JPH01115896A - Apparatus for growing crystal thin film - Google Patents

Apparatus for growing crystal thin film

Info

Publication number
JPH01115896A
JPH01115896A JP27409087A JP27409087A JPH01115896A JP H01115896 A JPH01115896 A JP H01115896A JP 27409087 A JP27409087 A JP 27409087A JP 27409087 A JP27409087 A JP 27409087A JP H01115896 A JPH01115896 A JP H01115896A
Authority
JP
Japan
Prior art keywords
crystal
thin film
substrate
crystal thin
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27409087A
Other languages
Japanese (ja)
Inventor
Tomoji Nakamura
友二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27409087A priority Critical patent/JPH01115896A/en
Publication of JPH01115896A publication Critical patent/JPH01115896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a crystal thin film having a desired thickness in good yield, by irradiating a substrate with laser beams, measuring the intensity of scattered light and enabling the insitu measurement of the thickness from the intensity ratio thereof. CONSTITUTION:For example, a crystal substrate 3, such as GaAs, is placed on a base plate 2 installed at the center in the interior of a molecular-beam (MBE) apparatus 1 for epitaxial crystal growth. The substrate 3 is then irradiated with Ar laser beams, etc., from a laser beam source 4 to take a light scattering spectrum and measure the intensity of scattered light 5 by optical lattice vibration. Molecular beams are subsequently emitted from the respective radiation sources, e.g. Al, Ga and As, to grow different kinds of crystal thin films, e.g. AlGaAs, on the substrate 3. The thin film is then suitably irradiated with laser beams during crystal growth to grow the aimed crystal thin film while determining the thickness of the thin film crystal from the intensity ratio in situ each time the intensity of the scattered light from the substrate 3 is measured through the crystal thin film. Thereby the aimed crystal thin film of different kinds having a desired thickness is obtained.

Description

【発明の詳細な説明】 〔概要〕 結晶基板上に異種の結晶薄膜を成長させる成長装置に関
し、 膜厚を“その場”測定しながら結晶成長を行うことによ
り、所望の厚さの結晶薄膜を精度よく成長させることを
目的とし、 結晶成長装置内に載置した結晶基板上に異種の結晶薄膜
を成長させるに際し、予め該結晶基板にレーザ光を照射
して光学格子振動による散乱光強度を測定したる後、前
記異種結晶薄膜の成長を行い、該結晶薄膜を通じて前記
結晶基板の散乱光強度を測定し、該散乱光強度比から異
種薄膜結晶の厚さをその場で決定する機構を備えて結晶
薄膜成長装置を構成する。
[Detailed Description of the Invention] [Summary] Regarding a growth device that grows different types of crystal thin films on crystal substrates, the crystal thin film of a desired thickness can be grown by performing crystal growth while measuring the film thickness “in situ”. For the purpose of precise growth, when growing a different type of crystal thin film on a crystal substrate placed in a crystal growth apparatus, the crystal substrate is irradiated with laser light in advance and the intensity of scattered light due to optical lattice vibration is measured. After that, a mechanism is provided for growing the heterogeneous crystal thin film, measuring the scattered light intensity of the crystal substrate through the crystal thin film, and determining the thickness of the heterogeneous thin film crystal on the spot from the scattered light intensity ratio. Configure a crystal thin film growth apparatus.

〔産業上の利用分野〕[Industrial application field]

本発明は組成比を“その場”決定しながら結晶成長を行
い得る結晶薄膜成長装置に関する。
The present invention relates to a crystal thin film growth apparatus capable of performing crystal growth while determining the composition ratio "on the spot".

IC,LSIなどの半導体集積回路については、多くの
ものがシリコン(Si)などの単体半導体を基板にして
デバイスが形成されているが、半導体レーザ。
Regarding semiconductor integrated circuits such as ICs and LSIs, many devices are formed using a single semiconductor such as silicon (Si) as a substrate, but semiconductor lasers.

高電子移動度トランジスタ(略称HEMT)、発光素子
High electron mobility transistor (abbreviated as HEMT), light emitting device.

受動素子などのデバイスは化合物半導体を用いて形成さ
れている。
Devices such as passive elements are formed using compound semiconductors.

