JPWO2008090727A1 - Nitride-based semiconductor optical device - Google Patents

Nitride-based semiconductor optical device Download PDF

Info

Publication number
JPWO2008090727A1
JPWO2008090727A1 JP2008554995A JP2008554995A JPWO2008090727A1 JP WO2008090727 A1 JPWO2008090727 A1 JP WO2008090727A1 JP 2008554995 A JP2008554995 A JP 2008554995A JP 2008554995 A JP2008554995 A JP 2008554995A JP WO2008090727 A1 JPWO2008090727 A1 JP WO2008090727A1
Authority
JP
Japan
Prior art keywords
dielectric film
nitride
film
optical device
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008554995A
Other languages
Japanese (ja)
Inventor
和久 福田
和久 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2008090727A1 publication Critical patent/JPWO2008090727A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Abstract

信頼性の高い高出力半導体レーザを提供する。一実施形態に係る半導体レーザは、Gaを構成元素として含むIII族窒化物半導体からなる活性層を有し、当該活性層の端面からレーザ光を出射する半導体レーザである。この半導体レーザは、レーザ光が出射される上記端面上に設けられており、誘電体膜からなる保護膜を備えている。前記端面に接する誘電体膜の一部の領域には、炭素が含まれている。A highly reliable high-power semiconductor laser is provided. A semiconductor laser according to an embodiment is a semiconductor laser having an active layer made of a group III nitride semiconductor containing Ga as a constituent element and emitting laser light from an end face of the active layer. This semiconductor laser is provided on the end face from which laser light is emitted, and includes a protective film made of a dielectric film. Carbon is included in a partial region of the dielectric film in contact with the end face.

Description

本発明は、III族窒化物系半導体光素子に関する。   The present invention relates to a group III nitride semiconductor optical device.

窒化ガリウムに代表されるIII族窒化物半導体は、高効率の青紫色発光が得られることから、発光ダイオード(light emitting diode, LED)やレーザーダイオード(laser diode, LD)の構成材料として注目を浴びてきた。なかでもLDは大容量光ディスク装置の光源として期待され、近年では書き込み用光源として高出力LDの開発が精力的に進められている。   Group III nitride semiconductors, typified by gallium nitride, have gained attention as a constituent material for light emitting diodes (LEDs) and laser diodes (LDers) because of their high-efficiency blue-violet emission. I came. In particular, LD is expected as a light source for a large-capacity optical disk apparatus. In recent years, development of a high-power LD as a light source for writing has been vigorously advanced.

図7に典型的な窒化物ガリウム系レーザ構造を示す。GaN基板101上にn型クラッド層102、光ガイド層103,105、活性層104、p型クラッド層106等のレーザ構造を積層後、p型クラッド層106をドライエッチングによりリッジ状に加工し作製される。リッジ部(ridge part)は、ストライプ状開口部を有する絶縁膜107でカバーされ、開口部にp型電極108が設けられる。電流狭窄はストライプ状電極でなされ、リッジ幅およびリッジ高さを調整することにより横モードの制御がなされる。レーザ光は、劈開(ヘキカイ)により形成された共振ミラーから出射される。半導体レーザでは、一般に端面保護のため誘電体保護膜を形成する。高出力用途では出射効率を上げるため、出射側端面に低反射(Anti-reflecting, AR)膜、反対側の端面には高反射(High-reflecting, HR)膜を形成する。   FIG. 7 shows a typical gallium nitride based laser structure. After laminating a laser structure such as an n-type cladding layer 102, light guide layers 103 and 105, an active layer 104, and a p-type cladding layer 106 on a GaN substrate 101, the p-type cladding layer 106 is processed into a ridge shape by dry etching. Is done. The ridge part is covered with an insulating film 107 having a stripe-shaped opening, and a p-type electrode 108 is provided in the opening. The current confinement is made by a striped electrode, and the transverse mode is controlled by adjusting the ridge width and ridge height. Laser light is emitted from a resonant mirror formed by cleavage. In a semiconductor laser, a dielectric protective film is generally formed for protecting the end face. In high power applications, a low reflection (Anti-reflecting, AR) film is formed on the output side end face, and a high reflection (High-reflecting, HR) film is formed on the opposite end face in order to increase the output efficiency.

一般的な端面保護膜材料の要件は、レーザ光の吸収がないこと、所望の反射率が得られること、および半導体との密着がよいこと等が挙げられる。また製造上の観点から制御性、生産性のよい成膜が可能であることも重要である。このような観点から一般的にスパッタ、CVD、蒸着等の手法で成膜したAl、SiO、TiO、ZrO、Ta、Nb等の酸化物、MgF、CaF等のフッ化物、AlN、Si等の窒化物が用いられる。The requirements for a general end face protective film material include that there is no absorption of laser light, that a desired reflectance can be obtained, and that a close contact with a semiconductor is good. It is also important that film formation with good controllability and productivity is possible from the viewpoint of manufacturing. From this point of view, oxides such as Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5, etc., generally formed by a technique such as sputtering, CVD, or vapor deposition, MgF 2 , Fluorides such as CaF 2 and nitrides such as AlN and Si 3 N 4 are used.

なお、本発明に関連する先行技術文献としては、特許文献1(特開平10−190139号公報)が挙げられる。
特開平10−190139号公報
As a prior art document related to the present invention, Patent Document 1 (Japanese Patent Laid-Open No. 10-190139) can be cited.
JP-A-10-190139

上述した誘電体膜をAR膜としてレーザ出射端面に形成することによって、初期的にはCOD(Catastrophic Optical Damage)のない高出力特性が実現可能である。しかし、100mW以上の高出力長時間駆動を行うと、CODレベルの低下によって突発故障が発生してしまうという信頼性上の問題があった。本発明者は詳細な検討の結果、GaN系半導体レーザにおける高出力長時間駆動時のCODレベル劣化が保護膜中へのGa拡散に起因することを見出した。   By forming the dielectric film described above as an AR film on the laser emission end face, high output characteristics without COD (Catastrophic Optical Damage) can be realized in the initial stage. However, when a high output long time drive of 100 mW or more is performed, there is a problem in reliability that a sudden failure occurs due to a decrease in the COD level. As a result of detailed studies, the present inventor has found that COD level degradation during high-power long-time driving in a GaN-based semiconductor laser is caused by Ga diffusion into the protective film.

本発明による窒化物系半導体光素子は、ガリウム(Ga)を構成元素として含むIII族窒化物半導体からなる活性層を有し、上記活性層の端面からレーザ光を出射する窒化物系半導体光素子であって、上記レーザ光が出射される上記端面上に設けられ、単層または多層の誘電体膜からなる保護膜を備え、上記端面に接する上記誘電体膜の一部の領域には、炭素(C)が含まれていることを特徴とする。   The nitride-based semiconductor optical device according to the present invention has an active layer made of a group III nitride semiconductor containing gallium (Ga) as a constituent element, and emits laser light from the end face of the active layer. A protective film made of a single-layer or multi-layer dielectric film is provided on the end face from which the laser beam is emitted, and a part of the dielectric film in contact with the end face has a carbon (C) is included.

Cを含有しない従来の保護膜の場合、次のメカニズムによりCODレベル劣化が発生する。劈開によって形成された共振器端面には、Gaの酸化物を主体とする層(自然酸化膜)が形成される。この上に誘電体膜を保護膜として堆積して得たレーザを高出力動作させると、半導体端面のGaがイオン化してGaとなる。当該ガリウムイオンGaが保護膜との界面において保護膜中の構造欠陥(酸素欠損等)に起因して誘起された電子を受け取って中性化すると、当該中性化されたGaは保護膜中へと拡散する。この結果半導体端面が劣化、深い準位が発生し、これによりレーザ光の吸収による温度上昇が生じる。一方保護膜中にCを添加すると、保護膜中に深い準位(たとえば、禁制帯の中央付近に形成されたエネルギー準位)が形成され、この準位が構造欠陥によって誘起された電子をトラップするため、Gaは中性化せずに拡散が抑制される。この結果深い準位が発生せず、CODレベルの低下も抑制される。In the case of a conventional protective film not containing C, COD level deterioration occurs due to the following mechanism. A layer (natural oxide film) mainly composed of an oxide of Ga is formed on the end face of the resonator formed by cleavage. When a laser obtained by depositing a dielectric film as a protective film thereon is operated at a high output, Ga on the semiconductor end face is ionized to become Ga + . When the gallium ion Ga + receives and neutralizes electrons induced due to structural defects (oxygen deficiency, etc.) in the protective film at the interface with the protective film, the neutralized Ga is contained in the protective film. Spreads to. As a result, the semiconductor end face is deteriorated and deep levels are generated, which causes a temperature rise due to absorption of laser light. On the other hand, when C is added to the protective film, a deep level (for example, an energy level formed near the center of the forbidden band) is formed in the protective film, and this level traps electrons induced by structural defects. Therefore, the diffusion of Ga + is suppressed without being neutralized. As a result, a deep level is not generated, and a decrease in COD level is also suppressed.

本発明によれば、高出力動作におけるCODレベルの低下が抑制された、信頼性の高い窒化物系半導体光素子が実現される。   According to the present invention, a highly reliable nitride-based semiconductor optical device in which a decrease in the COD level in a high output operation is suppressed is realized.

図1(a)および図1(b)は、本発明の実施形態に係る半導体レーザの構造を模式的に示す断面図である。FIG. 1A and FIG. 1B are cross-sectional views schematically showing the structure of a semiconductor laser according to an embodiment of the present invention. 図2(a)〜図2(c)は、実施例に係るレーザ構造の作製工程を示す図である。FIG. 2A to FIG. 2C are diagrams illustrating a manufacturing process of the laser structure according to the example. 図3(a)〜図3(c)は、実施例に係るレーザ構造の作製工程を示す図である。FIG. 3A to FIG. 3C are diagrams illustrating a manufacturing process of the laser structure according to the example. 図4(a)および図4(b)は、実施例に係るレーザ構造の作製工程を示す図である。FIG. 4A and FIG. 4B are diagrams illustrating a manufacturing process of the laser structure according to the example. 図5は、Al/半導体界面の炭素濃度と素子寿命の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the carbon concentration at the Al 2 O 3 / semiconductor interface and the device lifetime. 図6は、炭素を含まないAl保護膜を用いた場合の発振波長と素子寿命の関係を示す図である。FIG. 6 is a diagram showing the relationship between the oscillation wavelength and the element lifetime when an Al 2 O 3 protective film containing no carbon is used. 図7は、リッジ型導波路構造を有する従来の半導体レーザの構造を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing the structure of a conventional semiconductor laser having a ridge-type waveguide structure.

以下、図面を参照しつつ、本発明による窒化物系半導体光素子の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a nitride-based semiconductor optical device according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted.

図1(a)および図1(b)は、本発明による窒化物系半導体光素子の一実施形態を示す断面図である。図1(a)は、共振器方向に垂直な断面から見た素子構造の概略図を示している。また、図1(b)は、図1(a)中のx−x'線の位置における共振器方向に平行な断面のレーザ出射端面近傍を示す。本実施形態においては、窒化物系半導体光素子の一例として半導体レーザを示している。   FIG. 1A and FIG. 1B are cross-sectional views showing an embodiment of a nitride-based semiconductor optical device according to the present invention. FIG. 1A shows a schematic view of an element structure viewed from a cross section perpendicular to the resonator direction. FIG. 1B shows the vicinity of the laser emission end face of a cross section parallel to the resonator direction at the position of the line xx ′ in FIG. In this embodiment, a semiconductor laser is shown as an example of a nitride-based semiconductor optical device.

この半導体レーザは、Gaを構成元素として含むIII族窒化物半導体からなる活性層を有し、当該活性層の端面からレーザ光を出射する半導体レーザであって、レーザ光が出射される上記端面上に設けられ、誘電体膜からなる保護膜を備えている。上記端面に接する誘電体膜の一部の領域には、炭素が含まれている。   This semiconductor laser is a semiconductor laser having an active layer made of a group III nitride semiconductor containing Ga as a constituent element and emitting laser light from the end face of the active layer, on the end face from which the laser light is emitted Provided with a protective film made of a dielectric film. Carbon is contained in a partial region of the dielectric film in contact with the end face.

より詳細には、この半導体レーザは、n型GaN基板201上にSiドープn型GaN層202(Si濃度4×1017cm−3、厚さ1μm)、Siドープn型Al0.1Ga0.9N(Si濃度4×1017cm−3、厚さ2μm)からなるn型クラッド層203、Siドープn型GaN(Si濃度4×1017cm−3、厚さ0.1μm)からなるn型GaN光閉じ込め層204、In0.15Ga0.85N(厚さ3nm)を井戸層としSiドープIn0.01Ga0.99N(Si濃度1×1018cm−3、厚さ4nm)をバリア層として含む3周期多重量子井戸(MQW)層205(活性層)、Mgドープp型Al0.2Ga0.8N(Mg濃度2×1019cm−3、厚さ10μm)からなるキャップ層206、Mgドープp型GaN(Mg濃度2×1019cm−3、厚さ0.1μm)からなるp型GaN光閉じ込め層207、p型Al0.1Ga0.9Nクラッド層208、Mgドープp型GaN(Mg濃度1×1020cm−3、厚さ0.02μm)からなるp型GaNコンタクト層209が積層した構造を有する。More specifically, the semiconductor laser includes an Si-doped n-type GaN layer 202 (Si concentration 4 × 10 17 cm −3 , thickness 1 μm) on an n-type GaN substrate 201, Si-doped n-type Al 0.1 Ga 0. .9 N-type cladding layer 203 made of N (Si concentration 4 × 10 17 cm −3 , thickness 2 μm), Si-doped n-type GaN (Si concentration 4 × 10 17 cm −3 , thickness 0.1 μm) An n-type GaN optical confinement layer 204, In 0.15 Ga 0.85 N (thickness 3 nm) as a well layer, Si-doped In 0.01 Ga 0.99 N (Si concentration 1 × 10 18 cm −3 , thickness) 4 nm) as a barrier layer, a three-period multiple quantum well (MQW) layer 205 (active layer), Mg-doped p-type Al 0.2 Ga 0.8 N (Mg concentration 2 × 10 19 cm −3 , thickness 10 μm) Cap layer consisting of 06, Mg-doped p-type GaN (Mg concentration 2 × 10 19 cm -3, thickness 0.1 [mu] m) p-type GaN light confining layer 207 made of, p-type Al 0.1 Ga 0.9 N cladding layer 208, Mg A p-type GaN contact layer 209 made of doped p-type GaN (Mg concentration 1 × 10 20 cm −3 , thickness 0.02 μm) is stacked.

p型クラッド層208とp型コンタクト層209はドライエッチングを用いたリッジ構造がストライプ状に形成されている。リッジトップのp型コンタクト層209の上面に、p型電極214が、n型GaN基板201の下部にn型電極216が、それぞれ設けられている。劈開によって形成された共振器端面には誘電体保護膜が形成されている。ここでレーザ光出射側端面にはAR膜211(保護膜)、反対側の端面にはHR膜を形成する。
各端面の反射率は誘電体材料の屈折率、膜厚、層数を適切に選択することにより1%から98%の範囲で制御可能である。HR膜の反射率は70%以上、より好適には90%以上とすることが望ましい。AR膜211の反射率は70%未満とすることが好ましく、より好適には1%以上50%以下、さらに好適には5%以上30%以下の範囲とすることが望ましい。
The p-type cladding layer 208 and the p-type contact layer 209 have a ridge structure using dry etching formed in a stripe shape. A p-type electrode 214 is provided on the top surface of the ridge top p-type contact layer 209, and an n-type electrode 216 is provided below the n-type GaN substrate 201. A dielectric protective film is formed on the end face of the resonator formed by cleavage. Here, an AR film 211 (protective film) is formed on the end face on the laser light emission side, and an HR film is formed on the end face on the opposite side.
The reflectance of each end face can be controlled in the range of 1% to 98% by appropriately selecting the refractive index, film thickness, and number of layers of the dielectric material. The reflectivity of the HR film is preferably 70% or more, more preferably 90% or more. The reflectance of the AR film 211 is preferably less than 70%, more preferably 1% to 50%, and even more preferably 5% to 30%.

AR膜211は多層の誘電体膜からなり、少なくとも半導体光素子本体(以下、単に「半導体」と呼ぶ。)に接する誘電体膜211a(第1の誘電体膜)の当該半導体光素子本体との界面近傍に炭素(C)が添加されている。誘電体膜211a中の炭素が含まれている領域の炭素濃度は、好ましくは0.01at.%(原子数濃度)以上、より好ましくは0.1at.%以上10at.%以下である。これによって高出力レーザ動作による誘電体膜中へのGa拡散が抑制される。なおC濃度が高すぎると炭素のクラスターができてしまうため、レーザ特性を悪化させる。   The AR film 211 is formed of a multilayer dielectric film, and at least a dielectric film 211a (first dielectric film) in contact with the semiconductor optical element body (hereinafter simply referred to as “semiconductor”) is connected to the semiconductor optical element body. Carbon (C) is added in the vicinity of the interface. The carbon concentration in the region containing carbon in the dielectric film 211a is preferably 0.01 at. % (Atomic concentration) or more, more preferably 0.1 at. % Or more and 10 at. % Or less. This suppresses Ga diffusion into the dielectric film due to high-power laser operation. If the C concentration is too high, carbon clusters are formed, which deteriorates laser characteristics.

誘電体膜211a中で炭素(C)が含有されている領域は半導体との界面近傍のみで良い。炭素(C)による深い準位はレーザ光を吸収するため初期CODレベルの低下を招く。そのため、C濃度が1at.%以上の領域が誘電体膜211aの厚みの1/2よりも薄い領域に限定されるような濃度分布を有することが好ましい。すなわち、誘電体膜211a中の、炭素濃度が1at.%以上の領域は、レーザ出射端面からの距離が誘電体膜211aの厚みの1/2未満である領域に限られていることが好ましい。こうすることで初期CODレベルの低下を抑制しつつ、高出力長時間駆動が可能となる。なお、上述の如く、炭素のクラスターの生成を抑制する観点からは、当該領域のC濃度は、10at.%以下にすることが好ましい。   The region containing carbon (C) in the dielectric film 211a may be only near the interface with the semiconductor. The deep level due to carbon (C) absorbs the laser beam and causes a decrease in the initial COD level. Therefore, the C concentration is 1 at. It is preferable that the concentration distribution is such that the region of at least% is limited to a region thinner than ½ of the thickness of the dielectric film 211a. That is, the carbon concentration in the dielectric film 211a is 1 at. % Or more of the region is preferably limited to a region whose distance from the laser emission end face is less than ½ of the thickness of the dielectric film 211a. By doing so, it is possible to drive at a high output for a long time while suppressing a decrease in the initial COD level. As described above, from the viewpoint of suppressing the formation of carbon clusters, the C concentration in the region is 10 at. % Or less is preferable.

誘電体膜211aには、酸化物、窒化物、酸窒化膜、フッ化物系の誘電体膜を用いることができる。上記C添加による効果はこれらの膜種には依存しないものの、端面に形成された自然酸化膜を良好に保護するという観点から、酸化物もしくは酸窒化物の使用が好ましい。さらに、膜と半導体の密着性を高めるという観点から、Tiを含む酸化膜(TiO,SrTiO等)、酸窒化膜(TiO1−x等)がより好ましい。As the dielectric film 211a, an oxide, nitride, oxynitride film, or fluoride-based dielectric film can be used. Although the effect of the addition of C does not depend on these film types, it is preferable to use an oxide or an oxynitride from the viewpoint of satisfactorily protecting the natural oxide film formed on the end face. Furthermore, from the viewpoint of improving the adhesion between the film and the semiconductor, an oxide film containing Ti (TiO 2 , SrTiO 3 etc.) and an oxynitride film (TiO 1-x N x etc.) are more preferable.

酸化チタン系の材料を誘電体膜211aに用いた場合、レーザ出射端面の最表面は誘電体膜211aとは異なる誘電体膜211b(第2の誘電体膜)で覆う多層構造を採用するのが望ましい。誘電体膜211bは、誘電体膜211aより大きなバンドギャップを有する誘電体によって形成することができる。特に405nm帯のレーザでは、雰囲気に含まれる有機不純物とレーザ光による光化学反応とによって端面が汚染される。誘電体膜211bを設けない場合、酸化チタンの光触媒機能によって、端面汚染が顕在化する。これはレーザ出射側の最表面をバンドギャップの大きな膜で終端することによって抑制される。したがって、この誘電体膜211bにはAl、SiO、Nb、Ta、ZrO等の、誘電体膜211aの構成材料よりもバンドギャップの大きな酸化物系材料を用いることが望ましい。When a titanium oxide-based material is used for the dielectric film 211a, a multilayer structure in which the outermost surface of the laser emission end face is covered with a dielectric film 211b (second dielectric film) different from the dielectric film 211a is adopted. desirable. The dielectric film 211b can be formed of a dielectric having a larger band gap than the dielectric film 211a. In particular, in a 405 nm band laser, the end face is contaminated by organic impurities contained in the atmosphere and a photochemical reaction by laser light. When the dielectric film 211b is not provided, end face contamination becomes obvious due to the photocatalytic function of titanium oxide. This is suppressed by terminating the outermost surface on the laser emission side with a film having a large band gap. Therefore, the dielectric film 211b is made of an oxide-based material having a larger band gap than the constituent material of the dielectric film 211a, such as Al 2 O 3 , SiO 2 , Nb 2 O 5 , Ta 2 O 5 , ZrO 2. It is desirable to use it.

一般的に酸化チタン系材料は、3.2eV程度と比較的小さいバンドギャップを有しているため、405nm帯(395〜410nm,3.1〜3.0eV)のレーザにおいても自然放出光(発振閾値未満の光出力)の短波長成分を吸収してしまい、初期的なCODレベルが低下することがある。そのため酸化チタン系材料を誘電体膜211aに用いる場合、その膜厚はなるべく薄いほうが初期CODレベルの低下を抑制することができる。しかしながら薄すぎると制御性が悪化するため、10nm以上50nm以下の膜厚とすることが好ましい。加えて前面反射率を5%以上とすることによって閾値光出力を低減することができ、初期CODレベルの低下をさらに抑制可能である。   In general, a titanium oxide-based material has a relatively small band gap of about 3.2 eV. Therefore, even in a 405 nm band (395 to 410 nm, 3.1 to 3.0 eV) laser, spontaneous emission light (oscillation) The short wavelength component (light output below the threshold) may be absorbed, and the initial COD level may be lowered. Therefore, when a titanium oxide-based material is used for the dielectric film 211a, a decrease in the initial COD level can be suppressed when the film thickness is as thin as possible. However, since controllability deteriorates if it is too thin, the film thickness is preferably 10 nm or more and 50 nm or less. In addition, by setting the front-surface reflectance to 5% or more, the threshold light output can be reduced, and a decrease in the initial COD level can be further suppressed.

誘電体膜211bは厚すぎると誘電体膜211a、および半導体との熱膨張係数差に起因して剥がれを生じることがあり、薄すぎると膜厚制御性が困難となるため、10nm以上、100nm以下が望ましい。10nm以上、50nm以下の厚さの酸化チタン系の誘電体膜211aを用いた場合、誘電体膜211bには反射率制御の観点からはAl、SiO等低屈折率材料が好ましく、熱膨張係数差の観点からAlがより好ましい。例えば405nm帯のレーザであれば、誘電体膜211aに10nm以上50nm以下の厚さのTiO(屈折率2.3〜2.7)を用い、誘電体膜211bに10nm以上60nm以下のAl(屈折率1.6〜1.7)を用いることにより反射率は1〜25%の範囲で制御可能である。If the dielectric film 211b is too thick, the dielectric film 211a and the semiconductor may peel off due to a difference in thermal expansion coefficient. If the dielectric film 211b is too thin, the film thickness controllability becomes difficult. Is desirable. When a titanium oxide-based dielectric film 211a having a thickness of 10 nm or more and 50 nm or less is used, the dielectric film 211b is preferably a low refractive index material such as Al 2 O 3 or SiO 2 from the viewpoint of reflectance control. Al 2 O 3 is more preferable from the viewpoint of the difference in thermal expansion coefficient. For example, in the case of a 405 nm band laser, TiO 2 (refractive index 2.3 to 2.7) having a thickness of 10 nm to 50 nm is used for the dielectric film 211a, and Al 2 of 10 nm to 60 nm is used for the dielectric film 211b. By using O 3 (refractive index of 1.6 to 1.7), the reflectance can be controlled in the range of 1 to 25%.

本実施形態によれば、少なくとも半導体との界面近傍に炭素(C)を含有する端面保護膜をレーザ出射端面に設けたことにより、保護膜中へのGa拡散を抑制し、100mW以上の高出力下でも安定した長時間駆動が可能となる。また、本実施形態の半導体レーザは、少なくとも界面近傍にCを含有するTiと酸素を含む第1の誘電体膜211aをレーザ出射端面に設け、当該第1の誘電体膜211aを覆うように形成され、かつ第1の誘電体膜211aよりも大きなバンドギャップを有する第2の誘電体膜211bを設けたことにより、保護膜中へのGa拡散を抑制しつつ、膜剥がれや端面の汚染の少ない高出力高信頼動作が可能となる。   According to this embodiment, by providing an end face protective film containing carbon (C) at least near the interface with the semiconductor on the laser emission end face, Ga diffusion into the protective film is suppressed, and a high output of 100 mW or more is achieved. Stable driving for a long time is possible even under. In addition, the semiconductor laser of the present embodiment is formed so as to cover the first dielectric film 211a by providing the first dielectric film 211a containing Ti and oxygen containing C at least near the interface on the laser emission end face. In addition, since the second dielectric film 211b having a larger band gap than the first dielectric film 211a is provided, the film diffusion and the contamination of the end face are reduced while suppressing Ga diffusion into the protective film. High output and high reliability operation is possible.

ところで、AlInGaAs系半導体レーザ(0.98nm帯)に関しては、CODレベルの低下を抑制する保護膜材料として酸化物系、窒化物系、炭化物系材料を混合した誘電体薄膜(AlSiTa1−x−y1−m−n)が上記特許文献1に報告されている。同文献によると、Al(酸化物材料)、SiN(窒化物材料)、TaC(炭化物材料)単体では、以下のような長所、短所があり、混合することによってそれぞれの短所を補うことができるとしている。なお、同文献には上記混合薄膜はAlInGaN系半導体レーザ(400nm帯)にも適用可能と記載されているが、その場合の組成比等の記載は無い。
・Al(酸化物材料):化学的には安定であるが、成膜ダメージが導入されやすい。
・SiN(窒化物材料):成膜ダメージは少ないが、誘電体/半導体界面の密着性が劣る。
・TaC(炭化物材料):界面の密着性は優れているが、誘電体/半導体界面での相互拡散が生じやすく、熱的安定性に問題がある。
By the way, with respect to the AlInGaAs-based semiconductor laser (0.98 nm band), a dielectric thin film (Al x Si y Ta 1 ) in which an oxide-based, nitride-based, or carbide-based material is mixed as a protective film material that suppresses a decrease in the COD level. -x-y O m n n C 1-m-n) is reported in Patent Document 1. According to the document, Al 2 O 3 (oxide material), SiN x (nitride material), and TaC (carbide material) alone have the following advantages and disadvantages, and the respective disadvantages are compensated by mixing. You can do that. In this document, the mixed thin film is described as being applicable to an AlInGaN-based semiconductor laser (400 nm band), but there is no description of the composition ratio in that case.
Al 2 O 3 (oxide material): Although chemically stable, film deposition damage is easily introduced.
SiN x (nitride material): little film damage, but poor adhesion at the dielectric / semiconductor interface.
TaC (Carbide material): Although the adhesion at the interface is excellent, interdiffusion at the dielectric / semiconductor interface is likely to occur, and there is a problem in thermal stability.

一方、GaN系半導体レーザでは成膜ダメージの影響は少ないため、上記Al(酸化物材料)を保護膜として用いた場合でも初期的にはCODのない高出力特性が安定して得られるが、高出力長時間駆動時にはやはり突発故障が発生し得る。その素子寿命は成膜ダメージには依存せず、発振波長に強く依存する(図6)。図6のグラフから、発振波長410nm以下で波長が短いほど寿命が短くなることがわかる。発振波長が短くなるほど短寿命化することから、短波長帯固有の劣化要因が存在することが推測された。この点、本実施形態によれば、発振波長が410nm以下である場合にも、素子寿命の長い半導体レーザを実現することが可能である。On the other hand, since the GaN-based semiconductor laser is less affected by film formation damage, even when the above Al 2 O 3 (oxide material) is used as a protective film, high output characteristics without COD can be stably obtained in the initial stage. However, a sudden failure can also occur when driving at a high output for a long time. The lifetime of the element does not depend on the film formation damage, but strongly depends on the oscillation wavelength (FIG. 6). From the graph of FIG. 6, it can be seen that the shorter the wavelength at an oscillation wavelength of 410 nm or less, the shorter the lifetime. Since the lifetime becomes shorter as the oscillation wavelength becomes shorter, it has been speculated that there are degradation factors inherent to the short wavelength band. In this regard, according to the present embodiment, it is possible to realize a semiconductor laser having a long element lifetime even when the oscillation wavelength is 410 nm or less.

第一の実施例として、本発明によるリッジストライプレーザについて記す。図2〜図4を参照しつつ、本実施例による半導体レーザの製造方法を説明する。基板としてn型GaN(0001)基板301を用いた。素子構造の作製には300hPaの減圧MOVPE装置を用いた。キャリアガスには水素と窒素の混合ガスを用い、Ga,Al,Inソースとしてそれぞれトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)、n型ドーパントにシラン(SiH)、p型ドーパントにビスシクロペンタジエニルマグネシウム(CpMg)を用いた。As a first embodiment, a ridge stripe laser according to the present invention will be described. A method for manufacturing a semiconductor laser according to the present embodiment will be described with reference to FIGS. An n-type GaN (0001) substrate 301 was used as the substrate. A 300 hPa reduced pressure MOVPE apparatus was used to fabricate the element structure. A mixed gas of hydrogen and nitrogen is used as a carrier gas, trimethylgallium (TMG), trimethylaluminum (TMA), trimethylindium (TMI) are used as Ga, Al, and In sources, silane (SiH 4 ), p is used as an n-type dopant, respectively. Biscyclopentadienyl magnesium (Cp 2 Mg) was used as the type dopant.

n型GaN基板301を成長装置に投入後、NHを供給しながら基板を昇温し、成長温度まで達した時点で成長を開始した。Siドープn型GaN層302(Si濃度4×1017cm−3、厚さ1μm)、Siドープn型Al0.1Ga0.9N(Si濃度4×1017cm−3、厚さ2μm)からなるn型クラッド層303、Siドープn型GaN(Si濃度4×1017cm−3、厚さ0.1μm)からなるn型光閉じ込め層304、In0.15Ga0.85N(厚さ3nm)井戸層とSiドープIn0.01Ga0.99N(Si濃度1×1018cm−3、厚さ4nm)バリア層からなる3周期多重量子井戸(MQW)層305、Mgドープp型Al0.2Ga0.8Nからなるキャップ層306、Mgドープp型GaN(Mg濃度2×1019cm−3、厚さ0.1μm)からなるp型光閉じ込め層307を順次堆積した。After introducing the n-type GaN substrate 301 into the growth apparatus, the substrate was heated while supplying NH 3 , and the growth was started when the growth temperature was reached. Si-doped n-type GaN layer 302 (Si concentration 4 × 10 17 cm −3 , thickness 1 μm), Si-doped n-type Al 0.1 Ga 0.9 N (Si concentration 4 × 10 17 cm −3 , thickness 2 μm) N-type cladding layer 303, Si-doped n-type GaN (Si concentration 4 × 10 17 cm −3 , thickness 0.1 μm), n-type optical confinement layer 304, In 0.15 Ga 0.85 N ( Three-cycle multiple quantum well (MQW) layer 305 composed of a well layer and a Si-doped In 0.01 Ga 0.99 N (Si concentration 1 × 10 18 cm −3 , thickness 4 nm) barrier layer, Mg-doped A cap layer 306 made of p-type Al 0.2 Ga 0.8 N and a p-type optical confinement layer 307 made of Mg-doped p-type GaN (Mg concentration 2 × 10 19 cm −3 , thickness 0.1 μm) are sequentially deposited. did.

ひきつづきMgドープp型Al0.1Ga0.9N(Mg濃度1×1019cm−3、厚さ0.5μm)からなるp型クラッド層308を堆積し、Mgドープp型GaN(Mg濃度1×1020cm−3、厚さ0.02μm)からなるコンタクト層309を堆積した(図2(a))。GaN成長は、基板温度1080℃,TMG供給量58μmol/min,NH供給量0.36mol/minにて,AlGaN成長は、基板温度1080℃,TMA供給量36μmol/min,TMG供給量58μmol/min,NH供給量0.36mol/minにて、それぞれおこなった。InGaN系MQW層の成長は、基板温度800℃,TMG供給量8μmol/min,NH0.36mol/minにておこない、このとき、TMIn供給量は井戸層で48μmol/min、バリア層で3μmol/minとした。Subsequently, a p-type cladding layer 308 made of Mg-doped p-type Al 0.1 Ga 0.9 N (Mg concentration 1 × 10 19 cm −3 , thickness 0.5 μm) is deposited, and Mg-doped p-type GaN (Mg concentration) is deposited. A contact layer 309 made of 1 × 10 20 cm −3 and a thickness of 0.02 μm was deposited (FIG. 2A). The GaN growth is performed at a substrate temperature of 1080 ° C., a TMG supply rate of 58 μmol / min, and an NH 3 supply rate of 0.36 mol / min, and the AlGaN growth is performed at a substrate temperature of 1080 ° C., a TMA supply rate of 36 μmol / min, and a TMG supply rate of 58 μmol / min. , NH 3 was supplied at 0.36 mol / min. The InGaN-based MQW layer is grown at a substrate temperature of 800 ° C., a TMG supply rate of 8 μmol / min, and NH 3 0.36 mol / min. At this time, the TMIn supply rate is 48 μmol / min for the well layer and 3 μmol / min for the barrier layer. It was set to min.

上記のように作製したレーザウエハ上にSiO層310を形成し(図2(b))、フォトリソグラフィーにより幅1.3μmのSiOストライプ311を形成した(図2(c))。このSiOストライプ311をマスクとしてドライエッチングによりpクラッド層308を一部除去し、リッジ構造を形成した(図3(a))。引続きSiOマスク311を除去し、あらたにSiO層312をウエハ全面に堆積した。次にレジスト313を厚く塗布し(図3(b))、酸素プラズマ中でエッチバックによりリッジトップの頭出しをおこなった(図3(c))。An SiO 2 layer 310 was formed on the laser wafer produced as described above (FIG. 2B), and an SiO 2 stripe 311 having a width of 1.3 μm was formed by photolithography (FIG. 2C). Using this SiO 2 stripe 311 as a mask, the p-cladding layer 308 was partially removed by dry etching to form a ridge structure (FIG. 3A). Subsequently, the SiO 2 mask 311 was removed, and a SiO 2 layer 312 was newly deposited on the entire surface of the wafer. Next, a thick resist 313 was applied (FIG. 3B), and the top of the ridge was cleaved by etch back in oxygen plasma (FIG. 3C).

リッジトップのSiOをバッファードフッ酸で除去後、Pd/Pt層314を電子ビームで堆積し、リフトオフによりpコンタクトを形成した。次に窒素雰囲気中600℃で30秒のRTA(Rapid Thermal Annealing)をおこないpオーミック電極を形成した(図4(a))。この後、膜厚50nmのTi膜、膜厚100nmのPt膜、膜厚2μmのAu膜をスパッタにより堆積し、カバー電極315とした(図4(b))。上記p電極工程の後、ウエハ裏面を100μm厚まで薄膜化し、膜厚5nmのチタン(Ti)膜、膜厚20nmのAl膜、膜厚10nmのTi膜、膜厚500nmのAu膜をこの順で真空蒸着しn電極とした。電極形成後の試料をストライプに垂直な方向に劈開し、共振器長600μmのレーザバーを形成した。After removing SiO 2 on the ridge top with buffered hydrofluoric acid, a Pd / Pt layer 314 was deposited by an electron beam, and a p-contact was formed by lift-off. Next, RTA (Rapid Thermal Annealing) was performed at 600 ° C. for 30 seconds in a nitrogen atmosphere to form a p-ohmic electrode (FIG. 4A). Thereafter, a Ti film with a thickness of 50 nm, a Pt film with a thickness of 100 nm, and an Au film with a thickness of 2 μm were deposited by sputtering to form a cover electrode 315 (FIG. 4B). After the p-electrode process, the back surface of the wafer is thinned to a thickness of 100 μm, and a titanium (Ti) film having a thickness of 5 nm, an Al film having a thickness of 20 nm, a Ti film having a thickness of 10 nm, and an Au film having a thickness of 500 nm are sequentially formed. Vacuum deposition was performed to form an n-electrode. The sample after electrode formation was cleaved in the direction perpendicular to the stripes to form a laser bar having a resonator length of 600 μm.

上記レーザバーをRFマグネトロンスパッタ装置に導入し、出射端面に後述のAR膜211を形成した。次に、レーザーバーを一旦スパッタ装置から取り出した後、再びスパッタ装置にて反対側の端面にSiO/TiO多層膜からなる反射率95%のHR膜を形成した。その後素子分離をおこない、素子幅300μmのレーザチップを作製した。The laser bar was introduced into an RF magnetron sputtering apparatus, and an AR film 211 described later was formed on the emission end face. Next, after removing the laser bar from the sputtering apparatus, an HR film having a reflectivity of 95% made of a SiO 2 / TiO 2 multilayer film was formed again on the opposite end face by the sputtering apparatus. Thereafter, element isolation was performed to produce a laser chip having an element width of 300 μm.

ARコーティング材料にはAl単層膜(22nm厚)を用いた。スパッタターゲットは高純度Alを用いた。半導体との界面近傍においてAR膜211中にCをドーピングするためにプラズマガスとして、まずArと(O+CO)との混合ガスを用いた。所望の膜厚の1/5程度を成膜した後、一旦プラズマを落として成膜を中断した。そして、再度Ar+Oの混合ガスを用いて所望の膜厚まで成膜した。ここでAr流量(30sccm)とトータルの流量(45sccm)は一定であり、OとCOの比率を変化させることでAl膜中のC量を変化させた。前端面の反射率は波長405nmで約15%と見積もられた。As the AR coating material, an Al 2 O 3 single layer film (22 nm thick) was used. High purity Al 2 O 3 was used as the sputtering target. First, a mixed gas of Ar and (O 2 + CO 2 ) was used as a plasma gas in order to dope C into the AR film 211 in the vicinity of the interface with the semiconductor. After about 1/5 of the desired film thickness was formed, the plasma was once dropped and the film formation was interrupted. Then, a film was formed again to a desired film thickness using a mixed gas of Ar + O 2 . Here, the Ar flow rate (30 sccm) and the total flow rate (45 sccm) are constant, and the C amount in the Al 2 O 3 film was changed by changing the ratio of O 2 and CO 2 . The reflectance of the front end face was estimated to be about 15% at a wavelength of 405 nm.

以上の工程により得られたレーザチップをヒートシンクに融着し、評価素子とした。典型的なレーザ初期特性は、発振波長405nm、発振しきい電流密度3.2kA/cm、しきい電圧4.0Vであった。これらの素子について150mWの信頼性試験をおこない素子寿命を評価した。The laser chip obtained by the above steps was fused to a heat sink to obtain an evaluation element. Typical initial laser characteristics were an oscillation wavelength of 405 nm, an oscillation threshold current density of 3.2 kA / cm 2 , and a threshold voltage of 4.0 V. These elements were subjected to a reliability test of 150 mW to evaluate the element lifetime.

図5は、Al/半導体界面のC濃度と素子寿命の関係を示す図である。膜中のC濃度は堆積した膜を2次イオン質量分析(SIMS:Secondary Ion Mass Spectrometry)測定することにより決定した。図5より明らかなように、Al/半導体界面のC濃度が0.1at.%より高くなると突発劣化が抑制され、素子寿命が急激に改善されることがわかる。この改善効果の要因を調べるため、AR膜211中のC濃度0.03at.%の素子と0.1at.%の素子を80℃、出力100mWで100時間駆動し、透過型電子顕微鏡による断面観察分析(断面TEM−EDX)によりAR端面近傍の分析を行った。この結果C濃度0.03at.%の素子ではAR膜211中にGaが検出されたのに対し、C濃度0.1at.%の素子ではGaは検出されなかった。これらの結果より、AR膜211/半導体界面のC濃度を0.1at.%以上とすることで、Gaの拡散を防ぎ、半導体側の非発光中心濃度の増加を抑制することが可能となることがわかった。FIG. 5 is a diagram showing the relationship between the C concentration at the Al 2 O 3 / semiconductor interface and the element lifetime. The C concentration in the film was determined by measuring the deposited film by secondary ion mass spectrometry (SIMS). As is apparent from FIG. 5, the C concentration at the Al 2 O 3 / semiconductor interface is 0.1 at. It can be seen that when the ratio is higher than%, sudden deterioration is suppressed and the device life is drastically improved. In order to investigate the factor of this improvement effect, the C concentration in the AR film 211 is 0.03 at. % Element and 0.1 at. % Element was driven at 80 ° C. and an output of 100 mW for 100 hours, and the vicinity of the AR end face was analyzed by cross-sectional observation analysis (cross-section TEM-EDX) using a transmission electron microscope. As a result, the C concentration was 0.03 at. %, Ga was detected in the AR film 211, whereas the C concentration was 0.1 at. Ga was not detected in% elements. From these results, the C concentration of the AR film 211 / semiconductor interface was 0.1 at. It has been found that by setting the ratio to at least%, it is possible to prevent Ga diffusion and suppress an increase in the concentration of non-emissive centers on the semiconductor side.

AR端面において誘電体膜211aとしてTiO層(39nm厚)、誘電体膜211bとして、Al層(25nm厚)を用いたこと以外は、実施例1と同様にして半導体レーザを作製し評価した。比較のため、AR保護膜をTiO単層(43nm厚)とした素子も作成した。ここでTiO/半導体界面のGa濃度は3%(at.%)であった。前面反射率は2層(TiO/Al)AR素子で約15%、単層(TiO)AR素子で約16%と見積もられた。A semiconductor laser was fabricated in the same manner as in Example 1 except that a TiO 2 layer (39 nm thickness) was used as the dielectric film 211a and an Al 2 O 3 layer (25 nm thickness) was used as the dielectric film 211b on the AR end face. evaluated. For comparison, an element in which the AR protective film was a TiO 2 single layer (43 nm thickness) was also prepared. Here, the Ga concentration at the TiO 2 / semiconductor interface was 3% (at.%). The front reflectance was estimated to be about 15% for the two-layer (TiO 2 / Al 2 O 3 ) AR element and about 16% for the single-layer (TiO 2 ) AR element.

150mWの信頼性試験を行ったところ、どちらの素子も1000h未満で突発劣化は発生しなかった。しかし、TiO単層AR素子では駆動電流の変動が確認され、劣化素子の端面をTEM観察したところ、端面にSiを含む堆積物が確認された。When a reliability test of 150 mW was performed, neither element was suddenly deteriorated after 1000 h. However, in the TiO 2 single-layer AR element, fluctuations in driving current were confirmed, and when the end face of the deteriorated element was observed with a TEM, deposits containing Si were confirmed on the end face.

2層(TiO/Al)AR素子と実施例1に記載の単層(Al)AR素子について200mWの信頼性評価を行った。その結果、どちらの素子も1000h未満で突発劣化は発生しなかった。しかし、Al単層AR素子の中に、約800hを経過した時点でスロープ効率が劣化している素子があった。劣化した素子のTEM観察を行ったところ、Alと半導体の膜剥がれが生じていることが判った。A reliability evaluation of 200 mW was performed on the two-layer (TiO 2 / Al 2 O 3 ) AR element and the single-layer (Al 2 O 3 ) AR element described in Example 1. As a result, neither element was suddenly deteriorated after 1000 hours. However, among the Al 2 O 3 single-layer AR elements, there was an element in which the slope efficiency deteriorated after about 800 hours. As a result of TEM observation of the deteriorated element, it was found that film peeling between Al 2 O 3 and the semiconductor occurred.

本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば上記実施形態においては保護膜が多層の誘電体膜からなる例を示したが、保護膜は単層の誘電体膜からなっていてもよい。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, an example in which the protective film is formed of a multilayer dielectric film is shown, but the protective film may be formed of a single-layer dielectric film.

Claims (7)

ガリウム(Ga)を構成元素として含むIII族窒化物半導体からなる活性層を有し、前記活性層の端面からレーザ光を出射する窒化物系半導体光素子であって、
前記レーザ光が出射される前記端面上に設けられ、単層または多層の誘電体膜からなる保護膜を備え、
前記端面に接する前記誘電体膜の一部の領域には、炭素が含まれていることを特徴とする窒化物系半導体光素子。
A nitride-based semiconductor optical device having an active layer made of a group III nitride semiconductor containing gallium (Ga) as a constituent element and emitting laser light from an end face of the active layer,
Provided on the end face from which the laser beam is emitted, comprising a protective film made of a single-layer or multilayer dielectric film,
A nitride-based semiconductor optical device, wherein carbon is included in a partial region of the dielectric film in contact with the end face.
請求項1に記載の窒化物系半導体光素子において、
前記端面に接する前記誘電体膜中の、炭素濃度が1at.%以上の領域は、前記端面からの距離が当該誘電体膜の厚みの1/2未満である領域に限られている窒化物系半導体光素子。
The nitride-based semiconductor optical device according to claim 1,
The dielectric film in contact with the end face has a carbon concentration of 1 at. % Or more of the region is a nitride-based semiconductor optical device in which the distance from the end face is limited to a region that is less than ½ of the thickness of the dielectric film.
請求項2記載の窒化物系半導体光素子において、前記領域の炭素濃度は、10at.%以下である窒化物系半導体光素子。   3. The nitride based semiconductor optical device according to claim 2, wherein the carbon concentration in the region is 10 at. % Nitride-based semiconductor optical device. 請求項1記載の窒化物系半導体光素子において、
前記炭素が含まれている前記領域の炭素濃度は、0.1at.%以上10at.%以下である窒化物系半導体光素子。
The nitride-based semiconductor optical device according to claim 1,
The carbon concentration in the region containing carbon is 0.1 at. % Or more and 10 at. % Nitride-based semiconductor optical device.
請求項1乃至4のうちのいずれか1項に記載の窒化物系半導体光素子において、
前記保護膜は、
前記端面に接し、チタン(Ti)を含む酸化物からなる第1の誘電体膜と、
前記第1の誘電体膜上に設けられ、前記第1の誘電体膜よりもバンドギャップの大きな誘電体からなる第2の誘電体膜と、
によって構成されている窒化物系半導体光素子。
The nitride-based semiconductor optical device according to any one of claims 1 to 4,
The protective film is
A first dielectric film made of an oxide containing titanium (Ti) in contact with the end face;
A second dielectric film provided on the first dielectric film and made of a dielectric having a larger band gap than the first dielectric film;
A nitride-based semiconductor optical device comprising:
請求項5記載の窒化物系半導体光素子において、前記第1の誘電体膜は、酸化チタン系材料からなり、前記第1の誘電体膜の厚みが10nm以上50nm以下の範囲内である窒化物系半導体光素子。   6. The nitride semiconductor optical device according to claim 5, wherein the first dielectric film is made of a titanium oxide-based material, and the thickness of the first dielectric film is in a range of 10 nm to 50 nm. -Based semiconductor optical device. 請求項5または6記載の窒化物系半導体光素子において、前記第2の誘電体膜の厚みが10nm以上100nm以下の範囲内である窒化物系半導体光素子。   7. The nitride-based semiconductor optical device according to claim 5, wherein the thickness of the second dielectric film is in the range of 10 nm to 100 nm.
JP2008554995A 2007-01-25 2008-01-16 Nitride-based semiconductor optical device Pending JPWO2008090727A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007015606 2007-01-25
JP2007015606 2007-01-25
PCT/JP2008/000027 WO2008090727A1 (en) 2007-01-25 2008-01-16 Nitride semiconductor optical element

Publications (1)

Publication Number Publication Date
JPWO2008090727A1 true JPWO2008090727A1 (en) 2010-05-13

Family

ID=39644302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008554995A Pending JPWO2008090727A1 (en) 2007-01-25 2008-01-16 Nitride-based semiconductor optical device

Country Status (2)

Country Link
JP (1) JPWO2008090727A1 (en)
WO (1) WO2008090727A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062300A (en) * 2008-09-03 2010-03-18 Rohm Co Ltd Nitride semiconductor element and method of manufacturing the same
US8144743B2 (en) 2008-03-05 2012-03-27 Rohm Co., Ltd. Nitride based semiconductor device and fabrication method for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838952B2 (en) * 1976-01-22 1983-08-26 日本電気株式会社 semiconductor laser equipment
JPS60107883A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Semiconductor laser
JPH09270569A (en) * 1996-01-25 1997-10-14 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH09266354A (en) * 1996-03-29 1997-10-07 Toshiba Corp Compound semiconductor light emitting element
JPH10190139A (en) * 1996-12-20 1998-07-21 Nec Corp Manufacture of semiconductor laser element

Also Published As

Publication number Publication date
WO2008090727A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4879563B2 (en) Group III nitride semiconductor light emitting device
JP4246242B2 (en) Semiconductor light emitting device
US7103082B2 (en) Semiconductor laser element
JP3833674B2 (en) Nitride semiconductor laser device
JP2002335053A (en) Semiconductor laser, manufacturing method thereof, semiconductor device and manufacturing method thereof
JPH09191160A (en) Semiconductor light emitting element
US20100034231A1 (en) Semiconductor laser
JP5651077B2 (en) Gallium nitride semiconductor laser device and method of manufacturing gallium nitride semiconductor laser device
JP5444609B2 (en) Semiconductor laser element
JP5193718B2 (en) Nitride semiconductor laser device
JPH1174622A (en) Nitride based semiconductor luminous element
JP2004063537A (en) Semiconductor light emitting element, its manufacturing method, semiconductor device, and its manufacturing method
JP2000208814A (en) Semiconductor light-emitting element
US20100272142A1 (en) Nitride semiconductor optical element and method of manufacturing the same
JP5223531B2 (en) Semiconductor laser element
JPWO2008090727A1 (en) Nitride-based semiconductor optical device
JP2009038408A (en) Semiconductor light emitting element
JP4660333B2 (en) Nitride semiconductor laser device
JP5233987B2 (en) Nitride semiconductor laser
JP3717255B2 (en) Group 3 nitride semiconductor laser device
JP2004179532A (en) Semiconductor light emitting element and semiconductor device
JP2000216476A (en) Semiconductor light emitting element
JP2007081197A (en) Semiconductor laser and its manufacturing method
JP4118025B2 (en) Gallium nitride semiconductor laser device
JPH10303493A (en) Nitride semiconductor laser