JP4279925B2 - Horizontal heat treatment furnace and heat treatment method - Google Patents

Horizontal heat treatment furnace and heat treatment method Download PDF

Info

Publication number
JP4279925B2
JP4279925B2 JP00523499A JP523499A JP4279925B2 JP 4279925 B2 JP4279925 B2 JP 4279925B2 JP 00523499 A JP00523499 A JP 00523499A JP 523499 A JP523499 A JP 523499A JP 4279925 B2 JP4279925 B2 JP 4279925B2
Authority
JP
Japan
Prior art keywords
heat treatment
hot air
chamber
seal chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00523499A
Other languages
Japanese (ja)
Other versions
JP2000212839A (en
Inventor
博司 稲垣
繁樹 小川
伸之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP00523499A priority Critical patent/JP4279925B2/en
Publication of JP2000212839A publication Critical patent/JP2000212839A/en
Application granted granted Critical
Publication of JP4279925B2 publication Critical patent/JP4279925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は繊維製シートを連続して熱処理を施す横型熱処理炉と熱処理方法とに関し、更に詳しくは、炭素繊維を製造する際の耐炎化処理において、炉内のガスが外部へと漏出するのを完全に防止することができる横型熱処理炉及び熱処理方法に関する。
【0002】
【従来の技術】
従来のアクリル系繊維を原料として製造された炭素繊維は、その引張強度が500Kg/mm2 以上、伸度2%以上と極めて高性能なものとすることができるため、近年では、航空、宇宙用素材としての用途開発が活発に進められている。かかるアクリル系繊維を出発原料として炭素繊維を製造する際には、まずアクリル系繊維を200〜350℃の酸化性雰囲気下で耐炎化処理することが必要となる。この耐炎化処理の方法が例えば特開平2−139425号公報に開示されている。
【0003】
同公報に開示された熱処理方法によれば、酸化性雰囲気下にある熱処理炉内を多段に走行するアクリル系繊維からなる糸条に対して、その走行方向に対して直交する方向に熱風を流して耐炎化処理を施している。前記熱処理炉は少なくとも4つ以上のゾーンに分割され、各ゾーンでそれぞれに温度コントロールを行い、徐々に温度を上げると共に、前記熱風の風速を0.4m/s以上1.2m/s以下に設定することにより、走行糸条の切断といったトラブルを回避すると共に処理時間の短縮を図っている。
【0004】
ところで、この耐炎化処理での酸化反応によって熱処理炉内にはシアン化合物、アンモニア、及び一酸化炭素等の分解ガスが発生する。なお、前記熱処理炉内に糸を出入りさせる際には、当然に前記熱処理炉に糸条の導出入口が設けられているために、この導出入口から前記熱処理炉内のガスが炉外に漏れ出さないよう、厳重なシール室が設けられている。
【0005】
そこで、特開昭62−228865号公報及び特開昭62−228866号公報には、処理室内のガスの漏出を防止する手段をもつ炭素繊維の横型熱処理炉が開示されている。上記各公報に開示された熱処理炉は、シート状に並べられた多数の繊維製シートが酸化性雰囲気下にある熱処理室内を多段に平行して走行し、その走行方向と平行して熱風を吹きつけて耐炎化処理を施している。前記熱処理室の対向する両壁面にはスリット状をなす前記糸条の導出入口が複数設けられており、その導出入口が形成された前記両壁面にそれぞれ隣接してシール室を設けて、前記熱処理室に形成された導出入口から直接、同処理室内のガスが外部へと漏出するのを防止している。
【0006】
特開昭62−228865号公報に開示された熱処理炉にあっては、前記熱処理室内に2枚の仕切り板を水平方向に配して、前記熱処理室を上下3つに仕切ることにより、同熱処理室の上下での温度分布のバラツキをなくし、前記糸条に均一な熱処理を施すことができるものである。又、両側に形成された前記シール室にもそれぞれスリット状をなす糸条導出入口が複数設けられているが、両シール室には更にそれぞれ単一の排気口を設けて前記熱処理室から漏出した有毒ガスを積極的に排気しているため、前記糸条導出入口から有毒ガスが漏れ出すことはない。なお、前記排気口から排出されたガスは気体処理部において燃焼の処理がなされた後、外気へと放出される。
【0007】
更に、特開昭62−228866号公報に開示された熱処理炉にあっては、両側の各シール室内にそれぞれ2枚の仕切り板を水平方向に配して、同シール室を上下3つに仕切っている。前記シール室は仕切られた各部位ごとにそれぞれ排気口を設けて熱処理室から漏出したガスを積極的に排気し、前記シール室に形成された糸条導出入口から外部へのガスの漏出を防止している。又、前記シール室に形成された各排気口は単一の排気ファンにより排気され、その気体は共通の気体処理部で燃焼処理がなされる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記特開昭62−228865号公報及び特開昭62−228866号公報に開示された熱処理炉のように、糸条の走行方向と平行して熱風を吹きつけて耐炎化処理を施す場合に、前記熱風の流れ方向が糸条の導出入口に面しているため、熱処理室からシール室へ漏出するガスを含む気体の量が大きくなり、それに伴い前記シール室の排気口からの排気量も増加し、大量のガスを燃焼処理しなければならない。
【0009】
本発明はかかる問題点を解決すべくなされたものであり、格別に大型の設備を必要とすることなく、熱処理室内で発生した有毒ガスの外気への漏出を完全に阻止すると共に、熱処理室内における所望の加熱温度を維持させることが容易であり、更には処理を要する有毒ガスの量を低減させることができる横型熱処理炉及び熱処理方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
かかる課題を解決するために、本発明は、対向する両壁面の上下方向に多段のスリット状をなす繊維製シートの第1導出入口を有し、前記繊維製シートが多段に平行して走行する熱処理室と、前記両壁面にそれぞれ並設され、上下方向に多段のスリット状をなす前記繊維製シートの第2導出入口を外側壁面に有するシール室とを備えた横型熱処理炉であって、
【0011】
前記熱処理室は前記繊維製シートの走行方向と概略平行して熱風を吹き込む熱風導入部と、同熱風を排出する熱風排出部とを有する熱風循環設備を備え、
【0012】
前記各シール室には、少なくとも1つの排気口が形成されてなり、
熱風導入部側の前記シール室の排気口と熱風排出部側の前記シール室の排気口は、それぞれ独立した排気機構及び排気調整機構を有してなり、
熱風を吹き込む熱風導入部側のシール室内の圧力が熱処理室内の熱風導入部側の圧力より低く、かつ、熱風を排出する熱風排出部側のシール室内の圧力が熱処理室内の熱風排出部側の圧力より高く、圧力を調整されてなる、ことを特徴とする横型熱処理炉を主要な要旨としている。
【0013】
ここで、前記繊維製シートとは、多数の繊維を引き揃えたものや、シート状に配列したものや、繊維製織編物、不織布などをいう。
【0014】
又、排気調整機構としては、通常、熱風導入部側のシール室の内部圧力、熱風排出部側のシール室の内部圧力及び熱処理室の内部圧力とを比較して、排気ファンの回転数、すなわち排気量を調整するものであるが、これを自動化するため内部圧力の変化を検出する手段、同検出手段による検出信号により上記排気機構の排気量を調整する制御部を備えることもある。
【0015】
一般に、前記熱処理炉内の圧力と炉外の圧力との圧力差は、気体温度の違いにより生ずる前記熱処理炉内外の浮力差の影響で、炉の高さ方向に変化する。即ち、炉の上部では炉外より炉内の圧力差が高く、炉の下部では炉外より炉内の圧力が小さくなる。
【0016】
そのため、従来のシール室をもたない熱処理炉にあっては、同熱処理炉の上部に形成された繊維製シートの導出入口からは炉内の熱風が外部へと漏出しやすく、一方、熱処理炉の下部に形成された繊維製シートの導出入口からは外気が熱処理炉内へ流入しやすい。
【0017】
しかしながら、上述の構成を備えた本発明の熱処理炉は、前記シール室を備えているため、シール室内の圧力を前記熱処理室の圧力より小さくすることができるので、前記熱処理室内の上下方向における圧力変動に伴う前記熱処理室への外気の流入を防ぐことができ、前記熱処理の温度変化を極めて小さくすることができる。
【0018】
更に、前記各シール室には、少なくとも1つの排気口が形成されるとともに、熱風導入部側の前記シール室の排気口と熱風排出部側の前記シール室の排気口は、それぞれ独立した排気機構及び排気調整機構を備えているため、各シール室において独立して排気量を設定でき、各シール室の圧力がそれぞれに適宜調整される。そのため、熱処理室内とシール室内の圧力差を個別に制御でき、前述のような熱処理室の内外での浮力差の影響による同熱処理室への外気の流入や、同熱処理室からの熱風の過度の流出を制御することができ、従来にない温度の均一性に優れた熱処理炉とすることに成功したのである。
【0019】
なお、一般に前記排気口からの排気量を多くすれば、熱処理室内のガスの外への漏出を防ぐことが可能であるが、それにより熱処理室内からの熱量の流出も増加し、熱処理室内の温度低下を招きやすく、その温度制御上、好ましくない。又、燃焼処理がなされる流出気体の量も増加することになる。
【0020】
そこで、熱風を吹き込む熱風導入部側のシール室内の圧力、熱風を排出する熱風排出部側のシール室内の圧力、熱処理室内の熱風導入部側の圧力及び熱処理室内の熱風排出部側の圧力を別々に調整することができることが好ましく、熱風を吹き込む熱風導入部側のシール室内の圧力が熱処理室内の熱風導入部側の圧力より低く、かつ、熱風を排出する熱風排出部側のシール室内の圧力が熱処理室内の熱風排出部側の圧力より高く、圧力を調整されてなることが必要である。
【0021】
そして、前記シール室が、少なくとも1枚の仕切り板により上下に区画され、区画された各シール室には少なくとも一つの排気口が形成されていることが、前述のような熱処理室の内外での浮力差の影響による同熱処理室への外気の流入や、同熱処理室からの熱風の過度の流出を制御するとともに排気量を更に少なく抑えることができ、好ましい。
【0022】
前記シール室の内部圧力を更に細かく制御することができることから、前記シール室が、前記繊維製シートの段ごとに仕切り板により上下に区画され、各シール室には少なくとも一つの排気口が形成されている上記の横型熱処理炉が更に好ましい。
【0023】
又、熱処理室が、繊維製シートが走行する段毎に仕切板により区画されていると、前述のような熱処理室の内外での浮力差の影響による同熱処理室への外気の流入や、同熱処理室からの熱風の過度の流出をより低く抑えることができ好ましい。
【0024】
更に、本発明は、炭素繊維の原料であるプレカーサを上述した横型熱処理炉をもって熱処理する炭素繊維の熱処理方法であって、熱風を吹き込む熱風導入部側のシール室内の圧力が熱処理室内の熱風導入部側の圧力より0.3〜5Pa低く、かつ、熱風を排出する熱風排出部側のシール室内の圧力が熱処理室内の熱風排出部側の圧力より0.3〜5Pa高いことを他の主要な構成としている。
【0026】
【発明の実施の形態】
以下に本発明の好適な実施の形態について図面を参照して詳細に説明する。
図1は本発明の代表的な実施の形態である炭素繊維製造用の横型熱処理炉の概略図であり、図2は同熱処理炉におけるB−B'断面図である。なお、これらの図面において矢印は熱風の流れを示している。
【0027】
本実施の形態による横型熱処理炉1の熱処理室2には、図1における左右の対向する両壁面2a,2bにそれぞれ、上下方向に3段のスリット状をなす繊維製シートの第1導出入口3-1,3-2,3-3が形成されている。この熱処理室2の前記左右壁面2a,2bにシール室4,4が並設されており、同シール室4の外側壁面4a,4bにも前記熱処理室2と同様に、上下方向に3段のスリット状をなす繊維製シートの第2導出入口5-1,5-2,5-3が形成されている。
【0028】
なお、前記熱処理室2及びシール室4にそれぞれ形成された第1及び第2導出入口3,5の上下の開口寸法は、前記繊維製シートが同導出入口3,5に接触することなく通過できる範囲で可能なかぎり狭い方が好ましく、この点から前記導出入口は開口寸法が上下方向に調節可能なスリットとすることが好ましい。
【0029】
更に、前記左右のシール室4,4の外側にはそれぞれ段違いにローラ6,6が配置されている。前記熱処理炉1において熱処理される繊維製シートAは、図2に示すように多数本の糸条がシート状に水平方向に配列されたものであり、前記左側のシール室4の最上部に形成された繊維導出入口5-1から前記処理炉1に導入される。この繊維製シートAは前記ローラ6に巻回しながら前記シール室4及び熱処理室3内を3段で平行して連続走行し、前記右側のシール室4の最下部に形成された繊維導出入口5-3から前記処理炉1の外部に導出される。
【0030】
前記熱処理室2は、繊維製シートが通過する上下に繊維製シートの走行方向と概略平行して熱風を吹き込む熱風導入部2cを有するとともに、繊維製シートが通過する上下に前記熱風を排出する熱風排出部2dを備えており、前記繊維製シートAの走行方向と概略平行する方向に熱風を送り込んでいる。この熱風循環設備は更に、図2に示すように、熱処理室2の外部に設置された熱風加熱器10、ファン11、及び熱風排出部2dと熱風導入部2cとの間を接続するダクト12とを備えている。なお、前記熱処理室4内にも吸気口13と排気口14とを設けて、同熱処理室2の内部の気体を浄化している。
【0031】
前記シール室4,4にはそれぞれ排気口8aが形成されている。この上下の排気口8aは、前記熱処理炉1の外部に配された、それぞれ独立した排気ファン9aにより強制的に排気がなされる。
【0032】
熱風導入部2c側のシール室4bの内部圧力Pb,1と熱風導入部2c側の熱処理室2の内部圧力P′b,1との差ΔPb,1及び前記熱風排出部2d側のシール室4aの内部圧力Pa,1と熱風導入部2c側の熱処理室2の内部圧力P′a,1との差ΔPa,1は独立した排気ファン9aにより調整できる。ここで、Pa,xは熱風排出部2d側の上からx段目のシール室4aの内部圧力を示し、Pb,xは熱風導入部2c側の上からx段目のシール室4bの内部圧力を示す。又、P′a,xは熱風排出部2d側の上からx段目の熱処理室2の内部圧力を示し、P′b,xは熱風導入部2c側の上からx段目の熱処理室2の内部圧力を示す。
【0033】
なお、上述した実施の形態では説明を簡略化するために、前記繊維製シートAを3段で走行させているが、実際の熱処理炉にあっては熱処理効率を高めるためにも、通常は前記繊維製シートを数段〜数十段で走行させている。又、前記仕切り板を多数配設し、更には全段を区画するように各段毎に前記仕切り板を設けることも可能である。
【0034】
図3は本発明の代表的な実施の形態であり、シール室4、4及び熱処理室2を仕切り板7、15により区画した炭素繊維製造用の横型熱処理炉の概略図である。なお、この図面においても矢印は熱風の流れを示している。
【0035】
図3に示した、本実施の形態による横型熱処理炉1の熱処理室2は、繊維製シートの段ごとに仕切り板15で区画されるとともに、シール室4,4内が、繊維製シートの段ごとに仕切り板7で区画され、この区画されたシール室4にはそれぞれ排気口8a,8b,8cが形成されている。この上下の排気口8a,8b,8cは、前記熱処理炉1の外部に配された、それぞれ独立した排気ファン9a,9b,9cにより強制的に排気がなされる。
【0036】
熱風導入部2c側のシール室4bの内部圧力Pb,1 ,Pb,2 ,Pb,3 及び前記熱風排出部2d側のシール室4aの内部圧力Pa,1 ,Pa,2 ,Pa,3 は独立した排気ファン9a,9b,9cにより調整できる。ここで、Pa,xは熱風排出部2d側の上からx段目のシール室4aの内部圧力を示し、Pb,xは熱風導入部2c側の上からx段目のシール室4bの内部圧力を示す。
【0037】
以下、図3に示したように熱処理室が、繊維製シートの段ごとに仕切り板で区画されるとともに、シール室内も、繊維製シートの段ごとに仕切り板で区画されており、繊維製シートが3段で走行する熱処理炉を使用して熱処理を施す方法について、実施例及び比較例を参照して説明する。
【0038】
〔実施例1〕
熱処理炉は段間隔、即ち繊維製シートの導出入口間の距離が200mmに設定されており、同スリット状導出入口はスリット幅が400mm、スリット高さが15mmの図3に示した熱処理を用意した。流量係数αが0.9であった。前記熱処理炉の熱処理室内温度は240℃、シール室上部温度は100℃に設定されており、熱処理炉外温度は20℃であった。
【0039】
熱風導入部側のシール室の内部圧力がPb,1=−3.6Pa、Pb,2=−4.5Pa、Pb,3=−6.6Pa、熱風導入部側の熱処理室の内部圧力がP′b,1=−2.9Pa、P′b,2=−3.4Pa、P′b,3=−3.9Pa、即ち、熱処理室の内部圧力とシール室の内部圧力との差ΔPb,1=0.7Pa、ΔPb,2=1.1Pa、ΔPb,3=2.5Paとなるように排気量を調節した。
【0040】
そして、熱風排出部側のシール室の内部圧力がPa,1=0Pa、Pa,2=0Pa、Pa,3=−0.2Pa、熱風排出部側の熱処理室の内部圧力がP′a,1=−0.5Pa、P′a,2=−1.0Pa、P′a,3=−1.2Pa、即ち、熱処理室の内部圧力とシール室の内部圧力との差ΔPb,1=0.5Pa、ΔPb,2=1.0Pa、ΔPb,3=1.0Paとなるように排気量を調節した。この圧力差の測定には、岡野製作所製デジタルマノメーターを用いた。
【0041】
その結果、シール室から作業環境への炉内ガス漏れだしは見られなかった。
又、熱風排出部側シール室排気口から排気ガスについてシアン検知器によりシアンガス濃度を測定したが、検出されなかった。更に熱風導入部2cでの幅方向温度斑は3℃であった。
【0042】
【発明の効果】
本発明によれば、格別に大型の設備を必要とすることなく、熱処理室内で発生した有毒ガスの外気への漏出を完全に阻止すると共に、熱処理室内における所望の加熱温度を維持させることが容易である。
【0043】
【図面の簡単な説明】
【図1】 本発明の好適な実施の態様である炭素繊維製造用の横型熱処理炉の構造を示す概略図である。
【図2】 上記熱処理炉における熱風循環設備の概略図(図1の横型熱処理炉のB−B'断面図)である。
【図3】 本発明の好適な実施の態様である炭素繊維製造用の横型熱処理炉の構造を示す概略図である。
【符号の説明】
1 熱処理炉
2 熱処理室
2a,2b 壁面
2c 熱風導入部
2d 熱風排出部
3 繊維製シート導出入口
4 シール室
5 繊維製シート導出入口
6 ローラ
7 仕切り板
8a,8b 排気口
9a,9b 排気ファン
10 熱風加熱器
11 ファン
12 ダクト
13 吸気口
14 排気口
15 熱処理室仕切り板
A 繊維製シート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a horizontal heat treatment furnace and a heat treatment method for continuously heat-treating a fiber sheet, and more specifically, in the flameproofing treatment when producing carbon fiber, the gas in the furnace leaks to the outside. The present invention relates to a horizontal heat treatment furnace and a heat treatment method that can be completely prevented.
[0002]
[Prior art]
Carbon fibers manufactured using conventional acrylic fibers as raw materials can have extremely high performance such as tensile strength of 500 kg / mm 2 or more and elongation of 2% or more. Application development as a material is being actively promoted. When carbon fibers are produced using such acrylic fibers as starting materials, it is first necessary to flame-treat the acrylic fibers in an oxidizing atmosphere at 200 to 350 ° C. This flameproofing method is disclosed in, for example, Japanese Patent Laid-Open No. 2-139425.
[0003]
According to the heat treatment method disclosed in the publication, hot air is allowed to flow in a direction perpendicular to the traveling direction with respect to yarns made of acrylic fibers traveling in multiple stages in a heat treatment furnace in an oxidizing atmosphere. The flameproofing treatment is applied. The heat treatment furnace is divided into at least four zones, temperature control is performed in each zone, the temperature is gradually increased, and the velocity of the hot air is set to 0.4 m / s or more and 1.2 m / s or less. This avoids troubles such as cutting of the running yarn and shortens the processing time.
[0004]
By the way, a decomposition gas such as cyanide, ammonia and carbon monoxide is generated in the heat treatment furnace by the oxidation reaction in the flameproofing treatment. Note that when the yarn enters and exits the heat treatment furnace, the yarn heat treatment furnace is naturally provided with a yarn lead-out inlet, and therefore the gas in the heat treatment furnace leaks out of the furnace from the lead-out inlet. Strict sealing chambers are provided so that there is no danger.
[0005]
In view of this, Japanese Patent Application Laid-Open Nos. 62-228865 and 62-228866 disclose a horizontal heat treatment furnace for carbon fibers having means for preventing gas leakage in the processing chamber. In the heat treatment furnaces disclosed in the above publications, a large number of fiber sheets arranged in a sheet form travel in parallel in a heat treatment chamber in an oxidizing atmosphere and blow hot air in parallel with the travel direction. It is attached with a flameproofing treatment. There are provided a plurality of slit lead-out inlets on both wall surfaces of the heat treatment chamber facing each other, and seal chambers are provided adjacent to both wall surfaces where the lead-out inlets are formed, so that the heat treatment is performed. The gas in the processing chamber is prevented from leaking to the outside directly from the outlet port formed in the chamber.
[0006]
In the heat treatment furnace disclosed in Japanese Patent Application Laid-Open No. 62-228865, two partition plates are horizontally arranged in the heat treatment chamber, and the heat treatment chamber is divided into three upper and lower portions, thereby performing the same heat treatment. The temperature distribution at the top and bottom of the chamber is eliminated, and the yarn can be subjected to uniform heat treatment. In addition, the seal chambers formed on both sides are also provided with a plurality of slit lead-out inlets each having a slit shape, but both the seal chambers are further provided with a single exhaust port to leak from the heat treatment chamber. Since the toxic gas is actively exhausted, the toxic gas does not leak from the yarn outlet. The gas discharged from the exhaust port is discharged into the outside air after being subjected to combustion processing in the gas processing section.
[0007]
Furthermore, in the heat treatment furnace disclosed in Japanese Patent Application Laid-Open No. 62-228866, two partition plates are horizontally arranged in each seal chamber on both sides, and the seal chamber is divided into three upper and lower portions. ing. The seal chamber is provided with an exhaust port for each partitioned part to positively exhaust the gas leaked from the heat treatment chamber and prevent gas leakage to the outside from the yarn outlet inlet formed in the seal chamber. is doing. Each exhaust port formed in the seal chamber is exhausted by a single exhaust fan, and the gas is combusted in a common gas processing unit.
[0008]
[Problems to be solved by the invention]
However, as in the heat treatment furnace disclosed in the above-mentioned Japanese Patent Application Laid-Open Nos. 62-228865 and 62-228866, flameproofing treatment is performed by blowing hot air parallel to the running direction of the yarn. Further, since the flow direction of the hot air faces the yarn outlet, the amount of gas including gas leaking from the heat treatment chamber to the seal chamber increases, and accordingly, the amount of exhaust from the exhaust port of the seal chamber And a large amount of gas must be combusted.
[0009]
The present invention has been made to solve such problems, and completely prevents leakage of toxic gas generated in the heat treatment chamber to the outside air without requiring a particularly large facility, and in the heat treatment chamber. It is an object of the present invention to provide a horizontal heat treatment furnace and a heat treatment method that can easily maintain a desired heating temperature and can reduce the amount of toxic gas that requires treatment.
[0010]
[Means for Solving the Problems]
In order to solve this problem, the present invention has a first lead-out entrance for a fiber sheet having a multi-stage slit shape in the vertical direction of both opposing wall surfaces, and the fiber sheet travels in parallel with the multi-stage. A horizontal heat treatment furnace comprising a heat treatment chamber and a seal chamber having a second outlet for the fiber sheet, which is provided in parallel on both wall surfaces and has a multistage slit shape in the vertical direction, on the outer wall surface,
[0011]
The heat treatment chamber includes a hot air circulation facility having a hot air introduction portion for blowing hot air substantially parallel to the traveling direction of the fiber sheet, and a hot air discharge portion for discharging the hot air,
[0012]
Each seal chamber is formed with at least one exhaust port,
The exhaust port of the seal chamber on the hot air introduction part side and the exhaust port of the seal chamber on the hot air discharge part side have an independent exhaust mechanism and an exhaust adjustment mechanism, respectively.
The pressure in the seal chamber on the hot air introduction portion side where hot air is blown is lower than the pressure on the hot air introduction portion side in the heat treatment chamber, and the pressure in the seal chamber on the hot air discharge portion side that discharges hot air is the pressure on the hot air discharge portion side in the heat treatment chamber. The main gist is a horizontal heat treatment furnace characterized in that it is higher and the pressure is adjusted .
[0013]
Here, the fiber sheet refers to a sheet in which a large number of fibers are arranged, a sheet array, a fiber woven or knitted fabric, a nonwoven fabric, and the like.
[0014]
Further, as the exhaust adjustment mechanism, the internal pressure of the seal chamber on the hot air introduction part side, the internal pressure of the seal chamber on the hot air discharge part side, and the internal pressure of the heat treatment chamber are usually compared. In order to automate this, a means for detecting a change in internal pressure and a control unit for adjusting the exhaust amount of the exhaust mechanism by a detection signal from the detection means may be provided.
[0015]
In general, the pressure difference between the pressure inside the heat treatment furnace and the pressure outside the furnace changes in the height direction of the furnace due to the influence of the buoyancy difference inside and outside the heat treatment furnace caused by the difference in gas temperature. That is, the pressure difference in the furnace is higher in the upper part of the furnace than in the furnace, and the pressure in the furnace is lower in the lower part of the furnace than in the furnace.
[0016]
Therefore, in a heat treatment furnace having no conventional seal chamber, hot air in the furnace is likely to leak out from the fiber sheet outlet formed at the top of the heat treatment furnace, while the heat treatment furnace The outside air tends to flow into the heat treatment furnace from the fiber sheet outlet formed in the lower part.
[0017]
However, since the heat treatment furnace of the present invention having the above-described configuration includes the seal chamber, the pressure in the seal chamber can be made smaller than the pressure in the heat treatment chamber. Inflow of outside air into the heat treatment chamber due to fluctuations can be prevented, and the temperature change of the heat treatment can be made extremely small.
[0018]
Further, at least one exhaust port is formed in each seal chamber, and the exhaust port of the seal chamber on the hot air introduction unit side and the exhaust port of the seal chamber on the hot air discharge unit side are independent exhaust mechanisms, respectively. Since the exhaust adjustment mechanism is provided, the exhaust amount can be set independently in each seal chamber, and the pressure in each seal chamber is adjusted appropriately. Therefore, the pressure difference between the heat treatment chamber and the seal chamber can be individually controlled, and the inflow of outside air into the heat treatment chamber due to the influence of the buoyancy difference between the inside and outside of the heat treatment chamber as described above, and excessive hot air from the heat treatment chamber It was possible to control the outflow, and succeeded in making a heat treatment furnace with an unprecedented temperature uniformity.
[0019]
In general, if the amount of exhaust from the exhaust port is increased, it is possible to prevent the gas in the heat treatment chamber from leaking out, but this also increases the outflow of heat from the heat treatment chamber, thereby increasing the temperature in the heat treatment chamber. It tends to cause a decrease, which is not preferable in terms of temperature control. In addition, the amount of outflow gas that is subjected to combustion processing also increases.
[0020]
Therefore, the pressure in the seal chamber on the hot air introduction part side for blowing hot air, the pressure in the seal chamber on the hot air discharge part side for discharging hot air, the pressure on the hot air introduction part side in the heat treatment chamber, and the pressure on the hot air discharge part side in the heat treatment chamber are separated. It is preferable that the pressure in the seal chamber on the hot air introduction portion side for blowing hot air is lower than the pressure on the hot air introduction portion side in the heat treatment chamber, and the pressure in the seal chamber on the hot air discharge portion side for discharging hot air is It is necessary that the pressure is higher than the pressure on the hot air discharge section side in the heat treatment chamber and the pressure is adjusted .
[0021]
The sealing chamber is divided into upper and lower parts by at least one partition plate, and at least one exhaust port is formed in each of the divided sealing chambers. The inflow of outside air into the heat treatment chamber due to the influence of the buoyancy difference and the excessive outflow of hot air from the heat treatment chamber can be controlled, and the exhaust amount can be further reduced, which is preferable.
[0022]
Since the internal pressure of the seal chamber can be controlled more finely, the seal chamber is partitioned vertically by a partition plate for each stage of the fiber sheet, and at least one exhaust port is formed in each seal chamber. The above horizontal heat treatment furnace is more preferable.
[0023]
Also, if the heat treatment chamber is partitioned by a partition plate for each stage on which the fiber sheet travels, the flow of outside air into the heat treatment chamber due to the influence of the buoyancy difference between the inside and outside of the heat treatment chamber as described above, It is preferable because excessive outflow of hot air from the heat treatment chamber can be suppressed to a lower level.
[0024]
Furthermore, the present invention is a carbon fiber heat treatment method in which a precursor, which is a raw material of carbon fiber, is heat-treated in the horizontal heat treatment furnace described above, and the pressure in the seal chamber on the hot air introduction portion side into which hot air is blown is set in the hot air introduction portion in the heat treatment chamber. Other main components are 0.3 to 5 Pa lower than the pressure on the side, and the pressure in the seal chamber on the hot air discharge part side for discharging hot air is 0.3 to 5 Pa higher than the pressure on the hot air discharge part side in the heat treatment chamber It is said.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a schematic view of a horizontal heat treatment furnace for producing carbon fibers, which is a typical embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line BB ′ in the heat treatment furnace. In these drawings, arrows indicate the flow of hot air.
[0027]
In the heat treatment chamber 2 of the horizontal heat treatment furnace 1 according to the present embodiment, the first lead-in inlet 3 for the fiber sheet having a three-stage slit shape in the vertical direction is provided on the left and right opposing wall surfaces 2a and 2b in FIG. -1, 3-2 and 3-3 are formed. Sealing chambers 4, 4 are arranged side by side on the left and right wall surfaces 2 a, 2 b of the heat treatment chamber 2, and on the outer wall surfaces 4 a, 4 b of the seal chamber 4, as in the heat treatment chamber 2, three steps in the vertical direction. The second lead-out inlets 5-1, 5-2 and 5-3 of the fiber sheet having a slit shape are formed.
[0028]
The upper and lower opening dimensions of the first and second outlets 3 and 5 formed in the heat treatment chamber 2 and the seal chamber 4 can pass through the fiber sheet without contacting the outlets 3 and 5. The narrowest possible range is preferable. From this point, the outlet port is preferably a slit whose opening size can be adjusted in the vertical direction.
[0029]
Further, rollers 6 and 6 are arranged outside the left and right seal chambers 4 and 4, respectively. The fiber sheet A to be heat-treated in the heat treatment furnace 1 is formed by arranging a large number of yarns in a horizontal direction in the form of a sheet as shown in FIG. 2, and is formed at the top of the left seal chamber 4. The fiber is introduced into the processing furnace 1 through the fiber lead-in inlet 5-1. The fiber sheet A continuously travels in parallel in three stages in the seal chamber 4 and the heat treatment chamber 3 while being wound around the roller 6, and the fiber outlet 5 formed at the lowermost portion of the right seal chamber 4. -3 to the outside of the processing furnace 1.
[0030]
The heat treatment chamber 2 has hot air introduction portions 2c for blowing hot air in the upper and lower directions through which the fiber sheet passes and in parallel with the traveling direction of the fiber sheet, and hot air for discharging the hot air in the upper and lower directions through which the fiber sheet passes. A discharge portion 2d is provided, and hot air is fed in a direction substantially parallel to the traveling direction of the fiber sheet A. As shown in FIG. 2, the hot air circulation facility further includes a hot air heater 10 installed outside the heat treatment chamber 2, a fan 11, and a duct 12 for connecting the hot air discharge part 2d and the hot air introduction part 2c. It has. An intake port 13 and an exhaust port 14 are also provided in the heat treatment chamber 4 to purify the gas inside the heat treatment chamber 2.
[0031]
Exhaust ports 8a are formed in the seal chambers 4 and 4, respectively. The upper and lower exhaust ports 8 a are forcibly exhausted by independent exhaust fans 9 a arranged outside the heat treatment furnace 1.
[0032]
The difference ΔP b, 1 between the internal pressure P b, 1 of the seal chamber 4b on the hot air introduction portion 2c side and the internal pressure P ′ b, 1 of the heat treatment chamber 2 on the hot air introduction portion 2c side and the seal on the hot air discharge portion 2d side The difference ΔP a, 1 between the internal pressure P a, 1 of the chamber 4a and the internal pressure P ′ a, 1 of the heat treatment chamber 2 on the hot air introduction part 2c side can be adjusted by an independent exhaust fan 9a. Here, P a, x represents the internal pressure of the x-stage seal chamber 4a from the top of the hot air discharge part 2d side, and P b, x represents the x-stage seal chamber 4b from the top of the hot air introduction part 2c side. Indicates internal pressure. P ′ a, x indicates the internal pressure of the heat treatment chamber 2 at the x-th stage from the top side of the hot air discharge section 2d, and P ′ b, x indicates the heat treatment chamber 2 at the x-stage from the top side of the hot air introduction section 2c. The internal pressure of is shown.
[0033]
In the above-described embodiment, the fiber sheet A is traveled in three stages for the sake of simplification. However, in an actual heat treatment furnace, in order to increase heat treatment efficiency, usually, The fiber sheet is run in several to several tens of steps. It is also possible to provide a large number of the partition plates and further to provide the partition plates for each stage so as to partition all stages.
[0034]
FIG. 3 shows a typical embodiment of the present invention, and is a schematic view of a horizontal heat treatment furnace for producing carbon fibers in which the seal chambers 4 and 4 and the heat treatment chamber 2 are partitioned by partition plates 7 and 15. In this drawing, the arrows indicate the flow of hot air.
[0035]
The heat treatment chamber 2 of the horizontal heat treatment furnace 1 according to the present embodiment shown in FIG. 3 is partitioned by a partition plate 15 for each fiber sheet step, and the inside of the seal chambers 4 and 4 is a fiber sheet step. Each is divided by a partition plate 7, and exhaust ports 8a, 8b, and 8c are formed in the partitioned seal chamber 4 respectively. The upper and lower exhaust ports 8a, 8b, 8c are forcibly exhausted by independent exhaust fans 9a, 9b, 9c arranged outside the heat treatment furnace 1, respectively.
[0036]
The internal pressures P b, 1 , P b, 2 , P b, 3 of the seal chamber 4b on the hot air introduction part 2c side and the internal pressures P a, 1 , P a, 2 of the seal chamber 4a on the hot air discharge part 2d side, Pa , 3 can be adjusted by independent exhaust fans 9a, 9b, 9c. Here, P a, x represents the internal pressure of the x-stage seal chamber 4a from the top of the hot air discharge part 2d side, and P b, x represents the x-stage seal chamber 4b from the top of the hot air introduction part 2c side. Indicates internal pressure.
[0037]
Hereinafter, as shown in FIG. 3, the heat treatment chamber is partitioned by a partition plate for each step of the fiber sheet, and the seal chamber is also partitioned by a partition plate for each step of the fiber sheet. A method for performing heat treatment using a heat treatment furnace that travels in three stages will be described with reference to examples and comparative examples.
[0038]
[Example 1]
In the heat treatment furnace, the step interval, that is, the distance between the fiber sheet outlets, is set to 200 mm, and the slit-like outlet has the heat treatment shown in FIG. 3 having a slit width of 400 mm and a slit height of 15 mm. . The flow coefficient α was 0.9. In the heat treatment furnace, the heat treatment chamber temperature was set to 240 ° C., the seal chamber upper temperature was set to 100 ° C., and the heat treatment furnace outside temperature was 20 ° C.
[0039]
The internal pressure of the seal chamber on the hot air introduction part side is P b, 1 = −3.6 Pa, P b, 2 = −4.5 Pa, P b, 3 = −6.6 Pa, inside the heat treatment chamber on the hot air introduction part side The pressures are P ′ b, 1 = −2.9 Pa, P ′ b, 2 = −3.4 Pa, P ′ b, 3 = −3.9 Pa, that is, the internal pressure of the heat treatment chamber and the internal pressure of the seal chamber The displacement was adjusted so that the differences ΔP b, 1 = 0.7 Pa, ΔP b, 2 = 1.1 Pa, ΔP b, 3 = 2.5 Pa.
[0040]
And, the internal pressure of the seal chamber on the hot air discharge part side is Pa , 1 = 0 Pa, Pa, 2 = 0 Pa, Pa, 3 = −0.2 Pa, and the internal pressure of the heat treatment chamber on the hot air discharge part side is P ′. a, 1 = −0.5 Pa, P ′ a, 2 = −1.0 Pa, P ′ a, 3 = −1.2 Pa, ie, the difference ΔP b, between the internal pressure of the heat treatment chamber and the internal pressure of the seal chamber The displacement was adjusted so that 1 = 0.5 Pa, ΔP b, 2 = 1.0 Pa, ΔP b, 3 = 1.0 Pa. A digital manometer manufactured by Okano Seisakusho was used for the measurement of the pressure difference.
[0041]
As a result, no leak of gas in the furnace from the seal chamber to the work environment was observed.
In addition, the cyan gas concentration of the exhaust gas from the hot air discharge part side seal chamber exhaust port was measured by a cyan detector, but was not detected. Furthermore, the temperature variation in the width direction at the hot air introduction portion 2c was 3 ° C.
[0042]
【The invention's effect】
According to the present invention, it is easy to completely prevent leakage of toxic gas generated in the heat treatment chamber to the outside air and maintain a desired heating temperature in the heat treatment chamber without requiring a particularly large facility. It is.
[0043]
[Brief description of the drawings]
FIG. 1 is a schematic view showing the structure of a horizontal heat treatment furnace for producing carbon fiber which is a preferred embodiment of the present invention.
FIG. 2 is a schematic view of a hot air circulation facility in the heat treatment furnace (cross-sectional view taken along the line BB ′ of the horizontal heat treatment furnace in FIG. 1).
FIG. 3 is a schematic view showing the structure of a horizontal heat treatment furnace for producing carbon fiber which is a preferred embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat processing furnace 2 Heat processing chamber 2a, 2b Wall surface 2c Hot-air introduction part 2d Hot-air discharge part 3 Fiber sheet extraction inlet 4 Seal chamber 5 Fiber sheet extraction inlet 6 Roller 7 Partition plate 8a, 8b Exhaust port 9a, 9b Exhaust fan 10 Hot air Heater 11 Fan 12 Duct 13 Intake port 14 Exhaust port 15 Heat treatment room partition plate A Fiber sheet

Claims (5)

対向する両壁面の上下方向に多段のスリット状をなす繊維製シートの第1導出入口を有し、前記繊維製シートが多段に平行して走行する熱処理室と、前記両壁面にそれぞれ並設され、上下方向に多段のスリット状をなす前記繊維製シートの第2導出入口を外側壁面に有するシール室とを備えた横型熱処理炉であって、
前記熱処理室は前記繊維製シートの走行方向と概略平行して熱風を吹き込む熱風導入部と、同熱風を排出する熱風排出部とを有する熱風循環設備を備え、
前記各シール室には、少なくとも1つの排気口が形成されてなり、
熱風導入部側の前記シール室の排気口と熱風排出部側の前記シール室の排気口は、それぞれ独立した排気機構及び排気調整機構を有してなり、
熱風を吹き込む熱風導入部側のシール室内の圧力が熱処理室内の熱風導入部側の圧力より低く、かつ、熱風を排出する熱風排出部側のシール室内の圧力が熱処理室内の熱風排出部側の圧力より高く、圧力を調整されてなる、横型熱処理炉。
There are first lead-in entrances for the fiber sheet having a multi-stage slit shape in the vertical direction of both opposing wall surfaces, and the fiber sheet runs parallel to the multi-stage and the both wall surfaces are juxtaposed. A horizontal heat treatment furnace comprising a sealing chamber having a second outlet for the fiber sheet having a multi-stage slit shape in the vertical direction on the outer wall surface,
The heat treatment chamber includes a hot air circulation facility having a hot air introduction portion for blowing hot air substantially parallel to the traveling direction of the fiber sheet, and a hot air discharge portion for discharging the hot air,
Each seal chamber is formed with at least one exhaust port,
Said seal chamber exhaust port of the seal chamber of the exhaust port of the hot air inlet side and the hot air discharge portion side, Ri na have independent exhaust mechanism and exhaust adjusting mechanism,
The pressure in the seal chamber on the hot air introduction portion side where hot air is blown is lower than the pressure on the hot air introduction portion side in the heat treatment chamber, and the pressure in the seal chamber on the hot air discharge portion side that discharges hot air is the pressure on the hot air discharge portion side in the heat treatment chamber. A horizontal heat treatment furnace that is higher and pressure-adjusted .
前記シール室が、少なくとも1枚仕切り板により上下に区画され、区画された各シール室には少なくとも一つの排気口が形成されている請求項1記載の横型熱処理炉。The horizontal heat treatment furnace according to claim 1 , wherein the seal chamber is partitioned vertically by at least one partition plate, and at least one exhaust port is formed in each partitioned seal chamber . 前記シール室が、前記繊維製シートの段ごとに仕切り板により上下に区画され、各シール室には少なくとも一つの排気口が形成されている請求項1又は2に記載の横型熱処理炉。The horizontal heat treatment furnace according to claim 1 or 2, wherein the seal chamber is partitioned vertically by a partition plate for each stage of the fiber sheet, and at least one exhaust port is formed in each seal chamber . 熱処理室が、繊維製シートが走行する段毎に仕切板により区画されている請求項1〜3のいずれか1項記載の横型熱処理炉。The horizontal heat treatment furnace according to any one of claims 1 to 3, wherein the heat treatment chamber is partitioned by a partition plate for each stage on which the fiber sheet travels . 炭素繊維の原料であるプレカーサーを請求項1〜4のいずれか1項記載の横型熱処理炉により熱処理する熱処理方法であって、A heat treatment method for heat-treating a precursor, which is a raw material of carbon fiber, using the horizontal heat treatment furnace according to any one of claims 1 to 4,
熱風を吹き込む熱風導入部側のシール室内の圧力が熱処理室内の熱風導入部側の圧力より0.3〜5Pa低く、かつ、熱風を排出する熱風排出部側のシール室内の圧力が熱処理室内の熱風排出部側の圧力より0.3〜5Pa高い、熱処理方法。  The pressure in the seal chamber on the hot air introduction portion side for blowing hot air is 0.3-5 Pa lower than the pressure on the hot air introduction portion side in the heat treatment chamber, and the pressure in the seal chamber on the hot air discharge portion side for discharging the hot air is hot air in the heat treatment chamber. A heat treatment method that is 0.3 to 5 Pa higher than the pressure on the discharge side.
JP00523499A 1999-01-12 1999-01-12 Horizontal heat treatment furnace and heat treatment method Expired - Lifetime JP4279925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00523499A JP4279925B2 (en) 1999-01-12 1999-01-12 Horizontal heat treatment furnace and heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00523499A JP4279925B2 (en) 1999-01-12 1999-01-12 Horizontal heat treatment furnace and heat treatment method

Publications (2)

Publication Number Publication Date
JP2000212839A JP2000212839A (en) 2000-08-02
JP4279925B2 true JP4279925B2 (en) 2009-06-17

Family

ID=11605511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00523499A Expired - Lifetime JP4279925B2 (en) 1999-01-12 1999-01-12 Horizontal heat treatment furnace and heat treatment method

Country Status (1)

Country Link
JP (1) JP4279925B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493775B2 (en) * 2000-01-06 2010-06-30 三菱レイヨン株式会社 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
JP2002194627A (en) * 2000-12-22 2002-07-10 Toray Ind Inc Heat-treating oven and method for producing carbon fiber by use of the same
JP4818964B2 (en) * 2007-03-19 2011-11-16 三菱レイヨン株式会社 Flame resistant furnace
JP4961256B2 (en) * 2007-05-10 2012-06-27 三菱レイヨン株式会社 Flameproof heat treatment equipment
JP4494511B2 (en) * 2009-08-12 2010-06-30 三菱レイヨン株式会社 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
CN103026159B (en) * 2010-07-13 2014-10-29 松下电器产业株式会社 Sheet heating device
KR101429382B1 (en) 2013-01-25 2014-08-11 주식회사 효성 Furnace for manufacturing carbon fiber
JP6372095B2 (en) * 2014-03-06 2018-08-15 三菱ケミカル株式会社 Carbon fiber manufacturing method

Also Published As

Publication number Publication date
JP2000212839A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
JP4279925B2 (en) Horizontal heat treatment furnace and heat treatment method
JP3868907B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus
JP4241950B2 (en) Horizontal heat treatment furnace and heat treatment method
JP4408308B2 (en) Horizontal heat treatment furnace and heat treatment method
EP0110557B1 (en) Apparatus for producing oxidized filaments
JP4494511B2 (en) Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
JPH034832B2 (en)
JP2007132657A (en) Horizontal heat treatment furnace and heat treatment method
JP4493775B2 (en) Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
JP4292771B2 (en) Heat treatment furnace
JP4796467B2 (en) Horizontal flameproof furnace and flameproofing method
JP4377007B2 (en) Carbon fiber manufacturing method
JPS6252052B2 (en)
JPH034834B2 (en)
JP2007224432A (en) Horizontal thermal treatment apparatus and thermal treatment method
JP2000088464A (en) Heat treatment furnace and manufacture of carbon fiber using it
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JPH034833B2 (en)
JP4471779B2 (en) Flameproofing furnace
JP2003155629A (en) Heat treatment apparatus for making carbon fiber flameproof and method for producing carbon fiber
JP2001288623A (en) Hot air-circulating type convective oven and method for producing flameproof fiber
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
KR101076571B1 (en) Flame Resisting Treatment Furnace For Precursors And Preparing Method Of Carbon Fiber Using The Same
JP2012153987A (en) Heat treatment furnace, and method for producing flameproof fiber bundle and carbon fiber
JP4276669B2 (en) Flameproof heat treatment apparatus and method of operating the apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term