドの位置や形状が不規則に変化することに起因して、ラマンピークの線形がより複雑化し、解析が難しくなる。   In the method (a), the Raman peak of graphene transferred onto the insulating material overlaps with the peak of the insulating material depending on the type of the insulating material that supports the graphene. For example, since the Raman peak of graphene transferred onto a diamond substrate overlaps with the peak of diamond (secondary), it is difficult to evaluate the number of layers by linear analysis. In addition, in the graphene laminated with 5 or more layers, as the number of stacked layers increases, the position and shape of the Raman band that characterizes the number of stacked graphenes irregularly changes, and the Raman peak alignment becomes more complicated, Analysis becomes difficult.

上記(b)の方法は、基板のみの反射強度Rとn層グラフェンが積層した基板上の反射強度Rの差が無い場合、コントラスト(=R/R−1)がなくなり、積層数評価が難しい。この方法では基板として酸化膜付きシリコン基板のみが検討されているが、使用可能な基板の制約がある。また、グラフェン積層数とコントラスト比の線形性の制約によって、6層程度を超える積層数の評価が難しい。 In the method (b), when there is no difference between the reflection intensity R 0 of the substrate only and the reflection intensity R on the substrate on which the n-layer graphene is laminated, the contrast (= R / R 0 −1) disappears and the number of laminations is evaluated. Is difficult. In this method, only a silicon substrate with an oxide film is considered as a substrate, but there are restrictions on the substrates that can be used. Moreover, it is difficult to evaluate the number of stacked layers exceeding about six layers due to the restrictions on the linearity of the number of graphene layers and the contrast ratio.

上記(c)の方法は、装置が大がかりで、測定や解析には高度な知識と熟練された技術を要する。高真空での測定、試料サイズなど、測定条件も限定される。   The method (c) requires a large apparatus and requires advanced knowledge and skill in measurement and analysis. Measurement conditions such as high vacuum measurement and sample size are also limited.

グラフェンのうち、工業的な利用が期待されるものには10〜15層程度のものが多く、このような積層数のものを、非破壊で、かつ、その場観察ができる方法が望まれていた。そしてグラフェンデバイス作製のための基板を選択できないことは、グラフェンデバイスの応用範囲を狭めてしまうことにもなり得る。   Of the graphene, many are expected to be used industrially, with about 10 to 15 layers, and there is a demand for a method capable of non-destructive and in-situ observation of such stacks. It was. The inability to select a substrate for producing a graphene device can narrow the application range of the graphene device.

本発明は、以上の通りの事情に鑑みてなされたものであり、グラフェンの積層数を簡便かつ正確に決定することができ、特に、大がかりな装置や、高度な知識と熟練された技術を要せず、測定条件に厳しい制限のない、絶縁材料上の2次元薄膜原子構造の積層数決定装置及び積層数決定方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and can easily and accurately determine the number of graphene layers. In particular, it requires a large-scale apparatus and advanced knowledge and skill. Therefore, it is an object of the present invention to provide a stack number determining apparatus and a stack number determining method for a two-dimensional thin-film atomic structure on an insulating material without severe restrictions on measurement conditions.

また本発明は、上記の課題に対して、単層から30層までの広範囲にわたる積層数評価が可能な、絶縁材料上の2次元薄膜原子構造の積層数決定装置及び積層数決定方法を提供することを課題としている。   The present invention also provides a stack number determining apparatus and stack number determining method for a two-dimensional thin-film atomic structure on an insulating material, which can evaluate the stack number over a wide range from a single layer to 30 layers. It is an issue.

また本発明は、上記の課題に加えて、絶縁材料の種類による制限の少ない、絶縁材料上の2次元薄膜原子構造の積層数決定装置及び積層数決定方法を提供することを課題としている。   Another object of the present invention is to provide an apparatus for determining the number of stacked layers and a method for determining the number of stacked layers of a two-dimensional thin-film atomic structure on an insulating material, which are less limited by the type of insulating material.

グラフェンは、炭素原子の薄層構造でありながら、その独特な電気的特性により不透明度が高い。本発明者らは、従来のようにグラフェンのラマンスペクトルの線形解析から積層数を評価するのではなく、グラフェンを転写したラマン活性を示す絶縁材料からのラマンピークを用いて転写されたグラフェン積層数を評価した。   Although graphene is a thin layer structure of carbon atoms, it has high opacity due to its unique electrical characteristics. The present inventors do not evaluate the number of stacks from the linear analysis of the graphene Raman spectrum as in the prior art, but the number of graphene stacks transferred using the Raman peak from the insulating material exhibiting the Raman activity to which the graphene is transferred. Evaluated.

その結果、グラフェンの遮光効果を利用して、グラフェンが載っている絶縁基板由来のラマンピークを測定することで、グラフェンの積層数を簡便かつ正確に導くことができることを見出し、本発明を完成するに至った。   As a result, the inventors have found that the number of graphene stacks can be easily and accurately derived by measuring the Raman peak derived from the insulating substrate on which graphene is mounted using the light shielding effect of graphene, and complete the present invention. It came to.

すなわち、本発明の2次元薄膜原子構造の積層数決定装置及び積層数決定方法は、以下のことを特徴としている。ここで、以下の記述においてI、I、Iの定義は次のとおりである。
:絶縁材料に支持された積層数未知の2次元薄膜原子構造に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、顕微ラマン分光計によって測定した絶対強度である。
:絶縁材料に支持された積層数既知の2次元薄膜原子構造に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、顕微ラマン分光計によって測定した絶対強度である。
:2次元薄膜原子構造を配置しない絶縁材料に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、顕微ラマン分光計によって測定した絶対強度である。
That is, the two-dimensional thin film atomic structure lamination number determination apparatus and lamination number determination method of the present invention are characterized by the following. Here, in the following description, the definitions of I a , I b , and I 0 are as follows.
I a : Spectral peak intensity of Raman scattered light derived from insulating material, measured by irradiating incident laser light onto two-dimensional thin film atomic structure with unknown number of layers supported by insulating material, measured by microscopic Raman spectrometer Absolute intensity.
I b : Spectral peak intensity of Raman scattered light derived from an insulating material measured by irradiating incident laser light onto a two-dimensional thin film atomic structure with a known number of layers supported by the insulating material, measured by a microscopic Raman spectrometer Absolute intensity.
I 0 : Spectral peak intensity of Raman scattered light derived from an insulating material, measured by irradiating an insulating material not having a two-dimensional thin film atomic structure with incident laser light, and an absolute intensity measured by a microscopic Raman spectrometer.

本発明の2次元薄膜原子構造の積層数決定装置は、ラマン活性な絶縁材料上の2次元薄膜原子構造の積層数決定装置であって、
前記絶縁材料に支持された積層数未知の2次元薄膜原子構造に入射レーザー光を照射し、前記絶縁材料由来のラマン散乱光の分光ピーク強度比I/Iを取得するための測定を行う顕微ラマン分光計と、
前記絶縁材料に支持された積層数既知の2次元薄膜原子構造に前記入射レーザー光を照射して発生する前記絶縁材料由来のラマン散乱光の分光ピーク強度比I/Iと、前記2次元薄膜原子構造の積層数nとの関係を示し、且つ、前記積層数既知の2次元薄膜原子構造の単層に対する前記入射レーザー光の透過率T及び積層数nより、次の関係式:
/I =T 2n
で表わされる標準曲線に基づいて、前記分光ピーク強度比I/Iを前記標準曲線と照合し、前記積層数未知の2次元薄膜原子構造の積層数を決定する積層数決定機構とを備えている。
The apparatus for determining the number of stacked layers of a two-dimensional thin film atomic structure according to the present invention is a device for determining the number of stacked layers of a two-dimensional thin film atomic structure on a Raman-active insulating material,
Irradiating incident laser light onto a two-dimensional thin film atomic structure with an unknown number of layers supported by the insulating material, and performing measurement for obtaining a spectral peak intensity ratio I a / I 0 of Raman scattered light derived from the insulating material A micro-Raman spectrometer,
Spectral peak intensity ratios I b / I 0 of Raman scattered light derived from the insulating material generated by irradiating the incident laser light on a two-dimensional thin film atomic structure having a known number of layers supported by the insulating material, and the two-dimensional the relationship between the number n of stacked thin atomic structure shows, and the more the transmittance T and the stacking number n of the incident laser beam, the following relational expression of the single layer of the lamination number known two-dimensional thin atomic structure:
I b / I 0 = T 2n
The spectral peak intensity ratio I a / I 0 is collated with the standard curve on the basis of the standard curve represented by : and a stacking number determination mechanism for determining the stacking number of the two-dimensional thin film atomic structure whose stacking number is unknown. ing.

