JP4281670B2 - Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating - Google Patents

Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating Download PDF

Info

Publication number
JP4281670B2
JP4281670B2 JP2004335293A JP2004335293A JP4281670B2 JP 4281670 B2 JP4281670 B2 JP 4281670B2 JP 2004335293 A JP2004335293 A JP 2004335293A JP 2004335293 A JP2004335293 A JP 2004335293A JP 4281670 B2 JP4281670 B2 JP 4281670B2
Authority
JP
Japan
Prior art keywords
nitrogen
amorphous carbon
target
atomic
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004335293A
Other languages
Japanese (ja)
Other versions
JP2006144070A (en
Inventor
智行 益野
和則 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004335293A priority Critical patent/JP4281670B2/en
Publication of JP2006144070A publication Critical patent/JP2006144070A/en
Application granted granted Critical
Publication of JP4281670B2 publication Critical patent/JP4281670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、粉末冶金法における金属粉末の圧粉体へのプレス成形加工、特に高速プレス成形加工で潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製金属粉末プレス成形金型(以下、被覆超硬金型という)に関するものである。   The present invention relates to a metal made of a surface-coated cemented carbide alloy that exhibits excellent wear resistance with a lubricious amorphous carbon-based coating in press molding of metal powder into a green compact in the powder metallurgy method, particularly high-speed press molding. The present invention relates to a powder press molding die (hereinafter referred to as a coated carbide die).

一般に、粉末冶金法にて金属焼結体を製造するに際しては、原料粉末である金属粉末を圧粉体にプレス成形する工程がとられるが、前記圧粉体のプレス成形には、例えば中心部に成形孔が貫通するダイスと、前記ダイスの成形孔に嵌挿される上下パンチからなり、必要に応じてコアロッドを備えた被覆超硬金型が用いられている。   In general, when a metal sintered body is manufactured by powder metallurgy, a step of pressing a metal powder as a raw material powder into a green compact is taken. A coated carbide die having a core rod is used as necessary, which includes a die through which a molding hole passes and an upper and lower punch fitted into the molding hole of the die.

また、上記の被覆超硬金型として、
(a)炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)系サーメットからなる金型本体の少なくとも成形面に、
(b)炭化水素の分解ガスとArの混合ガスからなる反応雰囲気で形成された潤滑性非晶質炭素被膜を1〜15μmの平均層厚で蒸着形成してなる、被覆超硬金型が知られている。
In addition, as the above coated carbide mold,
(A) At least on the molding surface of a mold body made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) cermet,
(B) A coated carbide mold is known, which is formed by vapor-depositing a lubricious amorphous carbon film formed in a reaction atmosphere composed of a hydrocarbon decomposition gas and a mixed gas of Ar with an average layer thickness of 1 to 15 μm. It has been.

さらに、上記の従来被覆超硬金型が、ヒータで蒸着装置内を、例えば200℃に加熱した状態で、例えば1PaのCの分解ガスとArの混合ガスからなる反応雰囲気とし、金型本体に印加するバイアス電圧を、例えば−20Vとした条件で、所定層厚の潤滑性非晶質炭素被膜を蒸着形成することにより製造されることも知られている。
特開2002−129201号公報
Furthermore, the above-described conventional coated carbide mold has a reaction atmosphere composed of, for example, a 1 Pa C 2 H 2 decomposition gas and an Ar mixed gas in a state where the inside of the vapor deposition apparatus is heated to, for example, 200 ° C. with a heater. It is also known that it is manufactured by vapor-depositing a lubricious amorphous carbon film having a predetermined layer thickness under the condition that the bias voltage applied to the mold body is, for example, -20V.
JP 2002-129201 A

近年の金属粉末のプレス成形加工装置の高性能化はめざましく、一方で金属粉末プレス成形加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、金属粉末のプレス成形加工は高速化の傾向にあるが、上記の従来被覆超硬金型においては、これを通常の金属粉末プレス成形加工条件で用いた場合には問題はないが、特に金属粉末のプレス成形加工を高速条件で用いた場合には、潤滑性非晶質炭素被膜の摩耗進行が著しく速く、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of metal powder press forming equipment has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving, and cost reduction for metal powder press forming processing. Although there is a tendency to increase the speed, there is no problem in using the above conventional coated carbide die under normal metal powder press molding conditions, but the metal powder press molding process is particularly suitable for high speed conditions. When used in, the progress of wear of the lubricating amorphous carbon coating is remarkably fast, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に金属粉末の高速プレス成形加工で潤滑性非晶質炭素被膜がすぐれた耐摩耗性を発揮する被覆超硬金型を開発すべく、研究を行った結果、
(a)例えば図2(a)および(b)にそれぞれ概略平面図および概略正面図で示される蒸着装置、すなわちカソード電極(蒸発源)がCrターゲットのスパッタリング装置と、カソード電極(蒸発源)がWCターゲットのスパッタリング装置を回転テーブルを挟んで対向配置し、前記スパッタリング装置のそれぞれに、電磁コイルを設けてマグネトロンスパッタリング装置とした蒸着装置を用い、前記電磁コイルにより磁場を形成して、装置中心部に設けた回転テーブル上に装着した金型本体における磁束密度を100〜300G(ガウス)とし、前記装置内の加熱温度を300〜500℃とした状態で、かつ装置内に反応ガスとして、例えばCなどの炭化水素と窒素とArを、望ましくはC流量:25〜100sccm、窒素流量:200〜300sccm、Ar流量:150〜250sccmの割合で導入して、反応雰囲気を、例えば1PaのCの分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、例えば出力:1〜3kW(周波数:40kHz)のスパッタ電力、同Crターゲットには、例えば出力:3〜8kW(周波数:40kHz)のスパッタ電力を同時に印加した条件で潤滑性非晶質炭素系被膜の形成を行うと、この結果形成された潤滑性非晶質炭素系被膜は、これの透過型電子顕微鏡による組織観察結果(倍率:250万倍)が図1に模式図で示される通り炭素系非晶質体の素地に、最大径で10nm(ナノメーター)以下の結晶質炭窒化クロム系化合物の微粒[以下、「結晶質Cr(C,N)系化合物微粒」で示す]が分散分布した組織をもつようになること。
In view of the above, the present inventors have developed a coated carbide mold that exhibits excellent wear resistance with a lubricious amorphous carbon coating, particularly in high-speed press molding of metal powder, from the viewpoints described above. As a result of research,
(A) For example, the vapor deposition apparatus shown in the schematic plan view and the schematic front view in FIGS. 2 (a) and 2 (b), that is, the cathode electrode (evaporation source) is a Cr target sputtering apparatus and the cathode electrode (evaporation source) is A sputtering apparatus for a WC target is disposed opposite to each other with a rotary table interposed therebetween, and a magnetic field is formed by the electromagnetic coil using a vapor deposition apparatus in which an electromagnetic coil is provided for each of the sputtering apparatuses. The magnetic flux density in the mold main body mounted on the rotary table provided in the apparatus is 100 to 300 G (Gauss), the heating temperature in the apparatus is 300 to 500 ° C., and the reaction gas in the apparatus is, for example, C hydrocarbons and nitrogen and Ar, such as 2 H 2, preferably C 2 H 2 flow rate: 25 - 100 Nitrogen flow rate: 200~300Sccm, Ar flow rate: introduced at a rate of 150~250Sccm, the reaction atmosphere, for example, with a mixed gas of 1Pa of C 2 decomposed gas of H 2 and nitrogen and Ar, wherein both a magnetron sputtering apparatus For example, a sputtering power with an output of 1 to 3 kW (frequency: 40 kHz) is simultaneously applied to the cathode electrode (evaporation source) of the WC target, and a sputtering power with an output of 3 to 8 kW (frequency: 40 kHz) is simultaneously applied to the Cr target. When a lubricious amorphous carbon-based film is formed under the applied conditions, the resulting lubricous amorphous carbon-based film has a structure observation result with a transmission electron microscope (magnification: 2.5 million times). As shown in the schematic diagram of FIG. 1, a crystalline chromium carbonitride system having a maximum diameter of 10 nm (nanometer) or less on a carbon-based amorphous body. Fine [hereinafter "crystalline Cr (C, N) based compound fine" shown by] the compound that will have a dispersed distribution organization.

(b)上記(a)の潤滑性非晶質炭素系被膜を形成するに際して、蒸着装置内に導入される反応ガスとしての炭化水素と窒素とArのそれぞれの流量と、マグネトロンスパッタリング装置のWCターゲットとCrターゲットに印加されるスパッタ電力を調整して、前記潤滑性非晶質炭素系被膜が、オージェ分光分析装置で測定して、
W:5〜20原子%、
Cr:5〜20原子%、
窒素:0.5〜18原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するようにすると、この結果形成された潤滑性非晶質炭素系被膜は、結晶質Cr(C,N)系微粒の分散分布効果、および前記電磁コイルによる磁場成膜に際しての細粒化効果で、硬さが著しく向上するようになり、したがって、この潤滑性非晶質炭素系被膜を形成してなる被覆超硬金型は、W成分による強度向上効果と相俟って、金属粉末の高速プレス成形加工でも一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
(B) Flow rates of hydrocarbon, nitrogen and Ar as reaction gases introduced into the vapor deposition apparatus when forming the lubricious amorphous carbon-based film of (a) above, and the WC target of the magnetron sputtering apparatus And adjusting the sputtering power applied to the Cr target, the lubricating amorphous carbon-based coating is measured with an Auger spectroscopic analyzer,
W: 5 to 20 atomic%,
Cr: 5 to 20 atomic%,
Nitrogen: 0.5-18 atomic%,
And the rest of the resulting lubricous amorphous carbon-based coating has a dispersion distribution effect of crystalline Cr (C, N) -based fine particles, and a composition comprising carbon and inevitable impurities. The hardness is remarkably improved by the effect of fine graining when forming a magnetic field by the electromagnetic coil. Therefore, the coated cemented carbide mold formed with this lubricous amorphous carbon-based coating is a W component. Combined with the effect of improving the strength, the wear resistance is even better even in high-speed press forming of metal powder.