そして、これらのデバイスは導電型を異にしたリ、組成
を変えて禁止帯幅を変えた複数の半導体単結晶層をエピ
タキシャル成長させて構成されているが、性能の維持と
製造歩留まりの向上のためには、それぞれの半導体層は
所望の厚さと組成比をもって構成されていることが必要
である。
These devices are constructed by epitaxially growing multiple semiconductor single crystal layers with different conductivity types, compositions, and band gaps, but in order to maintain performance and improve manufacturing yield, For this purpose, each semiconductor layer must have a desired thickness and composition ratio.

そのためには、半導体単結晶層の成長過程を通じて厚さ
および組成のチエツクをしっ\結晶成長を行うことが望
ましい。
To this end, it is desirable to carefully check the thickness and composition throughout the growth process of the semiconductor single crystal layer.

本発明は厚さの“その場′決定を可能にした結晶薄膜成
長装置に関するものである。
The present invention relates to a crystal thin film growth apparatus that enables "in situ" determination of thickness.

〔従来の技術〕[Conventional technology]

従来の結晶薄膜成長装置においては、一定の膜厚に結晶
を成長させるのに次の二つの方法がとられている。
In conventional crystal thin film growth apparatuses, the following two methods are used to grow crystals to a constant film thickness.

■ 一定の成長条件の許での結晶の成長速度を予め経験
的に求めておき、成長時間を精密に制御することにより
所望の膜厚を得る。
(2) The crystal growth rate under certain growth conditions is determined empirically in advance, and the desired film thickness is obtained by precisely controlling the growth time.

■ 水晶振動子よりなる膜厚検出器を結晶基板の近傍に
設置し、結晶形成材料の付着により水晶振動子の発振周
波数が変化するのを利用して膜厚を決定する。
(2) A film thickness detector made of a crystal resonator is installed near the crystal substrate, and the film thickness is determined by utilizing the change in the oscillation frequency of the crystal resonator due to the attachment of the crystal forming material.

然し、■の方法による場合には、予め予備成長を多数回
行って成長条件と成長速度との関係を求めておくことが
必要であり、そのため精密な膜厚制御は不可能である。
However, in the case of method (2), it is necessary to perform preliminary growth many times in advance to determine the relationship between growth conditions and growth rate, and therefore precise control of the film thickness is not possible.

また、■の方法による場合は結晶基板と水晶振動子との
位置が離れるために薄膜の成長速度が幾らか異なると云
う問題がある。
Furthermore, when method (2) is used, there is a problem in that the growth rate of the thin film differs to some extent because the crystal substrate and the crystal resonator are separated from each other.

例えば、半導体デバイスにおいては、分子線エピタキシ
ャル成長法(Molecular Beam Epyt
axy略称MBE法)が使用されることが多いが、分子
線源との対向位置からずれるに従って、成長速度の違い
は顕著となる。
For example, in semiconductor devices, molecular beam epitaxial growth (Molecular Beam Epitaxial Growth) is used.
MBE (axy abbreviation: MBE method) is often used, but the difference in growth rate becomes more noticeable as the distance from the position facing the molecular beam source increases.

これらのことから、結晶基板上に成長する結晶薄膜の厚
さを正確に調整し、所望の膜厚を得ることは容易ではな
かった。
For these reasons, it has not been easy to accurately adjust the thickness of a crystal thin film grown on a crystal substrate to obtain a desired film thickness.

然し、製品の均質化と製造歩留まりの向上のためには所
望の膜厚の結晶薄膜を作ることが必要であり、か\る機
構を備えた結晶成長装置の実現が望まれていた。
However, in order to homogenize the product and improve manufacturing yield, it is necessary to produce a crystal thin film of a desired thickness, and it has been desired to realize a crystal growth apparatus equipped with such a mechanism.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

結晶基板上に異種の結晶薄膜或いは導電型や電気伝導度
の異なる結晶薄膜をエピタキシャル成長させる技術は特
に半導体デバイスの形成に使用されているが、か\る結
晶薄膜の成長に際して成長中の膜厚を“その場”測定す
ることにより所望の厚さの結晶薄膜を得ることが望まく
、このような機能を備えた結晶成長装置を実用化するこ
とが課題である。
The technique of epitaxially growing different types of crystal thin films or crystal thin films with different conductivity types and electrical conductivities on crystal substrates is particularly used for the formation of semiconductor devices. It is desirable to obtain a crystal thin film of a desired thickness by "in-situ" measurement, and the challenge is to put into practical use a crystal growth apparatus equipped with such a function.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は結晶成長装置内に載置した結晶基板上に異
種の結晶薄膜を成長させるにあたり、予め該結晶基板に
レーザ光を照射して光学格子振動による散乱光強度を測
定したる後、前記異種結晶薄膜の成長を行い、該結晶薄
膜を通じて前記結晶基板の散乱光強度を測定し、該散乱
光強度比から異種薄膜結晶の厚さをその場で決定する機
構を備えた結晶薄膜成長装置の使用により解決すること
ができる。
The above problem arises when growing a different type of crystal thin film on a crystal substrate placed in a crystal growth apparatus. A crystal thin film growth apparatus equipped with a mechanism for growing a heterogeneous crystal thin film, measuring the scattered light intensity of the crystal substrate through the crystal thin film, and determining the thickness of the heterogeneous thin film crystal on the spot from the scattered light intensity ratio. It can be solved by using

〔作用〕[Effect]

本発明に係る結晶薄膜成長装置では結晶薄膜の成長を行
に先立って結晶基板にレーザ光を照射して光学格子振動
による光散乱スペクトルを測定してストークス散乱光の
強度を求めた後に異種結晶薄膜の成長を行い、この段階
で再び結晶基板の光学格子振動によるストークス散乱光
の強度を測定し、その減衰率から異種結晶薄膜の厚さを
求めるものである。
In the crystal thin film growth apparatus according to the present invention, before growing a crystal thin film, a crystal substrate is irradiated with a laser beam, a light scattering spectrum due to optical lattice vibration is measured, and the intensity of Stokes scattered light is determined, and then a heterogeneous crystal thin film is grown. At this stage, the intensity of the Stokes scattered light due to the optical lattice vibration of the crystal substrate is measured again, and the thickness of the heterogeneous crystal thin film is determined from the attenuation rate.

例えば、GaAs結晶基板上にA I GaAs結晶薄
膜を成長させる場合に、結晶成長前におけるGaAs結
晶基板の縦型光学格子振動強度をI G−A−(0)ま
た厚さdのA j! GaAs結晶薄膜を成長させた後
でのGaAs結晶基板の縦型光学格子振動強度をI c
−a−(d)とすると、 I G−A−(d)  − Icatt(0)  x  (1−exp  (−2c
x ALGaAs  d) )の式で表すことができ、
A E GaAs結晶薄膜が成長するに従ってGaAs
結晶基板の光学格子振動強度は減衰する。
For example, when growing an A I GaAs crystal thin film on a GaAs crystal substrate, the vertical optical lattice vibration intensity of the GaAs crystal substrate before crystal growth is I G-A-(0) and A j! of thickness d! The vertical optical lattice vibration intensity of the GaAs crystal substrate after growing the GaAs crystal thin film is I c
-a-(d), I G-A-(d) − Icatt(0) x (1-exp (-2c
x ALGaAs d) ),
A E As the GaAs crystal thin film grows, the GaAs
The optical lattice vibration intensity of the crystal substrate is attenuated.

こ\で、αA10mA1は八1 GaAs結晶の励起レ
ーザ光に対する吸収係数であり、他の半導体材料につい
ても示すと表のようになる。
Here, αA10mA1 is the absorption coefficient of the GaAs crystal for the excitation laser beam, and the table shows the absorption coefficient for other semiconductor materials as well.

表 それ故、Ia−A−(0)とIGmA−(a)の値を測
定することによりA I GaAs結晶薄膜の厚さを求
めることができる。
Table Therefore, by measuring the values of Ia-A-(0) and IGmA-(a), the thickness of the A I GaAs crystal thin film can be determined.

〔実施例〕〔Example〕

第1図は結晶基板上に成長する結晶薄膜の厚さを“その
場”測定できる機能を備えた分子線エピタキシャル装置
(略称MBE装置)の部分構成図であって分子線エピタ
キシー(MBE)を行う分子線源などは省略しである。
Figure 1 is a partial configuration diagram of a molecular beam epitaxial apparatus (abbreviated as an MBE apparatus) that is equipped with a function to measure the thickness of a crystal thin film grown on a crystal substrate "in situ", and performs molecular beam epitaxy (MBE). Molecular beam sources are omitted.

ここで、MBB装置1の中央に設置されている基台2の
上にはGaAs結晶基板3が設置されており、図示を省
略したAl、 Ga、 As  の各線源から分子線を
放射してGaAs結晶基板3の上にA I GaAs結
晶薄膜の形成が行われるよう構成されている。
Here, a GaAs crystal substrate 3 is installed on a base 2 installed in the center of the MBB device 1, and molecular beams are emitted from Al, Ga, and As radiation sources (not shown) to produce GaAs. The structure is such that an A I GaAs crystal thin film is formed on a crystal substrate 3 .

まず、結晶成長に先立ち、レーザ光源4からArレーザ
をGaAs結晶基板3に照射して光学格子振動による光
散乱スペクトルをとり、これからGaAs結晶の縦型光
学格子振動強度F 、、A、(0)を求める。
First, prior to crystal growth, the GaAs crystal substrate 3 is irradiated with an Ar laser from the laser light source 4 to obtain a light scattering spectrum due to optical lattice vibration, and from this, the vertical optical lattice vibration intensity of the GaAs crystal F , , A, (0) seek.

その方法はGaAs結晶基板3からの散乱光5をMBE
装置1の窓を通してレンズ6で光ファイバ7の端部に集
光し、これを通してマルチチャネル検出器8に導く。
The method is to MBE the scattered light 5 from the GaAs crystal substrate 3.
Through the window of the device 1, the light is focused by a lens 6 onto the end of an optical fiber 7 and guided through this to a multichannel detector 8.

次ぎにデータ処理装置9はマルチチャネル検出器8で示
される光学格子振動による光散乱スペクトルから縦型光
学格子振動強度1cmA−(0)を求める。
Next, the data processing device 9 determines the vertical optical grating vibration intensity 1 cmA-(0) from the light scattering spectrum due to the optical grating vibration shown by the multi-channel detector 8.

こ\でレーザ光源4としてArレーザを選んだ理由はG
aAs結晶基板3の表面での散乱光を得るためで、その
ためには結晶の禁止帯の帯域幅よりも大きな格子エネル
ギーをもっていることが必要で、この点から3・5族化
合物半導体に対してはArレーザの使用が適当である。
The reason why we chose Ar laser as laser light source 4 is G.
This is to obtain scattered light on the surface of the aAs crystal substrate 3, and for this purpose it is necessary to have a lattice energy larger than the band width of the forbidden band of the crystal. It is appropriate to use an Ar laser.

次に、エピタキシャル成長が行われると、適時レーザ光
の照射を行って先と同様にしてマルチチャネル検出器8
で検出される光散乱スペクトルから、GaAs結晶基板
3の縦型光学格子振動強度IG、□(d)を求め、これ
からデータ処理装置9によりA I GaAs結晶薄膜
の厚さが算出される。
Next, when epitaxial growth is performed, laser light is irradiated at appropriate times and the multi-channel detector 8 is placed in the same manner as before.
From the light scattering spectrum detected, the vertical optical lattice vibration intensity IG, □(d) of the GaAs crystal substrate 3 is determined, and from this the thickness of the A I GaAs crystal thin film is calculated by the data processing device 9.

第2図はGaAs結晶基板上にMBE法によってAlG
aAsをエピタキシャル成長させた過程で得られる散乱
光のスペクトルを示すもので、GaAsとA I Ga
Asとの縦型光学格子振動強度が現れているが、AI 
GaAsのエピタキシャル成長が進むに従ってGaAs
の強度が減り、一方、A It GaAsの強度は増加
してゆく。
Figure 2 shows AlG film formed on a GaAs crystal substrate by the MBE method.
This shows the spectrum of scattered light obtained during the epitaxial growth process of aAs.
Although the vertical optical lattice vibration intensity with As appears, AI
As epitaxial growth of GaAs progresses, GaAs
The intensity of A It GaAs decreases, while the intensity of A It GaAs increases.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により成長中の結晶膜厚を“その場”で測
定することが可能になり、これにより所望の厚さをもつ
結晶薄膜を得ることができる。
By implementing the present invention, it becomes possible to measure the thickness of a crystal film during growth "in situ", thereby making it possible to obtain a crystal thin film having a desired thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る結晶薄膜成長装置の膜厚測定系の
構成図、 第2図は結晶成長過程で得られる散乱光スペクトル、 である。 図において、 1はMBE装置、      3はGaAs基板、4は
レーザ光源、    5は散乱光、8はマルチチャネル
検出器、 9はデータ処理装置、 である。
FIG. 1 is a configuration diagram of a film thickness measurement system of a crystal thin film growth apparatus according to the present invention, and FIG. 2 is a scattered light spectrum obtained during the crystal growth process. In the figure, 1 is an MBE device, 3 is a GaAs substrate, 4 is a laser light source, 5 is a scattered light, 8 is a multi-channel detector, and 9 is a data processing device.

Claims (1)

【特許請求の範囲】[Claims]  結晶成長装置内に載置した結晶基板上に異種の結晶薄
膜を成長させるにあたり、予め該結晶基板にレーザ光を
照射して光学格子振動による散乱光強度を測定したる後
、前記異種結晶薄膜の成長を行い、該結晶薄膜を通じて
前記結晶基板の散乱光強度を測定し、該散乱光強度比か
ら異種薄膜結晶の厚さをその場で決定する機構を備えた
ことを特徴とする結晶薄膜成長装置。
When growing a heterogeneous crystal thin film on a crystal substrate placed in a crystal growth apparatus, the crystal substrate is irradiated with a laser beam in advance and the scattered light intensity due to optical lattice vibration is measured, and then the heterogeneous crystal thin film is grown. A crystal thin film growth apparatus comprising a mechanism for performing growth, measuring the intensity of scattered light of the crystal substrate through the crystal thin film, and determining the thickness of a different type of thin film crystal on the spot from the scattered light intensity ratio. .
JP27409087A 1987-10-29 1987-10-29 Apparatus for growing crystal thin film Pending JPH01115896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27409087A JPH01115896A (en) 1987-10-29 1987-10-29 Apparatus for growing crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27409087A JPH01115896A (en) 1987-10-29 1987-10-29 Apparatus for growing crystal thin film

Publications (1)

Publication Number Publication Date
JPH01115896A true JPH01115896A (en) 1989-05-09

Family

ID=17536841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27409087A Pending JPH01115896A (en) 1987-10-29 1987-10-29 Apparatus for growing crystal thin film

Country Status (1)

Country Link
JP (1) JPH01115896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061657A (en) * 2014-09-17 2016-04-25 国立大学法人 新潟大学 Device and method for determining number of lamination of two-dimensional thin film atomic structure using raman scattered spectrum of insulating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016061657A (en) * 2014-09-17 2016-04-25 国立大学法人 新潟大学 Device and method for determining number of lamination of two-dimensional thin film atomic structure using raman scattered spectrum of insulating material

Similar Documents

Publication Publication Date Title
US4931132A (en) Optical control of deposition of crystal monolayers
US5490880A (en) Compound semiconductors and a method for thin film growth
JPH01115896A (en) Apparatus for growing crystal thin film
JPH07153692A (en) Method and equipment for making thin film grow on semiconductor substrate
KR950007482B1 (en) Method for vapor deposition
TW200521424A (en) Impurity introducing method, impurity introducing apparatus, and electronic device produced by using the same
US5443685A (en) Composition and method for off-axis growth sites on nonpolar substrates
Geurts et al. Characterization of the interface abruptness of In0. 53Ga0. 47As/InP multi quantum wells by Raman spectroscopy, X-ray diffractometry and photoluminescence
WO2001065592A2 (en) Method and device for producing group iii-n, group iii-v-n and metal-nitrogen component structures on si substrates
JPS62189723A (en) Apparatus for vapor growth
JP3688383B2 (en) Crystal defect detection method
JPH01108198A (en) Method for growing multielement compound crystal
RU2635612C1 (en) Method of splicing components of polycrystalline diamonds in microwave plasma
JP2950362B2 (en) Method for measuring nitrogen concentration in compound semiconductor
JPH01227485A (en) Semiconductor laser device
JPH10193338A (en) Apparatus and method for cutting single crystal
JPS60112692A (en) Molecular beam epitaxial growth method
JP3000143B2 (en) Compound semiconductor film forming method
JP3939115B2 (en) Compound semiconductor crystal growth method
JPH0689860A (en) Method of semiconductor crystal growth and molecular beam epitaxy device
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPS62189724A (en) Apparatus for vapor growth
JPH06252231A (en) Method of evaluating gas phase grown compound semiconductor wafer
JPS61125123A (en) Molecular beam crystal growth device
JPH01123412A (en) Apparatus for vapor growth of semiconductor crystal