また本発明のラマン活性な絶縁材料上の2次元薄膜原子構造の積層数決定方法は、次の工程を含む:
次の工程を含む、ラマン活性な絶縁材料上の2次元薄膜原子構造の積層数決定方法:
前記絶縁材料に支持された積層数既知の2次元薄膜原子構造に入射レーザー光を照射して発生する前記絶縁材料由来のラマン散乱光の分光ピーク強度比I/Iと、前記2次元薄膜原子構造の積層数nとの関係を示し、且つ、前記積層数既知の2次元薄膜原子構造の単層に対する前記入射レーザー光の透過率T及び積層数nより、次の関係式:
/I =T 2n
で表わされる標準曲線を取得する工程;
前記絶縁材料に支持された積層数未知の2次元薄膜原子構造に前記入射レーザー光を照射し、前記絶縁材料由来のラマン散乱光の分光ピーク強度比I/Iを取得する工程;及び
前記分光ピーク強度比I/Iを前記標準曲線と照合し、前記積層数未知の2次元薄膜原子構造の積層数を決定する工程。
In addition, the method for determining the number of layers of the two-dimensional thin film atomic structure on the Raman active insulating material of the present invention includes the following steps:
A method for determining the number of stacks of two-dimensional thin-film atomic structures on a Raman-active insulating material, including the following steps:
Spectral peak intensity ratios I b / I 0 of Raman scattered light derived from the insulating material generated by irradiating incident laser light onto a two-dimensional thin film atomic structure having a known number of layers supported by the insulating material, and the two-dimensional thin film shows the relationship between the number n of stacked atomic structure, and, wherein from the transmittance T and the stacking number n of the incident laser beam, the following relational expression of the single layer of the lamination number known two-dimensional thin atomic structure:
I b / I 0 = T 2n
Obtaining a standard curve represented by:
Irradiating the incident laser light onto a two-dimensional thin film atomic structure with an unknown number of layers supported by the insulating material to obtain a spectral peak intensity ratio I a / I 0 of Raman scattered light derived from the insulating material; and A step of collating the spectral peak intensity ratio I a / I 0 with the standard curve and determining the number of layers of the two-dimensional thin film atomic structure whose number of layers is unknown.

好ましい態様において、前記標準曲線は、前記絶縁材料に支持され、それぞれ積層数nが異なる前記積層数既知の2次元薄膜原子構造を複数用意して前記分光ピーク強度比I/Iを取得し、これと前記2次元薄膜原子構造の積層数nとの関係に基づいて取得される。 In a preferred embodiment , the standard curve is supported by the insulating material, and a plurality of two-dimensional thin film atomic structures having a known number of layers, each having a different number of layers n, are prepared to obtain the spectral peak intensity ratio I b / I 0. , And obtained based on the relationship between the number n of the two-dimensional thin film atomic structures stacked.

本発明によれば、グラフェン等の2次元薄膜原子構造の遮光効果を利用して、2次元薄膜原子構造を支持する絶縁基板由来のラマン散乱強度比を取得することで、2次元薄膜原子構造の積層数を簡便かつ正確に決定することができる。測定に必要なものは顕微ラマン分光計のみで、その他の大がかりな装置、高度な知識と熟練された技術を要しない。そして常温、大気圧下での測定でも積層数評価が可能で、高真空での測定、試料サイズなど、測定条件の厳しい制限がない。   According to the present invention, by utilizing the light-shielding effect of a two-dimensional thin film atomic structure such as graphene, a Raman scattering intensity ratio derived from an insulating substrate that supports the two-dimensional thin film atomic structure is obtained, thereby The number of stacked layers can be determined easily and accurately. All that is required for the measurement is a microscopic Raman spectrometer, which does not require any other large-scale equipment, advanced knowledge and skill. The number of stacked layers can be evaluated even at room temperature and atmospheric pressure, and there are no strict restrictions on measurement conditions such as high vacuum measurement and sample size.

また本発明によれば、単層から30層までの広範囲にわたる積層数評価が可能である。   According to the present invention, it is possible to evaluate the number of stacked layers over a wide range from a single layer to 30 layers.

また本発明によれば、ラマン活性を示す絶縁材料ならば絶縁材料の種類による制限が少なく、例えばグラフェン等の2次元薄膜原子構造とのコントラストが小さい絶縁材料でも積層数が評価できる。   Further, according to the present invention, the number of stacked layers can be evaluated even with an insulating material having a small contrast with the two-dimensional thin film atomic structure such as graphene, for example, if the insulating material exhibits Raman activity.

本発明の2次元薄膜原子構造の積層数決定装置の実施形態の概略構成を示した図である。It is the figure which showed schematic structure of embodiment of the lamination number determination apparatus of the two-dimensional thin film atomic structure of this invention. 本発明の2次元薄膜原子構造の積層数決定装置の実施形態の概略構成を示した図である。It is the figure which showed schematic structure of embodiment of the lamination number determination apparatus of the two-dimensional thin film atomic structure of this invention. 絶縁材料に支持された2次元薄膜原子構造に入射レーザー光を照射した様子を模式的に示した図である。It is the figure which showed typically a mode that incident laser light was irradiated to the two-dimensional thin film atomic structure supported by the insulating material. 積層数決定方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the lamination | stacking number determination method. 絶縁材料としてダイヤモンドアンビルを用いた実施例の概略構成を示した図である。It is the figure which showed schematic structure of the Example using the diamond anvil as an insulating material. ダイヤモンドアンビルに転写されたn層グラフェンの光学顕微鏡写真である。2 is an optical micrograph of n-layer graphene transferred to a diamond anvil. 図6にある(1)〜(5)のグラフェンを転写したダイヤモンドと、ダイヤモンドアンビルのみ(BG)のラマンスペクトルである。It is a Raman spectrum of the diamond which transferred the graphene of (1)-(5) in FIG. 6, and only a diamond anvil (BG). 図6にある(1)〜(5)のグラフェンを転写したダイヤモンドアンビルのラマンピーク強度比I/Iと積層数nの関係をプロットしたグラフである。6 in (1) is a graph plotting the relationship between the number n of layers and Raman peak intensity ratio I n / I 0 of the diamond anvils transferring the graphene to (5).

以下に、図面を参照しながら本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は、本発明の2次元薄膜原子構造の積層数決定装置の実施形態の概略構成を示した図である。   1 and 2 are diagrams showing a schematic configuration of an embodiment of an apparatus for determining the number of stacked layers of a two-dimensional thin film atomic structure according to the present invention.

積層数決定装置1は、絶縁材料20上の2次元薄膜原子構造21の積層数を決定するものであり、図1に示すように、2次元薄膜原子構造21に入射レーザー光を照射し、ラマン散乱光の強度を測定する測定部2を備えている。   The stack number determining apparatus 1 determines the number of stacks of the two-dimensional thin film atomic structure 21 on the insulating material 20, and irradiates the two-dimensional thin film atomic structure 21 with incident laser light as shown in FIG. A measuring unit 2 for measuring the intensity of scattered light is provided.

また積層数決定装置1は、図1及び図2に示すように、測定部2が測定したラマン散乱光の強度を元に2次元薄膜原子構造21の積層数を決定する積層数決定部3を備えている。   Further, as shown in FIGS. 1 and 2, the stack number determining apparatus 1 includes a stack number determining unit 3 that determines the number of stacks of the two-dimensional thin film atomic structure 21 based on the intensity of Raman scattered light measured by the measuring unit 2. I have.

