JP4284870B2 - Method for producing non-oriented electrical steel sheet for reluctance motor iron core - Google Patents

Method for producing non-oriented electrical steel sheet for reluctance motor iron core Download PDF

Info

Publication number
JP4284870B2
JP4284870B2 JP2001022802A JP2001022802A JP4284870B2 JP 4284870 B2 JP4284870 B2 JP 4284870B2 JP 2001022802 A JP2001022802 A JP 2001022802A JP 2001022802 A JP2001022802 A JP 2001022802A JP 4284870 B2 JP4284870 B2 JP 4284870B2
Authority
JP
Japan
Prior art keywords
mass
reluctance motor
less
steel sheet
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001022802A
Other languages
Japanese (ja)
Other versions
JP2002226952A (en
Inventor
厚人 本田
雅昭 河野
健一 定広
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001022802A priority Critical patent/JP4284870B2/en
Publication of JP2002226952A publication Critical patent/JP2002226952A/en
Application granted granted Critical
Publication of JP4284870B2 publication Critical patent/JP4284870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、リラクタンスモータ中でもスイッチトリラクタンスモータの鉄心材料として好適な無方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、省エネルギー化の要請が強化されるに伴って、電気機器類の高効率化指向が高まってきた。鋼板メーカーは上記の要請に対応すべく、以下に述べるような様々な手段によって電気機器類用電磁鋼板の鉄損特性の改善に努めてきた。
【0003】
さて、電磁鋼板に対するSiの添加は、鋼板の比抵抗を高めることによって鉄損を低減させる最も有効な手段であり、この手段は、電磁鋼板の分野において広く用いられている。また、添加元素としては、AlもSiと同様の効果を有することが知られる。
例えば特開昭53−66816 号公報には、鋼板の比抵抗を高め、かつ微細なAlNの析出による粒成長抑制作用を避けるために、Alの積極添加が提案されている。
また、特開昭55−73819 号公報では、Alを添加し、かつ焼鈍雰囲気の調整により鋼板表面の内部酸化層を低減することによって、良好な高磁場特性を達成している。
さらに、特開昭54−68716 号公報および特開昭58−25427 号公報では、Alを添加すると共に、REM とSbを複合添加したり、高純化したりして、集合組織を改善することにより鉄損を低減している。
【0004】
その他、特開昭61−87823 号公報では、Alを添加し、仕上げ焼鈍時の鋼板冷却速度を制御することによって、また特開平3−274247号公報では、Alを添加すると共に、B,Sb,Snの複合添加により酸窒化を防止することによって、特開平3−294422号公報では、Alを添加し、冷間圧延を制御して鋼板のL,C特性比を低減することによって、特開平4−63252 号公報では、MnとAlを複合添加することによって、特開平4−136138号公報では、Alを添加すると共に、極低Siとし、かつP, Sbの添加により集合組織を改善することによって、いずれも磁気特性の改善を達成している。
【0005】
ところで、最近では、回転機器においても、その高効率化に加えて、リサイクル性が求められるようになってきた。
通常の誘導モータやDCモータ、ブラシレスDCモータはいずれも、回転子鉄心部にアルミや銅などの導体かあるいは磁石が用いられていた。従って、鉄心をリサイクルするためには、これらと電磁鋼板との分別が必要であった。
これに対し、リラクタンスモータは、リラクタンストルクをその駆動力として用いるため、回転子部には導体や磁石は基本的に必要なく、電磁鋼板のみで事足りる。従って、リサイクル性に富み、かつ構造も簡単、安価でかつ堅牢であるという特長を有するため、古くから研究が行われてきた。
【0006】
しかしながら、その反面、回転の制御が困難であること、また回転時の騒音が激しいことなどの問題を有するため、長い間実用化にまでは至らなかった。
この点、最近の半導体技術および制御技術の進歩により、これらの問題が解決されるに至り、洗濯機や掃除機などのモータとして実用化が促進されるようになってきた。
このような背景のもと、その安価さ、堅牢さおよびリサイクル性の観点から、自動車その他に用いられる回転機用としても着目され始めている。
【0007】
ところが、このリラクタンスモータは、動作条件が他のモータと大きく異なるため、従来開発されてきた電磁鋼板を用いても、必ずしも満足のいく特性を得ることができなかった。
【0008】
【発明が解決しようとする課題】
この発明は、上記の現状に鑑み開発されたもので、リラクタンスモータ特にスイッチトリラクタンスモータの効率を効果的に向上させることができる無方向性電磁鋼板の有利な製造方法提案することを目的とする。
【0009】
【課題を解決するための手段】
さて、発明者らは、鋼板の磁気特性を詳細に調査するだけでなく、それを用いて実際にスイッチトリラクタンスモータを作製し、その実機特性と素材特性との関係について詳細に検討を行った。
その結果、実機のモータ効率を高めるためには、商用周波数よりも高周波でかつ高磁束密度域における素材の鉄損を低減すると共に、残留磁束密度を小さくすることが有効であることの知見を得た。
この発明は、上記の知見に立脚するものである。
【0013】
すなわち、この発明の要旨構成は次のとおりである。
1.C:0.0050mass%以下、Si:0.1 〜7.0 mass%およびMn:0.1〜2.5mass%を含有し、残部Feおよび不可避的不純物の成分組成に調整した鋼スラブを、1200℃以下で加熱した後、熱間圧延し、ついで1回または中間焼鈍を含む2回の冷間圧延を施すに際し、60℃以上の温度域で少なくとも25%の圧下を施し、その後 850℃以上の温度で仕上げ焼鈍を行ったのち、冷却を4MPa 以下の張力付与下で行うことを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法。
2.上記1において、鋼スラブ成分が、さらにAlを0.1〜2.5mass%の範囲で含有するか、またはAlを0.01mass%以下に抑制した組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法
3.上記1または2において、鋼スラブ成分が、さらにP:0.1mass%以下を含有する組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法
4.上記1〜3のいずれかにおいて、鋼スラブ成分が、さらにSb:0.005〜0.120mass%およびSn:0.005〜0.25mass%のうちから選んだ一種または二種を含有する組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法
5.上記1〜4のいずれかにおいて、鋼スラブ成分が、さらにNi,CuおよびCrのうちから選んだ一種または二種以上をそれぞれ10mass%以下で含有する組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法
【0014】
【発明の実施の形態】
以下、この発明を具体的に説明する。
さて、発明者らは先ず、市販の種々のスイッチトリラクタンスモータを入手し、これらと同等の形状に加工できる金型を作製し、種々の鋼板素材を打抜いてモータを作製した。そして、これらモータの最大効率を測定した。モータ効率は入力に対する出力の比、すなわちモータ効率=(出力/入力)× 100(%)で表される。そこで、モータの回転数を種々に変化させ、上記したモータ効率の最大値(モータの最大効率)を求めた。
なお、素材特性の評価に際しては、圧延方向および圧延直角方向のエプスタイン試験片(各々L片、C片という)を用いた磁気測定を行った。また、商用周波数だけでなく、50 kHzまでの高周波域における磁気測定を行い、これらを詳細に解析検討した。
その結果、励磁磁束密度:1.5 T、励磁周波数:800 Hzにおける圧延方向(L方向)および圧延直角方向(C方向)の平均鉄損W15/800(L+C) と磁束密度が 1.8Tとなるまで磁化した時の残留磁束密度Br1.8がモータ効率に与える影響がとりわけ大きいことが判明した。
【0015】
図1に、定格が 300Wのスイッチトリラクタンスモータの最大効率に及ぼす素材の鉄損W15/800(L+C) と残留磁束密度Br1.8の影響について調べた結果を示す。
同図に示したとおり、モータの最大効率は、鉄損W15/800(L+C) が 150 W/kg以下でかつ、残留磁束密度Br1.8が 1.0T以下を満足する場合に、とりわけ良好であることが分かる。
【0016】
上記したように、鉄損W15/800(L+C) と残留磁束密度Br1.8が、この発明の適正範囲を満足する素材を使用した場合において、とりわけ良好なモータ特性が得られる理由は、必ずしも明らかではないが、以下のように推察できる。
すなわち、スイッチトリラクタンスモータの励磁方法としては幾つかの方法があるが、ステータのティース部において磁極の反転がない、片側励磁によるものが主体である。
【0017】
つまり、まず第一に、鉄心材料にとっては、B−Hループいわゆるヒステリシスループにおける磁束密度Bが正または負の片側だけで磁化される。
図2(b) に、この状態を、通常の状態(同図(a))と比較して示す。
この場合には、磁化力が反転することなく磁束が変化するため、磁化過程における出発点は残留磁束密度の位置となる。
この残留磁束密度が大きいと、磁化特性および渦電流特性が劣化するという問題が生じる。
モータは、ステータとロータの間にエアギャップが存在するため、実際のモータにおいては残留磁束密度はさほど大きくない。しかしながら、素材の残留磁束密度を小さくしておくことで、実際のモータにおいてもさらに小さい残留磁束密度とすることができ、これが銅損および鉄損の低減に寄与し、高効率が得られるものと考えられる。
【0018】
また第二に、スイッチトリラクタンスモータは、スイッチング時の磁化の変化に伴う磁束密度の変化を、その回転の駆動力とするため、鉄心材料にかかる磁束密度は通常のモータよりも大きく、しかも励磁波形は正弦波からずれて大きな歪みを伴う。従って、上述の残留磁束密度も 1.8Tの高磁束密度域から磁化力を減じた時のものが重要になるものと考えられる。しかも、鉄損に関しても、従来のモータで検討されていた領域よりも高磁束密度かつ高周波域でのものが重要となるものと考えられる。
【0019】
上述したとおり、この発明は、従来のモータとは磁化条件が大きく異なるスイッチトリラクタンスモータにおいて、このような特殊な磁化条件を十分に考慮した上で素材特性を詳細に検討した結果、完成されたものである。
【0020】
次に、この発明において、素材の成分組成を前記の範囲に限定した理由について説明する。
C:0.0050mass%以下
Cは、γ域を拡大し、α−γ変態点を低下させることから、焼鈍中にγ相がα粒界にフィルム状に生成しα粒の成長を抑制するため、Cは基本的に少なくする必要がある。また、SiやAl等のα相安定化元素を多量に含有し、全温度域でγ相が生成しない場合でも、C量が0.0050mass%を超えると鉄損特性の時効劣化を引き起こすおそれがある。従ってこの発明では、C量は0.0050mass%以下に限定した。
【0021】
Si:0.1 〜7.0 mass%
Siは、鋼の比抵抗を高めて鉄損を低下させるだけでなく、磁壁エネルギーを低下させて残留磁束密度を低減させる効果を有する。しかしながら、含有量が0.1 mass%に満たないとその添加効果に乏しく、一方 7.0mass%を超えると飽和磁束密度を低下させ、磁化特性の劣化を招くので、Siは 0.1〜7.0 mass%の範囲に限定した。好ましくは 0.3〜4.6 mass%である。
Mn:0.1〜2.5 mass%
Mnも、SiやAlほどではないが鋼の比抵抗を高め、鉄損を低下させる効果がある。また、熱間圧延性を改善する効果があるので、少なくとも 0.1mass%を含有させることとした。しかしながら、あまりに多量に含有されると冷間圧延性の劣化を招くので、上限は 2.5mass%とした。
【0022】
以上、必須成分について説明したが、この発明では、その他にも必要に応じて以下の元素を適宜添加することができる。
Al:0.1 〜2.5 mass%またはAl:0.01mass%以下
Alは、Siと同様、鋼の比抵抗を高め鉄損を低下させるのに有効な元素であり、そのためには 0.1mass%以上添加することが好ましい。しかしながら、含有量が2.5 mass%を超えると連続鋳造でのモールドとの潤滑性が低下し鋳造が困難となるので、Alを含有させる場合には 0.1〜2.5 mass%の範囲とすることが好ましい。
また、上記したような比抵抗向上元素として利用しない場合には、0.01mass%を超え0.10mass%までの添加範囲ではむしろ粒成長性を阻害し、鉄損特性を劣化させるので、この場合にはAlは0.01mass%以下に抑制することが好ましい。
【0024】
P:0.1 mass%以下
Pも、SiやAlほどではないが鋼の比抵抗を高め、鉄損を低下させる効果があり、また粒界偏析により冷延再結晶後の集合組織を改善して磁束密度を向上させる効果があるので、必要に応じて添加してもよい。しかしながら、過度の粒界偏析は粒成長性を阻害し鉄損を劣化させるので、その上限は 0.1mass%とする。
【0025】
Sb:0.005 〜0.120 mass%
Sbは、集合組織を改善して磁束密度を向上させるだけでなく、鋼板表層の酸窒化を抑制し、さらにこれに伴う表層微細粒の生成を抑制することにより表面硬度の上昇を抑えて、打抜き加工性を向上させる作用がある。また、残留磁束密度を低減する上でも有用な元素である。しかしながら、含有量が 0.005mass%に満たないとその添加効果に乏しく、一方 0.120mass%を超えると粒成長性が阻害され磁気特性の劣化を招くので、Sbは 0.005〜0.120 mass%の範囲で含有させることが好ましい。
【0026】
Sn:0.005 〜0.25mass%
Snも、Sbと同様の目的で添加しても良いが、含有量が 0.005mass%未満ではその効果はなく、一方0.25mass%を超えると粒成長性が阻害され磁気特性が劣化するので、含有量は 0.005〜0.25mass%とすることが好ましい。
【0027】
その他、Ni,CuおよびCr等も比抵抗を高める元素であるので、添加してもよいが、いずれも10mass%を超えると圧延性が劣化するので、10mass%以下で添加することが好ましい。
【0028】
また、Sは、析出物、介在物を形成し、粒成長性を阻害するので、その混入は極力低減する必要があるが、混入量が0.01mass%以下であれば許容できる。
【0029】
次に、この発明の製造条件について説明する。
熱延条件については、省エネルギーのため、スラブ加熱温度は1200℃以下とした
また、熱延板焼鈍を行う場合には、焼鈍温度が 800℃以上でないと磁束密度を向上させるのが難しいので、800 ℃以上の温度域で行うことが好ましい。
【0030】
ついで、1回または中間焼鈍を含む2回の圧延を施すが、この冷間圧延において、集合組織を適正とするためには、60℃以上の温度域で少なくとも25%の圧下を施すことが重要である。
つまり、高周波・高磁束密度域での鉄損を低減するには、磁化容易軸である<100>が圧延方向およびその直角方向にほぼ平均して配向しているのが理想的であり、しかも高磁束密度域において有利な<111>をある程度含んでいることが好ましいと考えられる。しかしながら、圧延温度が60℃に満たなかったり、圧下率が25%に満たないと、上記のような集合組織の生成が不十分となり、良好な磁気特性が得られない。
なお、かかる圧延は、ゼンジマー圧延でも達成可能であるが、生産効率の観点からはタンデム圧延の方が有利である。
【0031】
上記の冷間圧延後、仕上げ焼鈍を施すが、この際の焼鈍温度が 850℃に満たないと粒成長が不十分で、良好な鉄損および低い磁気異方性が得られないので、仕上げ焼鈍温度は 850℃以上とする必要がある。
さらに、冷却時における張力が4 MPaを超えると、残留磁束密度特性が劣化するので、冷却時における付与張力は4 MPa以下に制限した。
【0032】
実施例1
表1に示す成分組成になる鋼スラブを、通常のガス加熱炉により1150℃に加熱したのち、熱間圧延により 2.5mm厚の熱延板とした。ついで、880 ℃で10秒間の熱延板焼鈍後、4スタンドのタンデム圧延機を用いて最終板厚:0.35mmに仕上げた。この時、4パス目はスタンド入側温度:70℃、圧下率:32%の条件で行った。その後、920 ℃で仕上げ焼鈍を施したのち、3 MPaの張力下で冷却してから、コーティング処理を施して製品板とした。
かくして製品板から、素材評価のためL,C方向のエプスタイン試験片を採取し、磁気特性を測定した。また、300Wのスイッチトリラクタンスモータを試作して、そのモーター効率を測定した。
得られた結果を整理して表2に示す。
【0033】
【表1】

Figure 0004284870
【0034】
【表2】
Figure 0004284870
【0035】
表2から明らかなように、鉄損W15/800(L+C) が 150 W/kg 以下で、かつ残留磁束密度Br1.8が 1.0T以下の材料を素材として用いた場合に,とりわけ良好なモータ効率が得られている。
【0036】
実施例2
表1に示した鋼G,H,K,Lを素材として製品板を製造するに際し、表3に示すようにタンデム圧延条件および焼鈍温度を種々に変化させて、冷間圧延および仕上げ焼鈍を行った。
なお、冷間圧延に使用したタンデム圧延機は4スタンドからなり、このうちスタンド入側温度が一番高いものについて、入側温度と圧下率を示した。また、スラブ加熱、熱延板焼鈍およびコーティング処理は実施例1と同じ条件で行った。
かくして得られた製品板から、素材評価のためL,C方向のエプスタイン試験片を採取し、磁気特性を測定した。また、300Wのスイッチトリラクタンスモータを試作して、そのモーター効率を測定した。
得られた結果を表3に併記する。
【0037】
【表3】
Figure 0004284870
【0038】
表3に示したとおり、本発明に従えば、高周波・高磁束密度域における鉄損が低く、かつ残留磁束密度が小さい電磁鋼板を得ることができ、ひいてはかかる鋼板を素材として用いることによって、スイッチトリラクタンスモータのモータ効率を格段に向上させることができた。
【0039】
【発明の効果】
かくして、本発明によれば、高周波・高磁束密度域における鉄損が低く、かつ残留磁束密度が小さい無方向性電磁鋼板を得ることができ、ひいてはかような高周波・高磁束密度域における磁気特性に優れた鋼板を素材として使用することにより、高効率のリラクタンスモータを得ることができる。
【図面の簡単な説明】
【図1】 定格が 300Wのスイッチトリラクタンスモータの最大効率に及ぼす素材の鉄損W15/800(L+C) と残留磁束密度Br1.8の影響を示した図である。
【図2】 通常の励磁と片側励磁のヒステリシスループ(B−Hループ)の違いを比較して示した図である。[0001]
[Industrial application fields]
This invention relates to a manufacturing method of a preferred non-oriented electrical steel plate as core material for the switched reluctance motor even during re reluctance motor.
[0002]
[Prior art]
In recent years, with increasing demand for energy saving, the trend toward higher efficiency of electrical equipment has increased. In order to meet the above requirements, steel sheet manufacturers have made efforts to improve the iron loss characteristics of electrical steel sheets for electrical equipment by various means as described below.
[0003]
Now, the addition of Si to the electrical steel sheet is the most effective means for reducing iron loss by increasing the specific resistance of the steel sheet, and this means is widely used in the field of electrical steel sheets. As an additive element, Al is known to have the same effect as Si.
For example, Japanese Patent Application Laid-Open No. 53-66816 proposes the positive addition of Al in order to increase the specific resistance of the steel sheet and avoid the effect of suppressing grain growth due to the precipitation of fine AlN.
In JP-A-55-73819, good high magnetic field characteristics are achieved by adding Al and reducing the internal oxide layer on the steel sheet surface by adjusting the annealing atmosphere.
Furthermore, in JP-A-54-68716 and JP-A-58-25427, by adding Al and adding REM and Sb in combination or purifying, the texture is improved. Iron loss is reduced.
[0004]
In addition, in JP-A-61-87823, Al is added to control the steel sheet cooling rate during finish annealing, and in JP-A-3-274247, Al is added and B, Sb, By preventing oxynitridation by composite addition of Sn, Japanese Patent Application Laid-Open No. 3-294422 discloses that by adding Al and controlling the cold rolling to reduce the L and C characteristic ratio of the steel sheet, -63252 discloses a composite addition of Mn and Al, and Japanese Patent Laid-Open No. 4-136138 discloses an addition of Al, an extremely low Si content, and an improvement of the texture by addition of P and Sb. Both have achieved improved magnetic properties.
[0005]
Recently, in addition to increasing the efficiency of rotating equipment, recyclability has been demanded.
A normal induction motor, DC motor, and brushless DC motor all use a conductor such as aluminum or copper or a magnet for the rotor core. Therefore, in order to recycle the iron core, it is necessary to separate these from the magnetic steel sheet.
On the other hand, since the reluctance motor uses reluctance torque as its driving force, the rotor portion basically does not require a conductor or a magnet, and only a magnetic steel plate is sufficient. Therefore, research has been conducted for a long time because it has features such as high recyclability, simple structure, low cost, and robustness.
[0006]
On the other hand, however, it has been difficult to control the rotation and the noise during the rotation is severe, so that it has not been put into practical use for a long time.
In this regard, recent advances in semiconductor technology and control technology have solved these problems, and practical application has been promoted as motors for washing machines and vacuum cleaners.
Against this background, from the viewpoint of its low cost, robustness and recyclability, it has begun to attract attention as a rotating machine used in automobiles and others.
[0007]
However, since this reluctance motor has operating conditions that are significantly different from those of other motors, satisfactory characteristics could not always be obtained using electromagnetic steel sheets that have been conventionally developed.
[0008]
[Problems to be solved by the invention]
The present invention has been developed in view of the above circumstances, it aims to propose an advantageous method for producing non-oriented electrical steel sheet capable of effectively improving the reluctance motor in particular the efficiency of a switched reluctance motor And
[0009]
[Means for Solving the Problems]
Now, the inventors not only investigated the magnetic properties of steel sheets in detail, but also used them to actually produce switched reluctance motors and examined the relationship between the actual machine properties and material properties in detail. .
As a result, in order to increase the motor efficiency of the actual machine, it was found that it is effective to reduce the iron loss of the material at a higher frequency than the commercial frequency and in the high magnetic flux density region, and to reduce the residual magnetic flux density. It was.
The present invention is based on the above findings.
[0013]
That is, the gist configuration of the present invention is as follows.
1. After heating steel slab containing C: 0.0050 mass% or less, Si: 0.1-7.0 mass% and Mn: 0.1-2.5 mass%, adjusted to the component composition of the remaining Fe and inevitable impurities at 1200 ° C. or lower, At the time of hot rolling and then cold rolling twice, including one or intermediate annealing, at least 25% reduction was applied in a temperature range of 60 ° C or higher, and then finish annealing was performed at a temperature of 850 ° C or higher. A method for producing a non-oriented electrical steel sheet for a reluctance motor iron core, wherein cooling is performed under a tension of 4 MPa or less.
2. In the above 1, the steel slab component further contains Al in a range of 0.1 to 2.5 mass%, or has a composition in which Al is suppressed to 0.01 mass% or less, and is non-directional for a reluctance motor core. A method for producing electrical steel sheets.
3. 3. A method for producing a non-oriented electrical steel sheet for a reluctance motor core, wherein the steel slab component further comprises a composition containing P: 0.1 mass% or less in the above 1 or 2.
4). In any one of the above 1 to 3, the steel slab component further comprises one or two kinds selected from Sb: 0.005 to 0.120 mass% and Sn: 0.005 to 0.25 mass%. Manufacturing method of non-oriented electrical steel sheet for reluctance motor iron core.
5. In any one of the above 1 to 4, the steel slab component further comprises one or more selected from Ni, Cu, and Cr at a composition containing 10 mass% or less, respectively, for a reluctance motor core Manufacturing method for non-oriented electrical steel sheets.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The inventors first obtained various commercially available switched reluctance motors, produced dies that could be processed into the same shape as these, and punched various steel plate materials to produce motors. And the maximum efficiency of these motors was measured. The motor efficiency is expressed as a ratio of output to input, that is, motor efficiency = (output / input) × 100 (%). Therefore, the number of rotations of the motor was variously changed, and the maximum value of the motor efficiency (maximum efficiency of the motor) was obtained.
In evaluating the material properties, magnetic measurements were performed using Epstein test pieces (referred to as L pieces and C pieces, respectively) in the rolling direction and the direction perpendicular to the rolling direction. In addition to the commercial frequency, magnetic measurements were made in the high frequency range up to 50 kHz, and these were analyzed in detail.
As a result, the average iron loss W 15/800 (L + C) in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) at an excitation magnetic flux density of 1.5 T and an excitation frequency of 800 Hz and a magnetic flux density of 1.8 T It was found that the influence of the residual magnetic flux density Br 1.8 on the motor efficiency when magnetized until the motor is particularly large.
[0015]
Fig. 1 shows the results of an investigation of the effects of material iron loss W 15/800 (L + C) and residual magnetic flux density Br 1.8 on the maximum efficiency of a switched reluctance motor rated at 300W.
As shown in the figure, the maximum efficiency of the motor is particularly good when the iron loss W 15/800 (L + C) is 150 W / kg or less and the residual magnetic flux density Br 1.8 is 1.0 T or less. It turns out that it is.
[0016]
As described above, when a material satisfying the appropriate range of the present invention with the iron loss W 15/800 (L + C) and the residual magnetic flux density Br 1.8 is used, the reason why particularly good motor characteristics are obtained is as follows. Although not necessarily clear, it can be inferred as follows.
In other words, there are several methods for exciting the switched reluctance motor, but the main method is one-side excitation in which there is no reversal of magnetic poles in the teeth portion of the stator.
[0017]
That is, first of all, for the iron core material, the magnetic flux density B in the BH loop, so-called hysteresis loop, is magnetized only on one side of positive or negative.
FIG. 2 (b) shows this state in comparison with a normal state (FIG. 2 (a)).
In this case, since the magnetic flux changes without reversing the magnetizing force, the starting point in the magnetization process is the position of the residual magnetic flux density.
When this residual magnetic flux density is large, there arises a problem that magnetization characteristics and eddy current characteristics deteriorate.
Since the motor has an air gap between the stator and the rotor, the residual magnetic flux density is not so large in an actual motor. However, by reducing the residual magnetic flux density of the material, it is possible to reduce the residual magnetic flux density even in an actual motor, which contributes to the reduction of copper loss and iron loss, and high efficiency can be obtained. Conceivable.
[0018]
Second, the switched reluctance motor uses the change in magnetic flux density accompanying the change in magnetization during switching as its driving force for rotation, so the magnetic flux density applied to the iron core material is larger than that of a normal motor and is excited. The waveform deviates from the sine wave and is accompanied by a large distortion. Therefore, it is considered that the residual magnetic flux density described above is important when the magnetizing force is reduced from the high magnetic flux density region of 1.8T. Moreover, regarding the iron loss, it is considered that the magnetic flux density and the high frequency region are more important than the region studied for the conventional motor.
[0019]
As described above, the present invention has been completed as a result of detailed examination of material characteristics in a switched reluctance motor that has greatly different magnetization conditions from those of conventional motors while fully considering such special magnetization conditions. Is.
[0020]
Next, in the present invention, the reason why the component composition of the material is limited to the above range will be described.
C: 0.0050 mass% or less C expands the γ region and lowers the α-γ transformation point, and therefore, during annealing, the γ phase is formed in a film shape at the α grain boundary, thereby suppressing the growth of α grains. Basically, C needs to be reduced. Moreover, even if it contains a large amount of an α-phase stabilizing element such as Si or Al and a γ-phase is not generated at all temperatures, if the C content exceeds 0.0050 mass%, it may cause aging deterioration of iron loss characteristics. . Therefore, in this invention, the amount of C was limited to 0.0050 mass% or less.
[0021]
Si: 0.1-7.0 mass%
Si not only increases the specific resistance of steel and reduces iron loss, but also has the effect of reducing domain wall energy and reducing residual magnetic flux density. However, if the content is less than 0.1 mass%, the effect of addition is poor. On the other hand, if it exceeds 7.0 mass%, the saturation magnetic flux density is lowered and the magnetization characteristics are deteriorated, so Si is in the range of 0.1 to 7.0 mass%. Limited. Preferably it is 0.3-4.6 mass%.
Mn: 0.1-2.5 mass%
Mn also has the effect of increasing the specific resistance of steel and reducing iron loss, although not as much as Si and Al. Moreover, since there exists an effect which improves hot rolling property, it was decided to contain at least 0.1 mass%. However, if the content is too large, the cold rolling property deteriorates, so the upper limit was set to 2.5 mass%.
[0022]
Although the essential components have been described above, in the present invention, the following elements can be appropriately added as necessary.
Al: 0.1 to 2.5 mass% or Al: 0.01 mass% or less
Al, like Si, is an element effective for increasing the specific resistance of steel and reducing iron loss. For this purpose, it is preferable to add 0.1 mass% or more. However, if the content exceeds 2.5 mass%, the lubricity with the mold in continuous casting deteriorates and casting becomes difficult. Therefore, when Al is contained, the content is preferably in the range of 0.1 to 2.5 mass%.
In addition, when not used as a specific resistance improving element as described above, in the addition range of more than 0.01 mass% up to 0.10 mass% rather inhibits grain growth and deteriorates iron loss characteristics. Al is preferably suppressed to 0.01 mass% or less.
[0024]
P: 0.1 mass% or less P, although not as high as Si and Al, has the effect of increasing the specific resistance of steel and reducing iron loss, and improves the texture after cold rolling recrystallization by grain boundary segregation. Since there exists an effect which improves a density, you may add as needed. However, excessive grain boundary segregation inhibits grain growth and degrades iron loss, so the upper limit is made 0.1 mass%.
[0025]
Sb: 0.005 to 0.120 mass%
Sb not only improves the texture and improves the magnetic flux density, but also suppresses oxynitriding of the steel sheet surface layer, and further suppresses the formation of surface layer fine grains, thereby suppressing an increase in surface hardness and punching. It has the effect of improving workability. It is also an element useful for reducing the residual magnetic flux density. However, if the content is less than 0.005 mass%, the effect of addition is poor. On the other hand, if it exceeds 0.120 mass%, the grain growth is inhibited and the magnetic properties are deteriorated, so Sb is contained in the range of 0.005 to 0.120 mass%. It is preferable to make it.
[0026]
Sn: 0.005 to 0.25 mass%
Sn may be added for the same purpose as Sb. However, if the content is less than 0.005 mass%, there is no effect. On the other hand, if it exceeds 0.25 mass%, the grain growth is inhibited and the magnetic properties are deteriorated. The amount is preferably 0.005 to 0.25 mass%.
[0027]
In addition, since Ni, Cu, Cr, and the like are elements that increase the specific resistance, they may be added. However, if any of them exceeds 10 mass%, the rollability deteriorates, so it is preferable to add them at 10 mass% or less.
[0028]
Further, S forms precipitates and inclusions and inhibits the grain growth. Therefore, it is necessary to reduce the mixing thereof as much as possible, but it is acceptable if the mixing amount is 0.01 mass% or less.
[0029]
Next, a description will be given manufacturing conditions of the present invention.
The hot rolling conditions, for energy saving, the slab heating temperature was 1200 ° C. or less.
Further, when performing hot-rolled sheet annealing, it is difficult to improve the magnetic flux density unless the annealing temperature is 800 ° C. or higher. Therefore, it is preferable to perform in a temperature range of 800 ° C. or higher.
[0030]
Next, rolling is performed once or twice, including intermediate annealing. In this cold rolling, it is important to apply a reduction of at least 25 % in a temperature range of 60 ° C or higher in order to make the texture appropriate. It is.
In other words, in order to reduce the iron loss in the high frequency / high magnetic flux density region, it is ideal that the <100>, which is the easy axis of magnetization, is oriented on the average in the rolling direction and the direction perpendicular thereto. It is considered preferable to include <111> which is advantageous in a high magnetic flux density region. However, when the rolling temperature is less than 60 ° C. or the rolling reduction is less than 25%, the formation of the texture as described above becomes insufficient, and good magnetic properties cannot be obtained.
Such rolling can be achieved by Zenzimer rolling, but tandem rolling is more advantageous from the viewpoint of production efficiency.
[0031]
After the above cold rolling, finish annealing is performed, but if the annealing temperature at this time is less than 850 ° C, grain growth is insufficient, and good iron loss and low magnetic anisotropy cannot be obtained. The temperature should be 850 ° C or higher.
Furthermore, when the tension during cooling exceeds 4 MPa, the residual magnetic flux density characteristics deteriorate, so the applied tension during cooling is limited to 4 MPa or less.
[0032]
Example 1
The steel slab having the composition shown in Table 1 was heated to 1150 ° C. with a normal gas heating furnace, and then hot rolled into a hot rolled sheet having a thickness of 2.5 mm. Subsequently, after hot-rolled sheet annealing at 880 ° C. for 10 seconds, the final sheet thickness was 0.35 mm using a 4-stand tandem rolling mill. At this time, the fourth pass was performed under the conditions of the stand entrance temperature: 70 ° C. and the rolling reduction: 32%. Then, after finishing annealing at 920 ° C., cooling was performed under a tension of 3 MPa, and then coating treatment was performed to obtain a product plate.
Thus, Epstein test pieces in the L and C directions were collected from the product plate for material evaluation, and the magnetic properties were measured. We also made a prototype 300W switched reluctance motor and measured its motor efficiency.
The results obtained are summarized in Table 2.
[0033]
[Table 1]
Figure 0004284870
[0034]
[Table 2]
Figure 0004284870
[0035]
As is clear from Table 2, it is particularly good when a material with an iron loss W 15/800 (L + C) of 150 W / kg or less and a residual magnetic flux density Br 1.8 of 1.0 T or less is used as a material. Motor efficiency is obtained.
[0036]
Example 2
When manufacturing product plates using steel G, H, K, and L shown in Table 1, as shown in Table 3, tandem rolling conditions and annealing temperatures are variously changed to perform cold rolling and finish annealing. It was.
In addition, the tandem rolling mill used for cold rolling was composed of 4 stands, and among these, the one with the highest stand entry side temperature showed the entry side temperature and the reduction ratio. The slab heating, hot-rolled sheet annealing, and coating treatment were performed under the same conditions as in Example 1.
From the product plate thus obtained, Epstein test pieces in the L and C directions were collected for material evaluation, and the magnetic properties were measured. We also made a prototype 300W switched reluctance motor and measured its motor efficiency.
The results obtained are also shown in Table 3.
[0037]
[Table 3]
Figure 0004284870
[0038]
As shown in Table 3, according to the present invention, an electromagnetic steel sheet having a low iron loss in a high frequency / high magnetic flux density region and a small residual magnetic flux density can be obtained. The motor efficiency of the trilactance motor could be improved significantly.
[0039]
【The invention's effect】
Thus, according to the present invention, it is possible to obtain a non-oriented electrical steel sheet having a low iron loss in a high frequency / high magnetic flux density region and a small residual magnetic flux density, and consequently magnetic characteristics in such a high frequency / high magnetic flux density region. A highly efficient reluctance motor can be obtained by using a steel plate having excellent resistance as a material.
[Brief description of the drawings]
FIG. 1 is a graph showing the effects of material iron loss W 15/800 (L + C) and residual magnetic flux density Br 1.8 on the maximum efficiency of a switched reluctance motor rated at 300 W.
FIG. 2 is a diagram comparing the difference between normal excitation and one-side excitation hysteresis loops (BH loops).

Claims (5)

C:0.0050mass%以下、Si:0.1 〜7.0 mass%およびMn:0.1〜2.5mass%を含有し、残部Feおよび不可避的不純物の成分組成に調整した鋼スラブを、1200℃以下で加熱した後、熱間圧延し、ついで1回または中間焼鈍を含む2回の冷間圧延を施すに際し、60℃以上の温度域で少なくとも25%の圧下を施し、その後 850℃以上の温度で仕上げ焼鈍を行ったのち、冷却を4 MPa以下の張力付与下で行うことを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法。  After heating a steel slab containing C: 0.0050 mass% or less, Si: 0.1 to 7.0 mass% and Mn: 0.1 to 2.5 mass%, adjusted to the component composition of the remaining Fe and inevitable impurities at 1200 ° C. or less, At the time of hot rolling and then cold rolling twice, including one or intermediate annealing, at least 25% reduction was applied at a temperature range of 60 ° C or higher, and then finish annealing was performed at a temperature of 850 ° C or higher. A method for producing a non-oriented electrical steel sheet for a reluctance motor iron core, which is then cooled under a tension of 4 MPa or less. 請求項1において、鋼スラブ成分が、さらにAlを0.1〜2.5mass%の範囲で含有するか、またはAlを0.01mass%以下に抑制した組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法The non-direction for a reluctance motor core according to claim 1, wherein the steel slab component further contains Al in a range of 0.1 to 2.5 mass% or has a composition in which Al is suppressed to 0.01 mass% or less. Method for producing an electrical steel sheet. 請求項1または2において、鋼スラブ成分が、さらにP:0.1mass%以下を含有する組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法The method for producing a non-oriented electrical steel sheet for a reluctance motor iron core according to claim 1 or 2, wherein the steel slab component further contains P: 0.1 mass% or less. 請求項1〜3のいずれかにおいて、鋼スラブ成分が、さらにSb:0.005〜0.120mass%およびSn:0.005〜0.25mass%のうちから選んだ一種または二種を含有する組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法The steel slab component according to any one of claims 1 to 3, wherein the steel slab component further includes one or two kinds selected from Sb: 0.005 to 0.120 mass% and Sn: 0.005 to 0.25 mass%. To manufacture a non-oriented electrical steel sheet for a reluctance motor iron core. 請求項1〜4のいずれかにおいて、鋼スラブ成分が、さらにNi,CuおよびCrのうちから選んだ一種または二種以上をそれぞれ10mass%以下で含有する組成になることを特徴とするリラクタンスモータ鉄心用の無方向性電磁鋼板の製造方法The reluctance motor core according to any one of claims 1 to 4, wherein the steel slab component further contains one or more selected from Ni, Cu, and Cr at 10 mass% or less, respectively. Method for non-oriented electrical steel sheet for use in a vehicle.
JP2001022802A 2001-01-31 2001-01-31 Method for producing non-oriented electrical steel sheet for reluctance motor iron core Expired - Lifetime JP4284870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022802A JP4284870B2 (en) 2001-01-31 2001-01-31 Method for producing non-oriented electrical steel sheet for reluctance motor iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022802A JP4284870B2 (en) 2001-01-31 2001-01-31 Method for producing non-oriented electrical steel sheet for reluctance motor iron core

Publications (2)

Publication Number Publication Date
JP2002226952A JP2002226952A (en) 2002-08-14
JP4284870B2 true JP4284870B2 (en) 2009-06-24

Family

ID=18888158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022802A Expired - Lifetime JP4284870B2 (en) 2001-01-31 2001-01-31 Method for producing non-oriented electrical steel sheet for reluctance motor iron core

Country Status (1)

Country Link
JP (1) JP4284870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050000596A1 (en) * 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
CN111057821B (en) * 2019-12-27 2021-06-29 首钢智新迁安电磁材料有限公司 Non-oriented electrical steel and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486230B2 (en) * 1994-08-05 2004-01-13 Jfeスチール株式会社 Manufacturing method of non-oriented electrical steel sheet for electric vehicles
JP4018790B2 (en) * 1998-02-10 2007-12-05 新日本製鐵株式会社 Non-oriented electrical steel sheet for high frequency and manufacturing method thereof
JPH11307353A (en) * 1998-04-17 1999-11-05 Nkk Corp High efficiency reluctance motor
JP3852227B2 (en) * 1998-10-23 2006-11-29 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP2000144348A (en) * 1998-11-09 2000-05-26 Kawasaki Steel Corp Nonoriented silicon steel sheet for rotary apparatus small in magnetic anisotropy in high frequency area and its production

Also Published As

Publication number Publication date
JP2002226952A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3852227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4023183B2 (en) Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
JP3870893B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP3719183B2 (en) Non-oriented electrical steel sheet for electric power steering motor and manufacturing method thereof
JP4259350B2 (en) Non-oriented electrical steel sheet for switched reluctance (SR) motor and manufacturing method thereof
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP4507316B2 (en) DC brushless motor
JP4613414B2 (en) Electrical steel sheet for motor core and method for manufacturing the same
JP2005120403A (en) Non-oriented electrical steel sheet with low core loss in high-frequency region
JP2001303213A (en) Nonoriented silicon steel sheet for high efficiency motor
JP4284870B2 (en) Method for producing non-oriented electrical steel sheet for reluctance motor iron core
JP3988427B2 (en) Non-oriented electrical steel sheet used as an iron core material for motors of vehicles having a battery with a voltage of 42 V or more and a method for manufacturing the same
JP5402846B2 (en) Method for producing non-oriented electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2003243214A (en) Non-grain oriented electrical steel sheet for motor iron core and its manufacturing method
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
JP3870725B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2010185119A (en) Non-oriented electromagnetic steel sheet
JP2000144348A (en) Nonoriented silicon steel sheet for rotary apparatus small in magnetic anisotropy in high frequency area and its production
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4844139B2 (en) Magnetic steel sheet for permanent magnet motor and permanent magnet motor
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP4258147B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5