JP4286683B2 - Semiconductor laser - Google Patents

Semiconductor laser Download PDF

Info

Publication number
JP4286683B2
JP4286683B2 JP2004052997A JP2004052997A JP4286683B2 JP 4286683 B2 JP4286683 B2 JP 4286683B2 JP 2004052997 A JP2004052997 A JP 2004052997A JP 2004052997 A JP2004052997 A JP 2004052997A JP 4286683 B2 JP4286683 B2 JP 4286683B2
Authority
JP
Japan
Prior art keywords
reflectance
thickness
dielectric film
oscillation wavelength
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004052997A
Other languages
Japanese (ja)
Other versions
JP2005243998A (en
Inventor
智一郎 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2004052997A priority Critical patent/JP4286683B2/en
Priority to US11/058,241 priority patent/US20050190807A1/en
Priority to CN200510009063A priority patent/CN100590940C/en
Priority to CNB2007100020363A priority patent/CN100472901C/en
Priority to TW094105185A priority patent/TWI360273B/en
Priority to KR1020050014824A priority patent/KR20060043109A/en
Publication of JP2005243998A publication Critical patent/JP2005243998A/en
Application granted granted Critical
Publication of JP4286683B2 publication Critical patent/JP4286683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/20Bulkheads or similar walls made of prefabricated parts and concrete, including reinforced concrete, in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/28Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0038Production methods using an auger, i.e. continuous flight type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3436Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)P

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Description

本発明は、CD、DVD(デジタル多用途ディスク;digital versatile disk)、DVD−ROM、データ書き込み可能なCD−R/RWなどのピックアップ用光源に用いるのにとくに適した半導体レーザに関する。さらに詳しくは、高出力用でもCODレベルが高く、長寿命化できる半導体レーザに関する。   The present invention relates to a semiconductor laser particularly suitable for use in a pickup light source such as a CD, a DVD (digital versatile disk), a DVD-ROM, or a data-writable CD-R / RW. More specifically, the present invention relates to a semiconductor laser that has a high COD level even for high output and can have a long lifetime.

半導体レーザは、たとえば図5に示されるように、半導体基板21にストライプ状の発光領域が形成されるように半導体層が積層されて半導体積層部22が形成され、ウェハからバー状に劈開されて共振器端面が形成され、その両端面に第1および第2の誘電体膜23、24が形成されて両端面の反射率が調整され、バー状からさらにダイシングなどによりチップ化されている。この構造で、ストライプ状発光領域の一方の端面(前端面)から主として光を出射し、他方の端面(後端面)からは発振出力のモニター用に使用する僅かな出力を出すように両端面の反射率が調整されている。そして、図5に示されるように、Si基板またはAlNなどからなるサブマウント25上にマウントされ、光ピックアップなどに組み込まれる。   For example, as shown in FIG. 5, the semiconductor laser is formed by laminating a semiconductor layer so that a stripe-shaped light emitting region is formed on a semiconductor substrate 21 to form a semiconductor laminated portion 22, which is cleaved from a wafer in a bar shape. Resonator end faces are formed, and first and second dielectric films 23 and 24 are formed on both end faces thereof to adjust the reflectivity of both end faces, and are further formed into chips by dicing or the like from a bar shape. With this structure, light is mainly emitted from one end face (front end face) of the stripe-shaped light emitting region, and the other end face (rear end face) emits a slight output used for monitoring oscillation output. The reflectivity is adjusted. Then, as shown in FIG. 5, it is mounted on a submount 25 made of Si substrate or AlN, and incorporated into an optical pickup or the like.

端面に設けられる第1および第2の誘電体膜23、24は、前述のように発振する出力を主として前端面から出射して使用するため、前端面の反射率を小さくし後端面の反射率を大きくするように形成されるが、その反射率をどの程度にするか、また、誘電体膜を1層で形成するか多層で形成するかは、その目的とする半導体レーザにより設定され、種々の構成に形成されている。たとえば前端面に、光学距離で0.15波長の膜厚のAl23膜と光学距離で0.04波長の膜厚のSi膜とをそれぞれ1層づつ設けることにより、2%以下程度の小さな反射率として、高出力を得やすくすると共に、端面での熱による破壊(COD)の防止が図られ、後端面には、たとえば光学距離で0.25波長の膜厚のAl23とSiO2とを交互に4層設けることにより92%の高反射率に形成される構成などが提案されている(たとえば特許文献1参照)。
特公平7−32287号公報
Since the first and second dielectric films 23 and 24 provided on the end face mainly use the output that oscillates as emitted from the front end face as described above, the reflectivity of the rear end face is reduced by reducing the reflectivity of the front end face. The degree of reflectivity, and whether the dielectric film is formed as a single layer or multiple layers are determined by the target semiconductor laser, and are variously determined. It is formed in the configuration. For example, an Al 2 O 3 film having a film thickness of 0.15 wavelength at the optical distance and a Si film having a film thickness of 0.04 wavelength at the optical distance are provided on the front end face, respectively. The low reflectivity makes it easy to obtain a high output and prevents destruction (COD) due to heat at the end face. On the rear end face, for example, Al 2 O 3 having an optical distance of 0.25 wavelength is used. A configuration has been proposed in which four layers of SiO 2 are provided alternately to form a high reflectance of 92% (see, for example, Patent Document 1).
Japanese Patent Publication No. 7-32287

前述のように、半導体レーザは、その発振波長に対して前端面および後端面がそれぞれ所望の反射率になるように、ストライプ状発光領域の劈開面に誘電体膜が設けられてその反射率が調整されている。しかし、半導体レーザは動作を始めると、発光領域に電流が集中して発光することにより、発光領域の温度が上昇し、その温度上昇により、発振波長が長くなる。そのため、発光領域の温度が上昇することによりしきい値電流が上昇し発光効率が低下すると共に、発振波長のシフトによる反射率が変化し出力が変動するという問題がある。   As described above, the semiconductor laser is provided with a dielectric film on the cleavage surface of the stripe-shaped light emitting region so that the front end face and the rear end face have a desired reflectance with respect to the oscillation wavelength. It has been adjusted. However, when the semiconductor laser starts operating, current concentrates in the light emitting region and emits light, so that the temperature of the light emitting region rises and the oscillation wavelength becomes longer due to the temperature rise. For this reason, there is a problem that the threshold current increases and the light emission efficiency decreases as the temperature of the light emitting region rises, and the reflectivity changes due to the shift of the oscillation wavelength and the output varies.

さらに、高出力の半導体レーザでは、出射端面側の反射率を小さくして、その前端面から出力を取り出しやすくするように第1の誘電体膜が形成されている。一方、前端面の反射率は、戻り光によるノイズの影響などにより、小さければ小さいほど良いというものではなく、前述のように、所望の反射率に調整したい場合がある。この誘電体膜はスパッタリングなどにより形成されるため、所望の反射率になれば、できるだけ薄い方が製造コスト的に好ましく一般的には所望の反射率となる薄い膜で形成される。ところで、CD−R/RW用半導体レーザのような高出力用の場合には、半導体レーザチップの劈開面と第1の誘電体膜との界面が電界分布の腹の部分となり、とくに80mW以上の高出力半導体レーザでは、たとえ第1の誘電体膜が8.5%程度の低反射率になるように形成されても、第1の誘電体膜の温度が上昇し、COD(破局的光学損傷)レベルが低下して、破壊しやすいという問題がある。   Further, in the high-power semiconductor laser, the first dielectric film is formed so that the reflectance on the emission end face side is reduced and the output can be easily taken out from the front end face. On the other hand, the reflectance of the front end face is not as good as it is small due to the influence of noise due to return light, and there are cases where it is desired to adjust the reflectance to a desired reflectance as described above. Since this dielectric film is formed by sputtering or the like, if it has a desired reflectance, it is preferably as thin as possible in terms of manufacturing cost, and is generally formed as a thin film having a desired reflectance. By the way, in the case of high output such as a CD-R / RW semiconductor laser, the interface between the cleaved surface of the semiconductor laser chip and the first dielectric film becomes an antinode part of the electric field distribution, particularly 80 mW or more. In a high-power semiconductor laser, even if the first dielectric film is formed to have a low reflectivity of about 8.5%, the temperature of the first dielectric film rises and COD (catastrophic optical damage) ) There is a problem that the level is lowered and it is easy to break.

本発明はこのような状況に鑑みてなされたもので、半導体レーザが動作を始めて温度上昇し発振波長が変化しても、出力を安定化させることができると共に、高出力用で、出射側端面(前端面)のCODレベルが低下しやすい半導体レーザでも、そのCODレベルを向上させることができる構造の半導体レーザを提供することを目的とする。   The present invention has been made in view of such a situation. Even when the temperature of the semiconductor laser rises and the oscillation wavelength changes, the output can be stabilized, and the output side end face can be used for high output. An object of the present invention is to provide a semiconductor laser having a structure capable of improving the COD level of a semiconductor laser in which the COD level of the (front end face) is likely to be lowered.

本発明者は、半導体レーザの動作による温度上昇に伴って発振出力を正確に制御することができないという問題、および高出力用半導体レーザなどで、高温(たとえば75℃)で高出力(たとえば200mW)の加速寿命試験をすると、100〜250時間という短い時間で破壊する半導体レーザが発生するという問題について、鋭意検討を重ねて調べた。その結果、所望の反射率が得られる通常の誘電体膜の厚さでは、その厚さを一定として光の波長を変化させたときの反射率の変化が、波長が大きくなるにつれて反射率も大きくなる厚さに設定されているため、発振波長が長くなると外部微分効率が低下し、より一層出力が低下すること、レーザチップの劈開端面で発生する熱の放散が十分ではなく、その熱により劈開面での半導体結晶が溶融してその端面が破壊に至ることを見出した。   The present inventor has a problem that the oscillation output cannot be accurately controlled as the temperature rises due to the operation of the semiconductor laser, and a high output (for example, 200 mW) at a high temperature (for example, 75 ° C.) with a high output semiconductor laser or the like. In this accelerated life test, the problem of the generation of a semiconductor laser that breaks in a short time of 100 to 250 hours was investigated through extensive studies. As a result, with a normal dielectric film thickness that can achieve the desired reflectance, the reflectance changes when the wavelength of light is changed with the thickness being constant, and the reflectance increases as the wavelength increases. Therefore, when the oscillation wavelength becomes longer, the external differential efficiency decreases, the output further decreases, and the heat generated at the cleavage end surface of the laser chip is not sufficiently dissipated. It has been found that the semiconductor crystal at the surface melts and its end face breaks down.

そして、誘電体膜の厚さが、所望の波長近傍における波長変化に対する反射率変化が負になる誘電体膜の厚さを採用することにより、発振波長が長くなる方向に変化すると反射率が下がり、外部微分量子効率が向上して出力も大きくなり、その影響を抑え得ること、前端面に形成する誘電体膜を熱伝導率の大きい酸化アルミニウムにより形成し、かつ、できるだけ厚くすることにより、充分に熱放散をすることができて、250mW以上の高出力用半導体レーザでも、CODレベルを高く維持することができることを見出した。   By adopting the thickness of the dielectric film in which the change in reflectance with respect to the change in wavelength near the desired wavelength is negative, the reflectivity decreases as the oscillation wavelength increases. The external differential quantum efficiency is improved and the output is increased, and the influence can be suppressed, and the dielectric film formed on the front end face is made of aluminum oxide having a high thermal conductivity and is made as thick as possible. It has been found that the COD level can be kept high even with a high-power semiconductor laser of 250 mW or more.

本発明による半導体レーザは、半導体基板と、該半導体基板上に積層され、ストライプ状発光領域を形成し、発振波長λのレーザ発振をするように半導体層が積層される半導体積層部と、該半導体積層部の前記ストライプ状発光領域の一端部に、低反射率で所定の反射率になるように形成される第1の誘電体膜と、前記ストライプ状発光領域の他端部に高反射率になるように形成される第2の誘電体膜とを有し、前記第1の誘電体膜が酸化アルミニウム膜により形成され、前記発振波長λを一定として酸化アルミニウム膜の厚さに対する反射率変化のカーブが、前記発振波長を長くした場合に前記酸化アルミニウム膜の厚さが厚い方にほぼ平行移動する場合において、該反射率変化のカーブで、所望の発振波長に対して、所望の反射率になり、かつ、該反射率変化のカーブの勾配が正になる厚さに、前記酸化アルミニウム膜の厚さが設定されることにより、温度上昇による発振波長の変化に伴い反射率を低下させて温度上昇によるしきい値電流の増加による出力の低下を補正すると共に、光学距離で0.6λ以上となる厚さに設定されている。 A semiconductor laser according to the present invention includes a semiconductor substrate, a semiconductor laminate laminated on the semiconductor substrate, forming a stripe-shaped light emitting region, and laminating a semiconductor layer so as to oscillate at an oscillation wavelength λ, and the semiconductor A first dielectric film formed at one end of the stripe-shaped light emitting region of the laminated portion so as to have a predetermined reflectance with a low reflectance, and a high reflectance at the other end of the stripe-shaped light emitting region and a second dielectric film is formed to be, the first dielectric film is formed by an aluminum oxide film, the reflectance changes to the thickness of the aluminum oxide film before Symbol oscillation wavelength λ is constant When the oscillation wavelength is increased, the curve of the reflectance changes when the oscillation wavelength is increased and the aluminum oxide film is almost parallel to the desired thickness. become, And, the thickness gradient of the curve of the reflectance change becomes positive, the Rukoto thickness is set in the aluminum oxide film, due to the temperature rise by lowering the reflectance due to the change in the oscillation wavelength due to temperature rise The output is reduced by an increase in threshold current, and the optical distance is set to a thickness of 0.6λ or more.

ここに光学距離とは、光路長(optical path length)のことで、屈折率がnの媒質中を距離Lだけ光が通過するときのnLを意味する。   Here, the optical distance is an optical path length, and means nL when light passes through a medium having a refractive index of n by a distance L.

前記酸化アルミニウム膜の厚さが、所望の発振波長で所望の反射率になる厚さで、かつ、前記酸化アルミニウム膜の厚さを一定とした場合の光の波長に対する前記酸化アルミニウム膜が設けられた端面の反射率変化のカーブで、前記所望の発振波長で勾配が負になる厚さに設定されていることが好ましい。 The aluminum oxide film has a thickness that provides a desired reflectance at a desired oscillation wavelength , and the aluminum oxide film is provided for the wavelength of light when the thickness of the aluminum oxide film is constant. It is preferable that the thickness is set such that the slope is negative at the desired oscillation wavelength in the reflectance change curve of the end face.

