JP4279406B2 - Reflector antenna phase distribution measuring method and apparatus - Google Patents

Reflector antenna phase distribution measuring method and apparatus Download PDF

Info

Publication number
JP4279406B2
JP4279406B2 JP17972599A JP17972599A JP4279406B2 JP 4279406 B2 JP4279406 B2 JP 4279406B2 JP 17972599 A JP17972599 A JP 17972599A JP 17972599 A JP17972599 A JP 17972599A JP 4279406 B2 JP4279406 B2 JP 4279406B2
Authority
JP
Japan
Prior art keywords
antenna
phase distribution
distribution
measured
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17972599A
Other languages
Japanese (ja)
Other versions
JP2001004680A (en
Inventor
幹夫 高林
博之 出口
滋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17972599A priority Critical patent/JP4279406B2/en
Publication of JP2001004680A publication Critical patent/JP2001004680A/en
Application granted granted Critical
Publication of JP4279406B2 publication Critical patent/JP4279406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は反射鏡アンテナの位相分布測定方法および装置に関し、特に高周波数帯で使用される反射鏡アンテナの位相分布を測定する方法および装置に関するものである。
【0002】
【従来の技術】
サブミリ波などの高周波数帯域で用いられるアンテナは、放射特性等のアンテナ特性を測定するには、遠方界測定においては、その使用される波長が短いために、十分なダイナミックレンジが確保できないという問題がある。それを解決するために、電波暗室内において、アンテナの開口の近傍の電界の振幅・位相分布を測定することにより、そのアンテナの開口分布を測定し、その開口分布を用いて演算により放射特性を得る近傍界測定法がある。しかしながら、この近傍界測定法は位相を測定することが必要であり、サブミリ波の場合、測定器の誤差、ケーブルの温度変化、設置アライメント誤差等により、その位相分布を正確に測定するのは困難であるため、アンテナの放射特性が正確には求められなかった。
【0003】
この問題を解決するために、異なる2面の振幅分布を測定し、それらを用いて数値計算により位相分布を推定するフェーズリトリーバル法がある。振幅分布のみの測定は、位相分布に比べ高精度な測定を必要としない。従来のこの種のアンテナ位相分布測定方法としては、例えば、O.M.Bucci et al "Far-field pattern determination from the near-field amplitude on two surfaces", IEEE Transactions on Antennas and Propagation. Vol.38, No.11, Nov. 1990に開示されたものが知られている。
【0004】
図7は、上記文献に示された従来のアンテナ位相分布測定装置を概略的に示した図である。図において、1は位相分布を測定すべき被測定アンテナ、5は位相分布測定のためにアンテナ近傍の電界の振幅・位相を測定するためのプローブ、7はプローブ5をxy方向に走査させるxyスキャナ、8はプローブ5からの測定結果を表す信号を送受信する送受信器、9は送受信器8からの出力信号を演算処理して位相分布を得るための演算処理器、15はアンテナ1を支持してx軸方向回りに回転させる回転台を示す。また、図8は、図7に示すアンテナ位相分布測定装置で用いられる従来のフェーズリトリーバルによる位相推定アルゴリズムのフローチャートを示す。
【0005】
図7に示すように、被測定アンテナ1の開口上に電波の放射される方向をz軸とするO-xyz座標系を定義し、異なるz=R1、R2の面上の電波の振幅分布のみを測定する。これらの振幅分布を用い、図8に示すアルゴリズムによって位相を推定する。
S0では、初期値としてz=R1において測定された振幅分布と適当な位相分布を用いて、z=R2にフィールド変換する。
S1では、z=R2にフィールド変換された振幅・位相分布から、振幅分布のみをz=R2で測定された振幅分布におきかえ、z=R1にフィールド変換を行う。
S2では、z=R1にフィールド変換された振幅・位相分布から、振幅分布のみをz=R1で測定された振幅分布におきかえ、再びz=R2にフィールド変換を行う。
S3では、z=R2においてフィールド変換された振幅分布と実際に測定された振幅分布の差が十分小さい場合には終了、それ以外の場合はS1に戻る。
【0006】
上記の繰り返し演算を行い、終了時のそれぞれz=R1、z=R2における位相分布が推定された位相分布となる。なお、ある面での電界の振幅・位相分布が存在する場合には、それを任意の位置にフィールド変換できることは言うまでもない。よって、推定された位相分布および測定値の振幅分布を用いて、被測定アンテナの開口分布および放射パターン等の諸特性を計算することができる。
【0007】
なお、被測定アンテナの振幅分布の近傍界測定には、異なる2面の振幅分布を測定できる場合には、例えば、プローブをxy平面走査可能なスキャナを用いた平面走査近傍界測定装置、もしくは上下に走査可能なプローブと1軸回転可能な回転台を用いた円筒走査近傍界測定装置、もしくは2軸回転可能な回転台を用いた球面近傍界測定装置を用いて測定することができる。さらに、上記測定装置を用いたいかなる測定値を用いてもフィールド変換は可能である。
【0008】
【発明が解決しようとする課題】
以上のような従来の反射鏡アンテナ位相分布測定方法および装置は、例えば平面走査近傍界測定装置の場合、被測定アンテナをz軸方向に移動して、異なる2面の測定を行わねばならず、アンテナ移動の際に設置アライメントの誤差を考慮する必要があるという問題があった。また、z軸方向に移動可能なアンテナ測定装置を用いるために、大掛かりな装置が必要であり、コストがかかるという問題があった。
【0009】
また、円筒走査近傍界測定装置、球面走査近傍界測定装置の場合には、プローブをそれぞれ走査の中心軸、中心点から動径方向に移動する必要があるため、上述の平面走査近傍界測定装置よりも更に大掛かりな装置が必要であるという問題があった。
【0010】
この発明は上記のような問題点を解決するためになされたもので、簡易な構成によりサブミリ波反射鏡アンテナの位相分布の測定を行うことのできる反射鏡アンテナの位相分布の測定方法および装置を提供することを目的とする。
【0011】
【発明を解決するための手段】
この発明の反射鏡アンテナ位相分布測定方法によれば、副反射鏡および被測定アンテナを備えた反射鏡アンテナの位相分布を測定するために、被測定アンテナに対して副反射鏡がオンフォーカス位置にあるときのオンフォーカス振幅分布を測定する工程と、上記副反射鏡を上記被測定アンテナに対してアンテナ開口での振幅分布が変化しないような微少量デフォーカスしたデフォーカス位置に移動させる工程と、上記被測定アンテナに対して上記副反射鏡がデフォーカス位置にあるときのデフォーカス振幅分布を測定する工程と、上記両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナの開口位相分布を得る工程とを備えている。
【0012】
上記演算処理は、以下の手順により行なうことができる。
STEP0:オンフォーカスで測定された振幅分布(A1Z)と初期位相分布(P0)とを用意する、
STEP1:測定面から被測定アンテナ開口上へフィールド変換を行い、開口面に変換された振幅分布(A1A)と開口面に変換された位相分布(P1A)とを得る、
STEP2:測定アンテナ開口目に変換された位相分布(P1A)に、デフォーカスによる開口位相分布の変化量(ΔP)を加える、
STEP3:被測定アンテナ開口面の振幅分布(A1A)ならびに相対変化を加えた開口位相分布(P1A+ΔP)を用いて、測定面にフィールド変換を行い、測定面に変換された振幅分布(A2Z’)と測定面に位相分布(P2Z)とを得る、
STEP4:測定面に変換された振幅・位相分布の内、振幅分布(A2Z’)をデフォーカス時に測定された振幅分布(A2Z)により置き換える、
STEP5:振幅測定値ならびにSTEP4で得られた位相分布を用いて、再び被測定アンテナ開口面にフィールド変換を行い、開口面に変換された振幅分布(A2A)と開口面に変換された位相分布(P2A)とを得る、
STEP6:被測定アンテナ開口面に変換された位相分布(P2A)から、デフォーカスによる開口位相分布の相対変化量(ΔP)を差し引いて変化量を減算した位相分布(P2AーΔP)を得る、
STEP7:被測定アンテナ開口面の振幅分布(A2A)および相対変化を減じた開口位相分布(P2AーΔP)を用いて測定面にフィールド変換を行い,測定面に変換された振幅分布(A1Z’)と位相分布(P1Z)とを得る、
STEP8:測定面に変換された振幅・位相分布の内、振幅分布(A1Z’)をオンフォーカス時に測定された振幅分布(A1Z)により置き換える、
STEP9:測定面に変換された振幅分布(A1Z’)と実際に測定された振幅分布(A1Z)との差を比較し、差が十分に小さい場合にはこの位相分布(P1Z)を解として手順を終了し,収束していない場合はSTEP1に戻る。
【0013】