測定部2は、絶縁材料20に支持された積層数未知の2次元薄膜原子構造21に入射レーザー光11を照射し、絶縁材料20由来のラマン散乱光の分光ピーク強度Iを測定するための顕微ラマン分光計である。また測定部2では、前述の分光ピーク強度I及びIも測定される。 Measurement unit 2, the incident laser beam 11 in the stacking number of unknown 2D thin atomic structure 21 supported by the insulating material 20 is irradiated, for measuring the spectral peak intensity I a of the Raman scattered light derived from the insulating material 20 It is a micro Raman spectrometer. Further, in the measurement unit 2, the spectral peak intensity I b and I 0 described above is also measured.

測定部2は、絶縁材料20に支持された2次元薄膜原子構造21に入射レーザー光11を照射するためのレーザー光源10と、入射レーザー光11を照射して発生する絶縁材料20由来のラマン散乱光を分光する分光器16と、分光したラマン散乱光を検出する検出器17とを備えている。   The measurement unit 2 includes a laser light source 10 for irradiating the incident laser beam 11 to the two-dimensional thin film atomic structure 21 supported by the insulating material 20, and Raman scattering derived from the insulating material 20 generated by irradiating the incident laser beam 11. A spectroscope 16 that splits the light and a detector 17 that detects the spectroscopic Raman scattered light are provided.

レーザー光源10は、入射レーザー光11が安定な単波長であること、十分なラマン散乱光を発生させるために強度の高い光源であること、光源の線幅が狭いほど波数分解能が高くなること等を考慮して選択される。レーザー光源10としては、例えば、固体レーザー、半導体レーザー、アルゴンイオンレーザー等が挙げられる。   The laser light source 10 is such that the incident laser beam 11 has a stable single wavelength, is a high-intensity light source for generating sufficient Raman scattered light, and the wave number resolution increases as the line width of the light source decreases. Is selected. Examples of the laser light source 10 include a solid laser, a semiconductor laser, and an argon ion laser.

分光器16は、絶縁材料20より発生したラマン散乱光を分光する。分光器16としては、例えば、回折格子を組み込んだポリクロメーター等が挙げられる。   The spectroscope 16 separates Raman scattered light generated from the insulating material 20. Examples of the spectroscope 16 include a polychromator incorporating a diffraction grating.

検出器17は、ラマン散乱光は非常に微弱なため、感度(量子効率)の高いものを使用することが望ましい。検出器17の量子効率は波長によって大きく変わるので、励起波長及び測定波数範囲に合わせた選択が必要となる。レーザー光源10として可視光源を使用する場合、冷却CCD検出器を用いることができる。   As the detector 17, Raman scattered light is very weak, so it is desirable to use a detector with high sensitivity (quantum efficiency). Since the quantum efficiency of the detector 17 varies greatly depending on the wavelength, selection according to the excitation wavelength and the measurement wavenumber range is required. When a visible light source is used as the laser light source 10, a cooled CCD detector can be used.

顕微ラマン分光計は、図示はしないが、接眼レンズによる試料の観察や、内蔵カメラによるモニター表示、オートフォーカス、画像上でのマウスクリックによる目的箇所のセンタリングが可能な構成とすることができる。   Although not shown in the figure, the microscopic Raman spectrometer can be configured such that a sample can be observed by an eyepiece, monitor display by a built-in camera, autofocus, and centering of a target location by mouse click on an image.

絶縁材料20は、X−Yステージ18の試料台上に配置されており、X−Yステージ18を駆動することによって絶縁材料20をX−Y走査できるように構成されている。   The insulating material 20 is disposed on the sample stage of the XY stage 18 and is configured so that the XY scanning of the insulating material 20 can be performed by driving the XY stage 18.

レーザー光源10から出射された入射レーザー光11は、ハーフミラー12によって反射され、顕微鏡対物レンズ13によって集光されて、絶縁材料20に支持された2次元薄膜原子構造21に照射される。   Incident laser light 11 emitted from the laser light source 10 is reflected by the half mirror 12, collected by the microscope objective lens 13, and applied to the two-dimensional thin film atomic structure 21 supported by the insulating material 20.

これにより発生した絶縁材料20からのラマン散乱光は、顕微鏡対物レンズ13に取り込まれ、ハーフミラー12を透過し、レイリー散乱光の除去フィルター14、スリット15を通って分光器16に導かれる。   The Raman scattered light from the insulating material 20 thus generated is taken into the microscope objective lens 13, passes through the half mirror 12, and is guided to the spectroscope 16 through the Rayleigh scattered light removal filter 14 and the slit 15.

2次元薄膜原子構造21を透過した絶縁材料20からのラマン散乱光を検出する際には、顕微鏡対物レンズ13などの光学系を調整して、2次元薄膜原子構造21のサイズよりもスポット径を小さくする。   When detecting the Raman scattered light from the insulating material 20 that has passed through the two-dimensional thin film atomic structure 21, the optical system such as the microscope objective lens 13 is adjusted to make the spot diameter larger than the size of the two-dimensional thin film atomic structure 21. Make it smaller.

分光器16で分光されたラマン散乱光は、検出器17で検出され、電気信号に変換されて積層数決定部3の外部接続部30へ入力される。   The Raman scattered light dispersed by the spectroscope 16 is detected by the detector 17, converted into an electric signal, and input to the external connection unit 30 of the stack number determining unit 3.

図1及び図2に示す積層数決定部3は、絶縁材料20に支持された積層数既知の2次元薄膜原子構造21に入射レーザー光11を照射して発生する絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iと、2次元薄膜原子構造21の積層数nとの関係を示す標準曲線に基づいて、積層数未知の2次元薄膜原子構造21を測定して得た分光ピーク強度比I/Iを標準曲線と照合し、積層数未知の2次元薄膜原子構造21の積層数を決定する積層数決定機構を構成している。分光ピーク強度比I/I及びI/Iは、測定部2で測定されたI、I及びIに基づいて積層数決定部3で取得される。 The number-of-stacks determining unit 3 shown in FIGS. 1 and 2 has Raman scattering light derived from the insulating material 20 generated by irradiating the incident laser light 11 to the two-dimensional thin film atomic structure 21 having a known number of layers supported by the insulating material 20. Spectral spectrum obtained by measuring the two-dimensional thin film atomic structure 21 with an unknown number of layers, based on a standard curve showing the relationship between the spectral peak intensity ratio I b / I 0 of the film and the number n of layers of the two-dimensional thin film atomic structure 21 The peak intensity ratio I a / I 0 is collated with a standard curve to constitute a stacking number determination mechanism that determines the stacking number of the two-dimensional thin film atomic structure 21 whose stacking number is unknown. The spectral peak intensity ratios I a / I 0 and I b / I 0 are acquired by the stack number determination unit 3 based on I a , I b and I 0 measured by the measurement unit 2.

積層数決定部3は、例えばコンピュータであり、外部接続部30、制御部31、記憶部32、入力部33、及び出力部34を備えている。これらはバス35で接続されている。   The stack number determination unit 3 is, for example, a computer, and includes an external connection unit 30, a control unit 31, a storage unit 32, an input unit 33, and an output unit 34. These are connected by a bus 35.

外部接続部30は、ケーブル等で外部の測定部2等と接続されている。   The external connection unit 30 is connected to the external measurement unit 2 or the like with a cable or the like.

制御部31は、各構成要素を駆動制御するためのCPU、ROM、RAM等を備えている。   The control unit 31 includes a CPU, a ROM, a RAM, and the like for driving and controlling each component.

記憶部32は、各構成要素を動作させるためのプログラムが格納されている。また積層数決定装置1を動作させるための積層数決定プログラム及び積層数決定に用いる標準曲線、すなわち絶縁材料20に支持された積層数既知の2次元薄膜原子構造21に入射レーザー光10を照射して発生する絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iと、2次元薄膜原子構造21の積層数nとの関係を示す標準曲線のデータも記憶部32に格納される。 The storage unit 32 stores a program for operating each component. In addition, the incident laser beam 10 is applied to a two-dimensional thin film atomic structure 21 having a known number of layers supported by the insulating material 20, that is, a standard curve used for determining the number of layers and a standard curve used for determining the number of layers for operating the number-of-stacks determination device 1. Data of a standard curve indicating the relationship between the spectral peak intensity ratio I b / I 0 of the Raman scattered light derived from the insulating material 20 generated in this way and the number n of layers of the two-dimensional thin film atomic structure 21 is also stored in the storage unit 32. .

入力部33は、測定条件等の入力を行うための、マウス、キーボード等である。   The input unit 33 is a mouse, a keyboard, or the like for inputting measurement conditions and the like.

出力部34は、測定結果を出力するディスプレイ等である。   The output unit 34 is a display that outputs measurement results.

以上のような構成を備えた積層数決定装置1を用いた絶縁材料20上の2次元薄膜原子構造21の積層数決定方法は、次の原理に基づいている。以下、2次元薄膜原子構造21としてグラフェンを用いた場合を例として説明する。   The method for determining the number of stacked layers of the two-dimensional thin-film atomic structure 21 on the insulating material 20 using the stack number determining apparatus 1 having the above configuration is based on the following principle. Hereinafter, a case where graphene is used as the two-dimensional thin film atomic structure 21 will be described as an example.

図3に示すように、グラフェン21を転写した絶縁材料20からのラマン散乱スペクトルを測定すると、グラフェン21によって、入射レーザー光11が遮蔽され、かつ、絶縁材料20からのラマン散乱光40も遮蔽され、その結果、絶縁材料20のラマンピーク強度は減少する。   As shown in FIG. 3, when the Raman scattering spectrum from the insulating material 20 to which the graphene 21 is transferred is measured, the incident laser light 11 is shielded by the graphene 21 and the Raman scattered light 40 from the insulating material 20 is also shielded. As a result, the Raman peak intensity of the insulating material 20 decreases.

絶縁材料20上に転写したグラフェン21の積層数が増えると、絶縁材料20に到達する入射レーザー光11に対する遮光性が高くなり、更に絶縁材料20からのラマン散乱光40に対する遮光性も高くなり、その結果、絶縁材料20のラマンスペクトル強度はより減少する。   As the number of stacked graphenes 21 transferred onto the insulating material 20 increases, the light shielding property against the incident laser light 11 reaching the insulating material 20 increases, and the light shielding property against the Raman scattered light 40 from the insulating material 20 also increases. As a result, the Raman spectrum intensity of the insulating material 20 is further reduced.

単層グラフェンの透過率は、非特許文献1等の公知文献からおよそ97.7%である。よって、n層グラフェン21が絶縁材料20上に転写されている場合、絶縁材料20上のラマン強度比I/Iは、原理的には(0.977)2nとなる。 The transmittance of the single-layer graphene is approximately 97.7% from known documents such as Non-Patent Document 1. Therefore, when the n-layer graphene 21 is transferred onto the insulating material 20, the Raman intensity ratio I b / I 0 on the insulating material 20 is (0.977) 2n in principle.

そこで、これを標準曲線とし、絶縁材料20に支持された積層数未知のグラフェン21に入射レーザー光11を照射して測定を行い、測定された分光ピーク強度Iに基づいて、絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iを取得する。そして分光ピーク強度比I/Iを標準曲線と照合することで、積層数未知のグラフェン21の積層数を決定することができる。 Therefore, it was the standard curve, was measured by irradiating an incident laser beam 11 in the stacking number of unknown graphene 21 supported by the insulating material 20, based on the measured spectral peak intensity I a, from the insulating material 20 Spectral peak intensity ratio I a / I 0 of Raman scattered light is acquired. Then, by checking the spectral peak intensity ratio I a / I 0 with a standard curve, the number of layers of graphene 21 whose number of layers is unknown can be determined.

実際には、ここに絶縁材料20の反射率等がラマン散乱光の分光ピーク強度の要因に加わる。そこで、より精密な積層数の評価を行う場合には、予めグラフェン21の積層数が分かっているもの(0層、単層、n層、∞層)を転写した絶縁材料20のラマン散乱光の分光ピーク強度比I/Iとグラフェン21の積層数nとの関係を、実験的に標準曲線として求めておく。次に、同一の絶縁材料20を用いて、評価したい積層数未知のグラフェン21が転写された絶縁材料20におけるラマン散乱光の分光ピーク強度比I/Iを取得し、標準曲線と照合して積層数を決定する。 Actually, the reflectance of the insulating material 20 is added to the factor of the spectral peak intensity of the Raman scattered light. Therefore, when a more precise evaluation of the number of layers is performed, the Raman scattered light of the insulating material 20 to which the graphene 21 number of layers already known (0 layer, single layer, n layer, ∞ layer) has been transferred is transferred. The relationship between the spectral peak intensity ratio I b / I 0 and the number n of stacked graphenes 21 is experimentally obtained as a standard curve. Next, using the same insulating material 20, the spectral peak intensity ratio I a / I 0 of Raman scattered light in the insulating material 20 to which the graphene 21 with the unknown number of layers to be evaluated is transferred is obtained and collated with a standard curve. To determine the number of layers.

2次元薄膜原子構造21を支持する絶縁材料20としては、ラマン散乱のピークが測定できるものであれば特に限定されないが、例えば、ダイヤモンドや、Si、GaAs(ガリウムヒ素)、窒化ホウ素等の半導体、マイカ等の絶縁体等を挙げることができる。しかし金属の場合は、ラマン活性を示すものであっても、大抵は低温に冷却しないとラマンピークが得られず、そうなると装置も大がかりとなり、またピークの形状は強度が弱くブロードであることから、絶縁材料20としては、金属以外のラマン活性を示す物質が好ましい。   The insulating material 20 that supports the two-dimensional thin film atomic structure 21 is not particularly limited as long as the peak of Raman scattering can be measured. For example, a semiconductor such as diamond, Si, GaAs (gallium arsenide), boron nitride, An insulator such as mica can be used. However, in the case of metal, even if it shows Raman activity, the Raman peak is usually not obtained unless it is cooled to a low temperature, and then the apparatus becomes large, and the shape of the peak is weak and broad, so The insulating material 20 is preferably a substance exhibiting Raman activity other than metal.

絶縁材料20の形状は、特に限定されないが、2次元薄膜原子構造21を支持する平坦面を有するものが好ましい。例えば、絶縁材料20として基板を用いることができる。   The shape of the insulating material 20 is not particularly limited, but preferably has a flat surface that supports the two-dimensional thin film atomic structure 21. For example, a substrate can be used as the insulating material 20.

また、観察の妨げにならないように、絶縁材料20は予め、洗浄や酸素プラズマ等で清浄化することが望ましい。CVDグラフェンやSiC熱分解エピタキシャル成長グラファイトの場合、機械的な剥離・貼り付けをせずに成長基板をそのまま用いることも可能である。   In addition, it is desirable to clean the insulating material 20 in advance by cleaning, oxygen plasma, or the like so as not to hinder observation. In the case of CVD graphene or SiC pyrolytic epitaxial growth graphite, it is possible to use the growth substrate as it is without mechanical peeling and pasting.

2次元薄膜原子構造21は、原子の2次元的結合構造、あるいは、それと等価な2次元的電子状態を表面、界面などに有する機能性を持った薄膜物質であり、例えば、グラフェン、六方晶窒化ホウ素(hBN)、トポロジカル絶縁体、2次元原子・分子薄膜等が挙げられる。   The two-dimensional thin film atomic structure 21 is a thin film material having a function of having a two-dimensional bonding structure of atoms or an equivalent two-dimensional electronic state on the surface, interface, etc., for example, graphene, hexagonal nitriding Examples thereof include boron (hBN), topological insulator, and two-dimensional atomic / molecular thin film.

グラフェンは、例えば、天然グラファイトを粘着テープで薄く剥がすことによって得られる。グラフェンの原料としては上記の天然グラファイトのほか、HOPG(高配向熱分解グラファイト)、Kish(キッシュ)グラファイト、CVD(化学気相成長)グラフェン、SiC熱分解エピタキシャル成長グラファイト等を用いることができる。   Graphene is obtained, for example, by peeling off natural graphite with an adhesive tape. In addition to the above natural graphite, HOPG (Highly Oriented Pyrolytic Graphite), Kish (Kish) Graphite, CVD (Chemical Vapor Deposition) Graphene, SiC Pyrolytic Epitaxially Grown Graphite, and the like can be used as the raw material for graphene.

次に、積層数決定装置1を用いた2次元薄膜原子構造21の積層数決定方法について、図4を参照して説明する。   Next, a method for determining the number of stacked layers of the two-dimensional thin film atomic structure 21 using the stack number determining apparatus 1 will be described with reference to FIG.

まず、積層数決定部3の制御部31は、記憶部32に格納された積層数決定プログラムを起動し、評価したい積層数未知の2次元薄膜原子構造21の試料の測定結果と照合するための標準曲線が得られていない場合には、標準曲線を取得する(S101、S102)。   First, the control unit 31 of the stack number determination unit 3 starts the stack number determination program stored in the storage unit 32, and collates it with the measurement result of the sample of the two-dimensional thin film atomic structure 21 whose stack number is unknown. If the standard curve is not obtained, the standard curve is acquired (S101, S102).

なお、標準曲線が既に取得済みの場合は、S102のステップは不要であり、次のS103に進む。   If the standard curve has already been acquired, step S102 is unnecessary, and the process proceeds to the next S103.

ここで、S102における標準曲線の取得方法について説明する。   Here, the method for obtaining the standard curve in S102 will be described.

この標準曲線は、絶縁材料20に支持された積層数既知の2次元薄膜原子構造21に入射レーザー光11を照射して発生する絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iと、2次元薄膜原子構造21の積層数nとの関係を示すものである。 This standard curve shows the spectral peak intensity ratio I b / I of Raman scattered light derived from the insulating material 20 generated by irradiating the incident laser light 11 to the two-dimensional thin film atomic structure 21 having a known number of layers supported by the insulating material 20. The relationship between 0 and the number n of layers of the two-dimensional thin film atomic structure 21 is shown.

一例では、標準曲線は、2次元薄膜原子構造21の単層に対する入射レーザー光11の透過率Tと、2次元薄膜原子構造21の積層数nより、絶縁材料20由来のラマン散乱光の分光ピーク強度比I/IをT2nとする関係式で表わされる。この関係式の原理については図3を参照して上述したとおりである。この例によれば、測定を要せずとも標準曲線を取得することができ、グラフェンの積層数を非常に簡便に決定することができる。 In one example, the standard curve is a spectral peak of Raman scattered light derived from the insulating material 20 based on the transmittance T of the incident laser beam 11 with respect to a single layer of the two-dimensional thin-film atomic structure 21 and the number n of layers of the two-dimensional thin-film atomic structure 21. The intensity ratio I b / I 0 is represented by a relational expression with T 2n . The principle of this relational expression is as described above with reference to FIG. According to this example, a standard curve can be acquired without requiring measurement, and the number of graphene layers can be determined very simply.

なお、グラフェンの透過率はいろいろな方法で求められるが、例えば、ラマン分光法によりグラフェン単層の透過率Tを次の方法によって求めることができる。グラフェン単層が配置された絶縁材料20を用意し、絶縁材料20由来のラマン散乱光の分光ピーク強度Iを実験から求める。また、絶縁材料20のラマン散乱光の分光ピーク強度Iを実験から求める。そしてI/I=Tの関係式より、T=(I/I1/2を得る。よって、グラフェン積層数評価のための関係式は、I/I=T2n={(I/I1/22n=(I/Iとなる。この例ではグラフェンを用いた場合について説明したが、他の2次元薄膜原子構造21と置き換えても同様な式が成り立つ。 Note that the transmittance of graphene can be obtained by various methods. For example, the transmittance T of a graphene single layer can be obtained by the following method by Raman spectroscopy. An insulating material 20 in which a graphene single layer is arranged is prepared, and a spectral peak intensity I 1 of Raman scattered light derived from the insulating material 20 is obtained from an experiment. Further, the spectral peak intensity I 0 of the Raman scattered light of the insulating material 20 is obtained from experiments. Then, T = (I 1 / I 0 ) 1/2 is obtained from the relational expression of I 1 / I 0 = T 2 . Therefore, the relational expression for evaluating the number of graphene stacks is I n / I 0 = T 2n = {(I 1 / I 0 ) 1/2 } 2n = (I 1 / I 0 ) n . In this example, the case where graphene is used has been described, but the same formula holds even if the graphene is replaced with another two-dimensional thin film atomic structure 21.

別の例では、標準曲線は、絶縁材料20に支持され、それぞれ積層数nが異なる積層数既知の2次元薄膜原子構造21を複数用意し、これに入射レーザー光11を照射して測定された分光ピーク強度Iより取得した、絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iに基づいて取得される。上記の例では関係式T2nを標準曲線としたが、実際には、ここに絶縁材料20の反射率等がラマン散乱光の分光ピーク強度の要因として加わる。そこで、より精密な積層数の評価を行うことが適切な場合には、予め2次元薄膜原子構造21の積層数が分かっているもの(0層、単層、n層、∞層)を転写した絶縁材料20におけるラマン散乱光の分光ピーク強度比I/Iと、2次元薄膜原子構造21の積層数nとの関係を、実験的に基づく標準曲線として求めておく。次に、同一の絶縁材料20を用いて、評価したい積層数未知のグラフェン21が転写された絶縁材料20におけるラマン散乱光の分光ピーク強度比I/Iを取得し、標準曲線と照合して積層数を決定する。 In another example, the standard curve was measured by irradiating the incident laser beam 11 with a plurality of two-dimensional thin film atomic structures 21 supported by the insulating material 20 and having a different number of layers n, each having a known number of layers. obtained from the spectral peak intensity I b, is obtained based on the spectral peak intensity ratio I b / I 0 of the Raman scattering light from the insulating material 20. In the above example, the relational expression T2n is a standard curve, but actually, the reflectance of the insulating material 20 is added as a factor of the spectral peak intensity of the Raman scattered light. Therefore, when it is appropriate to evaluate the number of stacked layers more precisely, the one in which the number of stacked layers of the two-dimensional thin film atomic structure 21 is known in advance (0 layer, single layer, n layer, ∞ layer) is transferred. The relationship between the spectral peak intensity ratio I b / I 0 of the Raman scattered light in the insulating material 20 and the number n of layers of the two-dimensional thin film atomic structure 21 is obtained as a standard curve based on experiments. Next, using the same insulating material 20, the spectral peak intensity ratio I a / I 0 of Raman scattered light in the insulating material 20 to which the graphene 21 with the unknown number of layers to be evaluated is transferred is obtained and collated with a standard curve. To determine the number of layers.

ここで、予め2次元薄膜原子構造21の積層数nが分かっているものを転写した絶縁材料20は、ラマン測定(非特許文献1、2)、光学測定(非特許文献3)等の公知の方法で2次元薄膜原子構造21の積層数nを評価することによって得ることができる。   Here, the insulating material 20 in which the number n of the two-dimensional thin film atomic structure 21 of which the number is known is previously transferred is known, such as Raman measurement (Non-Patent Documents 1 and 2), optical measurement (Non-Patent Document 3), etc. It can be obtained by evaluating the number n of stacked layers of the two-dimensional thin film atomic structure 21 by the method.

例えば、積層数nが異なる複数の2次元薄膜原子構造21を用意し、これらを絶縁材料20に転写する。絶縁材料20は積層数未知の2次元薄膜原子構造21を転写するものと同じ材料を用いる。   For example, a plurality of two-dimensional thin film atomic structures 21 having different stacking numbers n are prepared and transferred to the insulating material 20. As the insulating material 20, the same material as that for transferring the two-dimensional thin film atomic structure 21 with an unknown number of layers is used.

次に、制御部31は積層数決定プログラムに基づき、ステップS103と同じ条件にて絶縁材料20に支持された2次元薄膜原子構造21に入射レーザー光11を照射するように指示する。それに基づいて、測定部2は、絶縁材料20に支持された積層数既知の2次元薄膜原子構造21に入射レーザー光11を照射して、絶縁材料20由来のラマン散乱光の分光ピーク強度Iを測定する。また、基準として2次元薄膜原子構造21を配置しない絶縁材料20由来のラマン散乱光の分光ピーク強度Iも測定しておく。 Next, the control unit 31 instructs to irradiate the incident laser light 11 to the two-dimensional thin film atomic structure 21 supported by the insulating material 20 under the same conditions as in step S103 based on the stacking number determination program. Based on this, the measuring unit 2 irradiates the incident laser light 11 to the two-dimensional thin-film atomic structure 21 with a known number of layers supported by the insulating material 20, and the spectral peak intensity I b of the Raman scattered light derived from the insulating material 20. Measure. Further, as a reference, the spectral peak intensity I 0 of Raman scattered light derived from the insulating material 20 in which the two-dimensional thin film atomic structure 21 is not disposed is also measured.

制御部31は、2次元薄膜原子構造21の積層数nと、絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iの関係をプロットして、最小2乗法等の回帰分析でフィッティングすることにより標準曲線を作成し、記憶部32に保存する。 The control unit 31 plots the relationship between the number n of the two-dimensional thin-film atomic structure 21 and the spectral peak intensity ratio I b / I 0 of the Raman scattered light derived from the insulating material 20, and performs regression analysis such as the least square method. A standard curve is created by fitting and stored in the storage unit 32.

以上の例によれば、より精密な積層数の評価を行うことが可能となる。   According to the above example, it is possible to evaluate the number of stacked layers more precisely.

次のステップとして、積層数未知の2次元薄膜原子構造21、すなわち積層数を決定したい2次元薄膜原子構造21を絶縁材料20上に転写する(S103)。この積層数未知の2次元薄膜原子構造21を支持する絶縁材料20は、図1のX−Yステージ18の試料台上に配置される。   As the next step, the two-dimensional thin film atomic structure 21 with the unknown number of layers, that is, the two-dimensional thin film atomic structure 21 for which the number of layers is to be determined, is transferred onto the insulating material 20 (S103). The insulating material 20 that supports the two-dimensional thin film atomic structure 21 with the unknown number of layers is disposed on the sample stage of the XY stage 18 in FIG.

次のステップとして、積層数決定部3の制御部31は、積層数決定プログラムに基づき、所定の条件にて絶縁材料20に支持された積層数未知の2次元薄膜原子構造21に入射レーザー光11を照射するように指示し、レーザー光源10より入射レーザー光11を照射する(S104)。   As the next step, the control unit 31 of the stack number determination unit 3 applies the incident laser beam 11 to the two-dimensional thin film atomic structure 21 with the unknown stack number supported by the insulating material 20 under a predetermined condition based on the stack number determination program. And the incident laser beam 11 is irradiated from the laser light source 10 (S104).

次のステップとして、制御部31は、測定部2(顕微ラマン分光計)の検出部17を制御して絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iを取得する(S105)。 As the next step, the control unit 31 controls the detection unit 17 of the measurement unit 2 (microscopic Raman spectrometer) to acquire the spectral peak intensity ratio I a / I 0 of the Raman scattered light derived from the insulating material 20 (S105). ).

次のステップとして、分光ピーク強度比I/Iを標準曲線と照合し、積層数未知の2次元薄膜原子構造21の積層数を決定する(S106)。 As the next step, the spectral peak intensity ratio I a / I 0 is collated with a standard curve to determine the number of layers of the two-dimensional thin film atomic structure 21 whose number of layers is unknown (S106).

具体的には、標準曲線における、絶縁材料20由来のラマン散乱光の分光ピーク強度比I/Iに対応する積層数を2次元薄膜原子構造21の積層数とする。 Specifically, the number of layers corresponding to the spectral peak intensity ratio I a / I 0 of Raman scattered light derived from the insulating material 20 in the standard curve is defined as the number of layers of the two-dimensional thin film atomic structure 21.

本実施形態によれば、グラフェン等の2次元薄膜原子構造21の遮光効果を利用して、2次元薄膜原子構造21を支持する絶縁基板20由来のラマン散乱強度比を取得することで、2次元薄膜原子構造21の積層数を簡便かつ正確に決定することができる。測定に必要なものは顕微ラマン分光計のみで、その他の大がかりな装置、高度な知識と熟練された技術を要しない。そして常温、大気圧下での測定でも積層数評価が可能で、高真空での測定、試料サイズなど、測定条件の厳しい制限がない。   According to the present embodiment, the light scattering effect of the two-dimensional thin film atomic structure 21 such as graphene is used to obtain the Raman scattering intensity ratio derived from the insulating substrate 20 that supports the two-dimensional thin film atomic structure 21, thereby The number of stacked thin-film atomic structures 21 can be determined easily and accurately. All that is required for the measurement is a microscopic Raman spectrometer, which does not require any other large-scale equipment, advanced knowledge and skill. The number of stacked layers can be evaluated even at room temperature and atmospheric pressure, and there are no strict restrictions on measurement conditions such as high vacuum measurement and sample size.

また本実施形態によれば、単層から30層まで、広範囲にわたる積層数評価が可能である。そして、絶縁材料20の種類による制限が少なく、例えばグラフェン等の2次元薄膜原子構造21とのコントラストが小さい絶縁材料20でも積層数が評価できる。   Further, according to the present embodiment, it is possible to evaluate the number of stacked layers over a wide range from a single layer to 30 layers. The number of stacked layers can be evaluated even with the insulating material 20 having a small contrast with the two-dimensional thin-film atomic structure 21 such as graphene, which is less limited by the type of the insulating material 20.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

顕微ラマン分光計としてJobin Yvon社製レーザーラマン分光測定システムT64000を用いた。   The laser Raman spectrometer T64000 manufactured by Jobin Yvon was used as a micro-Raman spectrometer.

絶縁材料としてダイヤモンドアンビルを用い、図5に示すように上面にグラフェンを転写して測定を行った。(i)はダイヤモンドアンビルのみ、(ii)はn層グラフェンを転写した場合を示す。   A diamond anvil was used as an insulating material, and measurement was performed by transferring graphene to the upper surface as shown in FIG. (i) shows only the diamond anvil, and (ii) shows the case of transferring the n-layer graphene.

図6は、ダイヤモンドアンビルに転写されたn層グラフェンの光学顕微鏡写真である。写真中の(1)〜(5)は、積層数の異なる5種類のグラフェンのサンプルであり、これらは別途にグラフェンのラマンスペクトル(2Dバンド)を利用して積層数を求めた(非特許文献1)。   FIG. 6 is an optical micrograph of n-layer graphene transferred to a diamond anvil. (1) to (5) in the photograph are five types of graphene samples with different numbers of layers, and these were separately obtained using the Raman spectrum (2D band) of graphene (non-patent literature) 1).

これらの積層数の異なる5種類のグラフェンを転写したダイヤモンドアンビルについて、ダイヤモンドアンビル上面に対して入射レーザー光(波長514.5nm)を照射し、ダイヤモンドからのラマン散乱光を検出して、ダイヤモンド(1次)のラマンスペクトルを測定した。   The diamond anvil onto which these five types of graphene with different numbers of layers are transferred is irradiated with incident laser light (wavelength 514.5 nm) on the diamond anvil upper surface, and the Raman scattered light from the diamond is detected, and diamond (1 Next) Raman spectrum was measured.

図7は、(1)〜(5)のグラフェンを転写したダイヤモンドと、ダイヤモンドアンビルのみ(BG)のラマンスペクトルである。このように、n層グラフェンを転写した(1)〜(5)ののサンプルでは、ダイヤモンドアンビルのみのBGに比べてラマン散乱光の分光ピーク強度は減少し、ダイヤモンドアンビル上のn層グラフェンによって、入射レーザー光と反射光のラマン散乱光が遮蔽されることを示唆した。   FIG. 7 is a Raman spectrum of diamond transferred with graphene (1) to (5) and diamond anvil alone (BG). Thus, in the samples of (1) to (5) to which n-layer graphene was transferred, the spectral peak intensity of Raman scattered light was reduced compared to BG with only diamond anvil, and the n-layer graphene on the diamond anvil It is suggested that the incident laser beam and the reflected Raman scattered light are shielded.

表1に、図7の(1)〜(5)の各ピークの強度Iと、ダイヤモンドのみのピークの強度Iに対する比(I/I)の結果を示す。各ピークの強度は関数のフィッティングから求めた。 Table 1 shows the respective peak intensity I n of (1) to (5) in FIG. 7, the results of the ratio of the intensity I 0 of the peak of diamond only (I n / I 0). The intensity of each peak was obtained from function fitting.

図8は、グラフェンを転写したダイヤモンドアンビルのラマンピーク強度比I/Iと積層数nの関係をプロットしたグラフである。 FIG. 8 is a graph plotting the relationship between the Raman peak intensity ratio I n / I 0 and the number of layers n of the diamond anvil to which graphene has been transferred.

単層グラフェンの透過率は、文献値(非特許文献1等)からおよそ97.7%である。よって、n層グラフェンが基板上に転写されている場合、基板のラマン強度比I/Iは、原理的には(0.977)2nとなる。この数式と、上記のプロットとを図8に対比した。 The transmittance of the single-layer graphene is approximately 97.7% from the literature value (Non-Patent Document 1 etc.). Therefore, when the n-layer graphene is transferred onto the substrate, the Raman intensity ratio I n / I 0 of the substrate is (0.977) 2n in principle. This mathematical expression was compared with the above plot in FIG.

図8に示すように、ダイヤモンドの1次ピークを用いた強度比−積層数のプロットは、上記数式を再現していた。   As shown in FIG. 8, the plot of the intensity ratio-number of stacks using the primary peak of diamond reproduced the above formula.

以上の結果より、予めグラフェンの積層数が分かっているもの(0層、1層、n層、∞層)を転写した基板のラマンスペクトル強度比(基板の強度で割った値)I/Iと積層数nとの関係を実験的に求めておき、回帰分析によって標準曲線を得ることで、同一基板を用いて層数未知のグラフェンを転写し基板のラマンスペクトルを測定し、標準曲線と照合することで、積層数未知のグラフェンの積層数を精度良く決定できることが分かった。 From the above results, the Raman spectral intensity ratio (value divided by the substrate strength) I n / I of the substrate onto which the graphene layer number already known (0 layer, 1 layer, n layer, ∞ layer) was transferred. By experimentally determining the relationship between 0 and the number n of layers, and obtaining a standard curve by regression analysis, the graphene with an unknown number of layers is transferred using the same substrate, and the Raman spectrum of the substrate is measured. By collating, it was found that the number of graphene layers with unknown number of layers can be determined with high accuracy.

更に、単層グラフェンの透過率に基づくシンプルな式を標準曲線として、積層数未知のグラフェンが転写された基板のラマンスペクトルを測定し、そのピーク強度比(基板の強度で割った値)を標準曲線と照合することで、積層数未知のグラフェンの積層数を精度良く決定できることが分かった。   Furthermore, using a simple equation based on the transmittance of single-layer graphene as a standard curve, the Raman spectrum of the substrate onto which the graphene with an unknown number of layers is transferred is measured, and the peak intensity ratio (value divided by the substrate strength) is standard. It was found that the number of graphene layers with unknown number of layers can be determined with high accuracy by matching with the curve.

1 積層数決定装置
2 測定部(顕微ラマン分光計)
3 積層数決定部(積層数決定機構)
10 レーザー光源
11 入射レーザー光
12 ハーフミラー
13 顕微鏡対物レンズ
14 レイリー散乱光の除去フィルター
15 スリット
16 分光器
17 検出器
18 X−Yステージ
20 絶縁材料
21 2次元薄膜原子構造
30 外部接続部
31 制御部
32 記憶部
33 入力部
34 出力部
35 バス
40 絶縁材料からのラマン散乱光
1 Stack number determination device 2 Measuring unit (micro Raman spectrometer)
3 Stack number determination unit (Stack number determination mechanism)
DESCRIPTION OF SYMBOLS 10 Laser light source 11 Incident laser beam 12 Half mirror 13 Microscope objective lens 14 Rayleigh scattered light removal filter 15 Slit 16 Spectrometer 17 Detector 18 XY stage 20 Insulating material 21 Two-dimensional thin film atomic structure 30 External connection part 31 Control part 32 Storage unit 33 Input unit 34 Output unit 35 Bus 40 Raman scattered light from insulating material

Claims (5)

ラマン活性な絶縁材料上の2次元薄膜原子構造の積層数決定装置であって、
前記絶縁材料に支持された積層数未知の2次元薄膜原子構造に入射レーザー光を照射し、前記絶縁材料由来のラマン散乱光の分光ピーク強度比I/I (I とI の定義はそれぞれ下記に示す)を取得するための測定を行う顕微ラマン分光計と、
前記絶縁材料に支持された積層数既知の2次元薄膜原子構造に前記入射レーザー光を照射して発生する前記絶縁材料由来のラマン散乱光の分光ピーク強度比I/I (I の定義は下記に示す)と、前記2次元薄膜原子構造の積層数nとの関係を示し、且つ、前記積層数既知の2次元薄膜原子構造の単層に対する前記入射レーザー光の透過率T及び積層数nより、次の関係式:
/I =T 2n
で表わされる標準曲線に基づいて、前記分光ピーク強度比I/Iを前記標準曲線と照合し、前記積層数未知の2次元薄膜原子構造の積層数を決定する積層数決定機構とを備えることを特徴とする2次元薄膜原子構造の積層数決定装置。
は前記絶縁材料に支持された積層数未知の2次元薄膜原子構造に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、且つ、顕微ラマン分光計によって測定した絶対強度であり、
は前記絶縁材料に支持された積層数既知の2次元薄膜原子構造に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、且つ、顕微ラマン分光計によって測定した絶対強度であり、
は2次元薄膜原子構造を配置しない前記絶縁材料に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、且つ、顕微ラマン分光計によって測定した絶対強度である。
A device for determining the number of layers of a two-dimensional thin-film atomic structure on a Raman-active insulating material,
The two-dimensional thin film atomic structure with an unknown number of layers supported by the insulating material is irradiated with incident laser light, and the spectral peak intensity ratio I a / I 0 ( definition of I a and I 0 of Raman scattered light derived from the insulating material) Is a micro-Raman spectrometer that performs measurements to obtain
Spectral peak intensity ratios I b / I 0 ( definition of I b) of Raman scattered light derived from the insulating material generated by irradiating the incident laser light onto a two-dimensional thin film atomic structure having a known number of layers supported by the insulating material the below) shows the relationship between the stacking number n of the two-dimensional thin atomic structure, and the incident laser light transmittance T and laminated for a single layer of the lamination number known two-dimensional thin atomic structure From the number n, the following relational expression:
I b / I 0 = T 2n
The spectral peak intensity ratio I a / I 0 is collated with the standard curve on the basis of the standard curve represented by : and a stacking number determination mechanism for determining the stacking number of the two-dimensional thin film atomic structure with the unknown stacking number is provided. An apparatus for determining the number of stacked layers of a two-dimensional thin-film atomic structure.
I a is a spectral peak intensity of Raman scattered light derived from an insulating material, measured by irradiating incident laser light onto a two-dimensional thin film atomic structure with an unknown number of layers supported by the insulating material, and a microscopic Raman spectrometer Is the absolute intensity measured by
I b is a spectral peak intensity of Raman scattered light derived from an insulating material, measured by irradiating incident laser light onto a two-dimensional thin film atomic structure with a known number of layers supported by the insulating material, and a microscopic Raman spectrometer Is the absolute intensity measured by
I 0 is the spectral peak intensity of the Raman scattered light derived from the insulating material, measured by irradiating the insulating material with no two-dimensional thin film atomic structure irradiated with incident laser light, and the absolute intensity measured by a microscopic Raman spectrometer It is.
前記標準曲線は、前記絶縁材料に支持され、それぞれ積層数nが異なる前記積層数既知の2次元薄膜原子構造を複数用意して前記分光ピーク強度比I /I を取得し、これと前記2次元薄膜原子構造の積層数nとの関係に基づいて取得される、請求項1に記載の2次元薄膜原子構造の積層数決定装置。 The standard curve is supported by the insulating material, and obtains the spectral peak intensity ratio I b / I 0 by preparing a plurality of known two-dimensional thin-film atomic structures each having a different number n of layers, and the spectral peak intensity ratio I b / I 0 The apparatus for determining the number of stacked layers of a two-dimensional thin film atomic structure according to claim 1 , which is acquired based on a relationship with the number of stacked layers n of the two-dimensional thin film atomic structure. 前記2次元薄膜原子構造はグラフェンである請求項1又は2に記載の2次元薄膜原子構造の積層数決定装置。 The apparatus for determining the number of stacked layers of a two-dimensional thin film atomic structure according to claim 1 or 2, wherein the two-dimensional thin film atomic structure is graphene . 次の工程を含む、ラマン活性な絶縁材料上の2次元薄膜原子構造の積層数決定方法:A method for determining the number of stacks of two-dimensional thin-film atomic structures on a Raman-active insulating material, including the following steps:
前記絶縁材料に支持された積層数既知の2次元薄膜原子構造に入射レーザー光を照射して発生する前記絶縁材料由来のラマン散乱光の分光ピーク強度比ISpectral peak intensity ratio I of Raman scattered light derived from the insulating material generated by irradiating incident laser light onto a two-dimensional thin film atomic structure having a known number of layers supported by the insulating material b /I/ I 0 (I(I b とIAnd I 0 の定義はそれぞれ下記に示す)と、前記2次元薄膜原子構造の積層数nとの関係を示し、且つ、前記積層数既知の2次元薄膜原子構造の単層に対する前記入射レーザー光の透過率T及び積層数nより、次の関係式:And the number of stacked layers of the two-dimensional thin film atomic structure n, and the transmittance T of the incident laser light with respect to a single layer of the two-dimensional thin film atomic structure of which the number of stacked layers is known. And from the number n of layers, the following relational expression:
I b /I/ I 0 =T= T 2n2n
で表わされる標準曲線を取得する工程;Obtaining a standard curve represented by:
前記絶縁材料に支持された積層数未知の2次元薄膜原子構造に前記入射レーザー光を照射し、前記絶縁材料由来のラマン散乱光の分光ピーク強度比IThe incident laser beam is irradiated onto a two-dimensional thin film atomic structure with an unknown number of layers supported by the insulating material, and a spectral peak intensity ratio I of Raman scattered light derived from the insulating material a /I/ I 0 (I(I a の定義は下記に示す)を取得する工程;及びThe definition of is given below); and
前記分光ピーク強度比IThe spectral peak intensity ratio I a /I/ I 0 を前記標準曲線と照合し、前記積層数未知の2次元薄膜原子構造の積層数を決定する工程。And the standard curve to determine the number of layers of the two-dimensional thin film atomic structure whose number of layers is unknown.
I a は前記絶縁材料に支持された積層数未知の2次元薄膜原子構造に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、且つ、顕微ラマン分光計によって測定した絶対強度であり、Is the spectral peak intensity of the Raman scattered light derived from the insulating material, measured by irradiating the two-dimensional thin film atomic structure with unknown number of layers supported by the insulating material with incident laser light, and measured with a microscopic Raman spectrometer Absolute strength,
I b は前記絶縁材料に支持された積層数既知の2次元薄膜原子構造に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、且つ、顕微ラマン分光計によって測定した絶対強度であり、Is the spectral peak intensity of the Raman scattered light derived from the insulating material, measured by irradiating the two-dimensional thin film atomic structure with a known number of layers supported by the insulating material with incident laser light, and measured with a microscopic Raman spectrometer Absolute strength,
I 0 は2次元薄膜原子構造を配置しない前記絶縁材料に入射レーザー光を照射して測定した、絶縁材料由来のラマン散乱光の分光ピーク強度であり、且つ、顕微ラマン分光計によって測定した絶対強度である。Is the spectral peak intensity of the Raman scattered light derived from the insulating material, measured by irradiating the insulating material with no two-dimensional thin-film atomic structure irradiated with incident laser light, and the absolute intensity measured by a microscopic Raman spectrometer .
前記標準曲線は、前記絶縁材料に支持され、それぞれ積層数nが異なる前記積層数既知の2次元薄膜原子構造を複数用意して前記分光ピーク強度比IThe standard curve is supported by the insulating material, and a plurality of known two-dimensional thin film atomic structures each having a different number n of layers are prepared, and the spectral peak intensity ratio I b /I/ I 0 を取得し、これと前記2次元薄膜原子構造の積層数nとの関係に基づいて取得される、請求項4に記載の2次元薄膜原子構造の積層数決定方法。5 is acquired based on the relationship between this and the number n of stacks of the two-dimensional thin film atomic structure.
JP2014189349A 2014-09-17 2014-09-17 Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material Active JP6457766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189349A JP6457766B2 (en) 2014-09-17 2014-09-17 Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189349A JP6457766B2 (en) 2014-09-17 2014-09-17 Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material

Publications (2)

Publication Number Publication Date
JP2016061657A JP2016061657A (en) 2016-04-25
JP6457766B2 true JP6457766B2 (en) 2019-01-23

Family

ID=55797512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189349A Active JP6457766B2 (en) 2014-09-17 2014-09-17 Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material

Country Status (1)

Country Link
JP (1) JP6457766B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107117609B (en) * 2017-05-23 2019-05-28 厦门大学 A kind of graphene thinning device with optics in situ detection
TWI732544B (en) * 2020-05-05 2021-07-01 國立中正大學 2d material thin film inspection method and 2d material thin film inspection system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200002A (en) * 1987-02-17 1988-08-18 Sharp Corp Measurement of film thickness
JPH01115896A (en) * 1987-10-29 1989-05-09 Fujitsu Ltd Apparatus for growing crystal thin film
JP2006073866A (en) * 2004-09-03 2006-03-16 Horiba Ltd Stress measuring method of semiconductor material, and apparatus therefor
US8487296B2 (en) * 2008-11-26 2013-07-16 New Jersey Institute Of Technology Graphene deposition and graphenated substrates
KR101405463B1 (en) * 2010-01-15 2014-06-27 그래핀스퀘어 주식회사 Graphene protective film for preventing gas and water, method of forming the same and uses of the same
US8698077B2 (en) * 2010-06-25 2014-04-15 Nec Corporation Method for determining number of layers of two-dimensional thin film atomic structure and device for determining number of layers of two-dimensional thin film atomic structure
WO2012086387A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Method for manufacturing graphene substrate, and graphene substrate

Also Published As

Publication number Publication date
JP2016061657A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
Hayee et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy
Li et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide
Ivanov et al. Layer-number determination in graphene on SiC by reflectance mapping
US9594018B2 (en) Chemical sensors based on plasmon resonance in graphene
Li et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates
No et al. Layer number identification of CVD-grown multilayer graphene using Si peak analysis
Late et al. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates
Davydov et al. Study of the crystal and electronic structure of graphene films grown on 6 H-SiC (0001)
JP5874981B2 (en) Layer number determination method for two-dimensional thin film atomic structure and layer number determination device for two-dimensional thin film atomic structure
Lee et al. Optical Inspection of 2D Materials: From Mechanical Exfoliation to Wafer‐Scale Growth and Beyond
Rickman et al. Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip‐enhanced Raman spectroscopy
Albrektsen et al. High resolution imaging of few-layer graphene
Riaz et al. Light emission, light detection and strain sensing with nanocrystalline graphene
Maulik et al. A Review of Atomic Scale Characterization Techniques of Molybdenum Disulfide (MoS 2)
Newman et al. Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon
JP2007147607A (en) Method of measuring stress or strain of sample
Hutzler et al. Generalized approach to design multi-layer stacks for enhanced optical detectability of ultrathin layers
JP6457766B2 (en) Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material
Jeong et al. Mapping of Bernal and non-Bernal stacking domains in bilayer graphene using infrared nanoscopy
Kim et al. Purcell-enhanced photoluminescence of few-layer MoS 2 transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge
Hutzler et al. Large-area layer counting of two-dimensional materials evaluating the wavelength shift in visible-reflectance spectroscopy
Strudwick et al. Probing residual strain in epitaxial graphene layers on 4H-SiC (0001) with Raman spectroscopy
Tyagi et al. Characterization of graphene films grown on CuNi foil substrates
Braun et al. Spatially mapping thermal transport in graphene by an opto-thermal method
Potočnik et al. Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181221

R150 Certificate of patent or registration of utility model

Ref document number: 6457766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250