(c)上記(b)の潤滑性非晶質炭素系被膜の形成に先だって、上記の図2の蒸着装置に示される通り、さらに回転テーブルを挟んで対向配置した両マグネトロンスパッタリング装置のそれぞれに対して、90度ずれた位置に回転テーブルに沿って配置され、かつカソード電極(蒸発源)をTiターゲットとしたマグネトロンスパッタリング装置を用い、まず、前記蒸着装置の全マグネトロンスパッタリング装置の電磁コイルに、いずれも例えば電圧:50V、電流:10Aの条件で印加して、金型本体の装着部における磁束密度を140G(ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱温度を、例えば400℃とした状態で、反応ガスとして窒素とArを、例えば窒素流量:300sccm、Ar流量:200sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてCと窒素とArを、例えばC流量:50sccm、窒素流量:300sccm、Ar流量:230sccmの割合で導入して、1PaのCの分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発源)には、例えば出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方金型本体には、例えば−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記金型本体の表面に窒化チタン(以下、TiNで示す)層および炭窒化チタン(以下、TiCNで示す)層のいずれか、または両方を積層した状態で形成すると、この結果形成されたTiN層およびTiCN層は、上記の金型本体および潤滑性非晶質炭素系被膜のいずれにもきわめて強固に密着し、金属粉末の高速プレス成形加工でも前記潤滑性非晶質炭素系被膜の前記金型本体表面からの剥離を防止する密着接合層として作用すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) Prior to the formation of the lubricious amorphous carbon-based film in (b) above, as shown in the vapor deposition apparatus in FIG. 2 above, each of the magnetron sputtering apparatuses disposed opposite to each other with a rotating table interposed therebetween. Then, a magnetron sputtering apparatus that is disposed along the rotary table at a position shifted by 90 degrees and that uses a cathode electrode (evaporation source) as a Ti target is used. For example, a voltage of 50 V and a current of 10 A are applied to form a magnetic field with a magnetic flux density of 140 G (Gauss) in the mounting portion of the mold body, and the heating temperature in the vapor deposition apparatus is 400 ° C., for example. In this state, nitrogen and Ar are used as reaction gases, for example, nitrogen flow rate: 300 sccm, Ar flow rate: 200 sccm. Was introduced in a total reaction atmosphere composed of a mixed gas of 1Pa of nitrogen and Ar or a C 2 H 2 and nitrogen and Ar as the reaction gas, for example C 2 H 2 flow rate: 50 sccm, flow rate of nitrogen: 300 sccm, Ar flow rate: Introduced at a rate of 230 sccm to form a reaction atmosphere composed of a 1 Pa C 2 H 2 decomposition gas and a mixed gas of nitrogen and Ar, the output of the Ti target cathode electrode (evaporation source) is, for example, 12 kW (frequency: 40 kHz) On the other hand, a glow discharge is generated on the mold body under a condition that a bias voltage of, for example, −100 V is applied, so that titanium nitride (hereinafter referred to as TiN) is formed on the surface of the mold body. When one or both of a layer and a titanium carbonitride (hereinafter referred to as TiCN) layer are laminated, the resulting Ti formed The layer and the TiCN layer are extremely firmly adhered to both the mold body and the lubricious amorphous carbon-based film, and the metal of the lubricious amorphous carbon-based film is formed even in high-speed press molding of metal powder. Act as a tight bonding layer to prevent peeling from the mold body surface.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
(a)WC基超硬合金またはTiCN系サーメットからなる金型本体の少なくとも成形面に、
(b)マグネトロンスパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜された、TiN層およびTiCN層のいずれか、または両方の積層からなり、かつ0.1〜5μmの平均層厚を有する密着接合層を介して、
(c)同じくマグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとCrターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜20原子%、
Cr:5〜20原子%、
窒素:0.5〜18原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質Cr(C,N)系化合物微粒が分散分布した組織を示し、かつ1〜15μmの平均層厚を有する潤滑性非晶質炭素系被膜を蒸着形成してなる、特に金属粉末の高速プレス成形加工で潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する被覆超硬金型に特徴を有するものである。
This invention was made based on the above research results,
(A) At least on the molding surface of a mold body made of a WC-based cemented carbide or TiCN cermet,
(B) In a magnetron sputtering apparatus, a Ti target is used as a cathode electrode (evaporation source), and a film is formed in a magnetic field in a reaction atmosphere composed of a mixed gas of nitrogen and Ar, or a mixed gas of hydrocarbon decomposition gas and nitrogen and Ar. Through a tight junction layer comprising either a TiN layer or a TiCN layer, or a laminate of both, and having an average layer thickness of 0.1 to 5 μm,
(C) Similarly, in a magnetron sputtering apparatus, a WC target and a Cr target are used as a cathode electrode (evaporation source), and a film is formed in a magnetic field in a reaction atmosphere composed of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar. Measured with a spectroscopic analyzer,
W: 5 to 20 atomic%,
Cr: 5 to 20 atomic%,
Nitrogen: 0.5-18 atomic%,
And the remainder is composed of carbon and unavoidable impurities, and the crystalline Cr (C, N) compound fine particles are dispersed and distributed on the base of the carbon-based amorphous body by observation with a transmission electron microscope. The lubrication amorphous carbon-based film which has a structure and has an average layer thickness of 1 to 15 μm is formed by vapor deposition. It is characterized by a coated carbide mold that exhibits wear characteristics.

つぎに、この発明の被覆超硬金型において、これを構成する密着接合層および潤滑性非晶質炭素系被膜を上記の通りに数値限定した理由を説明する。
(a)密着接合層の平均層厚
TiN層およびTiCN層のいずれか、または両方の積層からなる密着接合層は、金型本体と潤滑性非晶質炭素系被膜の間にあって、これら両者と強固に密着接合し、さらに前記金型本体に対する密着接合性は磁場中成膜によって一層向上したものになるが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方密着接合性は5μmの平均層厚で十分であることから、その平均層厚が0.1〜5μmと定めた。
Next, the reason why the adhesive bonding layer and the lubricious amorphous carbon-based film constituting the coated carbide mold of the present invention are numerically limited as described above will be described.
(A) Average layer thickness of the tight junction layer The tight junction layer comprising either or both of the TiN layer and the TiCN layer is between the mold body and the lubricious amorphous carbon-based coating and is strong with both. In addition, the tight bondability to the mold body is further improved by film formation in a magnetic field, but if the average layer thickness is less than 0.1 μm, the desired excellent close bondability is ensured. On the other hand, since the average layer thickness of 5 μm is sufficient for the close contact bonding property, the average layer thickness was determined to be 0.1 to 5 μm.

(b)潤滑性非晶質炭素系被膜のW含有量
W成分は、上記の潤滑性非晶質炭素系被膜の素地を形成して、被膜の強度を向上させる作用があるが、その含有量が5原子%未満では所望の高強度を確保することができず、一方その含有量が20原子%を越えると被膜の潤滑性が急激に低下するようになることから、その含有量を5〜20原子%と定めた。
(B) W content of lubricious amorphous carbon-based coating W component forms the base of the above-mentioned lubricous amorphous carbon-based coating and has the effect of improving the strength of the coating. However, if the content is less than 5 atomic%, the desired high strength cannot be ensured. On the other hand, if the content exceeds 20 atomic%, the lubricity of the coating will rapidly decrease. It was determined as 20 atomic%.

(c)潤滑性非晶質炭素系被膜のCrおよびN含有量
Cr成分とN成分、さらにC(炭素)成分は磁場成膜下で結合して、被膜中に最大径で10nm(ナノメーター)以下の結晶質のCr(C,N)系化合物微粒として存在し、被膜の硬さを著しく向上させる作用があるが、その含有量がCr成分が5原子%未満、およびN成分が0.5原子%未満になると、被膜中にCr(C,N)系微粒として存在する割合が少なくなり過ぎて、所望の高硬度を確保することができず、一方その含有量がCr成分が20原子%、およびN成分が18原子%を越えると強度および潤滑性が急激に低下するようになることから、その含有量をそれぞれCr:5〜20原子%、0.5〜18原子%と定めた。
(C) Cr and N content of lubricating amorphous carbon-based coating Cr component, N component, and C (carbon) component are combined under magnetic film formation, and the maximum diameter in the coating is 10 nm (nanometer) It exists as the following crystalline Cr (C, N) compound fine particles, and has the effect of remarkably improving the hardness of the coating, but its content is less than 5 atomic% of Cr component and 0.5% of N component. If it is less than atomic%, the ratio of Cr (C, N) -based fine particles present in the coating is too small to ensure the desired high hardness, while the content of the Cr component is 20 atomic%. When the N content exceeds 18 atomic%, the strength and the lubricity are drastically lowered. Therefore, the contents thereof are set to Cr: 5 to 20 atomic% and 0.5 to 18 atomic%, respectively.

(d)潤滑性非晶質炭素系被膜の平均層厚
その平均層厚が1μm未満では、所望の潤滑性および耐摩耗性効果を確保することができず、一方その平均層厚が15μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(D) Average layer thickness of lubricating amorphous carbon-based coating If the average layer thickness is less than 1 μm, the desired lubricity and wear resistance effect cannot be ensured, while the average layer thickness exceeds 15 μm. Then, since chipping is likely to occur at the cutting edge portion, the average layer thickness was determined to be 1 to 15 μm.

この発明の被覆超硬金型は、これを構成する潤滑性非晶質炭素系被膜の硬さが、これの炭素系非晶質体の素地に、磁場成膜により超微細となった状態で分散分布する結晶質Cr(C,N)系化合物微粒によって著しく向上したものになり、前記炭素系非晶質体の素地がW成分の作用で高強度を具備するようになることと相俟って、各種の金属粉末の高速プレス成形加工で、すぐれた耐摩耗性を発揮し、使用寿命の延命化をもたらすものである。   The coated cemented carbide mold of the present invention is such that the hardness of the lubricious amorphous carbon-based coating film constituting it is superfine by the magnetic film formation on the base of the carbon-based amorphous body. Combined with the fact that the crystalline Cr (C, N) -based compound fine particles that are dispersed and distributed significantly improve the carbon-based amorphous body to have high strength by the action of the W component. In addition, high-speed press molding of various metal powders demonstrates excellent wear resistance and prolongs the service life.

つぎに、この発明の被覆超硬金型を実施例により具体的に説明する。   Next, the coated carbide mold of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.8〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで84時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、いずれもWC基超硬合金からなり、かつ外径:125mm×貫通中心孔径:40mm×厚さ:60mmの寸法をもったダイス本体(金型本体)A−1〜A−10をそれぞれ製造した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 0.8 to 3 μm are prepared. Compounded in the composition shown in Table 1, wet mixed in a ball mill for 84 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was heated to 1400 ° C. in a vacuum of 6 Pa. Sintered under the condition of holding for 1 hour, all of which are made of WC-based cemented carbide and have a size of outer diameter: 125 mm × through-hole diameter: 40 mm × thickness: 60 mm Die body (die body) A -1 to A-10 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで84時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結して、いずれもTiCN系サーメットからなり、かつ外径:125mm×貫通中心孔径:40mm×厚さ:60mmの寸法をもったダイス本体(金型本体)B−1〜B−6をそれぞれ製造した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet-mix for 84 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, both of which were made of TiCN cermet and had an outer diameter of 125 mm × through-hole diameter: 40 mm × thickness. The die bodies (die bodies) B-1 to B-6 having a dimension of 60 mm were manufactured.

ついで、上記のダイス本体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた4ヶ所に3段重ねで装着し、一方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.9質量%のCrターゲット、他方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.6質量%のWCターゲットを前記回転テーブルを挟んで対向配置し、
(a)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を200℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上の前記ダイス本体に−800Vのバイアス電圧を印加して前記ダイス本体の中心孔(成形面)を含む表面を20分間Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置の全マグネトロンスパッタリング装置の電磁コイルに、いずれも電圧:50V、電流:10Aの条件で印加して、前記ダイス本体の装着部における磁束密度を140G(ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱温度を400℃とした状態で、反応ガスとして窒素とArを、窒素流量:300sccm、Ar流量:200sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてCと窒素とArを、C流量:50sccm、窒素流量:300sccm、Ar流量:230sccmの割合で導入して、1PaのCの分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記ダイス本体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記ダイス本体の少なくとも中心孔表面に表3に示される目標層厚のTiN層およびTiCN層のいずれか、または両方の積層からなる密着接合層を形成し、
(c)さらに、前記電磁コイルに印加する条件を、電圧:50〜100V、電流:10〜20Aの範囲内の所定の値として、上記ダイス本体の装着部における磁束密度を100〜300G(ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度は400℃、上記ダイス本体のバイアス電圧は−100Vとしたままで、前記蒸着装置内に反応ガスとして、C(炭化水素)と窒素とArを、C流量:25〜100sccm、窒素流量:200〜300sccm、Ar流量:150〜250sccmの範囲内の所定の流量で導入して、反応雰囲気を、1PaのCの分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、出力:1〜3kW(周波数:40kHz)の範囲内の所定のスパッタ電力、同Crターゲットには、出力:3〜8kW(周波数:40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で、同じく表3に示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を上記密着接合層の上に蒸着形成することにより、本発明被覆超硬金型としての本発明被覆超硬ダイス1〜16をそれぞれ製造した。
Next, each of the die bodies A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then on the rotary table in the vapor deposition apparatus shown in FIG. In addition, a Cr target having a purity of 99.9% by mass is mounted as a cathode electrode (evaporation source) of a magnetron sputtering apparatus on one side in four stages at a predetermined distance in the radial direction from the central axis. As a cathode electrode (evaporation source) of the magnetron sputtering apparatus on the other side, a WC target having a purity of 99.6% by mass is disposed opposite to the rotary table,
(A) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.01 Pa, and the inside of the apparatus is heated to 200 ° C. with a heater, and then Ar gas is introduced into the apparatus and Ar at a pressure of 0.5 Pa is introduced. In this state, a bias voltage of −800 V is applied to the die body on the rotary table in this state to clean the surface including the central hole (molding surface) of the die body for 20 minutes with Ar gas bombardment,
(B) Next, the magnetic flux density in the mounting portion of the die body was set to 140 G (Gauss) by applying the voltage to the electromagnetic coil of the magnetron sputtering device of the vapor deposition device under the conditions of voltage: 50 V and current: 10 A. While forming a magnetic field and in the state where the heating temperature in the vapor deposition apparatus is 400 ° C., nitrogen and Ar are introduced as reaction gases at a rate of nitrogen flow rate: 300 sccm, Ar flow rate: 200 sccm, and 1 Pa of nitrogen and Ar C 2 H 2 , nitrogen, and Ar are introduced at a rate of C 2 H 2 flow rate: 50 sccm, nitrogen flow rate: 300 sccm, Ar flow rate: 230 sccm as a reaction atmosphere composed of a mixed gas of 1 Pa of C 2. a reaction atmosphere of cracked gas and a mixed gas of nitrogen and Ar of H 2, the cathode electrode of the Ti target (evaporation source) A sputtering power of 12 kW (frequency: 40 kHz) is applied to the die body, while glow discharge is generated in the die body under the condition that a bias voltage of −100 V is applied. Forming a tight junction layer consisting of either or both of a TiN layer and a TiCN layer having a target layer thickness shown in FIG.
(C) Furthermore, the condition applied to the electromagnetic coil is a predetermined value within the range of voltage: 50 to 100 V and current: 10 to 20 A, and the magnetic flux density at the mounting portion of the die body is 100 to 300 G (Gauss). The heating temperature in the vapor deposition apparatus is 400 ° C., the bias voltage of the die body is −100 V, and the reaction gas in the vapor deposition apparatus is C 2 H 2 (hydrocarbon). ), Nitrogen and Ar are introduced at a predetermined flow rate within a range of C 2 H 2 flow rate: 25 to 100 sccm, nitrogen flow rate: 200 to 300 sccm, Ar flow rate: 150 to 250 sccm, and the reaction atmosphere is changed to 1 Pa of C 2. A decomposition gas of H 2 , a mixed gas of nitrogen and Ar, and output to the cathode electrode (evaporation source) of the WC target of both the magnetron sputtering apparatuses: Table 3 shows a condition in which a predetermined sputtering power within a range of ˜3 kW (frequency: 40 kHz) and a predetermined sputtering power within a range of output: 3-8 kW (frequency: 40 kHz) are simultaneously applied to the Cr target. The coated amorphous die 1-16 of the present invention as the coated carbide die of the present invention is formed by vapor-depositing the lubricating amorphous carbon-based film having the target composition and the target layer thickness shown in FIG. Were manufactured respectively.

また、比較の目的で、上記ダイス本体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3(a)および(b)にそれぞれ概略平面図および概略正面図で示される蒸着装置、カソード電極(蒸発源)がTiターゲットのスパッタリング装置を設けた蒸着装置の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置にリング状に装着し、
(a)まず、装置内を真空排気して0.01Paの真空に保持しながら、ヒーターで装置内を200℃に加熱した後、Arガスを装置内に導入して0.5Paの圧力のAr雰囲気とし、この状態で前記回転テーブル上の前記ダイス本体に−800Vのバイアス電圧を印加して前記ダイス本体の中心孔(成形面)を含む表面を20分間Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置内の加熱温度を300℃とした状態で、装置内に反応ガスとして窒素とArを、窒素流量:200sccm、Ar流量:300sccmの割合で導入して、1Paの窒素とArの混合ガスからなる反応雰囲気、または反応ガスとしてCと窒素とArを、C流量:40sccm、窒素流量:200sccm、Ar流量:300sccmの割合で導入して、1PaのCの分解ガスと窒素とArの混合ガスからなる反応雰囲気とし、Tiターゲットのカソード電極(蒸発源)には出力:12kW(周波数:40kHz)のスパッタ電力を印加し、一方上記ダイス本体には、−100Vのバイアス電圧を印加した条件でグロー放電を発生させることにより、前記ダイス本体の少なくとも中心孔表面に表4に示される目標層厚のTiN層およびTiCN層のいずれか、または両方の積層からなる密着接合層を形成し、
(c)ついで、上記蒸着装置内の加熱温度を200℃とした状態で、CとArを、C流量:40〜80sccm、Ar流量:250sccmの範囲内の所定の流量で導入して、1PaのCの分解ガスとArの混合ガスからなる反応雰囲気とすると共に、上記ダイス本体に印加するバイアス電圧を−20Vとした条件で、上記密着接合層の上に、同じく表4に示される目標層厚の潤滑性非晶質炭素被膜を蒸着形成することにより、比較被覆超硬ダイス1〜16をそれぞれ製造した。
For comparison purposes, each of the die bodies A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, as shown in FIGS. ) On the rotary table of the vapor deposition apparatus shown in the schematic plan view and schematic front view, and the vapor deposition apparatus in which the cathode electrode (evaporation source) is provided with the sputtering apparatus of the Ti target, respectively, away from the central axis by a predetermined distance in the radial direction. In a ring shape
(A) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.01 Pa, and the inside of the apparatus is heated to 200 ° C. with a heater, and then Ar gas is introduced into the apparatus and Ar at a pressure of 0.5 Pa is introduced. In this state, a bias voltage of −800 V is applied to the die body on the rotary table in this state to clean the surface including the central hole (molding surface) of the die body for 20 minutes with Ar gas bombardment,
(B) Next, in a state where the heating temperature in the vapor deposition apparatus is 300 ° C., nitrogen and Ar are introduced into the apparatus at a rate of nitrogen flow rate: 200 sccm, Ar flow rate: 300 sccm, and 1 Pa of nitrogen. A reaction atmosphere composed of a mixed gas of Ar and Ar, or C 2 H 2 , nitrogen, and Ar as reaction gases are introduced at a rate of C 2 H 2 flow rate: 40 sccm, nitrogen flow rate: 200 sccm, Ar flow rate: 300 sccm, and 1 Pa The reaction atmosphere is composed of a C 2 H 2 decomposition gas and a mixed gas of nitrogen and Ar, and a sputtering power of 12 kW (frequency: 40 kHz) is applied to the cathode electrode (evaporation source) of the Ti target, while the die body In other words, glow discharge is generated under the condition that a bias voltage of −100 V is applied, so that at least the center hole surface of the die body is formed. Either the target layer thickness TiN layer and TiCN layers shown in Table 4, or a closely bonded layer composed of both of the stacked formed,
(C) Next, in a state where the heating temperature in the vapor deposition apparatus is 200 ° C., C 2 H 2 and Ar are flown at a predetermined flow rate within a range of C 2 H 2 flow rate: 40 to 80 sccm and Ar flow rate: 250 sccm. Introduced into a reaction atmosphere composed of a 1 Pa C 2 H 2 decomposition gas and a mixed gas of Ar, and a bias voltage applied to the die body of −20 V, on the adhesive bonding layer, Similarly, comparative coated carbide dies 1 to 16 were produced by vapor-depositing a lubricating amorphous carbon film having a target layer thickness shown in Table 4.

この結果得られた本発明被覆超硬ダイス1〜16および比較被覆超硬ダイス1〜16のダイス本体の表面に蒸着形成された構成層について、その組成をオージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(断面5箇所の平均値)を示し、また、その組織を透過型電子顕微鏡を用いて観察(倍率:250万倍)したところ、前記本発明被覆超硬ダイス1〜16は、炭素系非晶質体の素地に、結晶質のCr(C,N)系化合物微粒(いずれの場合も最大径10nm以下)が分散分布した組織を示し、一方比較被覆超硬ダイス1〜16は、炭素系非晶質体の単一相からなる組織を示した。   As a result, the composition layers of the present invention coated carbide dies 1 to 16 and comparative coated carbide dies 1 to 16 deposited on the surface of the die main body were subjected to Auger spectroscopic analysis device and the layer thickness was scanned. When measured using a scanning electron microscope, both showed the same composition and average layer thickness as the target composition and target layer thickness (average values at five cross-sections), and the structure was measured using a transmission electron microscope. When observed (magnification: 2.5 million times), the coated carbide dies 1 to 16 of the present invention had a crystalline Cr (C, N) compound fine particles (in either case) on a carbon-based amorphous body. Also showed a structure in which the maximum diameter was 10 nm or less), while the comparative coated carbide dies 1 to 16 showed a structure composed of a single phase of a carbon-based amorphous body.

つぎに、上記本発明被覆超硬ダイス1〜16および比較被覆超硬ダイス1〜16のそれぞれを工具鋼製ダイホルダ(JIS・SKD61製)に焼き嵌め装着した状態でプレス成形装置にセットし、同じく工具鋼(JIS・SKH51)製上下パンチ(上パンチ:上下動、下パンチ:固定)を用い、
(1)原料粉末:50〜120μmの範囲内の所定の平均粒度を有する粉末を、質量%で、Fe:98.2%、Mo:1.5%、C:0.3%からなる配合組成に配合し、混合してなるFe系合金焼結体製造用混合粉末、
プレス成形最高圧力:850MPa、
プレス成形時間(上パンチの下降開始から上昇終了迄):7秒(通常の前記プレス成形時間は13秒)、
圧粉体寸法:直径40mm×厚さ10mm、
の条件(成形条件Aという)、
(2)原料粉末:40〜100μmの範囲内の所定の平均粒度を有する粉末を、質量%で、Al:92%、Cu:3%、Si:5%からなる配合組成に配合し、混合してなるAl系合金焼結体製造用混合粉末、
プレス成形最高圧力:600MPa、
プレス成形時間(上パンチの下降開始から上昇終了迄):6秒(通常の前記プレス成形時間は10秒)、
圧粉体寸法:直径40mm×厚さ5mm、
の条件(成形条件Bという)、
(3)原料粉末:20〜60μmの範囲内の所定の平均粒度を有する粉末を、質量%で、Cu:65%、Ni:17%、Zn:18%からなる配合組成に配合し、混合してなるCu系合金焼結体製造用混合粉末、
プレス成形圧力:350MPa、
プレス成形時間(上パンチの下降開始から上昇終了迄):4秒(通常の前記プレス成形時間は8秒)、
圧粉体寸法:直径40mm×厚さ5mm、
の条件(成形条件Cという)、
でそれぞれ圧粉体を成形する高速プレス成形試験を行ない、いずれの試験でも被覆超硬ダイスの上面(上パンチ側)における最大摩耗深さが1μmに至るまでの圧粉体の成形径個数を測定した。この測定結果を表3,4に示した。
Next, each of the invention coated carbide dies 1 to 16 and the comparative coated carbide dies 1 to 16 is set in a press forming apparatus in a state in which the tool steel die holder (manufactured by JIS SKD61) is shrink-fitted and mounted. Using a tool steel (JIS / SKH51) vertical punch (upper punch: vertical movement, lower punch: fixed)
(1) Raw material powder: a powder composition having a predetermined average particle size in the range of 50 to 120 μm, in mass%, comprising Fe: 98.2%, Mo: 1.5%, C: 0.3% Mixed powder for producing an Fe-based alloy sintered body mixed and mixed with
Press molding maximum pressure: 850 MPa,
Press molding time (from the start of the lower punch to the end of the upper punch): 7 seconds (the usual press molding time is 13 seconds),
Compact size: 40mm diameter x 10mm thickness,
Conditions (referred to as molding conditions A),
(2) Raw material powder: A powder having a predetermined average particle size within a range of 40 to 100 μm is blended in a blend composition composed of Al: 92%, Cu: 3%, Si: 5% in mass%, and mixed. Mixed powder for producing an Al-based alloy sintered body,
Press molding maximum pressure: 600 MPa,
Press molding time (from the start of the lower punch to the end of the upper punch): 6 seconds (the usual press molding time is 10 seconds),
Compact size: 40mm diameter x 5mm thickness,
Conditions (referred to as molding conditions B),
(3) Raw material powder: A powder having a predetermined average particle size within a range of 20 to 60 μm is blended in a blend composition composed of Cu: 65%, Ni: 17%, Zn: 18% in mass%, and mixed. A mixed powder for producing a Cu-based alloy sintered body,
Press molding pressure: 350 MPa,
Press molding time (from the start of the lower punch to the end of the upper punch): 4 seconds (the usual press molding time is 8 seconds),
Compact size: 40mm diameter x 5mm thickness,
Conditions (referred to as molding conditions C),
The high-speed press molding test for molding green compacts in each case is performed, and in each test, the number of green compact molding diameters until the maximum wear depth on the upper surface (upper punch side) of the coated carbide die reaches 1 μm is measured. did. The measurement results are shown in Tables 3 and 4.

Figure 0004281670
Figure 0004281670

Figure 0004281670
Figure 0004281670

Figure 0004281670
Figure 0004281670

Figure 0004281670
Figure 0004281670

表3,4に示される結果から、潤滑性非晶質炭素系被膜が、炭素系非晶質体の素地に、結晶質のCr(C,N)系化合物微粒が分散分布した組織を有する本発明被覆超硬ダイス1〜16は、いずれもFe系合金、Al系合金、およびCu系合金の焼結体を製造するに際して、原料粉末(金属粉末)の圧粉体へのプレス成形を高速で行なった場合にも、すぐれた耐摩耗性を発揮するのに対して、潤滑性非晶質炭素被膜が、炭素系非晶質体の単一相からなる組織を有する比較被覆超硬ダイス1〜16においては、高速プレス成形加工条件では、前記潤滑性非晶質炭素被膜の摩耗進行がきわめて速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬金型は、通常の条件での金属粉末の圧粉体へのプレス成形加工は勿論のこと、特に各種の金属粉末の圧粉体へのプレス成形加工を、高速加工条件で行なった場合にも、すぐれた耐摩耗性を発揮するものであるから、金属粉末プレス成形加工装置の高性能化、さらにプレス成形加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 3 and 4, the lubricating amorphous carbon-based coating has a structure in which crystalline Cr (C, N) -based compound fine particles are dispersed and distributed on the base of the carbon-based amorphous body. The invention coated carbide dies 1 to 16 are all capable of high-speed press forming of raw powder (metal powder) into a green compact when producing sintered bodies of Fe-based alloys, Al-based alloys, and Cu-based alloys. Even when performed, the comparative coated carbide dies 1 to 1 have a structure composed of a single phase of a carbon-based amorphous body, while exhibiting excellent wear resistance. In No. 16, it is apparent that the wear of the lubricious amorphous carbon coating progresses very rapidly under the high-speed press forming conditions, and the service life is reached in a relatively short time.
As described above, the coated carbide die of the present invention is not only press-molded into a green compact of metal powder under normal conditions, but also particularly press-molded into a green compact of various metal powders. Since it exhibits excellent wear resistance even when performed under high-speed machining conditions, the metal powder press molding machine has high performance, labor saving and energy saving in press molding, and low cost. It is possible to cope with the conversion sufficiently satisfactorily.

この発明の被覆超硬金型を構成する潤滑性非晶質炭素系被膜を透過型電子顕微鏡を用いて組織観察した結果(倍率:250万倍)を示す模式図である。It is a schematic diagram which shows the result (magnification: 2.5 million times) which carried out the structure | tissue observation using the transmission electron microscope for the lubricous amorphous carbon type | system | group film | membrane which comprises the covering super hard metal mold | die of this invention. この発明の被覆超硬金型を構成する密着接合層および潤滑性非晶質炭素系被膜を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for forming the adhesion joining layer and lubricating amorphous carbon-type film which comprise the coated carbide mold of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. It is. 比較被覆超硬金型を構成する密着接合層および潤滑性非晶質炭素被膜を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in order to form the adhesion joining layer and lubricous amorphous carbon film which comprise a comparison covering super hard metal mold | die is shown, (a) is a schematic plan view, (b) is a schematic front view.

Claims (1)

(a)炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる金型本体の少なくとも成形面に、
(b)マグネトロンスパッタリング装置にて、カソード電極(蒸発源)としてTiターゲットを用い、窒素とArの混合ガス、または炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜された、窒化チタン層および炭窒化チタン層のいずれか、または両方の積層からなり、かつ0.1〜5μmの平均層厚を有する密着接合層を介して、
(c)マグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとCrターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜20原子%、
Cr:5〜20原子%、
窒素:0.5〜18原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、炭素系非晶質体の素地に、結晶質炭窒化クロム系化合物の微粒が分散分布した組織を示し、かつ1〜15μmの平均層厚を有する潤滑性非晶質炭素系被膜を蒸着形成してなる、潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製金属粉末プレス成形金型。
(A) At least on the molding surface of a mold body made of a tungsten carbide base cemented carbide or a titanium carbonitride cermet,
(B) In a magnetron sputtering apparatus, a Ti target is used as a cathode electrode (evaporation source), and a film is formed in a magnetic field in a reaction atmosphere composed of a mixed gas of nitrogen and Ar, or a mixed gas of hydrocarbon decomposition gas and nitrogen and Ar. Through a tight junction layer comprising either or both of a titanium nitride layer and a titanium carbonitride layer and having an average layer thickness of 0.1 to 5 μm,
(C) In a magnetron sputtering apparatus, a tungsten carbide target and a Cr target are used as a cathode electrode (evaporation source), and a film is formed in a magnetic field in a reaction atmosphere composed of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar. Measured with a spectroscopic analyzer,
W: 5 to 20 atomic%,
Cr: 5 to 20 atomic%,
Nitrogen: 0.5-18 atomic%,
And a structure in which the remainder is composed of carbon and inevitable impurities, and a structure in which fine particles of a crystalline chromium carbonitride compound are dispersed and distributed on a carbon-based amorphous body by observation with a transmission electron microscope. Made of a surface-coated cemented carbide alloy that exhibits excellent wear resistance by providing a lubricious amorphous carbon-based coating having an average layer thickness of 1 to 15 μm. Metal powder press mold.
JP2004335293A 2004-11-19 2004-11-19 Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating Expired - Fee Related JP4281670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335293A JP4281670B2 (en) 2004-11-19 2004-11-19 Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335293A JP4281670B2 (en) 2004-11-19 2004-11-19 Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Publications (2)

Publication Number Publication Date
JP2006144070A JP2006144070A (en) 2006-06-08
JP4281670B2 true JP4281670B2 (en) 2009-06-17

Family

ID=36624113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335293A Expired - Fee Related JP4281670B2 (en) 2004-11-19 2004-11-19 Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating

Country Status (1)

Country Link
JP (1) JP4281670B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002684B (en) 2009-08-31 2014-07-30 日立金属株式会社 Slide part
CN104726757A (en) * 2013-12-20 2015-06-24 北京有色金属研究总院 Preparation method of binding phase-free ultrafine hard alloy

Also Published As

Publication number Publication date
JP2006144070A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP4281666B2 (en) Surface coated cemented carbide mold with excellent wear resistance of lubricated amorphous carbon coating in high speed press forming of metal powder
JP4281670B2 (en) Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP2009028800A (en) Surface coated cutting tool
JP4645944B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP4518253B2 (en) Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in diamond-like carbon-based coatings in high-speed cutting of non-ferrous materials
JP4281671B2 (en) Metal powder press-molding die made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP4530139B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4535255B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in high-speed cutting of hardened steel
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP4649946B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP4775757B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP5321360B2 (en) Surface coated cutting tool
JP4530138B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating
JP4645943B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP5234515B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP4535254B2 (en) Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in a high-speed cutting process.
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5407432B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5234516B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5332737B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4281670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees