JP4494511B2 - Horizontal heat treatment apparatus for yarn and method for producing carbon fiber - Google Patents

Horizontal heat treatment apparatus for yarn and method for producing carbon fiber Download PDF

Info

Publication number
JP4494511B2
JP4494511B2 JP2009186991A JP2009186991A JP4494511B2 JP 4494511 B2 JP4494511 B2 JP 4494511B2 JP 2009186991 A JP2009186991 A JP 2009186991A JP 2009186991 A JP2009186991 A JP 2009186991A JP 4494511 B2 JP4494511 B2 JP 4494511B2
Authority
JP
Japan
Prior art keywords
heat treatment
chamber
seal
gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009186991A
Other languages
Japanese (ja)
Other versions
JP2010002176A (en
Inventor
▲博▼司 稲垣
繁樹 小川
伸之 山本
和之 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009186991A priority Critical patent/JP4494511B2/en
Publication of JP2010002176A publication Critical patent/JP2010002176A/en
Application granted granted Critical
Publication of JP4494511B2 publication Critical patent/JP4494511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は糸条を熱処理するための横型熱処理装置と同熱処理炉を使った炭素繊維の製造方法に関し、特に熱処理炉のシール性能を確保すると共に、炉内の熱処理温度の安定性に優れた横型熱処理装置と炭素繊維の製造方法に関する。   The present invention relates to a horizontal heat treatment apparatus for heat treating yarns and a carbon fiber production method using the same heat treatment furnace, and in particular, a horizontal type which ensures the sealing performance of the heat treatment furnace and has excellent heat treatment temperature stability in the furnace. The present invention relates to a heat treatment apparatus and a carbon fiber manufacturing method.

一般に糸条の製造に際しては、その物性を改良したり、乾燥を目的として多様な熱処理が施されている。特に機械的性質に優れた炭素繊維の製造にあっては高温度下での熱処理が要求され、例えば、合成繊維を出発原料として炭素繊維を製造するにあたっては、前記繊維の糸条を酸化性雰囲気下にて150〜400℃に加熱処理する耐炎化処理或いは不融化処理、前記処理にて得られた糸条を不活性雰囲気下にて900〜2000℃に加熱処理する炭素化処理、更には必要に応じて前記処理にて得られた糸条を2000〜3000℃の不活性雰囲気下にて加熱処理する黒鉛化処理などの熱処理が行わる。   In general, when a yarn is manufactured, various heat treatments are performed for the purpose of improving its physical properties or drying. In particular, in the production of carbon fibers having excellent mechanical properties, heat treatment at a high temperature is required. For example, in the production of carbon fibers using synthetic fibers as starting materials, the yarns of the fibers are in an oxidizing atmosphere. Flameproofing treatment or infusibilization treatment under heat treatment at 150 to 400 ° C., carbonization treatment for heating the yarn obtained by the above treatment to 900 to 2000 ° C. under an inert atmosphere, and further necessary Accordingly, heat treatment such as graphitization treatment is performed in which the yarn obtained by the treatment is heat-treated in an inert atmosphere of 2000 to 3000 ° C.

このような糸条の熱処理はそれぞれの処理条件を満たす熱処理装置にて行われるが、前記熱処理により得られる糸条の品質を安定化させるためには、前記熱処理装置の処理室が所定の温度となるように設定され、しかも糸条の熱処理の間は常に室内の温度を一定に保持することが不可欠となる。このため、例えば、前記糸条を連続的に処理する熱処理装置にあっては、熱処理装置の内外に循環路を設け、処理気体を加熱器により加熱しながら循環使用し、熱処理装置からの熱流出量を極力少なくすることによって、熱処理温度の制御性を高めて前記温度を一定に保持している。   Such heat treatment of the yarn is performed in a heat treatment apparatus that satisfies the respective treatment conditions. In order to stabilize the quality of the yarn obtained by the heat treatment, the treatment chamber of the heat treatment apparatus has a predetermined temperature. In addition, it is essential to keep the room temperature constant during the heat treatment of the yarn. For this reason, for example, in a heat treatment apparatus that continuously treats the yarn, a circulation path is provided inside and outside the heat treatment apparatus, the treatment gas is circulated and used while being heated by a heater, and heat is discharged from the heat treatment apparatus. By reducing the amount as much as possible, the controllability of the heat treatment temperature is improved and the temperature is kept constant.

ここで、前記熱処理装置には、糸条を連続的に導入及び導出するための糸条の入口部及び出口部が必要となるが、一般に前記入口部及び出口部は、シ−ト状糸条の導入及び導出を可能にするためスリット状に開口させていることが多い。前記スリットの開口寸法は糸条の導入及び導出が無理なく行えるように、当然に前記導入糸条の全体的なシート断面形態よりも大きく設定されるため、前記スリットと糸条との間には隙間を生じ、前記入口部及び出口部がシール手段を持たない場合には加熱処理気体が装置外に漏れ出したり、或いは外気が装置内に流入することになる。   Here, the heat treatment apparatus requires an inlet portion and an outlet portion of the yarn for continuously introducing and leading out the yarn. Generally, the inlet portion and the outlet portion are provided with a sheet-like yarn. In many cases, it is opened in a slit shape so as to enable introduction and extraction. Since the opening size of the slit is naturally set larger than the overall sheet cross-sectional shape of the introduced yarn so that the introduction and withdrawal of the yarn can be carried out without difficulty, it is between the slit and the yarn. When a gap is formed and the inlet and outlet portions do not have sealing means, the heat treatment gas leaks out of the apparatus or the outside air flows into the apparatus.

例えば、上記耐炎化処理においては、アクリロニトリル系合成繊維を加熱及び酸化することにより、シアン化合物やアンモニア、一酸化炭素等の有害な成分が発生するため、上述の如く加熱処理気体が炉外に漏れ出すと、熱処理炉周辺の作業環境に悪影響を及ぼすことになる。また、外気が高温の炉内に流入すると同炉内における温度分布が均一でなくなり、結果的に耐炎化処理物の品質を低下させてしまう。   For example, in the above flameproofing treatment, acrylonitrile-based synthetic fibers are heated and oxidized to generate harmful components such as cyanide, ammonia, and carbon monoxide, so that the heat treatment gas leaks out of the furnace as described above. Doing so will adversely affect the working environment around the heat treatment furnace. In addition, when outside air flows into a high-temperature furnace, the temperature distribution in the furnace is not uniform, and as a result, the quality of the flameproofing product is degraded.

このため、上述の問題を解決するために、例えば、特公平3−4832号公報(特許文献1)、特公平3−4833号公報(特許文献2)、或いは特公平3−4834号公報(特許文献3)に開示されるような前記アクリロニトリル系合成繊維の入口部及び出口部にシール室を設置し、糸条の走行方向と平行に加熱処理気体を流す横型の耐炎化処理炉が提案されている。   For this reason, in order to solve the above-mentioned problem, for example, Japanese Patent Publication No. 3-4832 (Patent Document 1), Japanese Patent Publication No. 3-4833 (Patent Document 2), or Japanese Patent Publication No. 3-4834 (Patent Document 1). A horizontal flameproofing furnace has been proposed in which seal chambers are installed at the inlet and outlet of the acrylonitrile-based synthetic fiber as disclosed in Document 3) and the heat treatment gas flows in parallel to the running direction of the yarn. Yes.

図4にこれらの特許文献に開示された横型熱処理炉の立断面図を、図5にその上面図を示している。この横型熱処理炉1は熱処理室2を有し、同熱処理室2はその前面に加熱処理気体を供給するための上下に多段に配された吹出し口3a〜3dと、同熱処理室2の後面に同加熱処理気体を熱処理室外に排気するための上下に多段に配された吸気口4a〜4dとを有し、また、前記各吹出し口3a〜3dの前面側と各吸気口4a〜4dの後面側には前記繊維の入口部7d〜7h及び出口部7e〜7iが交互に配されており、前記出入口部7d〜7iをシールするためそれぞれにシール室5a,5bが設けられている。   FIG. 4 is a vertical sectional view of a horizontal heat treatment furnace disclosed in these patent documents, and FIG. 5 is a top view thereof. This horizontal heat treatment furnace 1 has a heat treatment chamber 2, and the heat treatment chamber 2 has blow outlets 3 a to 3 d arranged in multiple stages in the upper and lower sides for supplying a heat treatment gas to the front surface thereof, and a rear surface of the heat treatment chamber 2. Intake ports 4a to 4d arranged in multiple stages above and below for exhausting the heat treatment gas out of the heat treatment chamber, and the front side of each of the outlets 3a to 3d and the rear surface of each of the intake ports 4a to 4d The fiber inlet portions 7d to 7h and the outlet portions 7e to 7i are alternately arranged on the side, and seal chambers 5a and 5b are provided to seal the inlet / outlet portions 7d to 7i, respectively.

前記シール室5a,5bの前後面には、その高さ方向に多段の繊維入口出口であるスリット7a〜7fが交互に設けられており、前記繊維はシール室5a,5bの各室外に配されたローラ8a,8bにより案内される。入口側シール室5aに設けられた最上段のスリット7aから導入された繊維は、相対する出口側シール室5bの最上段のスリット7jから導出され、前記ローラ8bに案内されて180°ターンして、前記スリット7jの1段下のスリット7kから再び熱処理室2に導入される。このジグザグ状の走行が繰り返されて、前記繊維は熱処理室2にて十分に加熱及び酸化されて最終的に最下段のスリット7lから送り出される。   The front and rear surfaces of the seal chambers 5a and 5b are provided with slits 7a to 7f, which are multistage fiber inlets and outlets, alternately in the height direction, and the fibers are arranged outside the seal chambers 5a and 5b. Guided by the rollers 8a and 8b. The fiber introduced from the uppermost slit 7a provided in the inlet-side seal chamber 5a is led out from the uppermost slit 7j of the opposite outlet-side seal chamber 5b, guided by the roller 8b, and turned 180 °. The heat treatment chamber 2 is again introduced from the slit 7k one step below the slit 7j. This zigzag running is repeated, and the fibers are sufficiently heated and oxidized in the heat treatment chamber 2 and finally sent out from the lowermost slit 7l.

一方、前記繊維の熱処理に使用される加熱処理気体は、熱処理室外側の熱風循環路内に設置された加熱器9により200〜300℃に加熱され、次いで、循環ファン10により吹出し口3a〜3dを介して繊維の走行方向と平行な方向に吹出して、熱処理室2に供給される。そして、繊維の加熱処理に使用された加熱処理気体は、吸気口4a〜4dから吸気されて前記加熱器9に戻されて循環使用される。   On the other hand, the heat treatment gas used for the heat treatment of the fibers is heated to 200 to 300 ° C. by the heater 9 installed in the hot air circulation path outside the heat treatment chamber, and then the outlets 3 a to 3 d by the circulation fan 10. The air is blown out in a direction parallel to the traveling direction of the fibers and supplied to the heat treatment chamber 2. The heat treatment gas used for the fiber heat treatment is sucked from the intake ports 4a to 4d and returned to the heater 9 for circulation.

ここで、上記特許文献2に開示された熱処理炉1にあっては、各シール室5a,5bには繊維の通路を上下に区分けするように仕切板9a〜9dが設置され、同シール室5a,5bは複数の小室に分けられており、前記シール室5a,5bの各小室にはシール気体用排気口5a−1〜5a−3,5b−1〜5b−3が設けられている。各排気口5a−1〜5a−3,5b−1〜5b−3の下流側にはシール排気ファン12a,12bが設置されており、同シール排気ファン12a,12bによりシール室5a,5bの気体が炉外に排気される。   Here, in the heat treatment furnace 1 disclosed in Patent Document 2, partition plates 9a to 9d are installed in the respective seal chambers 5a and 5b so as to divide the fiber passages into upper and lower portions, and the seal chamber 5a. , 5b are divided into a plurality of small chambers, and seal chambers 5a-1 and 5b are provided with seal gas exhaust ports 5a-1 to 5a-3 and 5b-1 to 5b-3. Sealed exhaust fans 12a and 12b are installed downstream of the exhaust ports 5a-1 to 5a-3 and 5b-1 to 5b-3, and the gas in the seal chambers 5a and 5b is provided by the sealed exhaust fans 12a and 12b. Is exhausted outside the furnace.

このとき、前記各小室の圧力は、各排気口5a−1〜5b−3の出口に設けられたバルブなどの排気機構により調節され、各小室にスリット7a〜7lを介して炉外の気体が流入し、或いは各小室の気体が炉外周辺に吹き出すことがないように制御される。   At this time, the pressure in each of the small chambers is adjusted by an exhaust mechanism such as a valve provided at the outlet of each of the exhaust ports 5a-1 to 5b-3, and the gas outside the furnace passes through the slits 7a to 7l. It is controlled so that it does not flow in or the gas in each chamber does not blow out around the outside of the furnace.

各小室の内部圧力を制御することにより、前記熱処理炉1においては、炉内の気体が過剰に炉外に漏れ出したり、外気が炉内に流入することが効果的に抑制され、熱処理炉1の周辺の作業環境が有害成分に汚染されず、同時に熱処理室2の温度分布の均一性が確保されるというものである。   By controlling the internal pressure of each small chamber, in the heat treatment furnace 1, it is possible to effectively suppress the gas in the furnace from leaking out of the furnace or flowing outside air into the furnace. The working environment around the heat treatment chamber 2 is not contaminated by harmful components, and at the same time, the uniformity of the temperature distribution in the heat treatment chamber 2 is ensured.

特公平3−4832号公報Japanese Patent Publication No. 3-4832 特公平3−4833号公報Japanese Patent Publication No. 3-4833 特公平3−4834号公報Japanese Patent Publication No. 3-4834

既述した先行技術の熱処理炉においては、シール気体用排気口からシール室の気体を排気することにより、外気が熱処理室へ流入することを防止して熱処理室内の温度の均一性を確保し、且つ炉内の気体が炉外へ漏れ出ることを防止することが可能であるが、前記外気の流入及び炉内気体の漏れ出しを確実に防止するには、シール室の圧力の設定値を熱処理室内の圧力よりも十分に下げてシール室の気体の排気を行うことが必要となる。   In the heat treatment furnace of the prior art described above, by exhausting the gas in the seal chamber from the exhaust port for the seal gas, the outside air is prevented from flowing into the heat treatment chamber to ensure the uniformity of the temperature in the heat treatment chamber, In addition, it is possible to prevent the gas in the furnace from leaking out of the furnace, but in order to reliably prevent the inflow of the outside air and the leakage of the gas in the furnace, the set value of the pressure in the seal chamber is heat treated. It is necessary to exhaust the gas in the seal chamber sufficiently lower than the pressure in the chamber.

そうすると、熱処理室からは前記排気と同時にかなりの量の高温気体がシ−ル室を介して炉外に排気されることになるが、前記繊維の一定の耐炎化処理量を確保するには、前記炉内の気体の排気量に相当する量の気体を新たに加熱して熱処理室に供給することが必要となる。このため、前記熱処理炉にあっては、熱量の大きな損失につながる。   Then, a considerable amount of high-temperature gas is exhausted from the heat treatment chamber to the outside of the furnace through the seal chamber at the same time as the exhaust, but in order to ensure a certain flameproofing treatment amount of the fiber, It is necessary to newly heat a gas corresponding to the amount of gas exhausted in the furnace and supply it to the heat treatment chamber. For this reason, in the said heat processing furnace, it leads to the big loss of a calorie | heat amount.

一方、前記シール気体用排気口の下流側には、前記熱処理室からシール室に流入する処理後の気体に含まれるシアン化合物、アンモニア、及び一酸化炭素等の有害な成分を処理するために、通常、ガス処理設備が設置されているが、前記気体の排気量が多くなると、このガス処理設備の処理能力も大きくせざるを得ず、大型化してしまう。   On the other hand, on the downstream side of the exhaust port for the seal gas, in order to treat harmful components such as cyanide, ammonia, and carbon monoxide contained in the treated gas flowing into the seal chamber from the heat treatment chamber, Normally, a gas processing facility is installed. However, if the amount of exhaust gas increases, the processing capacity of the gas processing facility is inevitably increased, and the size is increased.

しかしながら、前記気体の排気量を低減させようとして、例えば、シール室の圧力を極力高くして、熱処理室の圧力との圧力差を小さくすると、熱処理室の圧力の変動により、一時的にシール室の圧力の方が高くなりやすくなり、外気がシ−ル室を介して熱処理室に流入する。前記外気の温度は熱処理室の温度に比べてかなり低いため、外気の流入により熱処理室の温度の均一性が妨げられるばかりでなく、室内の気体を昇温させる必要があり、耐炎化処理物の品質を低下させることに加えて、処理効率が著しく低下する。   However, if the pressure of the seal chamber is increased as much as possible and the pressure difference with the pressure of the heat treatment chamber is reduced in an attempt to reduce the exhaust amount of the gas, for example, the seal chamber temporarily changes due to fluctuations in the pressure of the heat treatment chamber. The pressure of the air tends to be higher, and the outside air flows into the heat treatment chamber through the seal chamber. Since the temperature of the outside air is considerably lower than the temperature of the heat treatment chamber, not only the uniformity of the temperature of the heat treatment chamber is hindered by the inflow of the outside air, but also the temperature of the indoor gas needs to be raised. In addition to reducing quality, processing efficiency is significantly reduced.

本発明はかかる課題を解決すべくなされたものであり、その具体的な目的は、熱処理室への外気の侵入を確実に防止すると共に、シール室を介して熱処理室からの気体の排気量を低減することによって、前記熱処理室の温度の均一性と制御性とを向上させ、しかも各構成機器の負荷を低減することができる横型熱処理装置及び炭素繊維の製造方法を提供することにある。   The present invention has been made to solve such a problem, and its specific purpose is to reliably prevent the entry of outside air into the heat treatment chamber and to reduce the amount of gas exhausted from the heat treatment chamber via the seal chamber. It is an object of the present invention to provide a horizontal heat treatment apparatus and a carbon fiber manufacturing method capable of improving the uniformity and controllability of the temperature of the heat treatment chamber and reducing the load on each component device.

課題を解決するための手段及び作用効果Means and effects for solving the problems

前記目的は本件請求項1及び2に記載された各発明により達成される。
本件請求項1に係る発明は、走行糸条の入口部及び出口部を有し、且つその内部に熱処理室と該熱処理室の内外に加熱処理気体を循環させる循環路の一部を構成するファン室とを有し、前記熱処理室の糸条入口部及び出口部にそれぞれ隣接して配された第1シール室と、各第1シール室の外側に配された第2シール室との少なくとも2室を備えてなり、前記熱処理室内で糸条を連続的に熱処理する横型熱処理装置であって、前記第1及び第2シール室はそれぞれが糸条走行方向に連設され、且つシール気体用排気口を有してなり、前記熱処理室は、前記加熱処理気体を前記ファン室から前記熱処理室内に吹き込む吹出し口と、前記加熱処理気体を前記ファン室へ排出する吸気口とを有し、前記ファン室は、循環排気ファンを介して循環処理気体の一定量を排気する循環処理気体排気口と、加熱器と、循環ファンとを有し、前記吸気口から排出される加熱処理気体を前記吹出し口へと循環させてなり、前記循環処理気体排気口は、前記加熱器の上流側配されてなる、ことを特徴とする糸条の横型熱処理装置ある。
The object is achieved by the inventions described in claims 1 and 2 of the present application.
The invention according to claim 1 has an inlet portion and an outlet portion of the running yarn, and constitutes a heat treatment chamber inside and a part of a circulation path for circulating the heat treatment gas inside and outside the heat treatment chamber. At least one of a first seal chamber disposed adjacent to the yarn inlet portion and the outlet portion of the heat treatment chamber, and a second seal chamber disposed outside the first seal chamber. A horizontal heat treatment apparatus comprising two chambers for continuously heat treating the yarn in the heat treatment chamber, wherein each of the first and second seal chambers is provided continuously in the yarn running direction, and is used for sealing gas. The heat treatment chamber has an exhaust port for blowing the heat treatment gas from the fan chamber into the heat treatment chamber, and an air intake port for discharging the heat treatment gas to the fan chamber, The fan chamber is circulated through a circulation exhaust fan A circulating process gas exhaust port for exhausting a certain amount of body has a heater, a circulation fan, it is circulated to the heat treatment gas wherein the blowing mouth discharged from the air inlet, the circulating process gas An exhaust outlet is arranged on the upstream side of the heater, and is a horizontal heat treatment apparatus for yarn.

前記各シール室には適宜のシール手段が適用されており、しかも熱処理室の糸条の入口部及び出口部のそれぞれにシール室が2室以上連設されているため、熱処理室に隣接する第1シール室がバッファの役目を果たし、仮に前記熱処理室の圧力が外気の圧力よりも高くして熱処理室からの処理気体が第1シール室に漏れ出るとしても、同第1シール室の外側に連設される1以上のシ−ル室を通して外気側に流出することになるため、装置外に流出する気体の量は、従来のように単一のシール室を設ける場合と比較すると、大幅に減少させることができる。   Appropriate sealing means is applied to each of the sealing chambers, and two or more sealing chambers are connected to each of the yarn inlet and outlet portions of the heat treatment chamber. Even if one seal chamber serves as a buffer, and the pressure of the heat treatment chamber is higher than the pressure of the outside air and the processing gas from the heat treatment chamber leaks into the first seal chamber, Since the gas flows out to the outside through one or more seal chambers that are connected to each other, the amount of gas flowing out of the apparatus is significantly larger than that in the case of providing a single seal chamber as in the prior art. Can be reduced.

一方、前記熱処理室の圧力が外気の圧力よりも低く熱処理室に外気が流入するとしても、隣接する第1シール室に到るまでに1以上のシ−ル室を通過しなければならないため、加熱処理室に隣接する第1シ−ル室を介して熱処理室に流入する外気の量も大幅に減少する。   On the other hand, even if the pressure of the heat treatment chamber is lower than the pressure of the outside air and the outside air flows into the heat treatment chamber, it must pass through one or more seal chambers before reaching the adjacent first seal chamber. The amount of outside air flowing into the heat treatment chamber via the first seal chamber adjacent to the heat treatment chamber is also greatly reduced.

したがって、前記熱処理室からの高温気体の漏れ出しと低温の外気の熱処理室への流入とを極力抑えることができるため、気体に対する加熱を効率的に行うことができると同時に、熱処理室の温度の制御性と均一性とが向上し、安定した糸条の熱処理を実現することができる共に、熱処理装置の周辺の良好な環境が維持できる。   Therefore, the leakage of the high temperature gas from the heat treatment chamber and the inflow of the low temperature outside air into the heat treatment chamber can be suppressed as much as possible, so that the heating of the gas can be performed efficiently and at the same time the temperature of the heat treatment chamber can be reduced. Controllability and uniformity are improved, stable yarn heat treatment can be realized, and a good environment around the heat treatment apparatus can be maintained.

本件発明にあっては、前記加熱処理気体の循環路内にあって、前記加熱部の上流側に循環処理気体用の排気口を有している。
前記糸条の熱処理に際しては、糸条の成分や熱処理室内の温度、或いは加熱処理気体によって各種の熱処理ガスが発生する。例えば、糸条を熱処理すると、糸条に付着する各種の成分が化学反応を起こし、多様な種類のガスを発生させる。
炭素繊維の製造にあたっては、特に加熱空気を使用するなどして高温雰囲気下にて糸条の熱処理を行うことがあるため、糸条の成分との酸化ガスが発生する。
In this invention, it exists in the circulation path of the said heat processing gas, and has the exhaust port for circulation processing gas in the upstream of the said heating part.
In the heat treatment of the yarn, various heat treatment gases are generated depending on the yarn components, the temperature in the heat treatment chamber, or the heat treatment gas. For example, when the yarn is heat-treated, various components adhering to the yarn cause a chemical reaction to generate various types of gases.
In the production of carbon fiber, heat treatment of the yarn is performed in a high temperature atmosphere, particularly using heated air, etc., so that an oxidizing gas with the yarn components is generated.

こうして、熱処理室内には経時的に様々な種類のガスが増加することになり、前記加熱処理気体の純度を一定に維持できず、そのままでは糸条の均一な処理が期待できない。そこで、熱処理室内に混入する他のガスの混入量が所定の値を越えたとき、循環路内を介して一定量の新たな加熱処理気体を熱処理室に供給すると共に、その供給量に相当する循環処理気体を装置外に排気することが必要となる。   Thus, various kinds of gases increase in the heat treatment chamber over time, the purity of the heat treatment gas cannot be maintained constant, and uniform treatment of the yarn cannot be expected as it is. Therefore, when the amount of other gases mixed in the heat treatment chamber exceeds a predetermined value, a certain amount of new heat treatment gas is supplied to the heat treatment chamber via the circulation path and corresponds to the supply amount. It is necessary to exhaust the circulation processing gas to the outside of the apparatus.

本件発明にあっては、前記循環路内に循環処理気体用の排気口を設けており、必要に応じて同排気口を開き、同排気口から循環処理気体の一部を排気する。前記排気口は循環路内に配された加熱部の上流側に設けられており、比較的低温の循環処理気体が装置外に排気されることになるため、熱処理室の熱効率に大きく影響を及ぼすこともない。なお、上述のごとく前記糸条の熱処理により有害成分が発生することがあるため、前記循環処理気体用の排気口の下流側にはガス処理設備が設置される。   In the present invention, an exhaust port for circulating process gas is provided in the circulation path, and the exhaust port is opened as necessary, and a part of the circulating process gas is exhausted from the exhaust port. The exhaust port is provided on the upstream side of the heating unit disposed in the circulation path, and a relatively low-temperature circulation process gas is exhausted outside the apparatus, so that the heat efficiency of the heat treatment chamber is greatly affected. There is nothing. In addition, since harmful components may be generated by the heat treatment of the yarn as described above, a gas treatment facility is installed on the downstream side of the exhaust port for the circulation treatment gas.

本件発明にあっては、少なくとも前記第1シール室と第2シール室のそれぞれにシール気体用排気口を設けている。
排気量を調節しながら各シール室ごとに前記排気口を介してシール気体を排気すれば、各シール室の圧力をそれぞれ独立して設定することができる。したがって、各種のシ−ル性の要求に多様に対応した各シール室の圧力の設定が可能となるため、シール室を介して外気が熱処理室へ流入すること、或いは熱処理室内の処理気体が装置外に漏れ出することを確実に防止でき、熱量の損失が低減されると共に、良好な作業環境が維持できる。
In the present invention, at least the first seal chamber and the second seal chamber are each provided with a seal gas exhaust port.
If the seal gas is exhausted through the exhaust port for each seal chamber while adjusting the exhaust amount, the pressure in each seal chamber can be set independently. Accordingly, it is possible to set the pressure of each seal chamber corresponding to various seal requirements, so that the outside air flows into the heat treatment chamber through the seal chamber, or the process gas in the heat treatment chamber is supplied to the apparatus. Leakage outside can be reliably prevented, loss of heat can be reduced, and a good working environment can be maintained.

例えば、熱処理室の温度の均一性を確保するために、シール室を介して外気が熱処理室に流入しないようにする場合は、外気側に配されるシール室の圧力を外気の圧力よりも高く設定する。或いは、外気側に配されるシール室に外気が流入しても熱処理室へと流入させないようにするには、熱処理室に隣接するシール室の排気口からの気体の排気量を調節して同シール室の圧力を熱処理室の圧力よりも低く設定する。   For example, in order to ensure the uniformity of the temperature of the heat treatment chamber, when preventing the outside air from flowing into the heat treatment chamber through the seal chamber, the pressure of the seal chamber arranged on the outside air side is set higher than the pressure of the outside air. Set. Alternatively, in order to prevent the outside air from flowing into the heat treatment chamber even if it flows into the seal chamber arranged on the outside air side, the amount of gas discharged from the exhaust port of the seal chamber adjacent to the heat treatment chamber can be adjusted. The pressure in the seal chamber is set lower than the pressure in the heat treatment chamber.

なお、前記各シール室の排気口からの排気は、例えば、各排気口の下流側にダンパー或いはバルブなどの風量制御装置と排気ファンとを設置して、それらの装置により所定量の気体を前記各排気口からシール室外に積極的に排気することにより行う。   The exhaust from the exhaust port of each seal chamber is, for example, an air volume control device such as a damper or a valve and an exhaust fan installed on the downstream side of each exhaust port, and a predetermined amount of gas is supplied by these devices. This is done by positively exhausting the air from each exhaust port to the outside of the seal chamber.

本件発明にあっては、前記第1シール室が前記熱処理室に隣接して配され、同第1シール室と熱処理気体の前記循環路内に配された加熱部との間には前記シール気体用排気口からの排気を熱処理室に導入する排気導入路が設けられるとよい。   In the present invention, the first seal chamber is disposed adjacent to the heat treatment chamber, and the seal gas is disposed between the first seal chamber and the heating unit disposed in the circulation path of the heat treatment gas. It is preferable to provide an exhaust introduction path for introducing the exhaust from the exhaust port to the heat treatment chamber.

前記糸条の熱処理に際しては、熱処理室内の処理気体が外部へと漏出せず、また熱処理室内に外気を流入させないためには、上述の如く、各シール室の排気口からの気体の排気量を適切に調節することによって可能となるが、シール室からの排気はそれ自体が熱量の浪費となる。例えば、第1シール室の圧力を熱処理室の圧力よりも低く設定すると、当然に同シール室を介して熱処理装置から外部へ排出される気体の量が増加し、例えば、その排気量が糸条の熱処理により消費される処理気体の量を越える場合には、糸条の安定した熱処理が行いにくくなり、しかも熱処理装置内の熱量の流出も多くなる。   In the heat treatment of the yarn, in order to prevent the processing gas in the heat treatment chamber from leaking to the outside and to prevent the outside air from flowing into the heat treatment chamber, the amount of gas discharged from the exhaust port of each seal chamber is set as described above. Although it is possible with proper adjustment, exhaust from the sealing chamber itself is a waste of heat. For example, if the pressure in the first seal chamber is set to be lower than the pressure in the heat treatment chamber, the amount of gas discharged from the heat treatment apparatus to the outside through the seal chamber naturally increases. When the amount of the processing gas consumed by this heat treatment is exceeded, it becomes difficult to perform stable heat treatment of the yarn, and the amount of heat flowing out of the heat treatment apparatus increases.

そこで、本発明において熱処理室に隣接する第1シール室のシール気体用排気口と前記循環路内の加熱部との間に排気導入路を設けて、前記排気口からの排気を循環路内に戻して糸条の熱処理に循環使用すれば、熱処理室の熱量が逸出することが抑制でき、熱エネルギーの効率的な利用が可能となるばかりでなく、熱処理室内の温度の均一性と制御性の向上をも図ることができる。   Therefore, in the present invention, an exhaust introduction path is provided between the seal gas exhaust port of the first seal chamber adjacent to the heat treatment chamber and the heating unit in the circulation path, and the exhaust from the exhaust port enters the circulation path. If the yarn is recycled and used for heat treatment of the yarn, it is possible not only to suppress the escape of heat in the heat treatment chamber, but also to enable efficient use of heat energy, as well as uniformity and controllability of the temperature in the heat treatment chamber. Can also be improved.

なお、前記第1シール室の圧力を第2シール室の圧力よりも低く設定すれば、第1シール室には第2シール室を介して外気が流入する。そうすると、第1シール室の排気口からの排気には相当量の空気が含まれため、例えば、酸化性雰囲気下にて糸条の熱処理を行う際には、前記排気導入路は加熱処理に必要な空気の供給路としても機能させることができる。   If the pressure in the first seal chamber is set lower than the pressure in the second seal chamber, outside air flows into the first seal chamber via the second seal chamber. Then, since the exhaust from the exhaust port of the first seal chamber contains a considerable amount of air, for example, when heat treating the yarn in an oxidizing atmosphere, the exhaust introduction path is necessary for the heat treatment. It can also function as a simple air supply path.

本件発明は、前記走行糸条の入口部及び出口部が前記熱処理室の前後面に交互に多段に設けられていることが好ましく、前記熱処理室の前段の出口部から導出された糸条はその走行方向が変更され、前記熱処理室の次段の入口部に導入される。このため、糸条の熱処理に十分な時間を確保することができ、熱処理室が糸条の走行方向に極端に長くなることがなく省スペースが可能となり、なお、前記糸条の走行方向の変更は、通常、糸条の各出入口部の近傍にローラなどの案内部材を配して行われる。   In the present invention, it is preferable that an inlet portion and an outlet portion of the traveling yarn are provided in multiple stages alternately on the front and rear surfaces of the heat treatment chamber, and the yarn led out from the outlet portion at the front stage of the heat treatment chamber is The traveling direction is changed and introduced into the inlet of the next stage of the heat treatment chamber. For this reason, it is possible to secure a sufficient time for heat treatment of the yarn, and the heat treatment chamber can be saved in space without becoming extremely long in the running direction of the yarn, and the change in the running direction of the yarn can be achieved. Usually, a guide member such as a roller is arranged in the vicinity of each entrance / exit part of the yarn.

本発明にあって、前記走行糸条の通路を区画するための仕切板が前記第1シール室或いは第2シール室のいずれかに設けられ、その区画ごとにシール気体用排気口が設けられていることが好ましい。   In the present invention, a partition plate for partitioning the passage of the traveling yarn is provided in either the first seal chamber or the second seal chamber, and a seal gas exhaust port is provided for each partition. Preferably it is.

前記熱処理室の前後面に糸条の入口部及び出口部が多段に設けられる場合にあって、前記各シール室を介しての熱処理室への外気の流入を確実に防止するためには、当然に前記糸条の入口部及び出口部の全てから熱処理室内の気体が各シール室に流出するように同各シール室の圧力を設定することが必要となる。   In order to reliably prevent the flow of outside air into the heat treatment chambers through the respective seal chambers when the yarn inlet and outlet portions are provided in multiple stages on the front and rear surfaces of the heat treatment chamber, of course, In addition, it is necessary to set the pressure in each seal chamber so that the gas in the heat treatment chamber flows out from all the inlet and outlet portions of the yarn into the seal chamber.

そこで、前述のように前記シール室内の走行糸条の各通路を仕切板により区画して、その区画ごとにシール気体用排気口が設けており、前記各排気口の下流側にはそれぞれに風量制御装置を設置するようにすることが好ましい。   Therefore, as described above, each passage of the running yarn in the seal chamber is partitioned by a partition plate, and a seal gas exhaust port is provided for each partition, and an air volume is provided downstream of each exhaust port. It is preferable to install a control device.

前記風量制御装置を作動して各区画の排気量を調整し、前記熱処理室の糸条の各入口部及び出口部に相当する各区画内の圧力を均等化させる。その結果、熱処理室の処理気体と外気の双方共に、各区画への流入量を減らすことができるため、前記シール室からの気体の排気量は大幅に低減されて、シール排気ファン等の熱処理装置の各構成機器の容量が必要以上に大きくなることを防止できる。   The air volume control device is operated to adjust the exhaust amount of each section, and the pressure in each section corresponding to each inlet and outlet of the yarn in the heat treatment chamber is equalized. As a result, since both the processing gas and the outside air in the heat treatment chamber can reduce the amount of inflow into each compartment, the amount of gas exhausted from the seal chamber is greatly reduced, and a heat treatment apparatus such as a seal exhaust fan It is possible to prevent the capacity of each component device from becoming larger than necessary.

本件請求項2に係る発明は、請求項1に係る横型熱処理炉を耐炎化処理炉として使用し、炭素繊維の原料であるプレカーサを前記耐炎化処理炉の熱処理室内で200〜300℃の酸化性雰囲気下で耐炎化処理することを特徴とする炭素繊維の製造方法にある。 The invention according to claim 2 uses the horizontal heat treatment furnace according to claim 1 as a flameproofing furnace , and the precursor, which is a raw material of carbon fiber, is oxidized at a temperature of 200 to 300 ° C. in the heat treatment chamber of the flameproofing furnace. It is in the manufacturing method of carbon fiber characterized by performing flameproofing treatment in an atmosphere .

炭素繊維は、例えば、アクリロニトリル系合成繊維或いはピッチ系合成繊維などのプレカ−サに耐炎化処理及び炭素化処理等の熱処理を施すことによって製造されるが、このうち耐炎化処理は200〜300℃の酸化性雰囲気下でアクリロニトリル系合成繊維を熱処理するものである。   The carbon fiber is produced, for example, by subjecting a precursor such as acrylonitrile-based synthetic fiber or pitch-based synthetic fiber to a heat treatment such as a flameproofing treatment and a carbonization treatment, and among these, the flameproofing treatment is performed at 200 to 300 ° C. The acrylonitrile synthetic fiber is heat-treated in an oxidizing atmosphere.

この耐炎化処理は所定の熱処理炉にて行われ、通常はアクリロニトリル系合成繊維を連続的に処理することが可能なように、同炉は前記繊維と加熱処理気体とが連続的に供給可能な設備となっている。このとき、当然に前記処理にて製造される耐炎化繊維の品質を安定化させることが不可欠となるため、前記熱処理炉の温度を一定に保持し、しかも前記温度が炉内で不均一とならないように配慮することが必要となる。   This flameproofing treatment is performed in a predetermined heat treatment furnace, and the furnace and the heat treatment gas can be supplied continuously so that the acrylonitrile-based synthetic fiber can be continuously processed. It is a facility. At this time, naturally, it is indispensable to stabilize the quality of the flameproof fiber produced by the treatment, so that the temperature of the heat treatment furnace is kept constant and the temperature does not become uneven in the furnace. It is necessary to consider as follows.

また、前記耐炎化処理には加熱処理気体として空気が用いられており、前記繊維を熱処理すると相当量の酸素が消費される。このため、前記繊維の熱処理量を一定に確保するには、新たな加熱空気を熱処理室に供給して前記消費された酸素を補充するとともに、前記加熱空気の供給量に相当する量の炉内の気体を炉外に排気することが不可欠となる。   In addition, air is used as the heat treatment gas for the flameproofing treatment, and a considerable amount of oxygen is consumed when the fibers are heat treated. For this reason, in order to ensure a constant heat treatment amount of the fiber, new heated air is supplied to the heat treatment chamber to replenish the consumed oxygen, and an amount of furnace air corresponding to the supply amount of the heated air is supplied. It is essential to exhaust the gas outside the furnace.

更に、前記熱処理においては一酸化炭素をはじめシアン化合物やアンモニア等の有害成分が発生するため、これら有害成分が周辺の作業環境に漏れ出すことがないように配慮することも必要である。
このため、かかる要求を満足したアクリロニトリル系合成繊維の耐炎化処理を実現するためには、前記横型熱処理炉を耐炎化処理炉として採用することが極めて有効となる。
Furthermore, since harmful components such as carbon monoxide, cyanide, and ammonia are generated in the heat treatment, it is necessary to consider that these harmful components do not leak into the surrounding work environment.
For this reason, in order to realize the flameproofing treatment of acrylonitrile-based synthetic fiber that satisfies such requirements, it is extremely effective to employ the horizontal heat treatment furnace as a flameproofing furnace.

本件発明は、前記排気導入路から導入される気体の量以下の加熱処理気体を前記循環処理気体用排気口から排気するものである。
前記第1シ−ル室からの排気には熱処理室内の気体が含まれており、第1シ−ル室の圧力を第2シ−ル室の圧力よりも低く設定する場合には、第1シール室には更に第2シ−ル室を介して外気が含まれることにもなる。このため、前記圧力を適切に設定することによって、前記第1シ−ル室からの排気中に、耐炎化処理を安定して行うために必要な新たな空気が第2シール室から導入することができ、同空気は前記排気導入路を介して循環路内へと供給されることになる。
In the present invention, a heat treatment gas equal to or less than the amount of gas introduced from the exhaust introduction path is exhausted from the exhaust port for the circulation process gas.
The exhaust from the first seal chamber contains a gas in the heat treatment chamber, and when the pressure in the first seal chamber is set lower than the pressure in the second seal chamber, the first The seal chamber also contains outside air through the second seal chamber. For this reason, by setting the pressure appropriately, new air necessary for stably performing the flameproofing treatment is introduced from the second seal chamber during the exhaust from the first seal chamber. The air is supplied to the circulation path through the exhaust introduction path.

このとき、同時に前記熱処理室の排気口である循環処理気体用の排気口からは、前記循環路に供給された新たな空気の量と等しい量の気体が排気されることになる。したがって、本件発明のように、前記排気口からの気体の排気量を前記排気導入路から導入される気体の量以下に調整すれば、前記導入される気体のうち前記導入量と排気量との差分は必然的に熱処理室から第1シ−ル室に流出する気体で占められることになり、同気体が絶えず熱処理室、第1シ−ル室、及び循環路を循環することになる。このため、循環処理気体用の排気口からの排気量を前述のごとく調整すれば、熱処理室から第1シ−ル室への気体の流出も防止できることになる。   At the same time, an amount of gas equal to the amount of new air supplied to the circulation path is exhausted from the exhaust port for circulating process gas, which is the exhaust port of the heat treatment chamber. Therefore, as in the present invention, if the exhaust amount of the gas from the exhaust port is adjusted to be equal to or less than the amount of gas introduced from the exhaust introduction path, the introduction amount and the exhaust amount of the introduced gas are reduced. The difference is inevitably occupied by the gas flowing out from the heat treatment chamber to the first seal chamber, and the gas continuously circulates through the heat treatment chamber, the first seal chamber, and the circulation path. For this reason, if the exhaust amount from the exhaust port for the circulating process gas is adjusted as described above, the outflow of gas from the heat treatment chamber to the first seal chamber can be prevented.

このとき、本発明にあって、前記第1シール室の圧力を前記熱処理室の圧力より0.2〜5(Pa)低くなるように排気量を制御することが好ましい。
すなわち、前記第1シール室の圧力と熱処理室の圧力との圧力差を0.2Paよりも小さくすると、前記熱処理室の圧力が変動したときに、一時的に第1シール室の圧力が高くなることがあって、外気が第1シール室を介して熱処理室に流入し易くなり、同熱処理室内の温度分布が一定でなくなるばかりでなく、熱処理用気体の成分に変動し、安定した処理が難しくなる。一方で、前記圧力差を5Paよりも大きくすると、熱処理室から第1シール室への気体の流出量が過大となって、安定した熱処理ができなくなり、しかもシール排気ファン等の熱処理炉の構成機器の負荷が増大し好ましない。
At this time, in the present invention, it is preferable to control the exhaust amount so that the pressure in the first seal chamber is 0.2 to 5 (Pa) lower than the pressure in the heat treatment chamber.
That is, when the pressure difference between the pressure in the first seal chamber and the pressure in the heat treatment chamber is smaller than 0.2 Pa, the pressure in the first seal chamber temporarily increases when the pressure in the heat treatment chamber fluctuates. Therefore, the outside air easily flows into the heat treatment chamber through the first seal chamber, and not only the temperature distribution in the heat treatment chamber is not constant, but also changes in the components of the heat treatment gas, making stable treatment difficult. Become. On the other hand, if the pressure difference is larger than 5 Pa, the amount of gas flowing from the heat treatment chamber to the first seal chamber becomes excessive, and stable heat treatment cannot be performed. The load of the increase will not like.

本件発明は、前記第2シール室の圧力を前記第1シール室の圧力より0.2〜5(Pa)高くなるように排気量を制御するものである。
上述の如く前記熱処理炉においては、熱処理室のシール性を向上させるために、シール室を前記熱処理室の前後面のそれぞれに2室設けており、第2シール室が前記第1シール室に隣接して配されている。この第2シール室についてもシール気体用排気口を介して、同排気口の下流に設置されたシール排気ファンと風量制御装置により、同シール室内の気体が連続的に排気される。
In the present invention, the exhaust amount is controlled so that the pressure in the second seal chamber is 0.2 to 5 (Pa) higher than the pressure in the first seal chamber.
As described above, in the heat treatment furnace, in order to improve the sealing performance of the heat treatment chamber, two seal chambers are provided on each of the front and rear surfaces of the heat treatment chamber, and the second seal chamber is adjacent to the first seal chamber. It is arranged. Also in the second seal chamber, the gas in the seal chamber is continuously exhausted by the seal exhaust fan and the air flow control device installed downstream of the exhaust port through the seal gas exhaust port.

前記第2シール室の圧力は、熱処理室の気体の炉外への漏れ出しを防止すると共に、前記繊維の安定した熱処理に必要な空気を第1シ−ル室を介して前記循環路に供給するため、外気の圧力よりも低く、且つ第1シ−ル室の圧力よりも高く設定される。このときの第2シール室の圧力を第1シール室の圧力よりも0.2〜5(Pa)高く設定すれば、第2シール室から第1シール室に必要以上に空気が流出することがなく、第1シール室からの排気量を極力少なくすることができると共に、各シール室の圧力が一時的に変動する場合にも、第2シール室の圧力は第1シール室の圧力よりも常に高く維持されて、熱処理室の気体が第1シール室を介して第2シール室に流出することはない。したがって、第2シール室の気体のほとんどは空気で占められるようになり、前記排気には有害成分が含まれず、同気体をガス処理設備にて処理する必要がなくなる。   The pressure in the second seal chamber prevents leakage of gas in the heat treatment chamber to the outside of the furnace and supplies air necessary for stable heat treatment of the fibers to the circulation path through the first seal chamber. Therefore, it is set lower than the pressure of the outside air and higher than the pressure of the first seal chamber. If the pressure in the second seal chamber at this time is set to be 0.2 to 5 (Pa) higher than the pressure in the first seal chamber, air may flow more than necessary from the second seal chamber to the first seal chamber. In addition, the amount of exhaust from the first seal chamber can be reduced as much as possible, and the pressure in the second seal chamber is always higher than the pressure in the first seal chamber even when the pressure in each seal chamber fluctuates temporarily. Highly maintained, the gas in the heat treatment chamber does not flow out to the second seal chamber through the first seal chamber. Therefore, most of the gas in the second seal chamber is occupied by air, and the exhaust does not contain harmful components, so that it is not necessary to process the gas with gas processing equipment.

本発明の代表的な実施例である横型熱処理炉の側面図である。1 is a side view of a horizontal heat treatment furnace that is a typical embodiment of the present invention. 同横型熱処理炉の正面断面図である。It is a front sectional view of the horizontal heat treatment furnace. 本発明の他の実施例である横型熱処理炉の側面図である。It is a side view of the horizontal type heat treatment furnace which is another Example of this invention. 従来の横型熱処理炉の側面図である。It is a side view of the conventional horizontal heat treatment furnace. 同横型熱処理炉の上面図である。It is a top view of the horizontal heat treatment furnace.

以下に本発明の横型熱処理炉の好適な実施の形態について添付図面を参照して詳細に説明する。なお、本実施形態にあっては横型熱処理炉にてアクリロニトリル系合成繊維を耐炎化処理する場合について説明するが、加熱処理気体の種類或いは熱処理温度等を適宜に選択することによって、本発明の横型熱処理炉は他の繊維の熱処理炉としても使用することも可能である。   Preferred embodiments of a horizontal heat treatment furnace of the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, the case where the acrylonitrile-based synthetic fiber is flameproofed in a horizontal heat treatment furnace will be described, but the horizontal type of the present invention can be selected by appropriately selecting the type of heat treatment gas or the heat treatment temperature. The heat treatment furnace can also be used as a heat treatment furnace for other fibers.

図1は本発明の代表的な実施形態である横型熱処理炉の側面図を示し、図2は前記横型熱処理炉の正面断面図を示している。これらの図にあって、図4及び図5に示した従来技術と実質的に同じ機器等に関しては、同一の符号が付されている。   FIG. 1 shows a side view of a horizontal heat treatment furnace as a typical embodiment of the present invention, and FIG. 2 shows a front sectional view of the horizontal heat treatment furnace. In these drawings, substantially the same devices as those in the prior art shown in FIGS. 4 and 5 are denoted by the same reference numerals.

横型熱処理炉1は熱処理室2を有し、同熱処理室2はその上部に加熱処理気体の吹出し口3と、その下部に熱処理室内の気体を同室外に排気するための吸気口4とを有し、また、熱処理室2の前後面にはスリット状の繊維入口部7g〜7i及び出口部7j〜7lが設けられている。更にまた、熱処理室2の前後面には前記繊維の入口部7g〜7i及び出口部7j〜7lをシ−ルするための第1シール室5a,5bが熱処理室2に隣接して配され、同第1シ−ル室5a,5bの外側にはそれぞれ第2シ−ル室6a,6bが連設されている。   The horizontal heat treatment furnace 1 has a heat treatment chamber 2, and the heat treatment chamber 2 has a heat treatment gas blow-out port 3 at an upper portion thereof and an intake port 4 for exhausting the gas in the heat treatment chamber to the outside thereof. In addition, slit-like fiber inlet portions 7g to 7i and outlet portions 7j to 7l are provided on the front and rear surfaces of the heat treatment chamber 2. Furthermore, first seal chambers 5a and 5b for sealing the fiber inlet portions 7g to 7i and the outlet portions 7j to 7l are disposed adjacent to the heat treatment chamber 2 on the front and rear surfaces of the heat treatment chamber 2, Second seal chambers 6a and 6b are connected to the outside of the first seal chambers 5a and 5b, respectively.

前記第1及び第2シール室5a,5b及び6a,6bには、その前後面に高さ方向に複数段のスリット7d〜7f,7m〜7o及び7a〜7c,7p〜7rが設けられており、前記スリット7a〜7rから繊維の導入及び導出が行われる。
具体的には、前記繊維は、第2シール室6a,6bの室外にそれぞれ配されたローラ8a,8bにて先ず前面側の最上段スリット7aから導入されて、最終的に後面側の最下段スリット7qから炉外に導出されるが、このローラ8a,8bによる前記繊維の導入及び導出方法の詳細は既述の従来技術と同様であり、ここでは、その説明を省略する。なお、前記スリット7a〜7rはその開口寸法を繊維の厚みに応じて変更可能なように上下方向に調節自在な構造とされている。
The first and second seal chambers 5a, 5b and 6a, 6b are provided with slits 7d-7f, 7m-7o, 7a-7c, 7p-7r in the height direction on the front and rear surfaces thereof. The fiber is introduced and led out from the slits 7a to 7r.
Specifically, the fiber is first introduced from the uppermost slit 7a on the front side by rollers 8a and 8b arranged outside the second seal chambers 6a and 6b, respectively, and finally the lowermost step on the rear side. Although the fiber is led out from the slit 7q to the outside of the furnace, the details of the fiber introduction and lead-out method by the rollers 8a and 8b are the same as those in the prior art described above, and the description thereof is omitted here. The slits 7a to 7r have a structure that can be adjusted in the vertical direction so that the opening dimensions thereof can be changed according to the thickness of the fiber.

前記繊維の熱処理に使用される加熱処理気体には空気が用いられ、熱処理室と外部との間をつなぐ循環路に設けられた加熱器9により200〜300℃に加熱され、次いで、循環ファン10により吹出し口3から熱処理室2に供給される。
そして、前記加熱処理気体は繊維の加熱処理に使用され、この処理により発生する熱処理室内の気体は吸気口4から循環路へと排出される。
Air is used as the heat treatment gas used for the heat treatment of the fibers, and is heated to 200 to 300 ° C. by a heater 9 provided in a circulation path connecting between the heat treatment chamber and the outside. Is supplied to the heat treatment chamber 2 from the outlet 3.
And the said heat processing gas is used for the heat processing of a fiber, and the gas in the heat processing chamber which generate | occur | produces by this processing is discharged | emitted from the inlet 4 to a circulation path.

各シ−ル室5a,5b及び6a,6bにはシール気体用排気口5a−1〜5b−2及び6a−1〜6b−2が設けられており、シール気体用排気口5a−1〜5b−2及び6a−1〜6b−2からは炉外に設置したシ−ル排気ファン12及び13a,13bによりシ−ル室5a〜6bの気体を予め設定された量だけ排気して、第1シ−ル室5a,5bの圧力を熱処理室2の圧力よりも低く、且つ第2シール室6a,6bの圧力を外気の圧力よりも低く制御している。そうすることによって、第1シール室5a,5bへの熱処理室2の気体の流出と第2シ−ル室への外気の流入とをいずれも確保し、外気の熱処理室への流入及び熱処理室の気体の炉外への漏れ出しを確実に防止している。   The seal chambers 5a, 5b and 6a, 6b are provided with seal gas exhaust ports 5a-1 to 5b-2 and 6a-1 to 6b-2, respectively, and seal gas exhaust ports 5a-1 to 5b. -2 and 6a-1 to 6b-2, the seal exhaust fans 12 and 13a and 13b installed outside the furnace exhaust the gas in the seal chambers 5a to 6b by a preset amount, The pressure in the seal chambers 5a and 5b is controlled to be lower than the pressure in the heat treatment chamber 2, and the pressure in the second seal chambers 6a and 6b is controlled to be lower than the pressure in the outside air. By doing so, both the outflow of gas from the heat treatment chamber 2 to the first seal chambers 5a and 5b and the inflow of outside air to the second seal chamber are secured, and the inflow of the outside air into the heat treatment chamber and the heat treatment chamber are ensured. The leakage of gas to the outside of the furnace is reliably prevented.

ここで、前記第1及び第2シ−ル室5a,5b及び6a,6bは、仕切板14a,14b及び15a,15bにより前記繊維の通路を複数に区画されると共に、前記排気口5a−1〜6b−2は各区画ごとに設けられている。そして、各排気口5a−1〜6b−2の出口には公知のダンパ−或いはバルブ等の風量制御装置16a〜16d及び17a〜17dが設置されているため、前記区画ごとに排気量の微調整が可能とされ、前記熱処理室2の高さ方向に圧力の分布がある場合にあっても、前記各区画ごとに圧力の設定ができるようになっている。したがって、各区画と熱処理室2との圧力差が適切に制御されて、結果的に各区画からの排気量を極力少なくすることが可能となり、前記シ−ル室5a〜6bからの排気量の大幅な低減が図られる。   Here, the first and second seal chambers 5a, 5b and 6a, 6b are divided into a plurality of fiber passages by partition plates 14a, 14b and 15a, 15b, and the exhaust port 5a-1. ˜6b-2 is provided for each section. And since the air volume control devices 16a to 16d and 17a to 17d such as known dampers or valves are installed at the outlets of the exhaust ports 5a-1 to 6b-2, fine adjustment of the exhaust amount is made for each section. Even when there is a pressure distribution in the height direction of the heat treatment chamber 2, the pressure can be set for each section. Accordingly, the pressure difference between each compartment and the heat treatment chamber 2 is appropriately controlled, and as a result, the exhaust amount from each compartment can be reduced as much as possible, and the exhaust amount from the seal chambers 5a to 6b can be reduced. Significant reduction is achieved.

前記第1シ−ル室5a,5bに設けられた各排気口5a−1〜5b−2からの排気は一旦合流されてから前記第1シ−ル排気ファン12により排気されるが、このとき同排気を炉外に単に放出したのでは、熱処理室2から逸出する熱量が多くなって多大なエネルギ−損失となると共に、前記繊維の熱処理温度の制御性をも低下させてしまう。そこで、本実施形態にあっては、第1シ−ル室5a,5bからの排気を排気導入路18を介してファン室11に導入することによって、前記排気は繊維の熱処理に循環使用している。   The exhausts from the exhaust ports 5a-1 to 5b-2 provided in the first seal chambers 5a and 5b are once joined and then exhausted by the first seal exhaust fan 12. If the exhaust gas is simply discharged to the outside of the furnace, the amount of heat escaped from the heat treatment chamber 2 is increased, resulting in a significant energy loss and a decrease in the controllability of the heat treatment temperature of the fibers. Therefore, in the present embodiment, the exhaust from the first seal chambers 5a and 5b is introduced into the fan chamber 11 through the exhaust introduction path 18 so that the exhaust is circulated and used for heat treatment of the fibers. Yes.

このことは、熱処理室2のシ−ル性を高めるために、第1シ−ル室5a,5bの圧力を熱処理室2の圧力よりもかなり低く設定することを要求されても、前記高温の熱処理室内の気体が第1シ−ル室5a,5bを介して循環するため、熱処理室2から第1シール室5a,5bへの気体の漏出が多くなっても、前記熱処理温度の制御性を低下させることが少なくなる。   This means that even if it is required to set the pressure of the first seal chambers 5a and 5b to be considerably lower than the pressure of the heat treatment chamber 2 in order to enhance the sealability of the heat treatment chamber 2, the high temperature Since the gas in the heat treatment chamber circulates through the first seal chambers 5a and 5b, the controllability of the heat treatment temperature can be achieved even if the gas leakage from the heat treatment chamber 2 to the first seal chambers 5a and 5b increases. Less to reduce.

ここで、第1シール室5a,5bの圧力は第2シ−ル室6a,6bの圧力よりも低く設定されており、前記第1シ−ル室5a,5bの排気口を介して熱処理室2に導入される気体には、第2シ−ル室6a,6bを介して相当量の空気が含まれているため、前記排気導入路18は熱処理室2に安定した耐炎化処理を行うに必要な新たな空気を供給する供給路としても機能している。   Here, the pressure in the first seal chambers 5a and 5b is set lower than the pressure in the second seal chambers 6a and 6b, and the heat treatment chamber is provided through the exhaust ports of the first seal chambers 5a and 5b. Since the gas introduced into 2 contains a considerable amount of air through the second seal chambers 6a and 6b, the exhaust introduction path 18 performs a stable flameproofing treatment in the heat treatment chamber 2. It also functions as a supply path for supplying necessary new air.

一方、前記ファン室11には、循環処理気体用排気口19が設けられており、前記排気口19から炉外に設置された循環排気ファン20により前記循環処理気体の一定量が強制的に排気される。このとき、前記排気口19からの排気(以下、炉内排気という。)の量は、第2シール室6a,6bから第1シール室5a,5bに流入する外気と同量に制御される。   On the other hand, the fan chamber 11 is provided with an exhaust port 19 for circulating processing gas, and a certain amount of the circulating processing gas is forcibly exhausted by the circulating exhaust fan 20 installed outside the furnace from the exhaust port 19. Is done. At this time, the amount of exhaust from the exhaust port 19 (hereinafter referred to as “in-furnace exhaust”) is controlled to the same amount as the outside air flowing into the first seal chambers 5a and 5b from the second seal chambers 6a and 6b.

なお、前記炉内排気は最終的に炉外に排気されるが、前記排気中にはシアン化合物及びアンモニア、一酸化炭素などの有害な成分が含まれているため、そのままでは大気に放出することはできない。このため、前記排気は図示せぬガス処理設備に送られて灯油と共に燃焼処理するなどして前記有害成分の処理を行う。   The exhaust in the furnace is finally exhausted outside the furnace, but since the exhaust contains harmful components such as cyanide, ammonia and carbon monoxide, it must be released into the atmosphere as it is. I can't. For this reason, the exhaust gas is sent to a gas processing facility (not shown) and burned with kerosene to treat the harmful components.

ここで、前記熱処理室2から第1シ−ル室5a,5bに確実に気体を流出させるには、熱処理室2の圧力の変動を考慮して、第1シ−ル室5a,5bの圧力を熱処理室2の圧力より0.2Pa以上低く設定することが好ましい。ただし、過度に前記シ−ル室5a,5bの圧力を低くすると循環用導入気体の量が大きくなり、第1シ−ル排気ファン12の負荷が大きくなるため、前記圧力の差を5Pa以下とすることが好適である。   Here, in order to surely flow out the gas from the heat treatment chamber 2 to the first seal chambers 5a and 5b, the pressure in the first seal chambers 5a and 5b is taken into consideration in consideration of the pressure variation in the heat treatment chamber 2. Is preferably set lower by 0.2 Pa or more than the pressure in the heat treatment chamber 2. However, if the pressure in the seal chambers 5a and 5b is excessively reduced, the amount of the circulation introduction gas increases and the load on the first seal exhaust fan 12 increases, so the difference in pressure is set to 5 Pa or less. It is preferable to do.

一方、第2シール室6a,6bについては、第2シール気体用排気口6a−1〜6b−2からの排気はそれぞれの区画室ごとに合流されて、第2シ−ル排気ファン13a,13bにより室外に排気される。
このとき、第2シール室6a,6bの圧力は、第1シール室5a,5bの圧力より0.2〜5Pa高く設定して、前記第2シ−ル室6a,6bから気体を排気(以下、シ−ル排気と呼ぶ)することが好ましい。すなわち、前記第2シール室6a,6bの圧力を第1シール室5a,5bの圧力より0.2Pa以上高く設定すれば、第1及び第2シ−ル室5a〜6bの圧力が変動するようなことがあっても、第2シ−ル室6a,6bには第1シ−ル室5a,5bからの気体の流失がなく、しかも第1シ−ル室5a,5bから外気が確実に流入し、前記繊維の安定した熱処理に必要な新たな空気が排気導入路18を介して熱処理室2に供給される。また、第2シ−ル室6a,6bの気体はほとんどが空気であり、ガス処理設備を介さずに直接大気に放出することが可能となる。
On the other hand, with respect to the second seal chambers 6a and 6b, the exhausts from the second seal gas exhaust ports 6a-1 to 6b-2 are merged for each of the compartments, and the second seal exhaust fans 13a and 13b. The air is exhausted by the outside.
At this time, the pressure in the second seal chambers 6a and 6b is set to be 0.2 to 5 Pa higher than the pressure in the first seal chambers 5a and 5b, and the gas is exhausted from the second seal chambers 6a and 6b (hereinafter referred to as “the second seal chambers 6a and 6b”). , Referred to as seal exhaust). That is, if the pressure in the second seal chambers 6a and 6b is set 0.2 Pa or more higher than the pressure in the first seal chambers 5a and 5b, the pressure in the first and second seal chambers 5a to 6b may change. Even if there is nothing, there is no loss of gas from the first seal chambers 5a and 5b in the second seal chambers 6a and 6b, and outside air is surely discharged from the first seal chambers 5a and 5b. The fresh air necessary for the stable heat treatment of the fibers is supplied to the heat treatment chamber 2 through the exhaust introduction path 18. Further, most of the gas in the second seal chambers 6a and 6b is air, and can be directly discharged to the atmosphere without going through the gas processing facility.

ただし、過度に前記第2シ−ル室6a,6bの圧力を高くすると、第2シール室6a,6bから第1シール室5a,5bへの気体の流出量が過大となり、循環用導入気体の量が多くなり、第1シール排気ファン12の負荷が増大すると共に、前記循環用排気に同伴される空気量が増加するため、加熱エネルギー及び炉内排気量が増加し、ガス処理設備の負荷が過大となる。このため、前記圧力の差は5Pa以下にすることが好ましい。   However, if the pressure in the second seal chambers 6a and 6b is excessively increased, the amount of gas flowing out from the second seal chambers 6a and 6b to the first seal chambers 5a and 5b becomes excessive, and the amount of introduced gas for circulation is increased. As the amount increases, the load on the first seal exhaust fan 12 increases, and the amount of air entrained in the circulation exhaust increases. Therefore, the heating energy and the amount of exhaust in the furnace increase, and the load on the gas processing equipment increases. It becomes excessive. For this reason, the pressure difference is preferably 5 Pa or less.

なお、本実施形態にあっては、熱処理室2における加熱処理気体の流れ方向は、繊維の走行方向に対して垂直な方向としているが、前記加熱処理気体の吹出し口3及び吸気口4の設置位置を変更して、前記加熱処理気体の流れ方向を繊維の走行方向と平行とすることもできる。   In the present embodiment, the flow direction of the heat treatment gas in the heat treatment chamber 2 is a direction perpendicular to the fiber traveling direction, but the heat treatment gas blow-out port 3 and the intake port 4 are installed. It is also possible to change the position so that the flow direction of the heat treatment gas is parallel to the fiber running direction.

また、繊維の通路が3パスの熱処理炉1について示しているが、繊維の熱処理効率の観点から、そのパス数を数パス〜数十パスとすることも可能であり、複数の繊維を異なるパスから導入するするようにしてもよい。前記パスを区画する仕切板14a〜15dは、上述の如くシール室5a〜6bのみに設置するほかに、熱処理室2のみに、或いはシール室5a〜6b及び熱処理室2のそれぞれに設置することが可能である。   Further, although the fiber passage is shown for the heat treatment furnace 1 having three passes, from the viewpoint of the heat treatment efficiency of the fiber, the number of passes can be several passes to several tens passes, and the plurality of fibers can be different passes. You may make it introduce from. As described above, the partition plates 14a to 15d for partitioning the path may be installed only in the heat treatment chamber 2 or in each of the seal chambers 5a to 6b and the heat treatment chamber 2 in addition to being installed only in the seal chambers 5a to 6b. Is possible.

更にまた、図3に示すように熱処理室2のシール性を向上させるため、前記繊維を導入・導出するローラ8a,8bを第2シール室6a,6bの室内に配して、前記第2シール室6a,6bの外気側の壁面に設けられる繊維の導入及び導出のための開口部を少なくすることも可能である。   Furthermore, as shown in FIG. 3, in order to improve the sealing performance of the heat treatment chamber 2, rollers 8a and 8b for introducing and leading out the fibers are arranged in the chambers of the second seal chambers 6a and 6b, and the second seal. It is also possible to reduce the number of openings for introducing and leading out fibers provided on the outside air wall surfaces of the chambers 6a and 6b.

以下に本発明の実施例及び比較例を具体的に説明する。
(実施例1)
スリット7a〜7rの幅及び高さがそれぞれ210mm、15mm、繊維のパス数が3、パス間の距離が150mmであり、仕切板14a〜15bを第1シール室5a,5b及び第2シ−ル室6a,6bの全てのパス間に設け、加熱処理気体の吹出し方向を繊維の走行方向に対し垂直方向とした横型熱処理炉1を使用した。大気温度20℃のもとで熱処理室2の温度を240℃として、炉内排気量52Nm3 /h、循環用排気量を片側46Nm3 /h、第2シール室6a,6bからの排気量を片側27Nm3 /hに設定し、風量制御装置16a〜17dにより、第1シール室5a,5bの圧力を熱処理室2より0.2〜0.4Pa低く、第2シール室6a,6bの圧力を第1シール室5a,5bより0.2〜0.5Pa高くなるように、各区画からの排気量の微調節を行った。
Examples of the present invention and comparative examples will be specifically described below.
Example 1
The width and height of the slits 7a to 7r are 210 mm and 15 mm, the number of fiber passes is 3, the distance between the passes is 150 mm, and the partition plates 14a to 15b are connected to the first seal chambers 5a and 5b and the second seal. A horizontal heat treatment furnace 1 provided between all the paths of the chambers 6a and 6b and having a heat treatment gas blowing direction perpendicular to the fiber running direction was used. The temperature of the heat treatment chamber 2 is 240 ° C. at an atmospheric temperature of 20 ° C., the furnace exhaust amount is 52 Nm 3 / h, the circulation exhaust amount is 46 Nm 3 / h on one side, and the exhaust amounts from the second seal chambers 6 a and 6 b are One side is set to 27 Nm 3 / h, and the air volume control devices 16a to 17d are used to lower the pressure in the first seal chambers 5a and 5b by 0.2 to 0.4 Pa from the heat treatment chamber 2 and the pressure in the second seal chambers 6a and 6b. The amount of exhaust from each compartment was finely adjusted to be 0.2 to 0.5 Pa higher than the first seal chambers 5a and 5b.

この条件でアクリロニトリル系合成繊維を240℃にて耐炎化処理した。その結果、第2シール室6a,6bから作業環境への熱処理室内の気体の漏れ出しは見られず、第2シール室6a,6bの排気中にシアンガスが検出されなかった。   Under these conditions, the acrylonitrile-based synthetic fiber was flameproofed at 240 ° C. As a result, no leakage of gas in the heat treatment chamber from the second seal chambers 6a and 6b to the work environment was observed, and cyan gas was not detected in the exhaust of the second seal chambers 6a and 6b.

(比較例1)
前記実施例1において炉内排気量を100Nm3 /hに増やしたところ、風量制御装置16a〜16dにて微調節を行ったにもかかわらず、第1シ−ル室5a,5bのパスのうち熱処理室2の圧力よりも高くなるパスがあった。
そのパスの熱処理室内の温度を測定したところ、各スリット7g〜7i及び7j〜7lの近傍で200℃以下となる箇所が認められた。
(比較例2)
実施例1において、第2シール室6a,6bからの排気量を片側60Nm3 /hに増やしたところ、風量制御装置17a〜17dにて微調節を行ったにもかかわらず、第1シール室5a,5bのパスのうち第2シール室6a,6bの圧力よりも高くなるパスがあった。このとき、第2シール室6a,6bの排気中にシアンガスが検出され、前記排気の処理が必要であった。
(Comparative Example 1)
In the first embodiment, when the furnace exhaust amount was increased to 100 Nm 3 / h, the fine air flow control devices 16a to 16d made fine adjustments in the paths of the first seal chambers 5a and 5b. There was a pass that was higher than the pressure in the heat treatment chamber 2.
When the temperature in the heat treatment chamber of the pass was measured, locations where the temperature was 200 ° C. or less were observed in the vicinity of the slits 7g to 7i and 7j to 7l.
(Comparative Example 2)
In Example 1, when the exhaust amount from the second seal chambers 6a and 6b was increased to 60 Nm 3 / h on one side, the first seal chamber 5a was adjusted despite fine adjustment by the air volume control devices 17a to 17d. , 5b, there is a path higher than the pressure in the second seal chambers 6a, 6b. At this time, cyan gas was detected in the exhaust of the second seal chambers 6a and 6b, and the exhaust treatment was necessary.

1 横型熱処理炉
2 熱処理室
3a〜3d (加熱処理気体の)吹出し口
4a〜4d (炉内の気体の)吸気口
5a,5b 第1シール室
5a−1〜5b−3 第1シール気体用排気口
6a,6b 第2シール室
6a−1〜6b−3 第2シール気体用排気口
7a〜7r スリット
8a,8b ローラ
9 加熱器
10 循環ファン
11 ファン室
12a,12b 第1シール排気ファン
13a,13b 第2シール排気ファン
14a,14b 第1シール室仕切板
15a,15b 第2シール室仕切板
16a〜16d 第1シ−ル室風量制御装置
17a〜17d 第2シ−ル室風量制御装置
18 排気導入路
19 循環処理気体排気口
20 循環排気ファン
DESCRIPTION OF SYMBOLS 1 Horizontal type heat treatment furnace 2 Heat processing chamber 3a-3d Blowing port 4a-4d (gas in a furnace) Intake port 5a, 5b 1st sealing chamber 5a-1-5b-3 Exhaust for 1st sealing gas Port 6a, 6b Second seal chamber 6a-1 to 6b-3 Second seal gas exhaust port 7a-7r Slit 8a, 8b Roller 9 Heater 10 Circulating fan 11 Fan chamber 12a, 12b First seal exhaust fan 13a, 13b Second seal exhaust fan 14a, 14b First seal chamber partition plate 15a, 15b Second seal chamber partition plate 16a-16d First seal chamber air volume control device 17a-17d Second seal chamber air volume control device 18 Exhaust introduction Route 19 Circulating gas exhaust port 20 Circulating exhaust fan

Claims (2)

走行糸条の入口部及び出口部を有し、且つその内部に熱処理室と該熱処理室の内外に加熱処理気体を循環させる循環路の一部を構成するファン室とを有し、前記熱処理室の糸条入口部及び出口部にそれぞれ隣接して配された第1シール室と、各第1シール室の外側に配された第2シール室との少なくとも2室を備えてなり、前記熱処理室内で糸条を連続的に熱処理する横型熱処理装置であって、
前記第1及び第2シール室はそれぞれが糸条走行方向に連設され、且つシール気体用排気口を有してなり、
前記熱処理室は、前記加熱処理気体を前記ファン室から前記熱処理室内に吹き込む吹出し口と、前記加熱処理気体を前記ファン室へ排出する吸気口とを有し、
前記ファン室は、循環排気ファンを介して循環処理気体の一定量を排気する循環処理気体排気口と、加熱器と、循環ファンとを有し、加熱処理気体を前記吸気口から前記吹出し口へと循環させてなり、
前記循環処理気体排気口は、前記加熱器の上流側配されてなる、
ことを特徴とする糸条の横型熱処理装置。
Having an inlet portion and an outlet portion of the running yarn, and having a heat treatment chamber therein, and a fan chamber which constitutes a part of a circulation path for circulating the heat treatment gas into and out of the heat treatment chamber, the heat treatment Comprising at least two chambers, a first seal chamber disposed adjacent to the yarn inlet and outlet portions of the chamber, and a second seal chamber disposed outside each first seal chamber, the heat treatment A horizontal heat treatment apparatus for continuously heat treating yarn in a room,
Each of the first and second seal chambers is provided continuously in the yarn running direction, and has a seal gas exhaust port.
The heat treatment chamber has a blowout port for blowing the heat treatment gas from the fan chamber into the heat treatment chamber, and an intake port for discharging the heat treatment gas to the fan chamber,
The fan chamber has a circulation processing gas exhaust port for exhausting a certain amount of the circulation processing gas through the circulation exhaust fan, a heater, and a circulation fan, and the heat processing gas is passed from the intake port to the outlet port. And circulate with
The circulation processing gas exhaust port is disposed on the upstream side of the heater.
A horizontal heat treatment apparatus for yarn.
請求項1記載の横型熱処理装置を耐炎化処理炉として使用し、炭素繊維の原料であるプレカーサを前記耐炎化処理炉の熱処理室内で200〜300℃の酸化性雰囲気下で耐炎化処理することを特徴とする炭素繊維の製造方法。 The horizontal heat treatment apparatus according to claim 1 is used as a flameproofing furnace, and the precursor which is a raw material of carbon fiber is flameproofed in an oxidizing atmosphere of 200 to 300 ° C. in a heat treatment chamber of the flameproofing furnace. A carbon fiber manufacturing method characterized by the above.
JP2009186991A 2009-08-12 2009-08-12 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber Expired - Lifetime JP4494511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186991A JP4494511B2 (en) 2009-08-12 2009-08-12 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186991A JP4494511B2 (en) 2009-08-12 2009-08-12 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000005733A Division JP4493775B2 (en) 2000-01-06 2000-01-06 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber

Publications (2)

Publication Number Publication Date
JP2010002176A JP2010002176A (en) 2010-01-07
JP4494511B2 true JP4494511B2 (en) 2010-06-30

Family

ID=41584036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186991A Expired - Lifetime JP4494511B2 (en) 2009-08-12 2009-08-12 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP4494511B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493775B2 (en) * 2000-01-06 2010-06-30 三菱レイヨン株式会社 Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
DE102010044296B3 (en) * 2010-09-03 2012-01-05 Eisenmann Ag oxidation furnace
JP2012058863A (en) 2010-09-07 2012-03-22 Nec Corp Disk device and method and program for data duplication to disk device
US9598795B2 (en) * 2013-04-26 2017-03-21 Illinois Tool Works Inc. Fiber oxidation oven with multiple independently controllable heating systems
EP3018238A4 (en) * 2013-07-02 2016-06-29 Mitsubishi Rayon Co Horizontal heat treatment device and method for producing carbon fibers using horizontal heat treatment device
JP7402676B2 (en) * 2019-12-25 2023-12-21 株式会社新菱 Heat treatment equipment and method for manufacturing heat-treated products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614890U (en) * 1991-05-30 1994-02-25 東海高熱工業株式会社 Roller hearth atmosphere furnace with atmospheric intrusion prevention device
JPH0713461U (en) * 1993-08-06 1995-03-07 積水化学工業株式会社 drying furnace
JP2000136441A (en) * 1998-11-02 2000-05-16 Mitsubishi Rayon Co Ltd Horizontal heat treatment oven and heat treatment
JP2000212839A (en) * 1999-01-12 2000-08-02 Mitsubishi Rayon Co Ltd Horizontal thermal treatment oven and thermal treatment
JP2001194071A (en) * 2000-01-06 2001-07-17 Mitsubishi Rayon Co Ltd Horizontal heat treatment apparatus for thread and heat treatment method therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819682A (en) * 1981-07-28 1983-02-04 ア−ルデイピ−・エンジニアリング・インコ−ポレ−テツド Pressurized gas sealing method for confining furnace atmosphere and its seal
JPS60152669U (en) * 1984-01-20 1985-10-11 新日本製鐵株式会社 Atmospheric gas mixing prevention device in continuous annealing furnace
JPS62228865A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace
JPS62228866A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace for manufacturing carbon fiber
JPS62243831A (en) * 1986-04-11 1987-10-24 Toray Ind Inc Roaster for making preoxidized or carbon fiber
JPS62276023A (en) * 1986-05-20 1987-11-30 Toray Ind Inc Production of flame-resistant fiber
JPH0322709Y2 (en) * 1986-06-04 1991-05-17
JPH02259025A (en) * 1989-03-31 1990-10-19 Kawasaki Steel Corp Continuous annealing furnace
JPH0327125A (en) * 1989-06-23 1991-02-05 Toray Ind Inc Fire-resisting device
JPH07118933A (en) * 1991-05-28 1995-05-09 Toho Rayon Co Ltd Sealing of continuous kiln for carbon fiber
JPH06173123A (en) * 1992-09-14 1994-06-21 Nippon Steel Corp Method for sealing infusibilizing furnace for pitch-based carbon fiber and apparatus therefor
JPH06323736A (en) * 1993-05-17 1994-11-25 Ngk Insulators Ltd Tunnel furnace
JPH07270072A (en) * 1994-03-31 1995-10-20 Trinity Ind Corp Dryer
JPH10237723A (en) * 1996-12-16 1998-09-08 Toray Ind Inc The treatment furnace and production of carbon fiber
JP4241950B2 (en) * 1997-12-09 2009-03-18 三菱レイヨン株式会社 Horizontal heat treatment furnace and heat treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614890U (en) * 1991-05-30 1994-02-25 東海高熱工業株式会社 Roller hearth atmosphere furnace with atmospheric intrusion prevention device
JPH0713461U (en) * 1993-08-06 1995-03-07 積水化学工業株式会社 drying furnace
JP2000136441A (en) * 1998-11-02 2000-05-16 Mitsubishi Rayon Co Ltd Horizontal heat treatment oven and heat treatment
JP2000212839A (en) * 1999-01-12 2000-08-02 Mitsubishi Rayon Co Ltd Horizontal thermal treatment oven and thermal treatment
JP2001194071A (en) * 2000-01-06 2001-07-17 Mitsubishi Rayon Co Ltd Horizontal heat treatment apparatus for thread and heat treatment method therefor

Also Published As

Publication number Publication date
JP2010002176A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP4494511B2 (en) Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
JP4493775B2 (en) Horizontal heat treatment apparatus for yarn and method for producing carbon fiber
US20130171578A1 (en) Oxidation furnace
US9464844B2 (en) End seal for oxidation oven
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
JP2019532191A (en) Oxidation furnace
JP5487662B2 (en) Heat treatment furnace, flameproof fiber bundle, and method for producing carbon fiber
EP0110557B1 (en) Apparatus for producing oxidized filaments
JP5037978B2 (en) Flameproof furnace and flameproofing method
JP2009242962A (en) Flameproofing apparatus and method for flameproofing precursor fiber bundle
JP3581140B2 (en) Continuous carburizing furnace
JP4408308B2 (en) Horizontal heat treatment furnace and heat treatment method
JP4377007B2 (en) Carbon fiber manufacturing method
JP4241950B2 (en) Horizontal heat treatment furnace and heat treatment method
JP4279925B2 (en) Horizontal heat treatment furnace and heat treatment method
JPH034832B2 (en)
JP4796467B2 (en) Horizontal flameproof furnace and flameproofing method
JP2007132657A (en) Horizontal heat treatment furnace and heat treatment method
JPH10266023A (en) Production of polyacrylonitrile-based flame resistant fiber and apparatus therefor
JP4471779B2 (en) Flameproofing furnace
JP2007224432A (en) Horizontal thermal treatment apparatus and thermal treatment method
JP2012184527A (en) Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber
JP2001288623A (en) Hot air-circulating type convective oven and method for producing flameproof fiber
JPH034834B2 (en)
JP2008045227A (en) Carbonization furnace and method for producing carbonized fiber

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R151 Written notification of patent or utility model registration

Ref document number: 4494511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term