前記第1の誘電体膜の厚さが、光学距離で0.6λ以上で1.5λ以下となる厚さに設定されていることが、ストライプ状発光領域端部の放熱が良好で、かつ、製造時の膜厚のバラツキに対しても反射率の変化を抑制することができるため好ましい。   The thickness of the first dielectric film is set to a thickness that is not less than 0.6λ and not more than 1.5λ in terms of optical distance, and heat dissipation at the end of the stripe-shaped light emitting region is good, and This is also preferable because the change in reflectance can be suppressed even with respect to variations in film thickness during manufacturing.

本発明によれば、出射端面側の誘電体膜が、所望の反射率になる厚さに形成されながら、光学距離で0.6λ以上の厚さに形成されているため、ストライプ状発光領域端面で発生する熱を、誘電体膜を介して有効に放熱することができ、端面が加熱され過ぎて破損するという問題を解消することができる。すなわち、従来の半導体レーザでは、ストライプ状発光領域の出射側端面は、所望の出力が出射されるように所望の反射率にするため単層または複層の誘電体膜が設けられていただけであるが、本発明によれば、反射率を調整するだけではなく、端面での熱放散を良くするため、半導体層よりも熱伝導率のよい酸化アルミニウムだけの1層で形成し、しかもその厚さを光学距離で0.6λ以上と厚くすることにより広い面積から熱放散をすることができる。その結果、ストライプ状発光領域端面の温度上昇を抑制することができ、CODレベルを向上させることができ、高温(75℃)、高出力(200mW)のエージングを行っても、500時間以上の長時間破損することなく動作し続けることができ、非常に長寿命の半導体レーザとなる。   According to the present invention, since the dielectric film on the emission end face side is formed with a thickness that achieves a desired reflectivity and with an optical distance of 0.6λ or more, the stripe-shaped light emitting area end face is formed. The heat generated in the step can be effectively dissipated through the dielectric film, and the problem that the end face is excessively heated and damaged can be solved. That is, in the conventional semiconductor laser, the single-layer or multi-layer dielectric film is only provided on the emission side end face of the stripe-like light emitting region so as to obtain a desired reflectance so that a desired output is emitted. However, according to the present invention, not only to adjust the reflectance, but also to improve the heat dissipation at the end face, it is formed of only one layer of aluminum oxide having a thermal conductivity better than that of the semiconductor layer, and its thickness Can be dissipated from a large area by increasing the optical distance to 0.6λ or more. As a result, the temperature rise at the end face of the stripe-shaped light emitting region can be suppressed, the COD level can be improved, and even if aging is performed at a high temperature (75 ° C.) and a high output (200 mW), it takes 500 hours or longer. The semiconductor laser can continue to operate without being damaged for a long time, resulting in a very long-life semiconductor laser.

さらに、本発明では、第1の誘電体膜の厚さを厚くし、かつ、所望の反射率になるように厚さを設定するだけではなく、波長を一定としたときの誘電体膜の厚さに対する反射率の変化が正となる厚さに設定するか、誘電体膜の厚さを一定としたときの波長に対する反射率の変化率が負となる厚さに設定されているため、半導体レーザが動作し始めると、その発振波長が長くなるという特性を有しているが、僅かに長くなる波長に対しては同じ厚さの誘電体膜では反射率が低下することになる。その結果、外部に出射されるレーザ光の出力は増大する方向となり、温度が上昇するとしきい値電流が増大して出力が低下するのを相殺することができ、外部微分量子効率を向上させることができるため、レーザチップの動作により温度が上昇しても、外部に出射する出力を殆ど低下させることなく動作させることができる。   Furthermore, in the present invention, the thickness of the first dielectric film is not only increased and the thickness is set so as to obtain a desired reflectance, but the thickness of the dielectric film when the wavelength is constant is set. The thickness is set so that the change in reflectivity with respect to the thickness is positive, or the change rate in reflectivity with respect to the wavelength when the thickness of the dielectric film is constant is set to a thickness that is negative. When the laser starts to operate, it has a characteristic that its oscillation wavelength becomes longer. However, for a slightly longer wavelength, the dielectric film having the same thickness has a lower reflectance. As a result, the output of the laser light emitted to the outside increases, and it is possible to cancel the decrease in output due to the increase in threshold current as the temperature rises, thereby improving the external differential quantum efficiency. Therefore, even if the temperature rises due to the operation of the laser chip, the laser chip can be operated with almost no decrease in the output emitted to the outside.

さらに、前述の第1の誘電体膜側(前端面)の反射率は、とくに高出力の半導体レーザでは、数%程度と低い反射率に設定されるため、所望の反射率に設定するのみならず誘電体膜の厚さに対する反射率の変化が正となる厚さに設定されることにより、発振波長が長波長側にずれた場合に、後述するように、誘電体膜の膜厚に対する反射率は極小側にずれることになり、反射率変化を小さく抑制することができる。すなわち、反射率が小さくて反射率カーブの極小に近いところにある所望の反射率で極小側と反対側では反射率の変化が大きいが、極小側では反射率の変化が小さいため、長波長側にシフトしても反射率のズレを小さく抑えることができる。   Further, the reflectance on the first dielectric film side (front end face) described above is set to a low reflectance of about several percent, particularly in a high-power semiconductor laser, and therefore only to be set to a desired reflectance. When the oscillation wavelength is shifted to the longer wavelength side by setting the reflectance to the thickness of the dielectric film to be positive, the reflection with respect to the thickness of the dielectric film will be described later. The rate is shifted to the minimum side, and the change in reflectance can be suppressed to a small level. That is, the reflectance is small and the reflectance is close to the minimum of the reflectance curve, and the change in reflectance is large on the side opposite to the minimum side, but the change in reflectance is small on the minimum side. Even when shifted to, the deviation in reflectance can be kept small.

つぎに、図面を参照しながら本発明の半導体レーザについて説明をする。本発明による半導体レーザは、図1にその一実施形態の断面説明図が示されるように、半導体基板1上に積層され、ストライプ状発光領域を形成し、発振波長λのレーザ発振をするように半導体層が積層され、半導体積層部9が形成されている。そして、その半導体積層部9のストライプ状発光領域(図1(b)のビームスポットP参照)の一端部に、反射率を下げて所定の反射率になるように第1の誘電体膜17が形成され、ストライプ状発光領域の他端部に反射率を上げて高反射率になるように第2の誘電体膜18が形成されている。本発明では、第1の誘電体膜17が酸化アルミニウム膜により形成され、その酸化アルミニウム膜の厚さが、発振波長λを一定として酸化アルミニウム膜の厚さに対する反射率変化のカーブで、所望の反射率になり、かつ、その反射率変化のカーブの勾配が正になる厚さであると共に、光学距離で0.6λ以上、好ましくは0.7λ以上、さらに好ましくは0.8λ以上の厚さに設定されていることに特徴がある。   Next, the semiconductor laser of the present invention will be described with reference to the drawings. A semiconductor laser according to the present invention is laminated on a semiconductor substrate 1 so as to form a stripe-shaped light emitting region and oscillate at an oscillation wavelength λ as shown in FIG. Semiconductor layers are stacked to form a semiconductor stacked portion 9. Then, the first dielectric film 17 is formed at one end of the stripe-like light emitting region (see the beam spot P in FIG. 1B) of the semiconductor laminated portion 9 so that the reflectance is lowered to a predetermined reflectance. A second dielectric film 18 is formed on the other end portion of the stripe-shaped light emitting region so as to increase the reflectivity and increase the reflectivity. In the present invention, the first dielectric film 17 is formed of an aluminum oxide film, and the thickness of the aluminum oxide film is a curve of reflectivity change with respect to the thickness of the aluminum oxide film with a constant oscillation wavelength λ. The thickness is such that the slope of the reflectance change curve is positive, and the optical distance is 0.6λ or more, preferably 0.7λ or more, more preferably 0.8λ or more. It is characterized by being set to.

前述のように、本発明者は、半導体レーザは動作を始めると、発振波長が長くなり、発振波長のシフトによる反射率の変化により出力が低下するという問題、および高出力用半導体レーザでは、とくに加速寿命試験をすると、短い時間で半導体レーザが破壊しやすいという問題を解決するため、鋭意検討を重ねた。その結果、端面に設けられる誘電体膜が従来の厚さでは、発振波長が長くなるとさらに反射率が大きくなり、また、その変化率が大きいことにより、より一層出力が低下するのに対して、誘電体膜の厚さが、所望の波長近傍における波長変化に対する反射率変化が負になる誘電体膜の厚さを採用することにより、発振波長が長くなる方向に変化すると反射率の変化が小さく、しかも反射率自身も小さくなる方向に変化するため、外部微分量子効率が向上し、発振波長の変化による出力の低下を抑え得ること、レーザチップの劈開端面で発生する熱の放散が十分ではなく、その熱により劈開面での半導体結晶が溶融してその端面が破壊するが、第1の誘電体膜17として、熱伝導率の良い酸化アルミニウムを用いて厚くすることにより、熱放散を充分に行うことができてCODによる破壊を抑制し得ること、を見出した。   As described above, the present inventors have found that when a semiconductor laser starts operating, the oscillation wavelength becomes longer, and the output decreases due to a change in reflectance due to the shift of the oscillation wavelength. In order to solve the problem of the semiconductor laser being easily destroyed in a short time when the accelerated life test was conducted, intensive studies were repeated. As a result, with the conventional thickness of the dielectric film provided on the end face, the reflectance increases further as the oscillation wavelength becomes longer, and the output is further reduced due to the larger change rate, By adopting the thickness of the dielectric film that makes the reflectance change negative with respect to the wavelength change in the vicinity of the desired wavelength, the change in reflectance is small when the oscillation wavelength changes in the longer direction. In addition, since the reflectance itself also changes in the direction of decreasing, the external differential quantum efficiency can be improved, the output decrease due to the change of the oscillation wavelength can be suppressed, and the heat dissipation generated at the cleaved end face of the laser chip is not sufficient. The semiconductor crystal on the cleavage plane is melted by the heat and the end face is destroyed. However, heat dissipation is achieved by increasing the thickness of the first dielectric film 17 using aluminum oxide having good thermal conductivity. That can suppress damage due to COD and can sufficiently perform, found.

すなわち、第1の誘電体膜17として、酸化アルミニウム(Al23)の1層構造を用い、ストライプ状発光領域の劈開面に設ける厚さを種々変化させた場合に、光の波長が780nmのとき(A)および790nmのとき(B)における反射率Rfの変化が図2に示されるように、第1の誘電体膜17の厚さtを変化させるとその反射率が周期的に変化する。従来は、この第1の誘電体膜17を設けるのに、スパッタリングなどにより行うため10nm付着するのに3分程度かかり、時間がかかるため、所望の反射率(たとえば780nmで8.5%)となる最初の厚さである90nm程度の厚さが採用されていた。 That is, when the first dielectric film 17 has a single layer structure of aluminum oxide (Al 2 O 3 ) and the thickness provided on the cleavage plane of the stripe-shaped light emitting region is variously changed, the wavelength of light is 780 nm. As shown in FIG. 2, when the thickness t of the first dielectric film 17 is changed, the reflectance changes periodically as shown in FIG. To do. Conventionally, since the first dielectric film 17 is formed by sputtering or the like, it takes about 3 minutes to deposit 10 nm, and it takes time. Therefore, a desired reflectance (for example, 8.5% at 780 nm) is obtained. The initial thickness of about 90 nm was employed.

しかし、波長が長い790nmでは、Bで示されるように、ほぼ右に平行移動した状態のカーブとなることから分るように、同じ反射率を得るためには誘電体膜の厚さを厚くする必要がある。一方、前述の780nmで所望の反射率に合せられた膜厚の第1の誘電体膜17が設けられた状態で、発振波長が変化して長くなると、誘電体膜の厚さが変らないため、反射率は最初に設定した反射率より高くなる(図2のb1の位置になる)。そのため、外部微分量子効率が低下して出射される出力は低下する。   However, at a long wavelength of 790 nm, as shown by B, the curve is almost parallel to the right, and as can be seen, in order to obtain the same reflectance, the thickness of the dielectric film is increased. There is a need. On the other hand, when the first dielectric film 17 having the thickness adjusted to the desired reflectance at 780 nm is provided and the oscillation wavelength changes and becomes longer, the thickness of the dielectric film does not change. The reflectance becomes higher than the initially set reflectance (the position is b1 in FIG. 2). As a result, the external differential quantum efficiency decreases and the output output decreases.

そこで、本発明者は、誘電体膜の厚さを所定の反射率になるように設定するだけではなく、発振波長が長く変化する場合に、反射率の変化が小さくなる関係にある誘電体膜の厚さを採用することにより、この問題を解決した。すなわち、前述の図2に示されるように、前端面の反射率は、とくに高出力半導体レーザでは前端面の反射率を小さくしてできるだけ前端面から出射させるように低い反射率に設定されているため、誘電体膜の厚さに対する反射率の変化のカーブで反射率が極小点の近傍に設定されることが多く、誘電体膜の厚さの変化に対して極小点側では反射率の変化が小さいが、極小点と反対側では誘電体膜の厚さの変化に対する反射率の変化が大きくなる。   Therefore, the present inventor not only sets the thickness of the dielectric film to have a predetermined reflectance, but also has a relationship in which the change in reflectance becomes small when the oscillation wavelength changes long. This problem was solved by adopting the thickness of. That is, as shown in FIG. 2 described above, the reflectivity of the front end face is set to a low reflectivity so that the front end face can be emitted from the front end face as much as possible, particularly in a high-power semiconductor laser. Therefore, the reflectance is often set near the minimum point in the curve of the change in reflectance with respect to the thickness of the dielectric film, and the change in reflectance on the minimum point side with respect to the change in the thickness of the dielectric film However, on the side opposite to the minimum point, the change in reflectance with respect to the change in the thickness of the dielectric film increases.

一方、波長が長いときの同様の膜厚に対する反射率のカーブは、図2のBで示されるように、膜厚が厚くなる方に若干ずれる。そこで、たとえば波長が780nmのときに同じ反射率(図2のa1、a2、a3、a4)でも、反射率カーブの勾配が正(dRf/dt>0)のところ(図2のa2、a4)であれば、その厚さにおける波長の長い光に対しては反射率が極小方向に近づき(図2のb2、b4)、反射率の変化が小さくなる。そのため、動作温度により発振波長が長くなると、その波長では反射率Rfそのものが小さくなり、外部微分量子効率が上昇し、温度上昇によりしきい値電流が大きくなって低下する発振出力を補う方向になる。   On the other hand, the reflectance curve for the same film thickness when the wavelength is long is slightly shifted toward the thicker film thickness as shown by B in FIG. Therefore, for example, even when the wavelength is 780 nm, even when the reflectance is the same (a1, a2, a3, a4 in FIG. 2), the slope of the reflectance curve is positive (dRf / dt> 0) (a2, a4 in FIG. 2). If so, the reflectance approaches a minimum direction for light having a long wavelength at the thickness (b2 and b4 in FIG. 2), and the change in reflectance becomes small. For this reason, when the oscillation wavelength becomes longer due to the operating temperature, the reflectance Rf itself becomes smaller at that wavelength, the external differential quantum efficiency increases, and the threshold current increases due to the temperature rise to compensate for the oscillation output that decreases. .

上述の検討は、誘電体膜の膜厚tに対する反射率Rfの変化により、反射率が変化しにくい方向に設定することにより、半導体レーザの発振波長の変化に対応する方法を検討したが、前述のように、半導体レーザが動作することにより温度上昇すると、しきい値電流が増大し、出力が低下する。そのため、温度上昇により発振波長が長くなったときに、誘電体膜による反射率Rfが低下する膜厚に設定することにより、温度上昇による出力の変化を補正することができる。すなわち、たとえば所定の反射率Rfになるときの膜厚を一定として光の波長を変化させると、図3に示されるように波長λの変化により周期的に反射率Rfが変化する。したがって、たとえば所望の反射率が得られる厚さのうち、所望の波長、たとえば780nm近傍で波長に対する反射率Rfの変化率(dRf/dλ)が負になる厚さtを採用することにより、温度上昇による出力変化を相殺することができる。   In the above examination, a method corresponding to a change in the oscillation wavelength of the semiconductor laser was examined by setting the reflectance in a direction in which the reflectance hardly changes due to a change in the reflectance Rf with respect to the film thickness t of the dielectric film. As described above, when the temperature rises due to the operation of the semiconductor laser, the threshold current increases and the output decreases. For this reason, when the oscillation wavelength becomes longer due to the temperature rise, the output change due to the temperature rise can be corrected by setting the film thickness so that the reflectance Rf due to the dielectric film is lowered. That is, for example, when the wavelength of light is changed with the film thickness at a predetermined reflectance Rf being constant, the reflectance Rf is periodically changed by the change of the wavelength λ as shown in FIG. Therefore, for example, by adopting the thickness t at which the change rate (dRf / dλ) of the reflectance Rf with respect to the wavelength at a desired wavelength, for example, around 780 nm is negative among the thicknesses at which the desired reflectance is obtained, The output change due to the rise can be offset.

なお、反射率Rfの波長λに対する変化率(dRf/dλ)の絶対値があまり大きすぎると、たとえ勾配が負であっても反射率の変化が大きくなり過ぎるため、−1≦(dRf/dλ)<0であることが好ましい。このような条件を満たしながら、図2から所望の反射率になるような誘電体膜の膜厚を選定することにより、半導体レーザの動作による温度上昇に伴う発振効率の低下にも拘わらず、その出力変化を抑制することができる。   Note that if the absolute value of the change rate (dRf / dλ) of the reflectance Rf with respect to the wavelength λ is too large, even if the gradient is negative, the change in reflectivity becomes too large, so −1 ≦ (dRf / dλ ) <0. By selecting the film thickness of the dielectric film so as to achieve a desired reflectivity from FIG. 2 while satisfying such conditions, the oscillation efficiency decreases with the increase in temperature due to the operation of the semiconductor laser. An output change can be suppressed.

また、前述のように、誘電体膜の厚さを一定以上にすることにより、熱放散を向上させることができ、高出力の半導体レーザでも、CODレベルを非常に高く維持することができ、高温(75℃)、高出力(200mW)のエージングを500時間以上行っても破壊することはなかった。すなわち、第1の誘電体膜として熱伝導率の大きい酸化アルミニウムを用い、その厚さを種々変化させて、COD特性の変化する様子を調べた結果が、図4に示されるように、光学距離で0.6λ以上の厚さ(780nmの波長に対して、酸化アルミニウムの屈折率nを1.62とすると、物理的な誘電体膜の厚さtは289nm以上の厚さ)、好ましくは光学距離で0.7λ以上、さらに好ましくは光学距離で0.8λ以上にすることにより、充分に熱放散をすることができて、250mW以上の高出力用半導体レーザで、前述の加速エージングを行っても、500時間で破損するものは30個行って、1個も生じなかった。   Further, as described above, the heat dissipation can be improved by making the thickness of the dielectric film above a certain level, and the COD level can be kept very high even in a high-power semiconductor laser. Even when aging at 75 ° C. and high output (200 mW) was performed for 500 hours or more, it was not destroyed. That is, as a first dielectric film, aluminum oxide having a high thermal conductivity is used, and its thickness is variously changed. The result of examining how the COD characteristics change is shown in FIG. And a thickness of 0.6λ or more (when the refractive index n of aluminum oxide is 1.62 for a wavelength of 780 nm, the thickness t of the physical dielectric film is 289 nm or more), preferably optical When the distance is set to 0.7λ or more, more preferably, the optical distance is set to 0.8λ or more, sufficient heat dissipation can be achieved, and the above-described accelerated aging is performed using a high-power semiconductor laser of 250 mW or more. However, 30 were damaged in 500 hours, and none were generated.

この放熱という観点からは、誘電体膜の厚さが厚いほど好ましいが、余り厚くすると成膜時間がかかりコストアップになると共に、厚い誘電体膜で反射率を正確に制御するのは困難になるため、光学距離で1.5λ以下であることが好ましい。具体的には、反射率を8.5%にするのに、光学距離で0.83λ(酸化アルミニウム膜の物理的厚さが0.83λ/n=400nm)にすることにより、温度上昇による出力変化への影響を少なくし、寿命も非常に高寿命にすることができた。   From the viewpoint of heat dissipation, the thicker the dielectric film, the better. However, if it is too thick, it takes time to form the film and the cost is increased, and it is difficult to accurately control the reflectance with the thick dielectric film. Therefore, the optical distance is preferably 1.5λ or less. Specifically, when the reflectance is set to 8.5%, the optical distance is set to 0.83λ (the physical thickness of the aluminum oxide film is 0.83λ / n = 400 nm), so that the output due to the temperature rise. The impact on change was reduced, and the service life could be very long.

後端面に設けられる第2の誘電体膜18は、大部分を反射させて共振器内で発振させ、前端面側から大きな出力を取り出すことができるようにするため、反射率Rrが、たとえば80〜95%程度になるようにα−Si(アモルファスシリコン)膜と、Al23膜とをそれぞれλ/(4n)づつの厚さ(λは発振波長、nは誘電体膜の屈折率)で2組程度形成される。しかし、この後端面は、所望の反射率Rrが得られればよく、誘電体膜の材料、組合せなどには制限されない。 The second dielectric film 18 provided on the rear end face reflects most of it and oscillates in the resonator so that a large output can be taken out from the front end face side. as it becomes about to 95% alpha-Si (refractive index of lambda is the oscillation wavelength, n represents the dielectric film) (amorphous silicon) film and, Al 2 O 3 film and the respective lambda / (4n) of the increments thickness About 2 sets are formed. However, the rear end face only needs to obtain a desired reflectance Rr, and is not limited to the material or combination of the dielectric films.

半導体基板1、半導体積層部9および電極15、16の部分は、従来の一般的な半導体レーザの構造と同じで、半導体積層部9として、たとえば、赤外光である780nm波長用のAlGaAs系化合物半導体や、赤色光である650nm波長発光用のInGaAlP系化合物半導体が用いられ、これらの半導体材料を積層するための半導体基板1としては、GaAs基板が一般的に用いられるが、他の化合物半導体でも構わない。また、半導体基板1の導電形は、半導体レーザを組み込むセットとの関係で、基板側に望まれる導電形のn形またはp形のいずれかが用いられ、この基板1の導電形にしたがって、積層される半導体層の導電形も定まる。以下の具体例では、半導体基板1がn形の例で説明する。   The semiconductor substrate 1, the semiconductor laminate 9 and the electrodes 15 and 16 have the same structure as a conventional general semiconductor laser. As the semiconductor laminate 9, for example, an AlGaAs compound for infrared light having a wavelength of 780 nm is used. A semiconductor or an InGaAlP compound semiconductor that emits red light at 650 nm wavelength is used, and a GaAs substrate is generally used as the semiconductor substrate 1 for stacking these semiconductor materials. I do not care. In addition, the conductivity type of the semiconductor substrate 1 is either n-type or p-type of the desired conductivity type on the substrate side in relation to the set incorporating the semiconductor laser. The conductivity type of the semiconductor layer to be formed is also determined. In the following specific example, the semiconductor substrate 1 will be described as an n-type example.

半導体積層部9としては、図1に示される例では、n形クラッド層2、ノンドープまたはn形もしくはp形の活性層3およびp形の第1クラッド層4、p形エッチングストップ層5、p形の第2クラッド層6、キャップ層7、およびリッジ状にエッチングされたp形の第2クラッド層6の両側に埋め込まれたn形の電流ブロック層13、キャップ層7および電流ブロック層13の表面に設けられるp型コンタクト層8とからなっている。   In the example shown in FIG. 1, the semiconductor laminated portion 9 includes an n-type cladding layer 2, an undoped or n-type or p-type active layer 3, a p-type first cladding layer 4, a p-type etching stop layer 5, p. Of the n-type current blocking layer 13, the cap layer 7 and the current blocking layer 13 embedded on both sides of the p-type second cladding layer 6 etched into a ridge shape. The p-type contact layer 8 is provided on the surface.

具体的には、n形GaAs基板1を、たとえばMOCVD(有機金属化学気相成長)装置内に入れ、反応ガスのトリエチルガリウム(TEG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMIn)、ホスフィン(PH3)、アルシン(AsH3)および半導体層の導電形に応じて、n形ドーパントガスとしてのHSeまたはp形ドーパントとしてジメチル亜鉛(DMZn)の必要な材料をキャリアガスの水素(H2)と共に導入し、500〜700℃程度で各半導体層をエピタキシャル成長することにより前述の各半導体層の積層構造が得られる。 Specifically, the n-type GaAs substrate 1 is placed in, for example, a MOCVD (metal organic chemical vapor deposition) apparatus, and reactive gases such as triethylgallium (TEG), trimethylaluminum (TMA), trimethylindium (TMIn), phosphine ( Depending on the conductivity type of PH 3 ), arsine (AsH 3 ) and the semiconductor layer, the required material of H 2 Se as an n-type dopant gas or dimethyl zinc (DMZn) as a p-type dopant is changed to hydrogen (H 2 ) And epitaxially growing each semiconductor layer at about 500 to 700 ° C. to obtain the above-described stacked structure of each semiconductor layer.

n形クラッド層2は、たとえばAlx1Ga1-x1As(0.3≦x1≦0.7、たとえばx1=0.5)からなり、2〜4μm程度に形成され、活性層3は、Aly1Ga1-y1As(0.05≦y1≦0.2、たとえばy1=0.15)のバルク構造またはAly2Ga1-y2As(0.01≦y2≦0.1、たとえばy2=0.05)からなるウェル層とAly3Ga1-y3As(0.2≦y3≦0.5、y2<y3、たとえばy3=0.3)からなるバリア層とのシングルもしくはマルチの量子井戸(SQWまたはMQW)構造により、全体で0.01〜0.2μm程度に形成され、p形第1クラッド層4は、Alx2Ga1-x2As(0.3≦x2≦0.7、たとえばx2=0.5)を0.1〜0.5μm程度に形成されている。なお、活性層3とクラッド層2、4との間に光ガイド層を設ける構造など、他の半導体層がいずれかの層間に介在されてもよい。 The n-type cladding layer 2 is made of, for example, Al x1 Ga 1-x1 As (0.3 ≦ x1 ≦ 0.7, for example, x1 = 0.5), and is formed to have a thickness of about 2 to 4 μm. y1 Ga 1-y1 As (0.05 ≦ y1 ≦ 0.2, for example y1 = 0.15) bulk structure or Al y2 Ga 1-y2 As ( 0.01 ≦ y2 ≦ 0.1 , such y2 = 0 0.05) and a barrier layer made of Al y3 Ga 1-y3 As (0.2 ≦ y3 ≦ 0.5, y2 <y3, for example y3 = 0.3) The p-type first cladding layer 4 is formed of Al x2 Ga 1-x2 As (0.3 ≦ x2 ≦ 0.7, for example, x2) by the SQW or MQW structure. = 0.5) is formed to be about 0.1 to 0.5 μm. Other semiconductor layers such as a structure in which a light guide layer is provided between the active layer 3 and the cladding layers 2 and 4 may be interposed between any of the layers.

さらに、エッチングストップ層5が、p形第1クラッド層4上にp形またはアンドープの、たとえばIn0.49Ga0.51Pにより0.01〜0.05μm程度に形成され、p形第2クラッド層6が、Alx3Ga1-x3As(0.3≦x3≦0.7、たとえばx3=0.5)により、0.5〜3μm程度形成され、その上にp形In0.49Ga0.51Pからなるキャップ層7が0.01〜0.05μm程度設けられ、キャップ層7およびp形第2クラッド層6の両側がエッチングされてリッジ部11が形成され、その両側に、たとえばAlzGa1-zAs(0.5≦z≦0.8、たとえばz=0.6)からなる電流ブロック層13がリッジ部11の横を埋めるように形成されされている。 Further, an etching stop layer 5 is formed on the p-type first cladding layer 4 to a thickness of about 0.01 to 0.05 μm by p-type or undoped, for example, In 0.49 Ga 0.51 P, and the p-type second cladding layer 6 is formed. , Al x3 Ga 1-x3 As (0.3 ≦ x3 ≦ 0.7, for example, x3 = 0.5), and a cap made of p-type In 0.49 Ga 0.51 P on the order of 0.5 to 3 μm. The layer 7 is provided in a thickness of about 0.01 to 0.05 μm, and both sides of the cap layer 7 and the p-type second cladding layer 6 are etched to form the ridge portion 11, and on both sides, for example, Al z Ga 1-z As A current blocking layer 13 made of (0.5 ≦ z ≦ 0.8, for example, z = 0.6) is formed so as to fill the side of the ridge portion 11.

なお、エッチングストップ層5は、In0.49Ga0.51Pに限定されるものではなく、たとえばIn0.49(Ga0.8Al0.20.51Pなどを使用することもできるし、キャップ層7は、後の工程でコンタクト層を成長する際に、半導体積層部10の表面に酸化膜などが形成されて、汚れるのを防止するもので、GaAsなどの他の半導体層でもよく、また、表面の汚れさえ防止することができればなくてもよい。また、リッジ部11を形成するためのエッチングは、たとえばCVD法などにより、SiO2またはSiNxなどからなるマスクを形成し、たとえばドライエッチングなどによりキャップ層7を選択的にエッチングし、引き続きHClのようなエッチング液により、p形第2クラッド層6をエッチングすることにより、図に示されるようにリッジ部11がストライプ状(紙面と垂直方向)に形成される。なお、さらに露出したエッチングストップ層5を除去する場合もある。 The etching stop layer 5 is not limited to In 0.49 Ga 0.51 P. For example, In 0.49 (Ga 0.8 Al 0.2 ) 0.51 P can be used, and the cap layer 7 is formed in a later step. When the contact layer is grown, an oxide film or the like is formed on the surface of the semiconductor stacked portion 10 to prevent contamination, and other semiconductor layers such as GaAs may be used, and even the surface contamination is prevented. If you can, you do not have to. Etching for forming the ridge portion 11 is performed by, for example, forming a mask made of SiO 2 or SiN x by, for example, a CVD method, selectively etching the cap layer 7 by, for example, dry etching, and the like. By etching the p-type second cladding layer 6 with such an etchant, the ridge portion 11 is formed in a stripe shape (in the direction perpendicular to the paper surface) as shown in the figure. In addition, the exposed etching stop layer 5 may be removed.

コンタクト層9は、キャップ層7および電流ブロック層13上に、たとえばp形GaAs層により、その厚さが0.05〜10μm程度に形成されている。なお、このコンタクト層9の表面に、Ti/Auなどからなるp側電極15が、また、半導体基板1の裏面には、研磨により薄くされた後に、Au/Ge/NiまたはTi/Auなどからなるn側電極16がそれぞれ形成されている。この電極形成後に劈開などにより、ウェハからチップ化されている。   The contact layer 9 is formed on the cap layer 7 and the current blocking layer 13 by a p-type GaAs layer, for example, with a thickness of about 0.05 to 10 μm. A p-side electrode 15 made of Ti / Au or the like is formed on the surface of the contact layer 9, and the back surface of the semiconductor substrate 1 is made of Au / Ge / Ni or Ti / Au after being thinned by polishing. N-side electrodes 16 are formed. After this electrode formation, the wafer is chipped by cleavage or the like.

前述の例では、AlGaAs系化合物半導体の例であったが、InGaAlP系化合物で構成する場合には、前述のn形およびp形クラッド層として、In0.49(Ga1-uAlu0.51P(0.45≦u≦0.8、たとえばu=0.7)を、活性層として、In0.49(Ga1-v1Alv10.51P(0≦v1≦0.25、たとえばv1=0)/In0.49(Ga1-v2Alv20.51P(0.3≦v2≦0.7、たとえばv2=0.4)による多重量子井戸(MQW)構造などで、また、電流ブロック層として、GaAsやInAlPを用いることにより形成する以外は、前述の例と同様に構成することができる。 In the above example, an AlGaAs-based compound semiconductor is used. However, in the case of an InGaAlP-based compound, In 0.49 (Ga 1 -u Al u ) 0.51 P ( 0.45 ≦ u ≦ 0.8 (for example, u = 0.7) is used as the active layer, and In 0.49 (Ga 1 -v1 Al v1 ) 0.51 P (0 ≦ v1 ≦ 0.25, for example, v1 = 0) / In 0.49 (Ga 1 -v 2 Al v 2 ) 0.51 P (0.3 ≦ v2 ≦ 0.7, for example, v2 = 0.4), etc. In addition, as a current blocking layer, GaAs or Except for forming by using InAlP, it can be configured in the same manner as the above-described example.

また、前述の例では、リッジ構造の半導体レーザであったが、電流ブロック層をクラッド層の間に積層して電流注入領域とするストライプ溝をエッチングにより除去するSAS構造など、他の構造の半導体レーザでも同様であることは言うまでもない。   In the above-described example, the semiconductor laser has a ridge structure. However, a semiconductor having another structure such as a SAS structure in which a current blocking layer is stacked between clad layers and a stripe groove serving as a current injection region is removed by etching. It goes without saying that the same applies to lasers.

本発明によれば、前述のように、ストライプ状発光領域の前端部(出射側)端面に設けられる誘電体膜が所定の反射率にするだけの目的で設けられるのではなく、熱放散を充分に行いCODレベルを高くすることができるように、一定の厚さ以上に形成され、さらに動作により変化する発振波長のずれに対しても、その出力変化が抑制されるように出射端面側の誘電体膜が設けられている。その結果、非常に寿命が長く、しかも出力特性が安定した半導体レーザが得られる。   According to the present invention, as described above, the dielectric film provided on the front end portion (outgoing side) end face of the stripe-shaped light emitting region is not provided only for the purpose of setting the predetermined reflectivity, but sufficiently dissipates heat. In order to be able to increase the COD level, the dielectric layer is formed on the output end face side so that the output change is suppressed even when the oscillation wavelength shifts due to the operation. A body membrane is provided. As a result, a semiconductor laser having a very long lifetime and stable output characteristics can be obtained.

本発明は、CD、DVD、DVD−ROM、データ書き込み可能なCD−R/RWなどのピックアップ用光源に用いることができ、パーソナルコンピュータなどの電機機器に用いることができる。   The present invention can be used for a light source for pickup such as a CD, DVD, DVD-ROM, and data-writable CD-R / RW, and can be used for electrical equipment such as a personal computer.

本発明の半導体レーザの一実施形態を示す斜視および断面の説明図である。It is explanatory drawing of the perspective view and cross section which show one Embodiment of the semiconductor laser of this invention. 波長を一定としたときの誘電体膜の厚さに対する端面反射率の変化を示す図である。It is a figure which shows the change of the end surface reflectance with respect to the thickness of a dielectric film when a wavelength is made constant. 誘電体膜の厚さを一定としたときの波長に対する端面反射率の変化を示す図である。It is a figure which shows the change of the end surface reflectance with respect to a wavelength when the thickness of a dielectric material film is made constant. 誘電体膜の厚さに対するCOD特性の変化を示す図である。It is a figure which shows the change of the COD characteristic with respect to the thickness of a dielectric film. 従来の半導体レーザをサブマウントに搭載した図である。It is the figure which mounted the conventional semiconductor laser in the submount.

符号の説明Explanation of symbols

1 半導体基板
9 半導体積層部
17 第1の誘電体膜
18 第2の誘電体膜
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 9 Semiconductor laminated part 17 1st dielectric film 18 2nd dielectric film

Claims (3)

半導体基板と、該半導体基板上に積層され、ストライプ状発光領域を形成し、発振波長λのレーザ発振をするように半導体層が積層される半導体積層部と、該半導体積層部の前記ストライプ状発光領域の一端部に、低反射率で所定の反射率になるように形成される第1の誘電体膜と、前記ストライプ状発光領域の他端部に高反射率になるように形成される第2の誘電体膜とを有し、前記第1の誘電体膜が酸化アルミニウム膜により形成され、前記発振波長λを一定として酸化アルミニウム膜の厚さに対する反射率変化のカーブが、前記発振波長を長くした場合に前記酸化アルミニウム膜の厚さが厚い方にほぼ平行移動する場合において、該反射率変化のカーブで、所望の発振波長に対して、所望の反射率になり、かつ、該反射率変化のカーブの勾配が正になる厚さに、前記酸化アルミニウム膜の厚さが設定されることにより、温度上昇による発振波長の変化に伴い反射率を低下させて温度上昇によるしきい値電流の増加による出力の低下を補正すると共に、光学距離で0.6λ以上となる厚さに設定されてなる半導体レーザ。 A semiconductor substrate, a semiconductor laminated portion laminated on the semiconductor substrate to form a stripe-like light emitting region, and a semiconductor layer laminated so as to oscillate at an oscillation wavelength λ, and the stripe-like light emission of the semiconductor laminated portion A first dielectric film formed at one end of the region to have a predetermined reflectance with a low reflectance, and a first dielectric film formed to have a high reflectance at the other end of the stripe-shaped light emitting region. and a second dielectric layer, said first dielectric film is formed by an aluminum oxide film, before SL curve reflectance change relative to the thickness of the aluminum oxide film the oscillation wavelength λ as constant, the oscillation wavelength In the case where the aluminum oxide film moves almost parallel to the thicker one when the length is increased, the reflectance change curve has a desired reflectance for the desired oscillation wavelength , and the reflection Of the rate change curve The thickness gradient is positive, the by Rukoto set the thickness of the aluminum oxide film, the output due to an increase in threshold current due to the temperature rise by lowering the reflectance due to the change in the oscillation wavelength due to temperature rise A semiconductor laser that corrects the decrease and is set to a thickness that is 0.6λ or more in optical distance. 前記酸化アルミニウム膜の厚さが、所望の発振波長で所望の反射率になる厚さで、かつ、前記酸化アルミニウム膜の厚さを一定とした場合の光の波長に対する前記酸化アルミニウム膜が設けられた端面の反射率変化のカーブで、前記所望の発振波長で勾配が負になる厚さに設定されてなる請求項1記載の半導体レーザ。 The aluminum oxide film has a thickness that provides a desired reflectance at a desired oscillation wavelength , and the aluminum oxide film is provided for the wavelength of light when the thickness of the aluminum oxide film is constant. 2. The semiconductor laser according to claim 1 , wherein the thickness is set to a thickness at which the slope is negative at the desired oscillation wavelength in the curve of the reflectance change of the end face. 前記第1の誘電体膜の厚さが、光学距離で0.6λ以上で1.5λ以下となる厚さに設定される請求項1または2記載の半導体レーザ。   3. The semiconductor laser according to claim 1, wherein the thickness of the first dielectric film is set to an optical distance of 0.6λ or more and 1.5λ or less.
JP2004052997A 2004-02-27 2004-02-27 Semiconductor laser Expired - Fee Related JP4286683B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004052997A JP4286683B2 (en) 2004-02-27 2004-02-27 Semiconductor laser
US11/058,241 US20050190807A1 (en) 2004-02-27 2005-02-16 Semiconductor laser
CN200510009063A CN100590940C (en) 2004-02-27 2005-02-17 Semiconductor laser
CNB2007100020363A CN100472901C (en) 2004-02-27 2005-02-17 Semiconductor laser
TW094105185A TWI360273B (en) 2004-02-27 2005-02-22 Semiconductor laser
KR1020050014824A KR20060043109A (en) 2004-02-27 2005-02-23 Semiconduct0r laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052997A JP4286683B2 (en) 2004-02-27 2004-02-27 Semiconductor laser

Publications (2)

Publication Number Publication Date
JP2005243998A JP2005243998A (en) 2005-09-08
JP4286683B2 true JP4286683B2 (en) 2009-07-01

Family

ID=34879680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052997A Expired - Fee Related JP4286683B2 (en) 2004-02-27 2004-02-27 Semiconductor laser

Country Status (5)

Country Link
US (1) US20050190807A1 (en)
JP (1) JP4286683B2 (en)
KR (1) KR20060043109A (en)
CN (2) CN100472901C (en)
TW (1) TWI360273B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075974B2 (en) 2006-03-10 2011-12-13 Ricoh Company, Ltd. Optical recording medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243764A (en) * 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd Semiconductor laser and its manufacturing method
JP4178022B2 (en) * 2002-12-10 2008-11-12 シャープ株式会社 Semiconductor laser device, manufacturing method thereof, and jig used in the manufacturing method
EP1854189B1 (en) 2005-02-18 2015-04-08 Binoptics Corporation High reliability etched-facet photonic devices
JP4514760B2 (en) * 2007-01-26 2010-07-28 シャープ株式会社 Semiconductor laser element
JP4294699B2 (en) * 2007-02-26 2009-07-15 三菱電機株式会社 Semiconductor laser device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242689A (en) * 1984-05-16 1985-12-02 Sharp Corp Semiconductor laser element
JP2663437B2 (en) * 1987-05-27 1997-10-15 ソニー株式会社 Semiconductor laser device
DE3728305A1 (en) * 1987-08-25 1989-03-09 Standard Elektrik Lorenz Ag SEMICONDUCTOR LASER WITH CONSTANT DIFFERENTIAL QUANTUM EXCHANGER OR CONSTANT OPTICAL OUTPUT
US5031186A (en) * 1989-03-15 1991-07-09 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device
JPH09167873A (en) * 1995-12-15 1997-06-24 Mitsubishi Electric Corp Semiconductor laser device
EP0893000B1 (en) * 1996-12-13 2002-04-03 Uniphase Opto Holdings, Inc. Self-pulsating semiconductor diode laser and method of manufacturing thereof
JP2001257413A (en) * 2000-03-14 2001-09-21 Toshiba Electronic Engineering Corp Semiconductor laser device and its manufacturing method
JP4097552B2 (en) * 2003-03-27 2008-06-11 三菱電機株式会社 Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075974B2 (en) 2006-03-10 2011-12-13 Ricoh Company, Ltd. Optical recording medium

Also Published As

Publication number Publication date
US20050190807A1 (en) 2005-09-01
TWI360273B (en) 2012-03-11
JP2005243998A (en) 2005-09-08
KR20060043109A (en) 2006-05-15
CN100590940C (en) 2010-02-17
CN1661871A (en) 2005-08-31
CN1992459A (en) 2007-07-04
TW200529526A (en) 2005-09-01
CN100472901C (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4352337B2 (en) Semiconductor laser and semiconductor laser device
JP5005300B2 (en) Semiconductor laser device
US7830930B2 (en) Semiconductor laser device
JP2005175111A (en) Semiconductor laser and its manufacturing method
JP2005286213A (en) Integrated semiconductor laser element and its manufacturing method
US6873635B2 (en) Nitride semiconductor laser device and optical information reproduction apparatus using the same
JP4295776B2 (en) Semiconductor laser device and manufacturing method thereof
JP2006228826A (en) Semiconductor laser
US20050190807A1 (en) Semiconductor laser
JP5948776B2 (en) Light emitting device and manufacturing method thereof
US20090232178A1 (en) Two-wavelength semiconductor laser device
US7852893B2 (en) Semiconductor laser device
JP4935676B2 (en) Semiconductor light emitting device
US7095769B2 (en) Semiconductor laser diode with higher-order mode absorption layers
JP2000216476A (en) Semiconductor light emitting element
JPH10303493A (en) Nitride semiconductor laser
JP5233987B2 (en) Nitride semiconductor laser
JP4091529B2 (en) Semiconductor laser
JP4599432B2 (en) Semiconductor laser and manufacturing method thereof
JP2009076640A (en) Semiconductor light emitting element
JPWO2008090727A1 (en) Nitride-based semiconductor optical device
JP2004158800A (en) Nitride semiconductor laser device and optical information recording and reproducing device
JP2006140387A (en) Nitride semiconductor laser and manufacturing method thereof
JP2007081017A (en) Monolithic semiconductor laser
JP2003023218A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees