JP2014221956A - Heat treatment apparatus, and method for producing flame-resistant fiber by using the same - Google Patents

Heat treatment apparatus, and method for producing flame-resistant fiber by using the same Download PDF

Info

Publication number
JP2014221956A
JP2014221956A JP2013102131A JP2013102131A JP2014221956A JP 2014221956 A JP2014221956 A JP 2014221956A JP 2013102131 A JP2013102131 A JP 2013102131A JP 2013102131 A JP2013102131 A JP 2013102131A JP 2014221956 A JP2014221956 A JP 2014221956A
Authority
JP
Japan
Prior art keywords
heat treatment
treatment chamber
yarn
heat
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013102131A
Other languages
Japanese (ja)
Inventor
暁 加地
Akira Kachi
暁 加地
川村 篤志
Atsushi Kawamura
篤志 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013102131A priority Critical patent/JP2014221956A/en
Publication of JP2014221956A publication Critical patent/JP2014221956A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment apparatus which is concerned with quality improvement and has an inexpensive equipment cost, and to provide a method for producing a flame-resistant fiber by using the heat treatment apparatus.SOLUTION: The heat treatment apparatus has the following structures (1)-(6) and is constituted so that a heat-treating gas is blown against both surfaces of a fiber bundle in parallel. The structure (1) includes a heat treatment chamber 2 and two series of circulation flow passages 7, 7' arranged on the inside and outside of the heat treatment chamber. The structure (2) includes a plurality of blowing nozzles 3, 3' and two suction parts 4, 4' all of which are communicated with the two series of circulation flow passages. The structure (3) is that the blowing nozzles communicated respectively with the first series of circulation flow passage are disposed on the upside and downside of a traveling yarn 8 in the vicinity of an inlet/outlet portion at one edge of the heat treatment chamber. The structure (4) is that the blowing nozzles communicated respectively with the second series of circulation flow passage are disposed on the upside and downside of the yarn in the vicinity of an inlet/outlet portion at the other edge of the heat treatment chamber. The structure (5) is that two suction parts are formed by opening the wall of a central part thereof so as to be opposed directly to the lateral or vertical direction of the yarn. The structure (6) is that the circulation flow passage includes heating means 5 or 5' and hot air sending means 6 or 6' and is disposed on the outside of the heat treatment chamber.

Description

本発明は、耐炎化繊維の製造に用いる好適な熱処理装置及び該熱処理装置を用いた耐炎化繊維の製造方法に関する。   The present invention relates to a heat treatment apparatus suitable for use in the production of flame-resistant fibers and a method for producing flame-resistant fibers using the heat treatment apparatus.

炭素繊維を製造する方法として、炭素繊維の前駆体繊維束を耐炎化処理をした後、炭素化処理する方法が広く知られている。
この炭素繊維の製造時の耐炎化処理としては、例えば、酸化雰囲気の熱処理室内で前駆体繊維を熱風により熱処理する方法が採用されている。
As a method for producing a carbon fiber, a method of carbonizing a precursor fiber bundle of carbon fibers after performing a flame resistance treatment is widely known.
As the flameproofing treatment during the production of the carbon fiber, for example, a method of heat-treating the precursor fiber with hot air in a heat treatment chamber in an oxidizing atmosphere is employed.

耐炎化処理は前駆体繊維束(以下、糸条)の発熱を伴う酸化反応が生じるため、熱処理装置内の熱風や酸化反応に伴う多量の発熱によって、単繊維同士が融着しやすい。そのため、一般に熱処理装置内の循環風量や風速を上げて糸条の蓄熱を除去する方法がとられている。
また、生産性を高めるためには、高い伝熱性能を維持しつつ、装置を長大にして大量の糸条を処理していく必要がある。
そこで、特開2008−144293号公報(特許文献1)に開示された耐炎化熱処理装置では、ポリアクリロニトリル系繊維束の進行方向に対して概略直交して酸化性雰囲気ガスを吹き込むガス導入部と、前記ガス導入部に対向して設けられた前記酸化性雰囲気ガスを排出するガス排出部とを有し、前記ガス導入部に、熱風ノズルの閉塞を考慮した直径10mmの円を内包できる開口部を有する多孔板を設けている。また、特開2002−161441号公報(特許文献2)によれば、熱処理室内を水平方向に走行する複数の糸条の走行方向に沿って、水平方向に交互に熱風導入部及び熱風導出部を配設している耐炎化熱処理装置が開示されている。
In the flameproofing treatment, an oxidation reaction accompanied by heat generation of the precursor fiber bundle (hereinafter referred to as yarn) occurs, so that the single fibers are likely to be fused by hot air in the heat treatment apparatus or a large amount of heat generation accompanying the oxidation reaction. Therefore, in general, a method of removing the heat accumulation of the yarn by increasing the circulating air volume and the air speed in the heat treatment apparatus is employed.
Further, in order to increase productivity, it is necessary to process a large amount of yarn with a long apparatus while maintaining high heat transfer performance.
Therefore, in the flameproof heat treatment apparatus disclosed in Japanese Patent Application Laid-Open No. 2008-144293 (Patent Document 1), a gas introduction unit that blows an oxidizing atmosphere gas substantially orthogonal to the traveling direction of the polyacrylonitrile fiber bundle, A gas discharge portion for discharging the oxidizing atmosphere gas provided opposite to the gas introduction portion, and an opening capable of containing a circle having a diameter of 10 mm in consideration of blockage of the hot air nozzle in the gas introduction portion. A perforated plate is provided. Further, according to Japanese Patent Laid-Open No. 2002-161441 (Patent Document 2), the hot air introducing section and the hot air deriving section are alternately arranged in the horizontal direction along the running direction of the plurality of yarns running in the heat treatment chamber in the horizontal direction. An installed flameproof heat treatment apparatus is disclosed.

さらに特開昭62−228865号公報(特許文献3)に開示された熱処理炉では、熱処理室内に糸条の移送方向と平行な方向へ熱風を吹出す吹出し口と熱風を排出する吸気口とを糸条の通路の上下に備えている。また、US4515561(特許文献4)では、熱処理室の中央に熱風を吹出す吹出しノズルを備え、熱処理室の両端に向かって糸条の走行方向と平行な方向へ熱風を吹出し、両端に設けてある吸込みノズルから熱風を吸込み循環させる耐炎化炉が開示されている。   Furthermore, in the heat treatment furnace disclosed in Japanese Patent Application Laid-Open No. 62-228865 (Patent Document 3), there are provided a blowout port for blowing hot air in a direction parallel to the yarn transfer direction and an intake port for discharging hot air in the heat treatment chamber. It is provided above and below the yarn passage. Further, in US Pat. No. 4,515,561 (Patent Document 4), a blow nozzle that blows hot air in the center of the heat treatment chamber is provided, and hot air is blown toward both ends of the heat treatment chamber in a direction parallel to the running direction of the yarn. A flameproof furnace that sucks and circulates hot air from a suction nozzle is disclosed.

特開2008−144293号公報JP 2008-144293 A 特開2002−161441号公報Japanese Patent Laid-Open No. 2002-161441 特開昭62−228865号公報JP-A-62-2228865 US4515561US4515561

しかし、特許文献1は、吹出し風速が0.3m/sから1.5m/sの範囲の糸条に対して垂直に熱風を供給する熱処理装置に関するものであり、前記風速を均一に制御すると同時に、その風量が大きくなると、糸条が切れやすくなり、隣接する繊維間における絡み合いが多発する。   However, Patent Document 1 relates to a heat treatment apparatus that supplies hot air perpendicularly to a yarn having a blowing air velocity in a range of 0.3 m / s to 1.5 m / s, and at the same time controls the air velocity uniformly. When the air volume is increased, the yarn is easily cut and entanglement between adjacent fibers occurs frequently.

また特許文献2では、熱風を糸条の横方向両側から交互に吹かせる熱処理装置に関する
ものであり、風量が大きくなると、糸条内の単繊維が擦れ合うことで毛羽が発生し、品質の低下を招く可能性がある。
Further, Patent Document 2 relates to a heat treatment apparatus that alternately blows hot air from both sides of the yarn in the lateral direction. When the air volume increases, the single fibers in the yarn rub against each other and fluff is generated, resulting in a reduction in quality. There is a possibility of inviting.

特許文献3では、熱風を糸条の移送方向と平行な方向へ吹出す熱処理炉に関するものであり、熱風による糸条の揺れが抑制でき、風量を増加させることが可能である。
しかしながら、糸条が折返されて熱処理室を通過するごとに、焼成の状態が異なる順風と向流に交互にさらされ、装置が長大になるほど、焼成効率の悪化が顕著となりやすい。
Patent Document 3 relates to a heat treatment furnace that blows hot air in a direction parallel to the yarn transfer direction, and can suppress the yarn from shaking due to the hot air and increase the air volume.
However, every time the yarn is folded and passes through the heat treatment chamber, it is alternately exposed to forward wind and countercurrent with different firing conditions, and the longer the apparatus is, the more likely the deterioration of the firing efficiency becomes more prominent.

さらに特許文献4では、中央に設置された吹出しノズルから熱風を両端に向かって糸条の移送方向と平行な方向に吹出す耐炎化炉に関するものであるが、炉中央部の吹出しノズル間を通過する際、熱風の風速低下領域となり、糸条が切断する可能性が高まる。また、中央に吹出しノズルを設置することで、ノズル間通過時に糸条の懸垂から擦過するおそれがあり、装置が長大になるほどその可能性がある。   Further, Patent Document 4 relates to a flameproofing furnace that blows hot air from a blowing nozzle installed at the center toward both ends in a direction parallel to the yarn transfer direction, but passes between the blowing nozzles in the center of the furnace. When it does, it becomes a wind speed fall area | region of a hot air, and possibility that a thread | yarn will cut | disconnect increases. In addition, by installing the blowing nozzle in the center, there is a risk of scratching from the suspension of the yarn when passing between the nozzles, and there is a possibility that the length of the device becomes longer.

本発明の目的は、処理速度と風量を上げてその高い伝熱性能から大きな生産性を得ることができる、糸条に両面から平行に加熱処理気体を供給して耐炎化を行う平行流の熱処理装置において、炉内を簡易な構造とすることで糸条の擦過を防いで毛羽の発生を抑えて品質を向上することができ、さらに設備費も抑制することができる熱処理装置及び該熱処理装置を用いた耐炎化繊維の製造方法を提供することにある。   The object of the present invention is to increase the processing speed and air volume to obtain high productivity from its high heat transfer performance, and to supply heat treatment gas in parallel to both sides of the yarn to provide flame resistance by parallel flow heat treatment In the apparatus, by making the inside of the furnace a simple structure, it is possible to improve the quality by preventing fraying and suppressing the generation of fluff, and further reducing the equipment cost. It is in providing the manufacturing method of the flame-resistant fiber used.

本発明の熱処理室内において、その内部を水平方向に複数回往復走行する糸条それぞれに両面から加熱処理気体を平行に吹き付け、糸条を連続的に加熱処理する熱処理装置は、以下の態様を包含する。
〔1〕
(1)両端に前記糸条の出入部を有する熱処理室及び熱処理室の内外に加熱処理気体を循環させる2系統の循環流路を備える。
(2)熱処理室には、2系統の循環流路にそれぞれ連通した複数の吹出しノズル及び2系統の循環流路にそれぞれ連通した2つの吸込み部を設ける。
(3)2系統の循環流路のうち第1の系統の循環流路に連通する複数の吹出しノズルは、熱処理室の一端の出入部近傍において、走行する糸条それぞれの上側と下側とに配置される。
(4)2系統の循環流路のうち第2の系統の循環流路に連通する複数の吹出しノズルは、熱処理室の他端の出入部近傍において、走行する糸条それぞれの上側と下側とに配置される。
(5)2つの吸込み部は、熱処理室中央部の壁に、走行する糸条の横方向又は上下方向に正対するように開口する。
(6)循環流路は気体加熱手段及び熱風送風手段を備え、熱処理室の外側に配置される。
In the heat treatment chamber of the present invention, a heat treatment apparatus for continuously heat-treating a yarn by spraying heat treatment gas in parallel from both sides to each yarn that reciprocates a plurality of times in the horizontal direction in the interior includes the following aspects: To do.
[1]
(1) A heat treatment chamber having the yarn entry / exit at both ends and two circulation channels for circulating the heat treatment gas inside and outside the heat treatment chamber are provided.
(2) The heat treatment chamber is provided with a plurality of blowing nozzles respectively connected to the two circulation channels and two suction portions respectively connected to the two circulation channels.
(3) Among the two circulation passages, the plurality of blowout nozzles communicating with the circulation passage of the first system are provided on the upper and lower sides of the traveling yarn in the vicinity of the entrance / exit at one end of the heat treatment chamber. Be placed.
(4) The plurality of blowout nozzles communicating with the second system circulation channel out of the two systems circulation channels are arranged in the vicinity of the entrance and exit of the other end of the heat treatment chamber. Placed in.
(5) The two suction portions open to the wall in the center of the heat treatment chamber so as to face the lateral direction or the vertical direction of the running yarn.
(6) The circulation channel includes gas heating means and hot air blowing means, and is disposed outside the heat treatment chamber.

〔2〕前記熱処理装置は、吸込み部の各々の中心点と、この中心点を通り、糸条が走行する方向に延ばした熱処理室内の線分の中点との距離が、熱処理室の糸条が走行する方向の長さの0.1倍以内の範囲に位置していることが好ましい。 [2] In the heat treatment apparatus, the distance between the center point of each suction portion and the midpoint of the line segment passing through the center point and extending in the direction in which the yarn travels is determined by the yarn in the heat treatment chamber. It is preferable that it is located within the range of 0.1 times the length in the traveling direction.

〔3〕前記熱処理装置は、2つの吸込み部は同じ矩形であり、走行する糸条の横方向に正対するように配置され、各吸込み部の高さは熱処理室の高さと等しく、各吸込み部の間口面積をA、熱処理室の走行する糸条に直交する面の断面積をBとしたとき、AとBが下記の関係式を満足することが好ましい。
0.5×B≦A≦1.0×B
[3] In the heat treatment apparatus, the two suction portions have the same rectangular shape and are arranged so as to face the transverse direction of the running yarn, and the height of each suction portion is equal to the height of the heat treatment chamber. When the frontage area is A and the cross-sectional area of the surface orthogonal to the yarn traveling in the heat treatment chamber is B, it is preferable that A and B satisfy the following relational expression.
0.5 × B ≦ A ≦ 1.0 × B

〔4〕前記熱処理装置には、吸込み部に多孔板が設置されていることが好ましい。 [4] In the heat treatment apparatus, a perforated plate is preferably installed in the suction part.

〔5〕前記熱処理装置にあって、吸込み部近傍における、熱処理室の一端側及び他端側の通路2箇所に、糸条を通過させる複数の開口部を有し、この開口部の高さを中央部に向かうほど高くなるようにした制御板を設置し、加熱処理気体の風速斑を抑制するようにすることが好ましい。 [5] In the heat treatment apparatus, in the vicinity of the suction portion, there are a plurality of openings through which the yarn passes in two passages on one end side and the other end side of the heat treatment chamber. It is preferable to install a control plate that becomes higher toward the center so as to suppress wind speed spots of the heat treatment gas.

〔6〕前記熱処理装置は、炭素繊維前駆体繊維束を熱処理し、耐炎化繊維を製造するために用いられることが好ましい。 [6] The heat treatment apparatus is preferably used for heat-treating the carbon fiber precursor fiber bundle to produce flame-resistant fibers.

本発明の熱処理装置及びこの熱処理装置を用いた耐炎化繊維の製造方法によれば、シート状繊維束を熱処理する際に、両端に吹出しノズルを配し、加熱室内を簡易な構造として、熱処理室内を複数回往復走行するシート状繊維束の両面に平行に安定して加熱処理気体を吹き付けることができるので、シート状繊維束の擦過を抑えて品質を向上できるとともに、設備費も抑制できる。   According to the heat treatment apparatus of the present invention and the flameproof fiber manufacturing method using the heat treatment apparatus, when heat-treating the sheet-like fiber bundle, the blow nozzles are arranged at both ends, and the heating chamber has a simple structure. Since the heat treatment gas can be stably sprayed in parallel on both sides of the sheet-like fiber bundle that reciprocates a plurality of times, the quality of the sheet-like fiber bundle can be suppressed and the equipment cost can be reduced.

本発明の代表的な実施例である熱処理装置の構造を模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the heat processing apparatus which is a typical Example of this invention. 同熱処理装置の構造を、熱処理室を走行する糸条を省略して、模式的に示す平面図である。It is a top view which shows typically the structure of the heat processing apparatus, abbreviate | omitting the thread | yarn which drive | works a heat processing chamber. 本発明の比較例である、2つの吸込み部を隣接して設置した熱処理装置の熱処理室構造を、模式的に示す平面図である。It is a top view which shows typically the heat processing chamber structure of the heat processing apparatus which installed the two suction parts adjacently which is a comparative example of this invention. 本発明の好ましい態様として、吸込み部近傍の熱処理室の一端側及び他端側の2箇所に制御板を設置した状態を模式的に示す図である。It is a figure which shows typically the state which installed the control board in two places of the one end side and other end side of the heat processing chamber near a suction part as a preferable aspect of this invention. 本実施例の測定位置を模式的に示す平面図である。It is a top view which shows typically the measurement position of a present Example.

以下、本発明の実施形態の一例について、図面を用いて詳細に説明する。
図1は、本発明の代表的な実施例である熱処理装置の構造を模式的に示す側断面図である。本実施形態の熱処理装置1は、熱処理室2内において、その内部を水平方向に複数回往復走行する糸条8それぞれの両面に、吹出しノズル3から加熱処理気体を平行に吹き付け、糸条8を連続的に加熱処理する熱処理装置である。
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a side sectional view schematically showing the structure of a heat treatment apparatus as a typical embodiment of the present invention. In the heat treatment apparatus 1 of the present embodiment, in the heat treatment chamber 2, heat treatment gas is blown in parallel from the blowing nozzle 3 onto both sides of the yarn 8 that reciprocates in the horizontal direction in the inside of the heat treatment chamber 2. It is a heat treatment apparatus that performs heat treatment continuously.

図2は、同熱処理装置の構造を、熱処理室を走行する糸条8を省略して、模式的に示す平面図である。同図に示すとおり、熱処理室2の両側には、加熱処理気体を循環させる2系統の循環流路7、7’が設けられており、熱処理室2両端に配置された複数の吹出しノズル3、3’から吹き込まれた加熱処理気体は、複数回往復走行する糸条8を挟んで平行に流れ、熱処理室2の中央部に向かって移動した後、熱処理室2中央部に正対して開口した吸込み部4、4’から循環流路7、7’に導かれ、気体加熱手段5、5’によって所望の温度に加熱され、熱風送風手段6、6’によって風速が制御された上で、再び複数の吹出しノズル3、3’から熱処理室2内に吹き込まれる。   FIG. 2 is a plan view schematically showing the structure of the heat treatment apparatus, omitting the yarn 8 running in the heat treatment chamber. As shown in the figure, on both sides of the heat treatment chamber 2, two circulation channels 7 and 7 ′ for circulating the heat treatment gas are provided, and a plurality of blowing nozzles 3 disposed at both ends of the heat treatment chamber 2, The heat treatment gas blown from 3 ′ flows in parallel across the yarn 8 that reciprocates a plurality of times, moves toward the center of the heat treatment chamber 2, and then opens to face the center of the heat treatment chamber 2. The air is guided to the circulation passages 7 and 7 'from the suction portions 4 and 4', heated to a desired temperature by the gas heating means 5 and 5 ', and the wind speed is controlled by the hot air blowing means 6 and 6', and then again. A plurality of blowing nozzles 3, 3 ′ are blown into the heat treatment chamber 2.

次に、図1及び図2に基づいて、本発明の熱処理装置について、さらに説明する。
(熱処理装置1)
熱処理装置1は、両端に前記糸条8の出入部10を有する熱処理室2及び熱処理室2の内外に加熱処理気体を循環させる2系統の循環流路7、7’を備えており、熱処理室2の両端に配置された複数の吹出しノズル3、3’から各糸条8に両面から吹き付けられた加熱処理気体は、各糸条8に沿って平行に流れ、熱処理室2の中央部に向かって移動しながら、各糸条8を加熱する。熱処理室2の中央部に達した加熱処理気体は、正対して開口し
た吸込み部4、4’から熱処理室2外に排出され、循環流路7、7’に導かれる。そして、気体加熱手段5,5’によって所望の温度に加熱され、熱風送風手段6,6’によって風速が制御された上で、再び複数の吹出しノズル3、3’から熱処理室2内に吹き込まれる。
このように、熱処理装置1は、熱処理室2と2系統の循環流路7、7’を有しており、熱処理室2内には、所定の温度と風速の加熱処理気体が流れるようになっている。
Next, based on FIG.1 and FIG.2, the heat processing apparatus of this invention is further demonstrated.
(Heat treatment equipment 1)
The heat treatment apparatus 1 includes a heat treatment chamber 2 having an entry / exit portion 10 for the yarn 8 at both ends, and two circulation channels 7 and 7 ′ for circulating a heat treatment gas inside and outside the heat treatment chamber 2. The heat treatment gas blown from both sides from each of the plurality of blowing nozzles 3 and 3 ′ disposed at both ends of the nozzle 2 flows in parallel along each yarn 8, and travels toward the center of the heat treatment chamber 2. Each yarn 8 is heated while moving. The heat treatment gas that has reached the central portion of the heat treatment chamber 2 is discharged out of the heat treatment chamber 2 through the suction portions 4 and 4 'that are open to face each other, and is guided to the circulation channels 7 and 7'. Then, the gas is heated to a desired temperature by the gas heating means 5 and 5 ′, and the air speed is controlled by the hot air blowing means 6 and 6 ′, and then blown again into the heat treatment chamber 2 from the plurality of blowing nozzles 3 and 3 ′. .
As described above, the heat treatment apparatus 1 includes the heat treatment chamber 2 and the two circulation channels 7 and 7 ′, and a heat treatment gas having a predetermined temperature and wind speed flows in the heat treatment chamber 2. ing.

(熱処理室2での糸条8の走行)
糸条束8は、熱処理室2内を水平方向に複数回往復して走行する。この経路を形成している糸条8は、熱処理室2の外部に配設された所定組のガイドロール9によって折り返され、熱処理室2の両端の出入部10,10’を通じて、熱処理室2への送入送出を複数回繰り返す。なお、糸条8の折り返し回数は特に限定されず、熱処理装置の規模などによって適宜設計される。
(Running of the yarn 8 in the heat treatment chamber 2)
The yarn bundle 8 travels in the heat treatment chamber 2 by reciprocating a plurality of times in the horizontal direction. The yarn 8 forming this path is folded back by a predetermined set of guide rolls 9 disposed outside the heat treatment chamber 2, and enters the heat treatment chamber 2 through the entrances 10 and 10 ′ at both ends of the heat treatment chamber 2. Repeat sending and receiving multiple times. The number of turns of the yarn 8 is not particularly limited, and is appropriately designed depending on the scale of the heat treatment apparatus.

(気体加熱手段5及び熱風送風手段6)
本発明に用いられる気体加熱手段5は、特に限定されるものではなく、例えば電気ヒーター等の公知の気体加熱手段を用いることができる。また、熱風送風手段6についても、所望の機能を有していれば、特に限定されず、例えば軸流ファン等の公知のファンを用いれば良い。
(Gas heating means 5 and hot air blowing means 6)
The gas heating means 5 used for this invention is not specifically limited, For example, well-known gas heating means, such as an electric heater, can be used. Also, the hot air blowing means 6 is not particularly limited as long as it has a desired function. For example, a known fan such as an axial fan may be used.

(吹出しノズル3、3’)
本発明の複数の吹出しノズル3、3’は、熱処理室2の両端から中央部に向け、糸条8それぞれに両面から加熱処理気体を平行に吹き付ける作用をする。
具体的には、第1の系統の循環流路7に連通する複数の吹出しノズル3は、熱処理室2の一端の出入部10近傍において、走行する糸条8それぞれの上側と下側とに配置され、また、第2の系統の循環流路7’に連通する複数の吹出しノズル3’は、熱処理室2の他端の出入部10’近傍において、走行する糸条8それぞれの上側と下側とに配置される。
(Blowout nozzle 3, 3 ')
The plurality of blowing nozzles 3, 3 ′ of the present invention act to blow heat treatment gas in parallel from both sides to each yarn 8 from both ends of the heat treatment chamber 2 toward the center.
Specifically, the plurality of blowout nozzles 3 communicating with the circulation passage 7 of the first system are disposed on the upper side and the lower side of each of the traveling yarns 8 in the vicinity of the inlet / outlet portion 10 at one end of the heat treatment chamber 2. In addition, the plurality of blowout nozzles 3 ′ communicating with the circulation passage 7 ′ of the second system are arranged on the upper and lower sides of the traveling yarns 8 in the vicinity of the inlet / outlet portion 10 ′ at the other end of the heat treatment chamber 2. And arranged.

このようにして、本発明では、吹出しノズル3、3’から、熱処理室2の両端から中央部に向けて、走行する糸条8それぞれの上側と下側とに、加熱処理気体を平行に安定して吹き付けることができる。   In this way, in the present invention, the heat treatment gas is stabilized in parallel on the upper side and the lower side of each of the running yarns 8 from the blow nozzles 3 and 3 ′ toward both ends of the heat treatment chamber 2 toward the center. And can be sprayed.

糸条8を挟んで上下に配された吹出しノズル3、3’から吹出される加熱処理気体の速度はそれぞれ同じ速度であることが好ましい。また、吹出しノズル3、3’から吹出される熱風の幅方向、高さ方向の流速のバラつきは極力小さくすることが好ましく、風速斑は平均風速の±20%以内に収めることが好ましい。さらに好ましくは±10%以内である。   It is preferable that the speeds of the heat treatment gases blown from the blow nozzles 3 and 3 ′ arranged above and below the yarn 8 are the same. Further, it is preferable to minimize the variation in the flow velocity in the width direction and height direction of the hot air blown from the blow nozzles 3 and 3 ′, and the wind speed spot is preferably within ± 20% of the average wind speed. More preferably, it is within ± 10%.

(吸込み部4、4’)
本発明では、熱処理室2の中央部の壁に、2系統の循環流路7、7’にそれぞれ連通した2つの吸込み部4、4’が、走行する糸条8の横方向又は上下方向に正対するように開口して設けられる。吸込み部4、4’をこのように正対した位置に配することで、走行する糸条8に横方向で対称に同じ風速と温度履歴を与えて焼成することが出来る。
(Suction part 4, 4 ')
In the present invention, two suction portions 4, 4 ′ communicating with the two circulation channels 7, 7 ′ are provided in the central wall of the heat treatment chamber 2 in the lateral direction or the vertical direction of the running yarn 8. An opening is provided so as to face directly. By disposing the suction portions 4 and 4 ′ in such a directly facing position, the traveling yarn 8 can be fired by giving the same wind speed and temperature history symmetrically in the lateral direction.

図3は、本発明の比較例である、2つの吸込み部4、4’を隣接して設置した熱処理装置1の熱処理室2の構造を、模式的に示す平面図である。この比較例の熱処理装置1においては、熱処理室2の両端から中央部に向かって、糸条8と平行して熱処理室2内を流れた加熱処理気体は、熱処理室2の中央部で、糸条8の走行方向に隣接した2つの吸込み部4、4’から循環流路7、7’に導かれる。
このため、吸込み部4、4’が開口した壁周辺では風速が増加し、これと対面する壁に
近づくに従って風速が低下することになる。その結果、糸条8の横方向に焼成斑が生じたり、風速が低下した領域では糸条8にスモークが発生したり、切断が生じるおそれがある。
FIG. 3 is a plan view schematically showing the structure of the heat treatment chamber 2 of the heat treatment apparatus 1 in which two suction portions 4 and 4 ′ are installed adjacent to each other, which is a comparative example of the present invention. In the heat treatment apparatus 1 of this comparative example, the heat treatment gas flowing in the heat treatment chamber 2 in parallel with the yarn 8 from both ends of the heat treatment chamber 2 toward the center portion is in the center portion of the heat treatment chamber 2. The two suction portions 4, 4 ′ adjacent to the running direction of the strip 8 are guided to the circulation flow paths 7, 7 ′.
For this reason, the wind speed increases around the wall where the suction portions 4 and 4 'are opened, and the wind speed decreases as the wall approaches the wall. As a result, there is a possibility that firing spots are generated in the lateral direction of the yarn 8, smoke is generated in the yarn 8 in a region where the wind speed is lowered, or cutting is generated.

また、吸込み部4、4’が、熱処理室2の中央部の対面する内側壁に設けられた場合であっても、正対せずにずれて配された場合には、加熱処理気体は吹出しノズル3、3’に近い側の吸込み部4、4’に流れ込むようになる等、熱処理室2の中央部で加熱処理気体の風速、風向が乱れることとなる。その結果、糸条8にスモークが発生したり、切断が生じるおそれがある。   Further, even when the suction portions 4 and 4 ′ are provided on the inner wall facing the central portion of the heat treatment chamber 2, the heat treatment gas is blown out when the suction portions 4 and 4 ′ are arranged so as not to face each other. The wind speed and direction of the heat treatment gas are disturbed in the central portion of the heat treatment chamber 2 such as flowing into the suction portions 4 and 4 ′ on the side close to the nozzles 3 and 3 ′. As a result, the yarn 8 may be smoked or cut.

吸込み部4、4’の各々の中心点と、この中心点を通り、糸条8が走行する方向に延ばした熱処理室2内の線分の中点との距離は、熱処理室2の糸条8が走行する方向の長さの0.1倍以内の範囲に位置していることが好ましい。吸込み部4、4’がどちらか一方の吹出しノズル3、3’の位置に近づいて配されると、糸条8がガイドロール9から下流側のガイドロール9まで走行する際に、順風と向流、それぞれ異なる処理長となり、焼成効率の悪化につながる。吸込み部4、4’の各々の中心点と、この中心点を通り、糸条8が走行する方向に延ばした熱処理室2内の線分の中点との距離が、0であることがより好ましい。   The distance between the center point of each of the suction portions 4 and 4 ′ and the midpoint of the line segment in the heat treatment chamber 2 extending in the direction in which the yarn 8 travels through the center point is determined by the yarn in the heat treatment chamber 2. 8 is preferably located within a range of 0.1 times the length in the traveling direction. When the suction portions 4, 4 ′ are arranged close to the position of one of the blowout nozzles 3, 3 ′, when the yarn 8 travels from the guide roll 9 to the downstream guide roll 9, the wind and direction However, the processing length becomes different, which leads to deterioration of the firing efficiency. It is more preferable that the distance between the center point of each of the suction portions 4 and 4 ′ and the midpoint of the line segment in the heat treatment chamber 2 passing through the center point and extending in the direction in which the yarn 8 travels is 0. preferable.

熱処理室2の中央部の壁に、走行する糸条8の横方向に正対して、同じ矩形の吸込み部4、4’を開口し設ける場合には、この各吸込み部4、4’の高さは熱処理室2の高さと等しく、且つ、各吸込み部4、4’の開口面積をA、熱処理室2の走行する糸条8に直交する面の断面積をBとしたとき、Bに対し、Aは0.5〜1.0倍であることが好ましい。0.5倍未満であると、吸込み部4、4’が狭く、吸込み風速が増加して糸条8の揺れが助長され、糸条内の単繊維が擦れ合うことで毛羽が発生し、品質の低下を招くので好ましくない。また、1.0倍より大きくなると、吸込み部4、4’に近い領域では風速が増加するのに対し、幅方向中心域で風速が低下する領域が拡大する。その結果として、幅方向に焼成斑が生じたり、風速の低下する領域で糸条8にスモークが発生したり、切断が生じるおそれがあるので好ましくない。さらに好ましくは0.7〜1.0倍である。   When the same rectangular suction portions 4 and 4 ′ are opened on the central wall of the heat treatment chamber 2 so as to face the lateral direction of the running yarn 8, the height of each suction portion 4 and 4 ′ is increased. Is equal to the height of the heat treatment chamber 2, and the opening area of each suction part 4, 4 ′ is A, and B is the cross-sectional area of the surface perpendicular to the yarn 8 that runs in the heat treatment chamber 2. , A is preferably 0.5 to 1.0 times. If it is less than 0.5 times, the suction portions 4 and 4 'are narrow, the suction wind speed is increased, the vibration of the yarn 8 is promoted, and the single fibers in the yarn are rubbed together to generate fluff. This is not preferable because it causes a decrease. On the other hand, when the ratio is larger than 1.0, the wind speed increases in the area close to the suction portions 4 and 4 ′, but the area in which the wind speed decreases in the center area in the width direction is expanded. As a result, firing spots in the width direction may occur, smoke may occur in the yarn 8 in a region where the wind speed decreases, or cutting may occur, which is not preferable. More preferably, it is 0.7 to 1.0 times.

吸込み部4、4’には多孔板を設置し、吸込み断面で風速分布の平坦化を図るのが好ましい。吸込み部4、4’に多孔板を設置することで圧力損失がかかり、吸込み部4、4’周辺の風速分布を、多孔板を設置しない場合と比較して、さらに平坦化できるので好ましい。   It is preferable to install a perforated plate in the suction portions 4 and 4 'so as to flatten the wind speed distribution in the suction section. It is preferable to install a perforated plate in the suction portions 4 and 4 ′ because pressure loss is applied and the wind speed distribution around the suction portions 4 and 4 ′ can be further flattened compared to the case where no perforated plate is installed.

図4は、吸込み部4、4’近傍の、熱処理室2の一端側及び他端側の通路2箇所に、制御板11を設置した態様を示す一例である。ただし、制御板11をわかりやすく示すために、手前側の循環流路7を除いている。
この制御板11は、糸条8を通過させることのできる複数の開口部を有し、この開口部の高さは中央部に向かうほど高くなっている。
このような制御板11を設置することで、糸条8の幅方向の風速斑を抑制することができる。すなわち、吸込み部4、4’近辺では糸条8の横方向中心部で風速が低下しやすいが、制御板11の間口部の形状を上記のようにすることにより、中心部に加熱処理気体の流れを導くことができ、この糸条8の横方向中心部での風速低下を防止することができる。
FIG. 4 is an example showing an aspect in which the control plate 11 is installed in two places on the one end side and the other end side of the heat treatment chamber 2 in the vicinity of the suction portions 4 and 4 ′. However, in order to show the control plate 11 in an easy-to-understand manner, the circulation channel 7 on the near side is excluded.
The control plate 11 has a plurality of openings through which the yarn 8 can pass, and the height of the openings increases toward the center.
By installing such a control plate 11, wind speed spots in the width direction of the yarn 8 can be suppressed. That is, in the vicinity of the suction portions 4 and 4 ', the wind speed tends to decrease at the central portion in the lateral direction of the yarn 8, but by setting the shape of the opening portion of the control plate 11 as described above, the heat treatment gas is formed in the central portion. A flow can be guided, and a decrease in wind speed at the center in the lateral direction of the yarn 8 can be prevented.

また、制御板11に厚みを持たせて、開口部の上面を厚み方向に丸く加工しておくことで糸条8を受ける機能を持たせることにより、糸条8が切断等により垂れてしまった際でも、下側を走行する糸条8へ絡むことを防止できる。さらに、上面を厚み方向に丸く加工しておくことで、糸条8が擦過しても毛羽立ちにくくなる。   In addition, by giving the control plate 11 a thickness and by processing the upper surface of the opening to be round in the thickness direction, the control plate 11 has a function of receiving the yarn 8, so that the yarn 8 has drooped due to cutting or the like. Even at that time, it is possible to prevent the yarn 8 traveling on the lower side from being entangled. Further, by processing the upper surface round in the thickness direction, even if the yarn 8 is rubbed, it becomes difficult to fluff.

以上説明したように、本発明の熱処理装置及びこの熱処理装置を用いた耐炎化繊維の製造方法によれば、糸条の熱処理の際に、両端に吹出しノズルを配し、加熱室内を簡易な構造として、熱処理室内を複数回往復走行する糸条に両面から平行に安定して加熱処理気体を吹き付けることのできるので、糸条の擦過を抑えて品質の向上を図るとともに、設備費を安価に抑えることができる。   As described above, according to the heat treatment apparatus of the present invention and the flameproof fiber manufacturing method using the heat treatment apparatus, the blow nozzles are arranged at both ends when the yarn is heat treated, and the heating chamber has a simple structure. As the heat treatment gas can be stably sprayed from both sides in parallel to the yarn that reciprocates multiple times in the heat treatment chamber, the yarn can be kept from rubbing to improve quality and keep equipment costs low. be able to.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

図5に測定位置を概略的に示す。なお、この図5は、図2と同じく、本発明の代表的な実施例である熱処理装置の構造を模式的に示す平面図である。
熱処理室の幅は2200mm、糸条8幅方向の長さも2200mmのである。
図5においては、以下に定義した符号A〜C及び1〜9を組み合わせて、糸条8上の位置を表している。
FIG. 5 schematically shows the measurement position. FIG. 5 is a plan view schematically showing the structure of a heat treatment apparatus which is a typical embodiment of the present invention, as in FIG.
The width of the heat treatment chamber is 2200 mm, and the length in the width direction of the yarn 8 is also 2200 mm.
In FIG. 5, the positions on the yarn 8 are represented by combining the symbols A to C and 1 to 9 defined below.

糸条8の横方向の位置を示す符号(A〜C)については、糸条8の横方向の両端から100mm離れて位置する点にそれぞれ符号A、Bを付与し、また、糸条8の横方向の中央に位置する点に符号Cを付与する。   About the code | symbol (A-C) which shows the position of the horizontal direction of the yarn 8, the code | symbol A and B is provided to the point located 100 mm away from the both ends of the horizontal direction of the yarn 8, respectively, A symbol C is assigned to a point located at the center in the horizontal direction.

また、糸条8の走行方向の位置を示す符号(1〜9)については、糸条8の横方向に正対するように配置されている2つの吸込み部4、4’の糸条8の走行方向中心位置と並ぶ線(以下、「中心線」という。)の上に並ぶ点に符号5を付与し、この中心線から図5の左側にある吹出しノズル側へ500mm離れた線上に位置する点に符号4、さらにこの線から左に1000mmずつ離れた線上に位置する点にそれぞれ符号3、2、1を付与する。また、前記中心線から、図5の右側にある吹出しノズル側へ500mm離れた線上に位置する点に符号6、さらにこの線から右に1000mmずつ離れた線上に位置する点にそれぞれ符号7、8、9を付与する。   Moreover, about the code | symbol (1-9) which shows the position of the running direction of the yarn 8, the running of the yarn 8 of the two suction parts 4, 4 'arrange | positioned so as to oppose the horizontal direction of the yarn 8 is carried out. A point 5 is assigned to a point aligned on a line aligned with the center position in the direction (hereinafter referred to as “center line”), and the point located on a line 500 mm away from this center line toward the blowing nozzle on the left side of FIG. 4 and further points 3, 2 and 1 are assigned to points located on a line 1000 mm to the left of this line. Further, reference numeral 6 denotes a point located on a line 500 mm away from the center line toward the outlet nozzle side on the right side in FIG. 5, and reference numerals 7 and 8 denote points located on a line 1000 mm away from the line to the right. , 9 is given.

以下の実施例においては、両端の吹き出しノズルからの吹出す断面平均風速を3m/sで一様とし、各々の位置で風速測定を実施した。
なお、2つの吸込み部4、4’の形状は、同じ矩形であり、高さ(図5の上下方向)は熱処理室の高さと等しいものとした。
In the following examples, the cross-sectional average wind speed blown from the blow-off nozzles at both ends was made uniform at 3 m / s, and the wind speed was measured at each position.
Note that the shapes of the two suction portions 4 and 4 ′ are the same rectangle, and the height (the vertical direction in FIG. 5) is equal to the height of the heat treatment chamber.

[実施例1]
吸込み部4,4’の形状及び配置を次のとおりとした。
※走行する糸条の横方向で両側に正対させる。
※吸込み部各々の中心点と、この中心点を通り、糸条が走行する方向に延ばした熱処理室内の線分の中点とを一致させる。
※吸込み部の高さを熱処理室の高さと等しくする。
※各吸込み部の開口の断面積をA、熱処理室の走行する糸条に直交する面の断面積をBとしたとき、A=B×0.25とする。
A1からA9の風速測定を行った結果は表1に示すとおりであり、間口中心のA5で最も高い風速が測定された。
[Example 1]
The shape and arrangement of the suction parts 4, 4 ′ were as follows.
* Make the running yarn face both sides in the horizontal direction.
* The center point of each suction part and the midpoint of the line segment in the heat treatment chamber extending in the direction in which the yarn runs through this center point are matched.
* Make the height of the suction section equal to the height of the heat treatment chamber.
* When A is the cross-sectional area of the opening of each suction part and B is the cross-sectional area of the surface perpendicular to the yarn running in the heat treatment chamber, A = B × 0.25.
The results of measuring the wind speed from A1 to A9 are as shown in Table 1, and the highest wind speed was measured at A5 at the center of the frontage.

[実施例2]
各吸込み部の開口の断面積をA、熱処理室の走行する糸条に直交する面の断面積をBとしたとき、A=B×0.5とした以外は実施例1と同様としてA1からA9の風速測定を行った。
A1からA9の風速測定を行った結果は表1に示すとおりであり、A4からA6で平均風速に対し、若干高い風速値となった。
[Example 2]
From A1 as in Example 1 except that A = B × 0.5, where A is the cross-sectional area of the opening of each suction portion and B is the cross-sectional area of the surface orthogonal to the yarn running in the heat treatment chamber. The wind speed of A9 was measured.
The results of measuring the wind speed from A1 to A9 are as shown in Table 1. The wind speed values were slightly higher than the average wind speed from A4 to A6.

[実施例3]
各吸込み部の開口の断面積をA、熱処理室の走行する糸条に直交する面の断面積をBとしたとき、A=B×1.0とした以外は実施例1と同様としてA1からA9の風速測定を行った。また、B1からB9の風速測定も実施した。
A1からA9の風速測定を行った結果は表1に示すとおりであり、全体的に吹出しの断面平均風速値と近い風速値となった。
[Example 3]
From A1 as in Example 1 except that A = B × 1.0, where A is the cross-sectional area of the opening of each suction portion and B is the cross-sectional area of the surface orthogonal to the yarn traveling in the heat treatment chamber. The wind speed of A9 was measured. Moreover, the wind speed measurement of B1 to B9 was also implemented.
The results of measuring the wind speed from A1 to A9 are as shown in Table 1, and the wind speed value was almost the same as the cross-sectional average wind speed value of the blowout as a whole.

[実施例4]
各吸込み部の開口の断面積をA、熱処理室の走行する糸条に直交する面の断面積をBとしたとき、A=B×1.5とした以外は実施例1と同様としてA1からA9の風速測定を行った。
A1からA9の風速測定を行った結果は表1に示すとおりであり、A3からA5で低い風速値となり、A7で高めの風速値が測定された。
[Example 4]
From A1 as in Example 1 except that A = B × 1.5, where A is the cross-sectional area of the opening of each suction portion and B is the cross-sectional area of the surface orthogonal to the yarn running in the heat treatment chamber. The wind speed of A9 was measured.
The results of measuring the wind speed from A1 to A9 are as shown in Table 1. A low wind speed value was obtained from A3 to A5, and a higher wind speed value was measured from A7.

実施例1では、吸込み部の断面積が狭いため、直近の吸込み風速が高くなる。また、実施例4では吸込み部が糸条長手方向に長く、吹出しノズル側で吸込まれていくため、A3からA5では低い風速値となった。吸込み部の間口面積を適正化するのであれば、熱処理室糸条幅方向断面積に対し0.5〜1.0倍程度が好ましい。   In Example 1, since the cross-sectional area of the suction part is narrow, the latest suction wind speed becomes high. Moreover, in Example 4, since the suction part was long in the yarn longitudinal direction and was sucked in on the blowing nozzle side, the wind speed value was low in A3 to A5. If the frontage area of the suction part is optimized, it is preferably about 0.5 to 1.0 times the heat treatment chamber yarn width direction cross-sectional area.

Figure 2014221956
Figure 2014221956

[比較例1]
吸込み部4,4’の配置を正対させず、糸条8が走行する方向にずらし、循環流路7,7’の先端が上記中心線と一致した位置で互い違いに配された以外は実施例3と同様にA1からA9の風速測定を行った。また、B1からB9の風速測定も実施し、各A,B風速平均値を算出した。
風速測定を行った結果は表2に示すとおりであり、吹出しの断面平均風速3m/sを下回る結果となった。
[Comparative Example 1]
Implemented except that the arrangement of the suction portions 4 and 4 ′ is not opposed to each other, is shifted in the direction in which the yarn 8 travels, and the ends of the circulation channels 7 and 7 ′ are alternately arranged at the positions coincident with the center line. In the same manner as in Example 3, the wind speeds A1 to A9 were measured. Moreover, the wind speed measurement of B1 to B9 was also implemented, and each A, B wind speed average value was computed.
The result of the wind speed measurement is as shown in Table 2, which is less than the average cross-sectional wind speed of 3 m / s.

[比較例2]
吸込み部4,4’を上記中心線で隣接して配した以外は、比較例1と同様の測定を行った。
風速測定を行った結果は表2に示すとおりであり、吸込み部から遠いA側の平均風速が低い結果となった。
[Comparative Example 2]
The same measurement as in Comparative Example 1 was performed except that the suction portions 4 and 4 ′ were arranged adjacent to each other at the center line.
The results of wind speed measurement are as shown in Table 2, and the average wind speed on the A side far from the suction portion was low.

実施例3では平均風速として3.1m/sであるのに対し、比較例1では互い違いに配することで吸込み部の領域が長くなることと、吹出しノズル側で吸込まれていくことで平均風速が低下した。また、吸込み部を片側壁面に隣接して配すると、他方の壁面側の風速低下につながり幅方向の風速斑が悪化する。この結果より、吸込み部は正対して配することが好ましい。   In Example 3, the average wind speed is 3.1 m / s, whereas in Comparative Example 1, the area of the suction portion becomes longer by being arranged alternately, and the average wind speed is increased by being sucked on the outlet nozzle side. Decreased. Moreover, if the suction part is disposed adjacent to the one side wall surface, the wind speed decreases on the other wall surface side and the wind speed spots in the width direction deteriorate. From this result, it is preferable that the suction portion is arranged in a straight line.

Figure 2014221956
Figure 2014221956

[実施例5]
実施例3と同様の構造で、吸込み部の断面に開孔率20%の多孔板を設置した。
風速測定を行った結果は表3に示すとおりであり、A1からA9の風速の最大値と最小値の差は0.8m/sであった。
表3に実施例3と実施例5のA1からA9の風速の最大値と最小値の差を示す。その結果、多孔板を設置したほうが風速差が小さくなり、吸込み部の風速分布が平滑化されていることが分かる。
[Example 5]
A perforated plate having a structure similar to that of Example 3 and having a porosity of 20% was installed on the cross section of the suction portion.
The results of wind speed measurement are as shown in Table 3, and the difference between the maximum and minimum wind speeds A1 to A9 was 0.8 m / s.
Table 3 shows the difference between the maximum and minimum wind speeds A1 to A9 in Example 3 and Example 5. As a result, it can be seen that the wind speed difference is smaller when the perforated plate is installed, and the wind speed distribution in the suction portion is smoothed.

Figure 2014221956
Figure 2014221956

[実施例6]
実施例3と同様の構造で、C1からC9風速測定を行った。
この結果は表4に示すとおりであり、風速の平均値は2.5m/sであった。
[Example 6]
C1 to C9 wind speeds were measured with the same structure as in Example 3.
The results are as shown in Table 4, and the average wind speed was 2.5 m / s.

[実施例7]
実施例3の構造で、図4のように吸込み部の端面に制御板を設置した。
制御板1枚の高さは200mmでありシート状繊維束幅方向中心が最も狭く50mmとなっている。制御板の設置は各吹出しノズル側で凹凸が逆になるように設置されている。また、シート状繊維束の通る高さを50mmとしている。
風速測定を行った結果は表4に示すとおりであり、C1からC9の風速の平均値は3.3m/sとなった。
[Example 7]
In the structure of Example 3, a control plate was installed on the end surface of the suction part as shown in FIG.
The height of one control plate is 200 mm, and the center of the sheet-like fiber bundle width direction is the narrowest 50 mm. The control plate is installed so that the unevenness is reversed on each blowing nozzle side. Moreover, the height which a sheet-like fiber bundle passes is 50 mm.
The results of the wind speed measurement are as shown in Table 4, and the average wind speed from C1 to C9 was 3.3 m / s.

実施例6と実施例7より、糸条が通過する開口部を有して、幅方向中央に向かうほど開口高さが広がる制御板を吸込み部に設置することで、糸条幅方向中心の風速値が増加している。糸条幅方向中心に向かい制御板の切り欠きが大きくなることで流れやすくなり、結果として風速の増加に寄与している。   From Example 6 and Example 7, the wind speed value at the center of the yarn width direction is set by installing a control plate in the suction portion that has an opening through which the yarn passes and the opening height increases toward the center in the width direction. Has increased. Larger notches in the control plate toward the center of the yarn width direction facilitate flow and contribute to an increase in wind speed.

Figure 2014221956
Figure 2014221956

1:熱処理装置
2:熱処理室
3、3':吹出しノズル
4、4':吸込み部
5、5':気体加熱手段
6、6':熱風送風手段
7、7':循環流路
8:糸条
9:ガイドロール
10、10’:(糸条の)出入部
11:制御板
1: Heat treatment apparatus 2: Heat treatment chamber 3, 3 ': Blowing nozzle 4, 4': Suction part 5, 5 ': Gas heating means 6, 6': Hot air blowing means 7, 7 ': Circulation flow path 8: Yarn 9: Guide roll 10, 10 ': Entrance / exit part (of the yarn) 11: Control plate

Claims (6)

熱処理室内において、その内部を水平方向に複数回往復走行する糸条それぞれに両面から加熱処理気体を平行に吹き付け、糸条を連続的に加熱処理する熱処理装置であって、両端に前記糸条の出入部を有する熱処理室及び前記熱処理室の内外に加熱処理気体を循環させる2系統の循環流路を備え、
前記熱処理室には、前記2系統の循環流路にそれぞれ連通した複数の吹出しノズル及び前記2系統の循環流路にそれぞれ連通した2つの吸込み部が設けられ、
前記複数の吹出しノズルのうち第1の系統の循環流路に連通する複数の吹出しノズルは、前記熱処理室の一端の前記出入部近傍において、走行するシート状繊維束それぞれの上側と下側とに配置され、
前記複数の吹出しノズルのうち第2の系統の循環流路に連通する複数の吹出しノズルは、前記熱処理室の他端の前記出入部近傍において、走行するシート状繊維束それぞれの上側と下側とに配置され、前記2つの吸込み部は、前記熱処理室中央部の壁に、走行する糸条の横方向又は上下方向に正対するように開口し、
前記循環流路は気体加熱手段及び熱風送風手段を備え、前記熱処理室の外側に配置される、
ことを特徴とする熱処理装置。
In the heat treatment chamber, a heat treatment gas is sprayed in parallel from both sides to each yarn that reciprocates a plurality of times in the horizontal direction in the interior, and the yarn is continuously heat treated, and the yarns A heat treatment chamber having an entrance and exit, and two circulation channels for circulating the heat treatment gas inside and outside the heat treatment chamber,
The heat treatment chamber is provided with a plurality of blowing nozzles respectively communicating with the two circulation channels and two suction portions respectively communicating with the two circulation channels.
Among the plurality of blowing nozzles, the plurality of blowing nozzles communicating with the circulation passage of the first system are arranged on the upper side and the lower side of each traveling sheet-like fiber bundle in the vicinity of the inlet / outlet portion at one end of the heat treatment chamber. Arranged,
Among the plurality of blowing nozzles, the plurality of blowing nozzles communicating with the circulation flow path of the second system are the upper and lower sides of each traveling sheet-like fiber bundle in the vicinity of the inlet / outlet portion at the other end of the heat treatment chamber. The two suction portions are opened to face the lateral or vertical direction of the running yarn on the wall of the heat treatment chamber central portion,
The circulation flow path includes gas heating means and hot air blowing means, and is disposed outside the heat treatment chamber.
The heat processing apparatus characterized by the above-mentioned.
前記吸込み部の各々の中心点と、この中心点を通り、糸条が走行する方向に延ばした前記熱処理室内の線分の中点との距離が、前記熱処理室の前記糸条が走行する方向の長さの0.1倍以内の範囲に位置している請求項1に記載の熱処理装置。   The distance between the center point of each of the suction portions and the midpoint of the line segment in the heat treatment chamber that extends through the center point in the direction in which the yarn travels is the direction in which the yarn in the heat treatment chamber travels The heat treatment apparatus according to claim 1, wherein the heat treatment apparatus is located within a range within 0.1 times the length. 前記2つの吸込み部は同じ矩形であり、走行する糸条の横方向に正対するように配置され、各吸込み部の高さは前記熱処理室の高さと等しく、各吸込み部の開口面積をA、前記熱処理室の走行する糸条に直交する面の断面積をBとしたとき、AとBが下記の関係式を満足する請求項1又は2に記載の熱処理装置。
0.5×B≦A≦1.0×B
The two suction parts are the same rectangle, and are arranged so as to face the transverse direction of the running yarn, the height of each suction part is equal to the height of the heat treatment chamber, and the opening area of each suction part is A, The heat treatment apparatus according to claim 1 or 2, wherein A and B satisfy the following relational expression, where B is a cross-sectional area of a surface perpendicular to the yarn traveling in the heat treatment chamber.
0.5 × B ≦ A ≦ 1.0 × B
前記吸込み部に多孔板が設置されている請求項1〜3のいずれかに記載の熱処理装置。   The heat processing apparatus in any one of Claims 1-3 with which the perforated panel is installed in the said suction part. 前記吸込み部近傍における、前記熱処理室の一端側及び他端側の通路2箇所に、糸条を通過させる複数の開口部を有し、この開口部の高さを中央部に向かうほど高くなるようにした制御板を設置し、加熱処理気体の風速斑を抑制するようにした請求項1〜4のいずれかに記載の熱処理装置。   In the vicinity of the suction portion, there are a plurality of openings through which the yarn passes in two passages on one end side and the other end side of the heat treatment chamber, and the height of the openings increases toward the center portion. The heat processing apparatus in any one of Claims 1-4 which installed the control board made to suppress the wind speed spot of heat processing gas. 請求項1〜5のいずれかに記載の熱処理装置を用いて炭素繊維前駆体繊維束を熱処理する耐炎化繊維の製造方法。   The manufacturing method of the flame resistant fiber which heat-processes a carbon fiber precursor fiber bundle using the heat processing apparatus in any one of Claims 1-5.
JP2013102131A 2013-05-14 2013-05-14 Heat treatment apparatus, and method for producing flame-resistant fiber by using the same Pending JP2014221956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102131A JP2014221956A (en) 2013-05-14 2013-05-14 Heat treatment apparatus, and method for producing flame-resistant fiber by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102131A JP2014221956A (en) 2013-05-14 2013-05-14 Heat treatment apparatus, and method for producing flame-resistant fiber by using the same

Publications (1)

Publication Number Publication Date
JP2014221956A true JP2014221956A (en) 2014-11-27

Family

ID=52121587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102131A Pending JP2014221956A (en) 2013-05-14 2013-05-14 Heat treatment apparatus, and method for producing flame-resistant fiber by using the same

Country Status (1)

Country Link
JP (1) JP2014221956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082309A1 (en) * 2015-11-10 2017-05-18 東邦テナックス株式会社 Production method for carbon fiber and production method for flame-resistant fiber
CN114411286A (en) * 2022-03-09 2022-04-29 新创碳谷控股有限公司 Carbon fiber pre-oxidation furnace with airflow flowing from middle to two ends

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082309A1 (en) * 2015-11-10 2017-05-18 東邦テナックス株式会社 Production method for carbon fiber and production method for flame-resistant fiber
CN114411286A (en) * 2022-03-09 2022-04-29 新创碳谷控股有限公司 Carbon fiber pre-oxidation furnace with airflow flowing from middle to two ends

Similar Documents

Publication Publication Date Title
KR101604932B1 (en) Flame-retardant heat treatment furnace
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
JP5205767B2 (en) Heat treatment furnace and carbon fiber manufacturing method
JP5716872B1 (en) Horizontal heat treatment apparatus and carbon fiber manufacturing method using the horizontal heat treatment apparatus
US20050115103A1 (en) Flame resistant rendering heat treating device, and operation method for the device
JP5207796B2 (en) Flame resistant treatment apparatus and precursor fiber bundle flame resistant treatment method
JPH10237723A (en) The treatment furnace and production of carbon fiber
KR101630567B1 (en) Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
JP5812205B2 (en) Gas supply blowout nozzle and method for producing flameproof fiber and carbon fiber using the same
US20220251736A1 (en) Method of producing flame-resistant fiber bundle and carbon fiber bundle and flameproofing furnace
JP7272347B2 (en) Flame-resistant heat treatment furnace, method for producing flame-resistant fiber bundle and carbon fiber bundle
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JP4572460B2 (en) Heat treatment furnace and method for producing carbon fiber using the same
JP2012184527A (en) Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber
JP2014159658A (en) Heat treatment furnace, and heat treatment method using the same
JP2002105766A (en) Method for flame resisting
WO2017082309A1 (en) Production method for carbon fiber and production method for flame-resistant fiber
JP2006057220A (en) Heat-treatment furnace