また、反射鏡アンテナ位相分布測定方法は、上記被測定アンテナの開口位相分布を得る工程の後に、上記被測定アンテナを鏡軸回りに回動させて元の回動位置とは別の新たな回動位置にする工程と、上記別の回動位置の上記被測定アンテナに対して請求項1記載の反射鏡アンテナ位相分布測定方法を再度実行する工程と、上記元の回動位置に於ける上記被測定アンテナの位相分布と上記新たな回動位置に於ける上記被測定アンテナの位相分布との平均をとり、上記副反射鏡の鏡面誤差を補正する工程とを備えることもできる。
【0014】
本発明の反射鏡アンテナ位相分布測定装置は、副反射鏡および被測定アンテナを備えた反射鏡アンテナの位相分布を測定する反射鏡アンテナ位相分布測定装置であって、上記副反射鏡を上記被測定アンテナに対してオンフォーカス位置あるいはアンテナ開口での振幅分布が変化しないような微少量デフォーカスしたデフォーカス位置に保持する移動支持装置と、上記被測定アンテナの振幅を測定するためのプローブと、上記プローブを上記被測定アンテナに対して相対的に移動させて上記被測定アンテナの鏡軸に対して直角で同軸の測定面を走査させる走査装置と、上記プローブからの振幅信号から上記オンフォーカス振幅分布およびデフォーカス振幅分布を得、これら両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナの開口位相分布を得る演算処理装置とを備えている。
【0015】
上記走査装置は、上記プローブを上記被測定アンテナの鏡軸に対して直角な平面上で走査させるスキャナを備えたものでも良い。
【0016】
また、上記走査装置では、上記プローブを上記平面内で上記鏡軸を通る直線に沿って移動させるスキャナと、上記被測定アンテナを上記直線と平行な軸芯回りに回転させる回転装置とを備えたものでも良い。
【0017】
また、上記走査装置は、上記プローブを上記鏡軸上に固定支持する支持装置と、上記被測定アンテナを上記鏡軸を通る直線と平行な軸芯回りに回転させ、上記直線に直角な軸芯回りに回転させる回転装置とを備えたものでも良い。
【0018】
また、上記被測定アンテナを鏡軸回りに回動させて少なくとも2つの回動位置にし得る回動装置を備え、上記演算処理装置が上記少なくとも2つの回動位置に於ける上記被測定アンテナの位相分布の平均をとる平均演算装置を備えたものでも良い。
【0019】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1の反射鏡アンテナ位相分布測定方法および装置を概略的に示す図で、図1において図7と同じ番号を付したものは図7のものと対応するものあるいは相当のもので、図7と同様の動作をする。図1において、2は被測定アンテナ1の一次放射器、4は副反射鏡、4aは副反射鏡4を被測定アンテナ1に対して所定位置に支持する支柱である。副反射鏡4は被測定アンテナ1に対してz軸方向の位置を変えることができるように公知の適当な位置可変機構を介して支柱4aに取り付けられている。図示の例では位置可変機構はモーターで駆動されるネジジャッキ等の副反射鏡駆動装置3であるが、単純なリンク機構を用いても、ねじとねじ穴との組み合わせの選択によって位置を変えるものでも良い。6はプローブ5を駆動するためのスキャナ7の駆動装置を示す。また、図2にはこの発明の実施の形態1の位相推定アルゴリズムのフローチャートを示す。また、図3には副反射鏡4の移動による位相分布の変化の説明図を示す。図3において、図1を同じ番号を付したものは図1相当のもので、図1と同様の動作をする。
【0020】
次に動作について説明する。図1に示す反射鏡アンテナ測定装置により、被測定アンテナ1の近傍界振幅分布を測定する。電波は被測定アンテナ1の一次放射器2より放射され、副反射鏡4、被測定アンテナ1を介して放射するが、副反射鏡4を副反射鏡駆動装置3を用いて鏡軸方向(z軸方向)に駆動し、副反射鏡4が図1中Aの状態とBの状態の2つの状態で、被測定アンテナ1の開口からZ1はなれた位置において、被測定アンテナの鏡軸と同軸で直角な測定面を走査装置であるスキャナ7によりプローブ5で走査して近傍界振幅分布を測定する。なお、副反射鏡4が図1中Aのオンフォーカス状態で測定された分布をオンフォーカス振幅分布即ちオンフォーカス時の測定分布A1Zとし、副反射鏡4が図1中Bのデフォーカス状態で測定された分布をデフォーカス振幅分布即ちデフォーカス時の測定分布A2Zとする。オンフォーカス時とデフォーカス時の被測定アンテナ1の開口上での位相分布の相対的な変化は、幾何光学を用いることにより計算できるものとし、その差をΔPとする。また、オンフォーカス時とデフォーカス時の被測定アンテナ1の開口上での振幅分布は変化しないものとする。
【0021】
上記の測定された2つの状態の振幅分布を用いて、演算処理器9により図2に示し以下に述べるアルゴリズムで被測定アンテナ1の開口上での位相分布を求める。
STEP0:オンフォーカスで測定された振幅分布A1Zと適当な初期位相分布P0を用意する。
STEP1:測定面Z=Z1から被測定アンテナ開口z=0にフィールド変換を行う。
STEP2:被測定アンテナ開口z=0上に変換された位相分布に、デフォーカスによる開口位相分布の相対変化ΔPを加える。
STEP3:被測定アンテナ開口z=0上の振幅分布ならびに相対変化を加えた開口位相分布を用いて、測定面z=Z1にフィールド変換を行う。
STEP4:z=Z1に変換された振幅・位相分布の内、振幅分布をデフォーカス時に測定された振幅分布A2Zに置きかえる。
STEP5:振幅測定値A2ZならびにSTEP4で得られた位相分布を用いて、再び被測定アンテナ開口z=0にフィールド変換を行う。
STEP6:被測定アンテナ開口z=0上に変換された位相分布から、デフォーカスによる開口位相分布の相対変化ΔPを差し引く。
STEP7:被測定アンテナ開口z=0上の振幅分布ならびに相対変化を減じた開口位相分布を用いて、測定面z=Z1にフィールド変換を行う。
STEP8:z=Z1に変換された振幅・位相分布の内、振幅分布をオンフォーカス時に測定された振幅分布A1Zに置きかえる。
STEP9:z=Z1に変換された振幅分布と実際に測定された振幅分布A1Zとの差を比較し、十分差が小さい場合にはz=Z1での位相分布を解として終了。収束していない場合はSTEP1に戻る。
【0022】
図3に示すように副反射鏡4のz軸方向の位置を移動量δだけ変えることにより、デフォーカス時にはオンフォーカス時に対して、副反射鏡4の移動量δに対応した位相変動が見られる。その位相差あるいは位相分布変化量ΔPは、実際のオンフォーカス時の位相分布ならびにデフォーカス時の位相分布が不明であっても、副反射鏡4の駆動量のみが既知であれば、幾何光学を用いて計算することができる。STEP2においては、この変化量ΔPを開口位相分布に加えることになる。逆にSTEP6においては、オンフォーカス時の位相量とするためにこの位相分布の変化量ΔPを差し引く。
【0023】
なお、ある面での振幅・位相分布が得られた場合には、それらの分布を用いて任意の位置、例えば開口分布にフィールド変換可能なことは言うまでもない。また、収束時の各ステップで得られている位相分布は各状態での正しく推定された位相分布であることも言うまでもない。
【0024】
以上要約すると、本発明によれば、副反射鏡4および被測定アンテナ1を備えた反射鏡アンテナの位相分布を測定する反射鏡アンテナ位相分布測定装置は、副反射鏡4を被測定アンテナ1に対してオンフォーカス位置あるいはデフォーカス位置に保持する移動支持装置である副反射鏡駆動装置3と、被測定アンテナ1の振幅を測定するためのプローブ5と、プローブ5を被測定アンテナ1に対して相対的に移動させて被測定アンテナ1の鏡軸と同軸の測定面を走査させる走査装置であるスキャナー7と、プローブ5からの振幅信号からオンフォーカス振幅分布およびデフォーカス振幅分布を得、これら両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナ1の開口位相分布を得る演算処理装置9とを備えたものである。
【0025】
以上説明した実施の形態1では、従来のように被測定アンテナ1を動かすことなく、副反射鏡4のみをz軸方向に駆動することにより、その位相分布を測定することができ、従来に比べ大掛かりな装置を必要としないという効果を有する。また、アライメント精度も従来に比べ、高精度に設定可能であるという効果を有する。さらに、平面スキャンにおいては、フィールド変換は平面波展開となるためFFTを用いることができ、高速に計算ができるという効果も有する。
【0026】
実施の形態2.
図4はこの発明の実施の形態2の反射鏡アンテナ位相分布測定方法および装置で、図4において図1と同じ番号を付したものは図1相当のもので、図1と同様の動作をする。図4において、10はプローブ5をx軸方向にだけ移動させ得るx軸方向駆動スキャナ、11は被測定アンテナ1をx軸回りに回転させるための1軸回転台、12は治具を示す。
【0027】
図4に示すように、被測定アンテナ1を設置した1軸回転台11をx軸回りに回転させ、各角度に対して1軸スキャナ10を用いてプローブ5を走査することにより、動径方向にρ=z1の円筒面上での振幅分布を測定することができる。換言すれば、走査装置は、プローブ5を単にスキャナ7により被測定アンテナの鏡軸に対して直角な平面内で鏡軸を通る直線に沿って移動させ、また被測定アンテナ1を回転装置である回転台11によりこの直線と平行な軸芯であるx軸回りに回転させるものである。更に、副反射鏡駆動装置3を用いて副反射鏡4を鏡軸方向(z軸方向)に駆動することによりオンフォーカス時とデフォーカス時の振幅分布を得ることができる。これらの測定された振幅分布を図2に示すフローチャートに於ける測定された振幅分布A1Zとして用いることにより、実施の形態1と同様に位相分布を推定することができる。なお、図2のSTEP1に於ける測定面Z=Z1から被測定アンテナ開口z=0へのフィールド変換には円筒波展開を用いる。
【0028】
上述の実施の形態2では、従来のように被測定アンテナ1をz軸方向に移動させることなくx軸回りに回転させると共に、副反射鏡4のみをz軸方向に駆動することにより、その位相分布を推定することができ、従来に比べ大掛かりな装置を必要としないという効果を有する。また、アライメント精度も従来に比べ、高精度に設定可能であるという効果を有する。また本実施の形態においては、円筒状に振幅分布を測定するため、被測定アンテナ後方の放射特性をも推定することができる。
【0029】
実施の形態3.
図5はこの発明の実施の形態3の反射鏡アンテナ位相分布測定方法および装置で、図5において図1と同じ番号を付したものは図1相当のもので、図1と同様の動作をする。図5において、12は治具、13はプローブ5を所定位置に支持するための固定治具、14は被測定アンテナ1をx軸回りにだけでなくy軸回りにも回転させることのできる2軸回転台である。
【0030】
図5に示すように、被測定アンテナ1を設置した2軸回転台14をそれぞれx軸およびy軸回りに回転させることにより、2軸回転台の回転中心を原点とした球面上での振幅分布を測定することができる。これを上記記載の測定面とし、副反射鏡駆動装置3を用いて副反射鏡4をz軸方向である鏡軸方向に駆動することによりオンフォーカス時とデフォーカス時の振幅分布を得ることができる。これらの測定された振幅分布を図2に於ける測定された振幅分布として用いて図2に示す手順により、実施の形態1の場合と同様に位相分布を求めることができる。なお、図2において、フィールド変換には球面波展開を用いる。この実施形態の走査装置は、プローブ5を被測定アンテナ1の鏡軸上に固定支持する支持装置13と、被測定アンテナ1を先に述べた直線(この場合x軸方向)と平行な軸芯(x軸)回りに回転させ、直線に直角な軸芯(この場合y軸)回りに回転させる回転装置とを備えたものである。
【0031】
上述の実施の形態3では、従来のように被測定アンテナ1を移動せずに回転させ、副反射鏡4のみを駆動することにより、その位相分布を推定することができ、従来に比べ大掛かりな装置を必要としないという効果を有する。また、アライメント精度も従来に比べ、高精度に設定可能であるという効果を有する。また本実施の形態においては、球面状に振幅分布を測定するため、被測定アンテナ後方の放射特性をも推定することができる。
【0032】
実施の形態4.
図6はこの発明の実施の形態4の反射鏡アンテナ位相分布測定方法および装置を示すもので、図6において図1と同じ番号を付したものは図1相当のもので、図1のものと同様の動作をする。図6において、3aは副反射鏡4をz軸方向に移動させることもz軸に平行な鏡軸回りに回転させることも可能な副反射鏡駆動装置である。
【0033】
先に説明した図1〜5に示す実施の形態1〜3に於いては、副反射鏡4は製造誤差のない理想的な鏡面であることを前提としている。しかしながら、実際には副反射鏡4には位相分布推定誤差となる鏡面誤差が存在する。そこで、ある状態で実施の形態1において述べた手法にて位相分布を求め後、副反射鏡駆動装置3aにより副反射鏡4を鏡軸回りに回転させて、副反射鏡4の鏡軸回りの回転角度位置を異ならしめ、この位置で再び同じ手順で位相分布を求める。このようにして得た2つの位相分布の平均をとることにより副反射鏡4の鏡面誤差を補正した位相分布を得ることができる。
【0034】
この実施の形態においては、副反射鏡4の鏡面誤差を補正した位相分布を推定できるという効果を有する。
【0035】
上述の実施の形態4では、図1〜3に示す実施形態1の平面走査近傍界測定装置を用いるとして説明したが、図4の実施形態2の円筒走査近傍界測定装置あるいは図5の実施形態3の球面走査近傍界測定装置に用いても同様の結果を得ることができる。
【0036】
また、先に述べた実施の形態では、被測定アンテナ1が2枚反射鏡となる構成としているが、複数枚反射鏡の任意の鏡面を駆動しても同様の結果を得ることができる。
【0037】
【発明の効果】
以上説明した如く、この発明の反射鏡アンテナ位相分布測定方法は、副反射鏡および被測定アンテナを備えた反射鏡アンテナの位相分布を測定するために、被測定アンテナに対して副反射鏡がオンフォーカス位置にあるときのオンフォーカス振幅分布を測定する工程と、上記副反射鏡を上記被測定アンテナに対してアンテナ開口での振幅分布が変化しないような微少量デフォーカスしたデフォーカス位置に移動させる工程と、上記被測定アンテナに対して上記副反射鏡がデフォーカス位置にあるときのデフォーカス振幅分布を測定する工程と、上記両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナの開口位相分布を得る工程とを備えている。従って、従来のように被測定アンテナを動かすことなく、副反射鏡のみを鏡軸方向に駆動することにより、その位相分布を測定することができ、従来に比べ大掛かりな装置を必要としないという効果を有する。また、アライメント精度も従来に比べ、高精度に設定可能であるという効果を有する。さらに、平面スキャンにおいては、フィールド変換は平面波展開となるためFFTを用いることができ、高速に計算ができるという効果も有する。
【0038】
また、上述の反射鏡アンテナ位相分布測定方法に於いて、上記演算処理は、以下の手順により行われる。
STEP0:オンフォーカスで測定された振幅分布(A1Z)と初期位相分布(P0)とを用意する、
STEP1:測定面から被測定アンテナ開口上へフィールド変換を行い、開口面に変換された振幅分布(A1A)と開口面に変換された位相分布(P1A)とを得る、
STEP2:測定アンテナ開口面に変換された位相分布(P1A)に、デフォーカスによる開口位相分布の変化量(ΔP)を加える、
STEP3:被測定アンテナ開口面の振幅分布(A1A)ならびに相対変化を加えた開口位相分布(P1A+ΔP)を用いて、測定面にフィールド変換を行い、測定面に変換された振幅分布(A2Z’)と位相分布(P2Z)とを得る、
STEP4:測定面に変換された振幅・位相分布の内、振幅分布(A2Z’)をデフォーカス時に測定された振幅分布(A2Z)により置き換える、
STEP5:振幅測定値ならびにSTEP3で得られた位相分布を用いて、再び被測定アンテナ開口面にフィールド変換を行い、開口面に変換された振幅分布(A2A)と開口面に変換された位相分布(P2A)とを得る、
STEP6:被測定アンテナ開口面に変換された位相分布(P2A)から、デフォーカスによる開口位相分布の相対変化量(ΔP)を差し引いて変化量を減算した位相分布(P2AーΔP)を得る、
STEP7:被測定アンテナ開口面の振幅分布(A2A)および相対変化を減じた開口位相分布(P2AーΔP)を用いて測定面にフィールド変換を行い,測定面に変換された振幅分布(A1Z’)と位相分布(P1Z)とを得る、
STEP8:測定面に変換された振幅・位相分布の内、振幅分布(A1Z’)をオンフォーカス時に測定された振幅分布(A1Z)により置き換える、
STEP9:測定面に変換された振幅分布(A1Z’)と実際に測定された振幅分布(A1Z)との差を比較し、差が十分に小さい場合にはこの位相分布(P1Z)を解として手順を終了し,収束していない場合はSTEP1に戻る。従って、上述と同じ効果が得られる。
【0039】
また、上述の被測定アンテナの開口位相分布を得る工程の後に、被測定アンテナを鏡軸回りに回動させて元の回動位置とは別の新たな回動位置にする工程と、上記別の回動位置の上記被測定アンテナに対して請求項1記載の反射鏡アンテナ位相分布測定方法を再度実行する工程と、上記元の回動位置に於ける上記被測定アンテナの位相分布と上記新たな回動位置に於ける上記被測定アンテナの位相分布との平均をとり、上記副反射鏡の鏡面誤差を補正する工程とを備えたので、副反射鏡の鏡面誤差を補正した位相分布を得ることができる。
【0040】
更に、副反射鏡および被測定アンテナを備えた反射鏡アンテナの位相分布を測定する反射鏡アンテナ位相分布測定装置は、上記副反射鏡を上記被測定アンテナに対してオンフォーカス位置あるいはアンテナ開口での振幅分布が変化しないような微少量デフォーカスしたデフォーカス位置に保持する移動支持装置と、上記被測定アンテナの振幅を測定するためのプローブと、上記プローブを上記被測定アンテナに対して相対的に移動させて上記被測定アンテナの鏡軸と同軸の測定面を走査させる走査装置と、上記プローブからの振幅信号から上記オンフォーカス振幅分布およびデフォーカス振幅分布を得、これら両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナの開口位相分布を得る演算処理装置とを備えている。また、上記走査装置が、上記プローブを上記被測定アンテナの鏡軸に対して直角な平面上で走査させるスキャナを備え手いる。従って、従来のように被測定アンテナを動かすことなく、副反射鏡のみをz軸方向に駆動することにより、その位相分布を測定することができ、従来に比べ大掛かりな装置を必要としないという効果を有する。また、アライメント精度も従来に比べ、高精度に設定可能であるという効果を有する。さらに、平面スキャンにおいては、フィールド変換は平面波展開となるためFFTを用いることができ、高速に計算ができるという効果も有する。
【0041】
また、走査装置が、上記プローブを上記平面内で上記鏡軸を通る直線に沿って移動させるスキャナと、上記被測定アンテナを上記直線と平行な軸芯回りに回転させる回転装置とを備えている。従って、円筒状に振幅分布を測定するため、被測定アンテナ後方の放射特性をも推定することができる。
【0042】
また、走査装置が、上記プローブを上記鏡軸上に固定支持する支持装置と、上記被測定アンテナを上記直線と平行な軸芯回りに回転させ、上記鏡軸を通る直線に直角な軸芯回りに回転させる回転装置とを備えている。従って、従来のように被測定アンテナ1を移動せずに回転させ、副反射鏡4のみを駆動することにより、その位相分布を推定することができ、従来に比べ大掛かりな装置を必要としないという効果を有する。また、球面状に振幅分布を測定するため、被測定アンテナ後方の放射特性をも推定することができる。
【0043】
また、被測定アンテナを鏡軸回りに回動させて少なくとも2つの回動位置にし得る回動装置を備え、上記演算処理装置が上記少なくとも2つの回動位置に於ける上記被測定アンテナの位相分布の平均をとる平均演算装置を備えている。従って、副反射鏡の鏡面誤差を補正した位相分布を推定できるという効果を有する。
【図面の簡単な説明】
【図1】 この発明の反射鏡アンテナ位相分布測定方法および装置を示す概略説明図。
【図2】 この発明の反射鏡アンテナ位相分布測定方法および装置に用いる演算処理手順を示すフローチャート。
【図3】 この発明の反射鏡アンテナ位相分布測定装置に於ける副反射鏡の移動による位相分布の変化を説明するための説明図。
【図4】 この発明の別の実施形態の反射鏡アンテナ位相分布測定方法および装置を示す概略説明図。
【図5】 この発明のなお別の実施形態の反射鏡アンテナ位相分布測定方法および装置を示す概略説明図。
【図6】 この発明の更に別の実施形態の反射鏡アンテナ位相分布測定方法および装置を示す概略説明図。
【図7】 従来の反射鏡アンテナ位相分布測定方法および装置を説明するための概略説明図。
【図8】 従来の反射鏡アンテナ位相分布測定方法および装置に用いる位相分布推定手順を示すフローチャート。
【符号の説明】
1 被測定アンテナ、3 移動支持装置、4 副反射鏡、5 プローブ、
6、7、10、11、12、13、14、 走査装置、7 スキャナ、
9 演算処理装置、A オンフォーカス位置、B デフォーカス位置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring the phase distribution of a reflector antenna, and more particularly to a method and apparatus for measuring the phase distribution of a reflector antenna used in a high frequency band.
[0002]
[Prior art]
An antenna used in a high frequency band such as a submillimeter wave has a problem that a sufficient dynamic range cannot be ensured because the wavelength used in the far field measurement is short for measuring antenna characteristics such as radiation characteristics. There is. In order to solve this problem, in the anechoic chamber, by measuring the amplitude and phase distribution of the electric field in the vicinity of the antenna aperture, the aperture distribution of the antenna is measured, and the radiation characteristics are calculated by using the aperture distribution. There is a near field measurement method to obtain. However, this near-field measurement method needs to measure the phase. In the case of submillimeter waves, it is difficult to accurately measure the phase distribution due to measurement error, cable temperature change, installation alignment error, etc. Therefore, the radiation characteristics of the antenna were not accurately determined.
[0003]
In order to solve this problem, there is a phase retrieval method in which amplitude distributions of two different planes are measured and the phase distribution is estimated by numerical calculation using them. Measurement of only the amplitude distribution does not require highly accurate measurement compared to the phase distribution. Conventional methods for measuring the antenna phase distribution of this type include, for example, OMBucci et al "Far-field pattern determination from the near-field amplitude on two surfaces", IEEE Transactions on Antennas and Propagation. Vol.38, No.11, Those disclosed in Nov. 1990 are known.
[0004]
FIG. 7 is a diagram schematically showing a conventional antenna phase distribution measuring apparatus disclosed in the above document. In the figure, reference numeral 1 denotes an antenna to be measured whose phase distribution is to be measured, 5 is a probe for measuring the amplitude and phase of an electric field in the vicinity of the antenna for phase distribution measurement, and 7 is an xy scanner that scans the probe 5 in the xy direction. , 8 is a transmitter / receiver that transmits / receives a signal representing the measurement result from the probe 5, 9 is an arithmetic processor for calculating the output signal from the transmitter / receiver 8 to obtain a phase distribution, and 15 is for supporting the antenna 1. The turntable rotated around the x-axis direction is shown. FIG. 8 shows a flowchart of a phase estimation algorithm by the conventional phase retrieval used in the antenna phase distribution measuring apparatus shown in FIG.
[0005]
As shown in FIG. 7, an O-xyz coordinate system is defined in which the z-axis is the direction in which radio waves are radiated on the aperture of the antenna 1 to be measured, and only the amplitude distribution of radio waves on different z = R1 and R2 surfaces. Measure. Using these amplitude distributions, the phase is estimated by the algorithm shown in FIG.
In S0, field conversion to z = R2 is performed using the amplitude distribution measured at z = R1 and an appropriate phase distribution as an initial value.
In S1, only the amplitude distribution is replaced with the amplitude distribution measured at z = R2 from the amplitude / phase distribution field-converted to z = R2, and field conversion is performed to z = R1.
In S2, from the amplitude / phase distribution field-converted to z = R1, only the amplitude distribution is replaced with the amplitude distribution measured at z = R1, and field conversion is performed again to z = R2.
In S3, the process is terminated if the difference between the field-transformed amplitude distribution at z = R2 and the actually measured amplitude distribution is sufficiently small, and the process returns to S1 otherwise.
[0006]
By performing the above repetitive calculation, the phase distributions at the time of completion are estimated as phase distributions at z = R1 and z = R2, respectively. Needless to say, if there is an amplitude / phase distribution of the electric field on a certain surface, it can be field-converted to an arbitrary position. Therefore, various characteristics such as the aperture distribution and the radiation pattern of the antenna under measurement can be calculated using the estimated phase distribution and the amplitude distribution of the measured value.
[0007]
In the near field measurement of the amplitude distribution of the antenna to be measured, when two different amplitude distributions can be measured, for example, a planar scanning near field measurement apparatus using a scanner capable of xy plane scanning, Further, the measurement can be performed using a cylindrical scanning near-field measuring device using a probe that can be scanned in a single axis and a rotating table that can rotate in one axis, or a spherical near-field measuring device that uses a rotating table that can rotate in two axes. Furthermore, field conversion is possible using any measurement value obtained using the above-described measurement apparatus.
[0008]
[Problems to be solved by the invention]
In the conventional reflector antenna phase distribution measuring method and apparatus as described above, for example, in the case of a planar scanning near-field measuring apparatus, the antenna to be measured must be moved in the z-axis direction to measure two different surfaces, There is a problem that it is necessary to consider an error in installation alignment when moving the antenna. In addition, since an antenna measuring device that can move in the z-axis direction is used, a large-scale device is required, which is costly.
[0009]
Further, in the case of a cylindrical scanning near-field measuring device and a spherical scanning near-field measuring device, it is necessary to move the probe in the radial direction from the center axis and center point of scanning, respectively. There is a problem that a larger apparatus is required.
[0010]
The present invention has been made to solve the above-described problems, and provides a method and an apparatus for measuring the phase distribution of a reflector antenna capable of measuring the phase distribution of a submillimeter wave reflector antenna with a simple configuration. The purpose is to provide.
[0011]
[Means for Solving the Invention]
According to the reflector antenna phase distribution measuring method of the present invention, in order to measure the phase distribution of the reflector antenna including the sub-reflector and the antenna to be measured, the sub-reflector is set to the on-focus position with respect to the antenna to be measured. A step of measuring an on-focus amplitude distribution at a certain time, and the sub-reflector with respect to the antenna to be measured A small amount of defocus was applied so that the amplitude distribution at the antenna aperture did not change. A step of moving to a defocus position, a step of measuring a defocus amplitude distribution when the sub-reflector is at a defocus position with respect to the antenna to be measured, and an operation by a phase retrieval method based on the both amplitude distributions Processing to obtain an aperture phase distribution of the antenna to be measured.
[0012]
The arithmetic processing can be performed according to the following procedure.
STEP 0: Prepare an amplitude distribution (A1Z) and initial phase distribution (P0) measured on-focus.
STEP 1: Field conversion is performed from the measurement surface to the antenna opening to be measured, and an amplitude distribution (A1A) converted into the aperture surface and a phase distribution (P1A) converted into the aperture surface are obtained.
STEP 2: A change amount (ΔP) of the aperture phase distribution due to defocus is added to the phase distribution (P1A) converted into the measurement antenna aperture.
STEP 3: Using the amplitude distribution (A1A) of the antenna aperture surface to be measured and the aperture phase distribution (P1A + ΔP) to which a relative change has been applied, field conversion is performed on the measurement surface, and the amplitude distribution (A2Z ′) converted to the measurement surface Obtaining a phase distribution (P2Z) on the measurement surface;
STEP 4: Of the amplitude / phase distribution converted to the measurement surface, the amplitude distribution (A2Z ′) is replaced with the amplitude distribution (A2Z) measured at the time of defocusing.
STEP 5: Using the amplitude measurement value and the phase distribution obtained in STEP 4, field conversion is again performed on the aperture surface of the antenna to be measured, and the amplitude distribution (A2A) converted into the aperture surface and the phase distribution converted into the aperture surface ( P2A)
STEP 6: A phase distribution (P2A-ΔP) is obtained by subtracting the amount of change by subtracting the relative change amount (ΔP) of the aperture phase distribution due to defocusing from the phase distribution (P2A) converted to the measured antenna aperture surface.
STEP 7: Amplitude distribution (A1Z ′) converted to the measurement surface by performing field conversion on the measurement surface using the amplitude distribution (A2A) of the measured antenna aperture surface and the aperture phase distribution (P2A−ΔP) obtained by reducing the relative change. And a phase distribution (P1Z)
STEP 8: Of the amplitude / phase distribution converted to the measurement surface, the amplitude distribution (A1Z ′) is replaced with the amplitude distribution (A1Z) measured during on-focus,
STEP 9: The difference between the amplitude distribution (A1Z ′) converted to the measurement surface and the actually measured amplitude distribution (A1Z) is compared. If the difference is sufficiently small, the phase distribution (P1Z) is taken as a solution and the procedure is performed. If not converged, return to STEP1.
[0013]
In addition, the reflector antenna phase distribution measurement method is a method for rotating the antenna under measurement around the mirror axis after the step of obtaining the aperture phase distribution of the antenna under measurement, and performing a new rotation different from the original rotation position. A step of moving the reflector antenna phase distribution measurement method according to claim 1 to the antenna under measurement at the other rotation position; and the step at the original rotation position. A step of taking an average of the phase distribution of the antenna under measurement and the phase distribution of the antenna under measurement at the new rotation position and correcting the specular error of the sub-reflecting mirror.
[0014]
The reflector antenna phase distribution measuring apparatus according to the present invention is a reflector antenna phase distribution measuring apparatus for measuring a phase distribution of a reflector antenna including a sub-reflector and an antenna to be measured. On-focus position with respect to the antenna or A small amount of defocus was applied so that the amplitude distribution at the antenna aperture did not change. A movable support device that is held at a defocus position, a probe for measuring the amplitude of the antenna under measurement, and a probe that moves relative to the antenna under measurement to move the probe relative to the mirror axis of the antenna under measurement. The on-focus amplitude distribution and the defocus amplitude distribution are obtained from the amplitude signal from the probe, and a scanning device that scans the coaxial measurement surface at a right angle with each other, and calculation processing by the phase retrieval method is performed based on both amplitude distributions. And an arithmetic processing unit for obtaining an aperture phase distribution of the antenna under measurement.
[0015]
The scanning device may include a scanner that scans the probe on a plane perpendicular to the mirror axis of the antenna to be measured.
[0016]
Further, the scanning device includes a scanner that moves the probe along a straight line passing through the mirror axis in the plane, and a rotating device that rotates the antenna under measurement around an axis parallel to the straight line. Things can be used.
[0017]
In addition, the scanning device includes a support device for fixing and supporting the probe on the mirror axis, and the antenna to be measured described above. Through mirror axis A rotating device that rotates around an axis parallel to the straight line and rotates around an axis perpendicular to the straight line may be provided.
[0018]
And a rotation device capable of rotating the antenna under measurement about a mirror axis to at least two rotation positions, wherein the arithmetic processing unit has a phase of the antenna under measurement at the at least two rotation positions. It may be provided with an average arithmetic unit that averages the distribution.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1.
1 schematically shows a reflector antenna phase distribution measuring method and apparatus according to Embodiment 1 of the present invention. In FIG. 1, the same reference numerals as those in FIG. 7 correspond to those in FIG. The operation is equivalent to that shown in FIG. In FIG. 1, 2 is a primary radiator of the antenna 1 to be measured, 4 is a sub-reflecting mirror, 4 a is a column that supports the sub-reflecting mirror 4 at a predetermined position with respect to the antenna 1 to be measured. The sub-reflecting mirror 4 is attached to the column 4a via a known appropriate position variable mechanism so that the position in the z-axis direction can be changed with respect to the antenna 1 to be measured. In the illustrated example, the position variable mechanism is a sub-reflector driving device 3 such as a screw jack driven by a motor. However, even if a simple link mechanism is used, the position is changed by selecting a combination of a screw and a screw hole. But it ’s okay. Reference numeral 6 denotes a drive device of the scanner 7 for driving the probe 5. FIG. 2 shows a flowchart of the phase estimation algorithm according to the first embodiment of the present invention. FIG. 3 shows an explanatory diagram of changes in the phase distribution due to the movement of the sub-reflecting mirror 4. 3, the same reference numerals as those in FIG. 1 are equivalent to those in FIG. 1, and the same operation as in FIG. 1 is performed.
[0020]
Next, the operation will be described. The near field amplitude distribution of the antenna 1 to be measured is measured by the reflector antenna measuring apparatus shown in FIG. The radio wave is radiated from the primary radiator 2 of the antenna 1 to be measured and radiated through the sub-reflecting mirror 4 and the antenna 1 to be measured. The sub-reflecting mirror 4 is mirrored in the mirror axis direction (z 1), the sub-reflecting mirror 4 is coaxial with the mirror axis of the antenna under measurement at a position Z1 away from the opening of the antenna under measurement 1 in the two states of A and B in FIG. A near-field amplitude distribution is measured by scanning a perpendicular measurement surface with a probe 5 by a scanner 7 which is a scanning device. The distribution measured when the sub-reflecting mirror 4 is in the on-focus state in FIG. 1A is the on-focus amplitude distribution, that is, the on-focus measurement distribution A1Z, and the sub-reflecting mirror 4 is measured in the de-focused state shown in FIG. This distribution is defined as a defocus amplitude distribution, that is, a defocus measurement distribution A2Z. The relative change in the phase distribution on the aperture of the antenna 1 to be measured during on-focusing and defocusing can be calculated by using geometric optics, and the difference is ΔP. Further, it is assumed that the amplitude distribution on the aperture of the antenna 1 to be measured at the time of on-focusing and defocusing does not change.
[0021]
Using the measured amplitude distributions of the two states, the arithmetic processor 9 obtains the phase distribution on the aperture of the antenna 1 to be measured by the algorithm shown in FIG.
STEP 0: An amplitude distribution A1Z measured with on-focus and an appropriate initial phase distribution P0 are prepared.
STEP 1: Field conversion is performed from the measurement surface Z = Z1 to the measured antenna aperture z = 0.
STEP 2: A relative change ΔP of the aperture phase distribution due to defocusing is added to the phase distribution converted to the measured antenna aperture z = 0.
STEP 3: Field conversion is performed on the measurement plane z = Z1, using the amplitude distribution on the antenna under measurement z = 0 and the aperture phase distribution with a relative change.
STEP 4: Of the amplitude / phase distribution converted to z = Z1, the amplitude distribution is replaced with the amplitude distribution A2Z measured at the time of defocusing.
STEP 5: Using the amplitude distribution A2Z and the phase distribution obtained in STEP 4, field conversion is again performed to the antenna aperture to be measured z = 0.
STEP 6: The relative change ΔP of the aperture phase distribution due to defocusing is subtracted from the phase distribution converted to the measured antenna aperture z = 0.
STEP 7: Field conversion is performed on the measurement plane z = Z1 using the amplitude distribution on the antenna under measurement z = 0 and the aperture phase distribution obtained by reducing the relative change.
STEP 8: Replace the amplitude distribution with the amplitude distribution A1Z measured at the time of on-focusing in the amplitude / phase distribution converted to z = Z1.
STEP 9: The difference between the amplitude distribution converted to z = Z1 and the actually measured amplitude distribution A1Z is compared. If the difference is sufficiently small, the phase distribution at z = Z1 is terminated as a solution. If not converged, the process returns to STEP1.
[0022]
As shown in FIG. 3, by changing the position of the sub-reflecting mirror 4 in the z-axis direction by the amount of movement δ, a phase variation corresponding to the amount of movement δ of the sub-reflecting mirror 4 can be seen at the time of defocusing. . The phase difference or phase distribution change amount ΔP can be obtained by using geometric optics as long as only the driving amount of the sub-reflecting mirror 4 is known even if the phase distribution during actual on-focus and the phase distribution during defocus are unknown. Can be used to calculate. In STEP2, this variation ΔP is added to the aperture phase distribution. Conversely, in STEP 6, this phase distribution change ΔP is subtracted to obtain the phase amount during on-focus.
[0023]
Needless to say, when amplitude / phase distributions in a certain plane are obtained, field conversion can be performed to an arbitrary position, for example, an aperture distribution, using these distributions. Needless to say, the phase distribution obtained in each step at the time of convergence is a phase distribution correctly estimated in each state.
[0024]
In summary, according to the present invention, the reflector antenna phase distribution measuring apparatus for measuring the phase distribution of the reflector antenna including the sub-reflector 4 and the antenna 1 to be measured 1 replaces the sub-reflector 4 with the antenna 1 to be measured. On the other hand, the sub-reflector driving device 3 that is a moving support device that holds the on-focus position or the defocus position, the probe 5 for measuring the amplitude of the antenna 1 to be measured, and the probe 5 with respect to the antenna 1 to be measured. An on-focus amplitude distribution and a de-focus amplitude distribution are obtained from an amplitude signal from the scanner 7 which is relatively moved and scans the measurement surface coaxial with the mirror axis of the antenna 1 to be measured, and the probe 5. An arithmetic processing unit 9 that obtains an aperture phase distribution of the antenna 1 to be measured by performing arithmetic processing by the phase retrieval method based on the amplitude distribution A.
[0025]
In the first embodiment described above, the phase distribution can be measured by driving only the sub-reflecting mirror 4 in the z-axis direction without moving the antenna 1 to be measured as in the prior art. This has the effect of not requiring a large-scale device. In addition, the alignment accuracy can be set with higher accuracy than conventional. Further, in the plane scan, the field conversion is a plane wave expansion, so that FFT can be used, and there is an effect that calculation can be performed at high speed.
[0026]
Embodiment 2.
FIG. 4 shows a reflector antenna phase distribution measuring method and apparatus according to Embodiment 2 of the present invention. In FIG. 4, the same reference numerals as those in FIG. 1 correspond to FIG. 1, and operate in the same manner as in FIG. . In FIG. 4, 10 is an x-axis direction drive scanner capable of moving the probe 5 only in the x-axis direction, 11 is a single-axis rotating table for rotating the antenna 1 to be measured about the x-axis, and 12 is a jig.
[0027]
As shown in FIG. 4, the uniaxial rotating table 11 on which the antenna 1 to be measured is installed is rotated around the x axis, and the probe 5 is scanned with respect to each angle using the uniaxial scanner 10. In addition, the amplitude distribution on the cylindrical surface of ρ = z1 can be measured. In other words, the scanning device simply moves the probe 5 along a straight line passing through the mirror axis in a plane perpendicular to the mirror axis of the antenna to be measured by the scanner 7, and the antenna 1 to be measured is a rotating device. The turntable 11 is rotated around the x axis which is an axis parallel to the straight line. Further, by driving the sub-reflecting mirror 4 in the mirror axis direction (z-axis direction) using the sub-reflecting mirror driving device 3, it is possible to obtain an amplitude distribution during on-focusing and defocusing. By using these measured amplitude distributions as the measured amplitude distribution A1Z in the flowchart shown in FIG. 2, the phase distribution can be estimated as in the first embodiment. Note that cylindrical wave expansion is used for field conversion from the measurement surface Z = Z1 to the antenna aperture to be measured z = 0 in STEP1 of FIG.
[0028]
In the second embodiment described above, the measured antenna 1 is rotated around the x axis without moving in the z axis direction as in the prior art, and only the sub-reflecting mirror 4 is driven in the z axis direction, whereby the phase of the antenna is measured. The distribution can be estimated, and there is an effect that a large-scale device is not required as compared with the conventional case. In addition, the alignment accuracy can be set with higher accuracy than conventional. In this embodiment, since the amplitude distribution is measured in a cylindrical shape, the radiation characteristic behind the antenna to be measured can be estimated.
[0029]
Embodiment 3.
FIG. 5 shows a reflector antenna phase distribution measuring method and apparatus according to Embodiment 3 of the present invention. In FIG. 5, the same reference numerals as those in FIG. 1 correspond to FIG. 1, and operate in the same manner as in FIG. . In FIG. 5, 12 is a jig, 13 is a fixing jig for supporting the probe 5 at a predetermined position, and 14 is capable of rotating the antenna 1 to be measured not only about the x axis but also about the y axis. It is a shaft turntable.
[0030]
As shown in FIG. 5, the amplitude distribution on the spherical surface with the rotation center of the biaxial rotating table as the origin is obtained by rotating the biaxial rotating table 14 on which the antenna 1 to be measured 1 is installed around the x axis and the y axis, respectively. Can be measured. By using this as the measurement surface described above and driving the sub-reflecting mirror 4 in the mirror axis direction that is the z-axis direction using the sub-reflecting mirror driving device 3, it is possible to obtain the amplitude distribution at the time of on-focusing and defocusing. it can. Using these measured amplitude distributions as the measured amplitude distributions in FIG. 2, the phase distribution can be obtained in the same manner as in the first embodiment by the procedure shown in FIG. In FIG. 2, spherical wave expansion is used for field conversion. The scanning device of this embodiment includes a support device 13 that fixes and supports the probe 5 on the mirror axis of the antenna 1 to be measured, and an axis that is parallel to the straight line (in this case, the x-axis direction) described above. And a rotating device that rotates around the axis (x axis) and rotates around the axis perpendicular to the straight line (in this case, the y axis).
[0031]
In the third embodiment, the phase distribution can be estimated by rotating the antenna 1 to be measured without moving and driving only the sub-reflecting mirror 4 as in the prior art, which is much larger than in the past. The effect is that no device is required. In addition, the alignment accuracy can be set with higher accuracy than conventional. In this embodiment, since the amplitude distribution is measured in a spherical shape, the radiation characteristic behind the antenna to be measured can also be estimated.
[0032]
Embodiment 4.
6 shows a reflector antenna phase distribution measuring method and apparatus according to Embodiment 4 of the present invention. In FIG. 6, the same reference numerals as those in FIG. The same operation is performed. In FIG. 6, reference numeral 3 a denotes a sub-reflecting mirror driving device that can move the sub-reflecting mirror 4 in the z-axis direction or rotate it about a mirror axis parallel to the z-axis.
[0033]
In the first to third embodiments shown in FIGS. 1 to 5 described above, it is assumed that the sub-reflecting mirror 4 is an ideal mirror surface with no manufacturing error. However, in reality, the sub-reflecting mirror 4 has a mirror surface error that is a phase distribution estimation error. Therefore, after obtaining the phase distribution by the method described in the first embodiment in a certain state, the sub reflecting mirror 4 is rotated around the mirror axis by the sub reflecting mirror driving device 3a, and the sub reflecting mirror 4 around the mirror axis is rotated. The rotational angle position is made different, and the phase distribution is obtained again by the same procedure at this position. By taking the average of the two phase distributions thus obtained, a phase distribution in which the mirror surface error of the sub-reflecting mirror 4 is corrected can be obtained.
[0034]
In this embodiment, there is an effect that the phase distribution in which the mirror surface error of the sub-reflecting mirror 4 is corrected can be estimated.
[0035]
In the above-described fourth embodiment, the planar scanning near-field measurement device according to the first embodiment shown in FIGS. 1 to 3 has been described. However, the cylindrical scanning near-field measurement device according to the second embodiment in FIG. 4 or the embodiment in FIG. Similar results can be obtained by using the third spherical scanning near-field measuring apparatus.
[0036]
In the above-described embodiment, the antenna to be measured 1 is configured to be a two-reflection mirror. However, the same result can be obtained by driving an arbitrary mirror surface of a plurality of reflection mirrors.
[0037]
【The invention's effect】
As described above, in the reflector antenna phase distribution measuring method of the present invention, the sub-reflector is turned on with respect to the antenna under measurement in order to measure the phase distribution of the reflector antenna including the sub-reflector and the antenna under measurement. A step of measuring an on-focus amplitude distribution at the focus position, and the sub-reflector with respect to the antenna to be measured. A small amount of defocus was applied so that the amplitude distribution at the antenna aperture did not change. A step of moving to a defocus position, a step of measuring a defocus amplitude distribution when the sub-reflector is at a defocus position with respect to the antenna to be measured, and an operation by a phase retrieval method based on the both amplitude distributions Processing to obtain an aperture phase distribution of the antenna to be measured. Therefore, the phase distribution can be measured by driving only the sub-reflecting mirror in the direction of the mirror axis without moving the antenna under measurement as in the prior art, and there is no need for a large-scale apparatus compared to the conventional case. Have In addition, the alignment accuracy can be set with higher accuracy than conventional. Further, in the plane scan, the field conversion is a plane wave expansion, so that FFT can be used, and there is an effect that calculation can be performed at high speed.
[0038]
In the above reflector antenna phase distribution measuring method, the calculation process is performed according to the following procedure.
STEP 0: Prepare an amplitude distribution (A1Z) and initial phase distribution (P0) measured on-focus.
STEP 1: Field conversion is performed from the measurement surface to the antenna opening to be measured, and an amplitude distribution (A1A) converted into the aperture surface and a phase distribution (P1A) converted into the aperture surface are obtained.
STEP 2: A change amount (ΔP) of the aperture phase distribution due to defocus is added to the phase distribution (P1A) converted to the measurement antenna aperture surface.
STEP 3: Using the amplitude distribution (A1A) of the antenna aperture surface to be measured and the aperture phase distribution (P1A + ΔP) to which a relative change has been applied, field conversion is performed on the measurement surface, and the amplitude distribution (A2Z ′) converted to the measurement surface Obtaining a phase distribution (P2Z),
STEP 4: Of the amplitude / phase distribution converted to the measurement surface, the amplitude distribution (A2Z ′) is replaced with the amplitude distribution (A2Z) measured at the time of defocusing.
STEP5: Using the amplitude measurement value and the phase distribution obtained in STEP3, field conversion is again performed on the aperture surface of the antenna to be measured, and the amplitude distribution (A2A) converted into the aperture surface and the phase distribution converted into the aperture surface ( P2A)
STEP 6: A phase distribution (P2A-ΔP) is obtained by subtracting the amount of change by subtracting the relative change amount (ΔP) of the aperture phase distribution due to defocusing from the phase distribution (P2A) converted to the measured antenna aperture surface.
STEP 7: Amplitude distribution (A1Z ′) converted to the measurement surface by performing field conversion on the measurement surface using the amplitude distribution (A2A) of the measured antenna aperture surface and the aperture phase distribution (P2A−ΔP) obtained by reducing the relative change. And a phase distribution (P1Z)
STEP 8: Of the amplitude / phase distribution converted to the measurement surface, the amplitude distribution (A1Z ′) is replaced with the amplitude distribution (A1Z) measured during on-focus,
STEP 9: The difference between the amplitude distribution (A1Z ′) converted to the measurement surface and the actually measured amplitude distribution (A1Z) is compared. If the difference is sufficiently small, the phase distribution (P1Z) is taken as a solution and the procedure is performed. If not converged, return to STEP1. Therefore, the same effect as described above can be obtained.
[0039]
In addition, after the step of obtaining the aperture phase distribution of the antenna under measurement described above, the step of rotating the antenna under measurement around the mirror axis to a new rotation position different from the original rotation position; The step of re-executing the reflector antenna phase distribution measuring method according to claim 1 for the antenna under measurement at the pivot position, the phase distribution of the antenna under measurement at the original pivot position and the new antenna The phase distribution of the sub-reflecting mirror is corrected by correcting the specular error of the sub-reflecting mirror by taking an average with the phase distribution of the antenna under measurement at a certain rotational position. be able to.
[0040]
Furthermore, the reflector antenna phase distribution measuring apparatus for measuring the phase distribution of the reflector antenna including the sub-reflector and the antenna to be measured has the on-focus position or the sub-reflector with respect to the antenna to be measured A small amount of defocus was applied so that the amplitude distribution at the antenna aperture did not change. A movable support device held at a defocus position, a probe for measuring the amplitude of the antenna under measurement, and the probe is moved relative to the antenna under measurement so that it is coaxial with the mirror axis of the antenna under measurement. The on-focus amplitude distribution and the defocus amplitude distribution are obtained from the scanning device that scans the measurement surface and the amplitude signal from the probe, and the processing of the antenna to be measured is performed by the phase retrieval method based on both amplitude distributions. And an arithmetic processing unit for obtaining an aperture phase distribution. The scanning device includes a scanner that scans the probe on a plane perpendicular to the mirror axis of the antenna to be measured. Therefore, the phase distribution can be measured by driving only the sub-reflecting mirror in the z-axis direction without moving the antenna under measurement as in the prior art, and an effect that a larger apparatus than in the prior art is not required. Have In addition, the alignment accuracy can be set with higher accuracy than conventional. Further, in the plane scan, the field conversion is a plane wave expansion, so that FFT can be used, and there is an effect that calculation can be performed at high speed.
[0041]
Further, the scanning device includes a scanner that moves the probe along a straight line passing through the mirror axis in the plane, and a rotating device that rotates the antenna under measurement around an axis parallel to the straight line. . Accordingly, since the amplitude distribution is measured in a cylindrical shape, the radiation characteristic behind the antenna to be measured can be estimated.
[0042]
Further, the scanning device rotates the support antenna for fixing and supporting the probe on the mirror axis, and the antenna to be measured about an axis parallel to the straight line. Through mirror axis And a rotating device that rotates about an axis perpendicular to the straight line. Therefore, it is possible to estimate the phase distribution by rotating the antenna 1 to be measured without moving and driving only the sub-reflecting mirror 4 as in the prior art, so that a large-scale apparatus is not required as compared with the prior art. Has an effect. Further, since the amplitude distribution is measured in a spherical shape, the radiation characteristic behind the antenna to be measured can also be estimated.
[0043]
And a rotation device capable of rotating the antenna under measurement about the mirror axis to at least two rotation positions, wherein the arithmetic processing unit has a phase distribution of the antenna under measurement at the at least two rotation positions. An average arithmetic unit that takes the average of Therefore, there is an effect that the phase distribution in which the mirror surface error of the sub-reflecting mirror is corrected can be estimated.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a reflector antenna phase distribution measuring method and apparatus according to the present invention.
FIG. 2 is a flowchart showing a calculation processing procedure used in the reflector antenna phase distribution measuring method and apparatus according to the present invention.
FIG. 3 is an explanatory diagram for explaining a change in phase distribution due to movement of a sub-reflecting mirror in the reflecting mirror antenna phase distribution measuring apparatus of the present invention.
FIG. 4 is a schematic explanatory view showing a reflector antenna phase distribution measuring method and apparatus according to another embodiment of the present invention.
FIG. 5 is a schematic explanatory view showing a reflector antenna phase distribution measuring method and apparatus according to still another embodiment of the present invention.
FIG. 6 is a schematic explanatory view showing a reflector antenna phase distribution measuring method and apparatus according to still another embodiment of the present invention.
FIG. 7 is a schematic explanatory diagram for explaining a conventional reflector antenna phase distribution measuring method and apparatus.
FIG. 8 is a flowchart showing a phase distribution estimation procedure used in a conventional reflector antenna phase distribution measuring method and apparatus.
[Explanation of symbols]
1 antenna to be measured, 3 moving support device, 4 sub-reflecting mirror, 5 probe,
6, 7, 10, 11, 12, 13, 14, scanning device, 7 scanner,
9 Arithmetic processing unit, A On-focus position, B Defocus position.

Claims (8)

副反射鏡および被測定アンテナを備えた反射鏡アンテナの位相分布を測定するために、
被測定アンテナに対して副反射鏡がオンフォーカス位置にあるときのオンフォーカス振幅分布を測定する工程と、
上記副反射鏡を上記被測定アンテナに対してアンテナ開口での振幅分布が変化しないような微少量デフォーカスしたデフォーカス位置に移動させる工程と、
上記被測定アンテナに対して上記副反射鏡がデフォーカス位置にあるときのデフォーカス振幅分布を測定する工程と、
上記両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナの開口位相分布を得る工程とを備えた反射鏡アンテナ位相分布測定方法。
In order to measure the phase distribution of the reflector antenna with the sub-reflector and the antenna to be measured,
Measuring the on-focus amplitude distribution when the sub-reflector is at the on-focus position with respect to the antenna under measurement;
Moving the sub-reflecting mirror to a defocus position where the amplitude distribution at the antenna opening does not change with respect to the antenna to be measured;
Measuring a defocus amplitude distribution when the sub-reflecting mirror is at a defocus position with respect to the antenna to be measured;
And a step of obtaining an aperture phase distribution of the antenna to be measured by performing arithmetic processing by a phase retrieval method based on both amplitude distributions.
請求項1記載の反射鏡アンテナ位相分布測定方法に於いて、上記演算処理が、以下の手順により行われることを特徴とする反射鏡アンテナ位相分布測定方法。
STEP0:オンフォーカスで測定された振幅分布(A1Z)と初期位相分布(P0)とを用意する、
STEP1:測定面から被測定アンテナ開口上へフィールド変換を行い、開口面に変換された振幅分布(A1A)と開口面に変換された位相分布(P1A)とを得る、
STEP2:測定アンテナ開口面に変換された位相分布(P1A)に、デフォーカスによる開口位相分布の変化量(ΔP)を加える、
STEP3:被測定アンテナ開口面の振幅分布(A1A)ならびに相対変化を加えた開口位相分布(P1A+ΔP)を用いて、測定面にフィールド変換を行い、測定面に変換された振幅分布(A2Z’)と位相分布(P2Z)とを得る、
STEP4:測定面に変換された振幅・位相分布の内、振幅分布(A2Z’)をデフォーカス時に測定された振幅分布(A2Z)により置き換える、
STEP5:振幅測定値ならびにSTEP3で得られた位相分布を用いて、再び被測定アンテナ開口面にフィールド変換を行い、開口面に変換された振幅分布(A2A)と開口面に変換された位相分布(P2A)とを得る、
STEP6:被測定アンテナ開口面に変換された位相分布(P2A)から、デフォーカスによる開口位相分布の相対変化量(ΔP)を差し引いて変化量を減算した位相分布(P2AーΔP)を得る、
STEP7:被測定アンテナ開口面の振幅分布(A2A)および相対変化を減じた開口位相分布(P2AーΔP)を用いて測定面にフィールド変換を行い,測定面に変換された振幅分布(A1Z’)と位相分布(P1Z)とを得る、
STEP8:測定面に変換された振幅・位相分布の内、振幅分布(A1Z’)をオンフォーカス時に測定された振幅分布(A1Z)により置き換える、
STEP9:測定面に変換された振幅分布(A1Z’)と実際に測定された振幅分布(A1Z)との差を比較し、差が十分に小さい場合にはこの位相分布(P1Z)を解として手順を終了し,収束していない場合はSTEP1に戻る。
2. The reflector antenna phase distribution measuring method according to claim 1, wherein the calculation process is performed by the following procedure.
STEP 0: Prepare an amplitude distribution (A1Z) and initial phase distribution (P0) measured on-focus.
STEP 1: Field conversion is performed from the measurement surface to the antenna opening to be measured, and an amplitude distribution (A1A) converted into the aperture surface and a phase distribution (P1A) converted into the aperture surface are obtained.
STEP 2: A change amount (ΔP) of the aperture phase distribution due to defocus is added to the phase distribution (P1A) converted to the measurement antenna aperture surface.
STEP 3: Using the amplitude distribution (A1A) of the antenna aperture surface to be measured and the aperture phase distribution (P1A + ΔP) to which a relative change has been applied, field conversion is performed on the measurement surface, and the amplitude distribution (A2Z ′) converted to the measurement surface Obtaining a phase distribution (P2Z),
STEP 4: Of the amplitude / phase distribution converted to the measurement surface, the amplitude distribution (A2Z ′) is replaced with the amplitude distribution (A2Z) measured at the time of defocusing.
STEP5: Using the amplitude measurement value and the phase distribution obtained in STEP3, field conversion is again performed on the aperture surface of the antenna to be measured, and the amplitude distribution (A2A) converted into the aperture surface and the phase distribution converted into the aperture surface ( P2A)
STEP 6: A phase distribution (P2A-ΔP) is obtained by subtracting the amount of change by subtracting the relative change amount (ΔP) of the aperture phase distribution due to defocusing from the phase distribution (P2A) converted to the measured antenna aperture surface.
STEP 7: Amplitude distribution (A1Z ′) converted to the measurement surface by performing field conversion on the measurement surface using the amplitude distribution (A2A) of the measured antenna aperture surface and the aperture phase distribution (P2A−ΔP) obtained by reducing the relative change. And a phase distribution (P1Z)
STEP 8: Of the amplitude / phase distribution converted to the measurement surface, the amplitude distribution (A1Z ′) is replaced with the amplitude distribution (A1Z) measured during on-focus,
STEP 9: The difference between the amplitude distribution (A1Z ′) converted to the measurement surface and the actually measured amplitude distribution (A1Z) is compared. If the difference is sufficiently small, the phase distribution (P1Z) is taken as a solution and the procedure is performed. If not converged, return to STEP1.
上記被測定アンテナの開口位相分布を得る工程の後に、 上記被測定アンテナを鏡軸回りに回動させて元の回動位置とは別の新たな回動位置にする工程と、
上記別の回動位置の上記被測定アンテナに対して請求項1記載の反射鏡アンテナ位相分布測定方法を再度実行する工程と、
上記元の回動位置に於ける上記被測定アンテナの位相分布と上記新たな回動位置に於ける上記被測定アンテナの位相分布との平均をとり、上記副反射鏡の鏡面誤差を補正する工程とを備えた請求項1あるいは2記載の反射鏡アンテナ位相分布測定方法。
After obtaining the aperture phase distribution of the antenna under measurement, rotating the antenna under measurement around a mirror axis to a new rotation position different from the original rotation position;
Re-execution of the reflector antenna phase distribution measuring method according to claim 1 with respect to the antenna under measurement at the different rotation position;
A step of taking the average of the phase distribution of the antenna under measurement at the original rotation position and the phase distribution of the antenna under measurement at the new rotation position and correcting the mirror surface error of the sub-reflecting mirror A method of measuring a reflector antenna phase distribution according to claim 1 or 2.
副反射鏡および被測定アンテナを備えた反射鏡アンテナの位相分布を測定する反射鏡アンテナ位相分布測定装置であって、
上記副反射鏡を上記被測定アンテナに対してオンフォーカス位置あるいはアンテナ開口での振幅分布が変化しないような微少量デフォーカスしたデフォーカス位置に保持する移動支持装置と、
上記被測定アンテナの振幅を測定するためのプローブと、
上記プローブを上記被測定アンテナに対して相対的に移動させて上記被測定アンテナの鏡軸と直角で同軸の測定面を走査させる走査装置と、
上記プローブからの振幅信号から上記オンフォーカス振幅分布およびデフォーカス振幅分布を得、これら両振幅分布に基づいてフェーズリトリーバル法による演算処理をして被測定アンテナの開口位相分布を得る演算処理装置とを備えた反射鏡アンテナ位相分布測定装置。
A reflector antenna phase distribution measuring device for measuring a phase distribution of a reflector antenna including a sub-reflector and an antenna to be measured,
A movable support device that holds the sub-reflecting mirror at a defocus position that is defocused by a small amount so that the amplitude distribution at the on-focus position or the antenna opening does not change with respect to the antenna to be measured;
A probe for measuring the amplitude of the antenna under measurement;
A scanning device that moves the probe relative to the antenna to be measured and scans a coaxial measurement surface at right angles to the mirror axis of the antenna to be measured;
An arithmetic processing unit that obtains the on-focus amplitude distribution and the defocused amplitude distribution from the amplitude signal from the probe, and obtains the aperture phase distribution of the antenna under measurement by performing arithmetic processing by the phase retrieval method based on both amplitude distributions. Reflector antenna phase distribution measuring device provided.
上記走査装置が、上記プローブを上記被測定アンテナの鏡軸に対して直角な平面上で走査させるスキャナを備えた請求項4記載の反射鏡アンテナ位相分布測定装置。  5. The reflector antenna phase distribution measuring device according to claim 4, wherein the scanning device includes a scanner that scans the probe on a plane perpendicular to the mirror axis of the antenna to be measured. 上記走査装置が、上記プローブを上記平面内で上記鏡軸を通る直線に沿って移動させるスキャナと、上記被測定アンテナを上記直線と平行な軸芯回りに回転させる回転装置とを備えた請求項4記載の反射鏡アンテナ位相分布測定装置。  The scanning device includes: a scanner that moves the probe along a straight line passing through the mirror axis in the plane; and a rotating device that rotates the antenna under measurement around an axis parallel to the straight line. 4. The reflector antenna phase distribution measuring device according to 4. 上記走査装置が、上記プローブを上記鏡軸上に固定支持する支持装置と、上記被測定アンテナを上記鏡軸を通る直線と平行な軸芯回りに回転させ、上記直線に直角な軸芯回りに回転させる回転装置とを備えた請求項4記載の反射鏡アンテナ位相分布測定装置。The scanning device rotates the support antenna for fixing and supporting the probe on the mirror axis, and rotates the antenna under measurement around an axis parallel to a straight line passing through the mirror axis, and around an axis perpendicular to the straight line. 5. The reflector antenna phase distribution measuring device according to claim 4, further comprising a rotating device for rotating. 上記被測定アンテナを鏡軸回りに回動させて少なくとも2つの回動位置にし得る回動装置を備え、上記演算処理装置が上記少なくとも2つの回動位置に於ける上記被測定アンテナの位相分布の平均をとる平均演算装置を備えた請求項4乃至7のいずれか記載の反射鏡アンテナ位相分布測定装置。  A rotation device capable of rotating the antenna under measurement about a mirror axis to at least two rotation positions, wherein the arithmetic processing unit is configured to detect a phase distribution of the antenna under measurement at the at least two rotation positions; The reflector antenna phase distribution measuring apparatus according to claim 4, further comprising an average arithmetic unit that takes an average.
JP17972599A 1999-06-25 1999-06-25 Reflector antenna phase distribution measuring method and apparatus Expired - Fee Related JP4279406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17972599A JP4279406B2 (en) 1999-06-25 1999-06-25 Reflector antenna phase distribution measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17972599A JP4279406B2 (en) 1999-06-25 1999-06-25 Reflector antenna phase distribution measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2001004680A JP2001004680A (en) 2001-01-12
JP4279406B2 true JP4279406B2 (en) 2009-06-17

Family

ID=16070789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17972599A Expired - Fee Related JP4279406B2 (en) 1999-06-25 1999-06-25 Reflector antenna phase distribution measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4279406B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102016608B (en) * 2008-05-09 2013-04-17 安立股份有限公司 Radiated power measurement method, radiated power measurement coupler and radiated power measurement apparatus
DE102009053446B4 (en) 2009-11-17 2018-09-20 Airbus Defence and Space GmbH High-frequency measuring system and method for measuring a high-frequency test object, in particular an antenna
JP2012149901A (en) * 2011-01-17 2012-08-09 Japan Aerospace Exploration Agency Sub-millimeter wave proximate field measuring device having high precision non-contact position measuring mechanism
CN110954755A (en) * 2018-09-26 2020-04-03 川升股份有限公司 Automatic measuring system for antenna radiation pattern

Also Published As

Publication number Publication date
JP2001004680A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US5119105A (en) M&A for performing near field measurements on a dish antenna and for utilizing said measurements to realign dish panels
CN103069253B (en) The automatic preheating of laser tracker and stability inspection
CN110926364B (en) Blade detection method based on line structured light
US5485158A (en) Linear near field test facility and process
JP4279406B2 (en) Reflector antenna phase distribution measuring method and apparatus
US5419631A (en) Three-axis motion tracking interferometer for measurement and correction of positional errors between an article under test and a measurement probe
JP4099367B2 (en) Method for calibrating and aligning multiple multi-axis motion stages for optical alignment with planar waveguide devices and systems
JP4578603B2 (en) Antenna measuring apparatus and antenna measuring method
US5374934A (en) Antenna mirror-surface measuring system
JP3660181B2 (en) Antenna measuring apparatus and antenna measuring method
JPH08211117A (en) Method for measuring radiation pattern of antenna
Viikari et al. A feed scanning based APC technique for compact antenna test ranges
JP2014044060A (en) Shape measurement device and shape measurement method
JP7286038B2 (en) Radar cross section measuring device
CN112578327B (en) Calibration method, device and storage medium of spherical scanning test system
CN113960378A (en) Quasi-far-field measurement system and quasi-far-field measurement method
JP2003315440A (en) Method and apparatus for measuring field in compact range
JP4156704B2 (en) Antenna measuring method and antenna measuring apparatus using the same
US6721056B1 (en) Surface shape measuring apparatus and method
JP4849426B2 (en) Antenna measurement method
CN112254938A (en) Off-axis parabolic mirror optical axis detection device and detection method
JP2001194401A (en) Antenna-measuring apparatus
JP2001196842A (en) Mirror surface precision measuring instrument for reflection mirror antenna and mirror surface control system applying this
CN116827452B (en) Internet of things communication terminal antenna debugging device
JPH11211427A (en) Surface form measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees