JP4279305B2 - Seismic reinforcement method for unreinforced concrete structures - Google Patents

Seismic reinforcement method for unreinforced concrete structures Download PDF

Info

Publication number
JP4279305B2
JP4279305B2 JP2006251271A JP2006251271A JP4279305B2 JP 4279305 B2 JP4279305 B2 JP 4279305B2 JP 2006251271 A JP2006251271 A JP 2006251271A JP 2006251271 A JP2006251271 A JP 2006251271A JP 4279305 B2 JP4279305 B2 JP 4279305B2
Authority
JP
Japan
Prior art keywords
pier
seismic reinforcement
unreinforced concrete
concrete structure
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006251271A
Other languages
Japanese (ja)
Other versions
JP2008069601A (en
Inventor
向秀 杉崎
薫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2006251271A priority Critical patent/JP4279305B2/en
Publication of JP2008069601A publication Critical patent/JP2008069601A/en
Application granted granted Critical
Publication of JP4279305B2 publication Critical patent/JP4279305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、柱状の無筋コンクリート構造物を補強する耐震補強方法に関するものである。   The present invention relates to a seismic reinforcement method for reinforcing a columnar unreinforced concrete structure.

コンクリートは、圧縮に対しては高い強度を有するが、引張に対する強度は低いという特性がある。そのため、曲げを受ける部材などの引張力が作用する構造物については、コンクリートに鉄筋等の鋼材を組み合わせた鉄筋コンクリート構造が多く用いられる。これに対して、無筋コンクリート構造は、主に圧縮力が作用する箇所に用いられる場合がほとんどであるが、古い時代の橋梁にあっては、無筋コンクリート製の橋脚も多く現存しており、そのような無筋コンクリート柱の地震時における崩壊を防止するための耐震補強が求められている。   Concrete has the property of high strength against compression but low strength against tension. For this reason, a reinforced concrete structure in which a steel material such as a reinforcing bar is combined with concrete is often used for a structure such as a member subjected to bending to which a tensile force acts. In contrast, unreinforced concrete structures are mostly used in places where compressive forces are applied, but there are many unreinforced concrete piers in old age bridges. There is a need for seismic reinforcement to prevent collapse of such unreinforced concrete columns during an earthquake.

従来、柱状構造物の耐震補強の技術として、例えば、下記特許文献1,2に記載の方法が知られている。特許文献1では、鉄筋コンクリート柱の表面に複数の補強用鋼板を配置し上記柱を覆うことで、この柱の耐震補強を図る方法が開示されている。また、特許文献2では、鉄筋コンクリート柱の四隅に配置されるL字の支持材及び当該支持材間を連結する連結材でこの柱を拘束し、耐震補強を図る方法が開示されている。これら以外にも、鉄筋コンクリート柱の耐震補強方法は、数多く知られている。
特開平9−41565号公報 特開2000−120023号公報
Conventionally, as a technique for seismic reinforcement of a columnar structure, for example, methods described in Patent Documents 1 and 2 below are known. Patent Document 1 discloses a method for providing seismic reinforcement of a column by disposing a plurality of reinforcing steel plates on the surface of a reinforced concrete column and covering the column. Further, Patent Document 2 discloses a method of restraining this column with an L-shaped support material arranged at the four corners of a reinforced concrete column and a connecting material for connecting the support material, thereby achieving seismic reinforcement. In addition to these, many methods for seismic reinforcement of reinforced concrete columns are known.
Japanese Patent Laid-Open No. 9-41565 JP 2000-120023 A

しかしながら、無筋コンクリート製の柱状構造物と鉄筋コンクリート製の柱状構造物とでは、地震の際の破壊の形態が大きく異なっている。従って、上記のような鉄筋コンクリート柱の耐震補強方法を、無筋コンクリート構造物にそのまま適用しても、必ずしも適切に補強できるとは限らない   However, the columnar structure made of reinforced concrete and the columnar structure made of reinforced concrete differ greatly in the form of destruction during an earthquake. Therefore, even if the seismic reinforcement method for a reinforced concrete column as described above is applied to an unreinforced concrete structure as it is, it cannot always be properly reinforced.

そこで、本発明は、柱状の無筋コンクリート構造物を適切に補強する耐震補強方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a seismic reinforcement method for appropriately reinforcing a columnar unreinforced concrete structure.

本発明の無筋コンクリート構造物の耐震補強方法は、柱状の無筋コンクリート構造物を補強する耐震補強方法であって、無筋コンクリート構造物において強度が弱い弱点部よりも上方の部分と下方の部分とを連結し相対的な移動を制限する移動制限手段を弱点部に設置し、弱点部は、損傷したときに、無筋コンクリート構造物が水平面を境に上方の部分と下方の部分とに上下に分離する部分であり、移動制限手段の弱点部への設置は、上方の部分と下方の部分との分離前に行われ、移動制限手段は、上方の部分と下方の部分との分離後において、上方の部分と下方の部分との水平方向への相対的な移動を制限することを特徴とする無筋コンクリート構造物の耐震補強方法。
The seismic reinforcement method for an unreinforced concrete structure according to the present invention is a seismic reinforcement method for reinforcing a columnar unreinforced concrete structure. The movement restriction means that connects the parts and restricts relative movement is installed at the weak part, and when the weak part is damaged, the unreinforced concrete structure is divided into an upper part and a lower part with the horizontal plane as a boundary. The upper and lower parts are separated from each other, and the movement restricting means is installed before the upper part and the lower part are separated. The movement restricting means is separated after the upper part and the lower part are separated. A method for seismic reinforcement of an unreinforced concrete structure , wherein the relative movement of the upper part and the lower part in the horizontal direction is restricted .

この種の柱状の無筋コンクリート構造物が地震による力を受けた場合には、強度が弱い弱点部に亀裂が発生し、その亀裂が水平方向に成長することで、弱点部を含む水平面を境にして構造物が上下に分離されることが知られている。そして、弱点部よりも上方の部分と下方の部分とは、分離により発生した水平な接触面をもって摺動し、上方の部分と下方の部分との摩擦により地震のエネルギーが吸収される。このとき、上記の方法による耐震補強が施された構造物では、移動制限手段によって、弱点部よりも上方の部分と下方の部分とが連結され相対的な移動が制限されているので、移動制限に係る抵抗力によって、さらに地震のエネルギーが吸収される。また、この耐震補強方法では、移動制限手段を、弱点部に対応する位置のみに設置すればよいので、構造物全体に補強を施す場合よりも、部材を節約することができ、効率のよい耐震補強を図ることができる。   When this type of column-shaped unreinforced concrete structure is subjected to an earthquake force, a weak point with weak strength will crack, and the crack will grow in the horizontal direction, causing a boundary between the horizontal plane including the weak point. Thus, it is known that the structure is separated vertically. The upper part and the lower part above the weak point part slide with a horizontal contact surface generated by the separation, and the energy of the earthquake is absorbed by the friction between the upper part and the lower part. At this time, in the structure subjected to the seismic reinforcement by the above method, the movement restriction means connects the upper part and the lower part of the weak point part and restricts the relative movement. The seismic energy is further absorbed by the resistance force. Further, in this seismic reinforcement method, since the movement restricting means only needs to be installed at a position corresponding to the weak point portion, it is possible to save members and to provide efficient seismic resistance compared to the case where the entire structure is reinforced. Reinforcement can be achieved.

また、移動制限手段は、変形によってエネルギーを吸収するエネルギー吸収部材を備えることが好ましい。この構成によれば、地震の際に構造物の上方の部分と下方の部分との相対的な移動が発生すると、移動に伴うエネルギー吸収部材の変形によって地震のエネルギーが吸収される。   The movement restricting means preferably includes an energy absorbing member that absorbs energy by deformation. According to this configuration, when the relative movement between the upper part and the lower part of the structure occurs during the earthquake, the energy of the earthquake is absorbed by the deformation of the energy absorbing member accompanying the movement.

また、このようなエネルギー吸収部材の好適な構成としては、弱点部の上下に亘る幅で無筋コンクリート構造物の周囲に巻き付けられる帯状の部材を有する構成が挙げられる。   Moreover, as a suitable structure of such an energy absorption member, the structure which has a strip | belt-shaped member wound by the circumference | surroundings of an unreinforced concrete structure with the width | variety over the weak point part is mentioned.

また、上記弱点部は、無筋コンクリート構造物におけるコンクリートの打ち継ぎ目であってもよい。この種の柱状の無筋コンクリート構造物が地震による力を受けた場合には、強度が弱いコンクリートの打ち継ぎ目に亀裂が発生する可能性が高い。従って、弱点部として上記打ち継ぎ目の位置に移動制限手段を設置することにより、上述の作用を奏することができる。   The weak point portion may be a concrete joint in an unreinforced concrete structure. When this kind of columnar unreinforced concrete structure is subjected to an earthquake force, there is a high possibility that cracks will occur at the joints of concrete with low strength. Therefore, the above-mentioned operation can be achieved by installing the movement restricting means at the position of the seam as the weak point.

また、上記弱点部として無筋コンクリート構造物に予め脆弱部を設ける工程を更に備えてもよい。この構成によれば、予め脆弱部を設けることで意図的に所望の位置を上記弱点部として設定し、その位置に移動制限手段を設置することにより、上述の作用を奏することができる。   Moreover, you may further provide the process of providing a weak part in an unreinforced concrete structure previously as said weak point part. According to this configuration, the above-described effect can be achieved by intentionally setting a desired position as the weak point portion by providing the weak portion in advance and installing the movement restricting means at that position.

本発明の耐震補強方法によれば、柱状の無筋コンクリート構造物を適切に補強することができる。   According to the seismic reinforcement method of the present invention, a columnar unreinforced concrete structure can be appropriately reinforced.

以下、図面を参照しつつ本発明に係る耐震補強方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the seismic reinforcement method according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1に示す橋梁100は、複数の無筋コンクリート製の橋脚(柱状の無筋コンクリート構造物)1と、それらの橋脚1に支持され水平方向に延在する橋桁3とを備えている。この橋脚1は、下部に設けられ地盤5に固定されるフーチング7と、上部に設けられ橋桁3を支持する支持部11とを備えている。
(First embodiment)
A bridge 100 shown in FIG. 1 includes a plurality of unreinforced concrete piers (columnar unreinforced concrete structures) 1 and bridge girders 3 that are supported by the piers 1 and extend in the horizontal direction. The bridge pier 1 includes a footing 7 provided at the lower part and fixed to the ground 5, and a support part 11 provided at the upper part and supporting the bridge girder 3.

このような無筋コンクリート製の橋脚1の、地震時における破壊の形態は以下の通りである。地震時には、橋脚1は橋桁3からの水平力による曲げモーメントを受け、引張力に弱い橋脚1の側面の一部に亀裂が発生する。発生した亀裂は、水平方向に成長し、その後は、亀裂が発生した位置における水平面を境にして橋脚1の上部1aと下部1bとが分離してしまう。その後は、橋脚上部1aが橋脚下部1bに対して、分離により生じた上記水平面で接触しながら水平方向に摺動し、この摺動の際の摩擦により地震のエネルギーが吸収される。なお、このように橋脚上部1aと橋脚下部1bとが摺動する水平面を、以下「滑動面」という。ここで、橋脚1の構造を考えると、この橋脚1の施工時においてコンクリートを打ち継いだ場合、橋脚1には、水平面をなす打ち継ぎ目(弱点部)Aが形成される。この打ち継ぎ目Aは、特に、引張力に弱い部分であるので、地震発生時に最初に亀裂が発生する可能性が高い。従って、上記滑動面は、打ち継ぎ目Aに一致する可能性が高い。   The form of destruction of such an reinforced concrete pier 1 during an earthquake is as follows. During an earthquake, the pier 1 receives a bending moment due to a horizontal force from the bridge girder 3 and a crack is generated in a part of the side surface of the pier 1 that is weak against tensile force. The generated crack grows in the horizontal direction, and thereafter, the upper portion 1a and the lower portion 1b of the pier 1 are separated from each other with the horizontal plane at the position where the crack is generated. After that, the pier upper part 1a slides in the horizontal direction while making contact with the pier lower part 1b on the horizontal plane generated by the separation, and the energy of the earthquake is absorbed by the friction during the sliding. The horizontal plane on which the pier upper part 1a and the pier lower part 1b slide in this manner is hereinafter referred to as a “sliding surface”. Here, considering the structure of the pier 1, when concrete is handed over during construction of the pier 1, a joint seam (weak point portion) A that forms a horizontal plane is formed on the pier 1. Since this joint A is a portion that is particularly susceptible to tensile force, there is a high possibility that a crack will first occur when an earthquake occurs. Therefore, there is a high possibility that the sliding surface matches the joint A.

以上の知見に基づき、この橋脚1の耐震補強方法においては、分離が生じる前における橋脚1側面の打ち継ぎ目Aを覆い、橋脚上部1aと橋脚下部1bとを連結するように、帯状部材(エネルギー吸収部材)13を取り付けることとしている。この帯状部材13は、水平に延びる環状をなし、打ち継ぎ目Aの上下に亘る位置において橋脚1の全周に巻き付けられ、橋脚1の側面に固定される。なお、橋脚1側面への帯状部材13の固定には、ボルト止め、接着剤による接着、又はボルト止めと接着剤との併用といった固定手段が用いられる。この種の橋脚においては、上記のような分離が生じる前であっても、橋脚1側面の外観によって打ち継ぎ目Aを判別できる場合が多いので、その場合、橋脚1側面を目視することにより、上記帯状部材13を設置すべき打ち継ぎ目Aの位置を特定すればよい。   Based on the above knowledge, in the seismic reinforcement method for the pier 1, the band-shaped member (energy absorption) is provided so as to cover the joint A on the side surface of the pier 1 before separation and to connect the upper pier 1 a and the lower pier 1 b. Member) 13 is attached. The belt-like member 13 has an annular shape extending horizontally, is wound around the entire circumference of the pier 1 at a position extending up and down the joint A, and is fixed to the side surface of the pier 1. For fixing the belt-like member 13 to the side surface of the pier 1, fixing means such as bolting, bonding with an adhesive, or a combination of bolting and an adhesive is used. In this type of pier, the seam A can often be discriminated by the appearance of the side surface of the pier 1 even before separation as described above. In that case, by visually observing the side surface of the pier 1, What is necessary is just to pinpoint the position of the joint A which should install the strip | belt-shaped member 13. FIG.

この帯状部材13は、上述のように打ち継ぎ目Aを境にして橋脚1が上下に分離された場合には、橋脚上部1aの橋脚下部1bに対する水平移動を制限するための移動制限手段として機能する。このような帯状部材13の好適な材料としては、弾性材料である炭素繊維シート、アラミド繊維シート、ガラス繊維シート、ナイロンシート、ポリエステルや、弾塑性材料である鋼板等が挙げられる。   When the pier 1 is separated vertically with the joint A as the boundary as described above, the belt-like member 13 functions as a movement restricting means for restricting the horizontal movement of the pier upper part 1a with respect to the pier lower part 1b. . Examples of suitable materials for the belt-like member 13 include carbon fiber sheets, aramid fiber sheets, glass fiber sheets, nylon sheets, polyester, which are elastic materials, and steel plates which are elastic-plastic materials.

この橋脚1が地震による大きなエネルギーを受けると、上記のとおり、打ち継ぎ目Aの側面に亀裂が発生する可能性が高い。その後、亀裂が成長し打ち継ぎ目Aを境にして橋脚1が上下に分離されると、図3に示すように、滑動面となった打ち継ぎ目Aを境にして、橋脚上部1aが橋脚下部1bに対して水平に摺動する。この摺動に伴う摩擦によって地震のエネルギーが吸収される。更にこのとき、橋脚上部1aの移動に対応して帯状部材13が弾性的な伸縮変形を繰り返すことになる。また、弾塑性材料からなる帯状部材13を用いた場合には、帯状部材13が更にエネルギーを受けて塑性変形する場合もある。このような帯状部材13の変形により、地震のエネルギーが更に吸収される。   When this pier 1 receives a large amount of energy from an earthquake, there is a high possibility that a crack will occur on the side surface of the joint A as described above. After that, when the crack grows and the pier 1 is separated from the upper and lower sides with the joint A as a boundary, as shown in FIG. 3, the pier upper part 1a becomes the pier lower part 1b with the joint A serving as a sliding surface as a boundary. Slides horizontally against. The earthquake energy is absorbed by the friction caused by this sliding. At this time, the belt-like member 13 repeats elastic expansion and contraction in response to the movement of the pier upper part 1a. Further, when the belt-like member 13 made of an elastoplastic material is used, the belt-like member 13 may be further plastically deformed by receiving energy. Due to such deformation of the belt-like member 13, the energy of the earthquake is further absorbed.

従って、この橋脚1では、滑動面における橋脚上部1aと橋脚下部1bとの摩擦、及び帯状部材13の変形により地震の大きなエネルギーを吸収することができ、地震時における橋脚1の崩壊を抑制することができる。また、橋脚上部1aの橋脚下部1bに対する移動量が、帯状部材13により制限されることから、橋脚上部1aが橋脚下部1bから極端にズレて橋脚1が崩壊に至ることを抑制することができる。また、帯状部材13は、橋脚1の全周に巻かれているので、橋脚上部1aが水平な何れの方向に移動する場合にも、帯状部材13の変形が追従し、地震のエネルギー吸収が行われる。   Therefore, this pier 1 can absorb the large energy of the earthquake by the friction between the pier upper part 1a and the pier lower part 1b on the sliding surface and the deformation of the strip member 13, and suppress the collapse of the pier 1 at the time of the earthquake. Can do. Moreover, since the moving amount | distance with respect to the pier lower part 1b of the pier upper part 1a is restrict | limited by the strip | belt-shaped member 13, it can suppress that the pier upper part 1a shifts | deviates extremely from the pier lower part 1b, and the pier 1 collapses. Further, since the belt-like member 13 is wound around the entire circumference of the pier 1, even when the pier upper part 1 a moves in any horizontal direction, the deformation of the belt-like member 13 follows and the energy absorption of the earthquake is performed. Is called.

なお、帯状部材13の剛性が高すぎると、上述のような帯状部材13の伸縮による地震エネルギーの吸収が十分に行われないので、橋脚1が地震による水平力を受けた際の帯状部材13の最大の変形が0.2%以上になるように、帯状部材13の剛性を適度に抑えることが好ましい。このため、帯状部材13の材質、寸法は、橋脚1及び想定される地震のエネルギーに基づいて調整される。また、帯状部材13の剛性が低すぎると、地震の際の橋脚上部1aのズレが大きくなり、橋脚1の崩壊のおそれが高まってしまうので、橋脚1が地震による水平力を受けた際の帯状部材13の最大の変形が50%以下になるように、帯状部材13の剛性を確保することが好ましい。   In addition, if the rigidity of the belt-shaped member 13 is too high, the absorption of the earthquake energy due to the expansion and contraction of the belt-shaped member 13 as described above is not sufficiently performed. It is preferable to moderately suppress the rigidity of the belt-like member 13 so that the maximum deformation is 0.2% or more. For this reason, the material and dimension of the strip-shaped member 13 are adjusted based on the pier 1 and the energy of the assumed earthquake. Further, if the rigidity of the belt-like member 13 is too low, the displacement of the pier upper part 1a at the time of the earthquake becomes large and the possibility of the pier 1 collapsing increases, so the belt-like shape when the pier 1 receives a horizontal force due to the earthquake. It is preferable to ensure the rigidity of the belt-like member 13 so that the maximum deformation of the member 13 is 50% or less.

また、この耐震補強方法では、滑動面が発生する可能性が最も高い打ち継ぎ目Aの周囲にのみ予め帯状部材13を設置しているので、橋脚1の側面全部に補強を施す場合よりも、補強用の部材を節約することができ、効率のよい耐震補強を図ることができる。   Further, in this seismic reinforcement method, since the band-like member 13 is installed in advance only around the joint A where the sliding surface is most likely to occur, the reinforcement is more effective than the case where the entire side surface of the pier 1 is reinforced. Therefore, it is possible to save a large number of members and to achieve effective seismic reinforcement.

(第2実施形態)
図4に示すように、本実施形態に係る橋脚1の耐震補強方法においては、打ち継ぎ目Aを境とした橋脚上部1aと橋脚下部1bとを予め連結する連結鋼(エネルギー吸収部材)23が取り付けられる。この連結鋼23は、鎹形状をなしており、連結鋼13の両端部は、橋脚上部1a、橋脚下部1bの各側面に予め形成された穴に挿入され、穴に充填されるモルタルによって橋脚上部1a,橋脚下部1bに固定される。このような連結鋼23を、橋脚1の両側面において2本1組でX字状に交差させながら橋脚上部1aと橋脚下部1bと上下に連結させる。なお、図4における橋脚1の向こう側の側面にも、同様に2本1組の連結鋼23が取り付けられる。これらの連結鋼23は、上述のように打ち継ぎ目Aを境にして橋脚1が上下に分離された場合に、橋脚上部1aの橋脚下部1bに対する水平移動を制限するための移動制限手段として機能する。なお、この連結鋼23としては、弾塑性部材である鉄筋、PC鋼棒、鋼材、PC鋼線等を好適に用いることができる。
(Second Embodiment)
As shown in FIG. 4, in the seismic reinforcement method for the pier 1 according to the present embodiment, a connecting steel (energy absorbing member) 23 for connecting the pier upper portion 1a and the pier lower portion 1b in advance with the joint A as a boundary is attached. It is done. The connecting steel 23 has a bowl shape, and both ends of the connecting steel 13 are inserted into holes formed in the respective sides of the pier upper part 1a and the pier lower part 1b in advance, and the pier upper part by mortar filled in the hole. 1a, fixed to the pier lower part 1b. Such a connecting steel 23 is connected vertically to the pier upper part 1a and the pier lower part 1b while intersecting in an X shape with a pair of two on both side surfaces of the pier 1. Note that a pair of two connecting steels 23 are similarly attached to the other side of the pier 1 in FIG. These connecting steels 23 function as a movement restricting means for restricting the horizontal movement of the pier upper part 1a with respect to the pier lower part 1b when the pier 1 is separated up and down at the joint A as described above. . As the connecting steel 23, an elastic-plastic member such as a reinforcing bar, a PC steel bar, a steel material, a PC steel wire, or the like can be suitably used.

この場合、橋脚1が地震による大きいエネルギーを受け、打ち継ぎ目Aを境にして橋脚1が上下に分離されると、図5に示すように、滑動面となった打ち継ぎ目Aを境にして、橋脚上部1aが橋脚下部1bに対して水平に摺動する。この摺動に伴う摩擦によって地震のエネルギーが吸収される。更にこのとき、橋脚上部1aの移動に対応して連結鋼23が弾性的な伸縮変形を繰り返すことになる。また、連結鋼23は、更にエネルギーを受けて塑性変形する場合もある。このような連結鋼23の変形により、地震のエネルギーが更に吸収される。従って、この橋脚1では、滑動面における橋脚上部1aと橋脚下部1bとの摩擦、及び連結鋼23の変形により地震の大きなエネルギーを吸収することができ、地震時における橋脚1の崩壊を抑制することができる。また、橋脚上部1aの橋脚下部1bに対する移動量が、連結鋼23により制限されることから、橋脚上部1aが橋脚下部1bから極端にズレて橋脚1が崩壊に至ることを抑制することができる。   In this case, when the pier 1 receives large energy due to the earthquake and the pier 1 is separated vertically with the joint A as a boundary, as shown in FIG. 5, with the joint A as a sliding surface as a boundary, The pier upper part 1a slides horizontally with respect to the pier lower part 1b. Seismic energy is absorbed by the friction caused by this sliding. At this time, the connecting steel 23 repeats elastic expansion and contraction in response to the movement of the pier upper part 1a. Further, the connecting steel 23 may be further plastically deformed by receiving energy. Due to the deformation of the connecting steel 23, the energy of the earthquake is further absorbed. Therefore, this pier 1 can absorb the large energy of the earthquake by the friction between the pier upper part 1a and the pier lower part 1b on the sliding surface and the deformation of the connecting steel 23, and suppress the collapse of the pier 1 at the time of the earthquake. Can do. Moreover, since the moving amount with respect to the pier lower part 1b of the pier upper part 1a is restrict | limited by the connection steel 23, it can suppress that the pier upper part 1a shifts | deviates extremely from the pier lower part 1b, and the pier 1 collapses.

このように、この耐震補強方法によっても、上述した第1実施形態における耐震補強方法と同様の作用効果が奏される。また、2本1組の連結鋼23を、橋脚1の両側面においてX字状に交差させているので、橋脚上部1aが橋脚1の広い幅の方向に水平移動する場合には、連結鋼23がほぼ軸方向に伸縮することになり、連結鋼23が破壊されにくい。なお、本実施形態の耐震補強方法において、上記第1実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。   Thus, also by this seismic reinforcement method, the same effect as the seismic reinforcement method in 1st Embodiment mentioned above is show | played. Further, since the two pairs of connecting steels 23 are crossed in an X shape on both side surfaces of the pier 1, when the pier upper part 1 a moves horizontally in the wide width direction of the pier 1, the connecting steel 23 Will expand and contract substantially in the axial direction, and the connecting steel 23 is not easily destroyed. In addition, in the seismic reinforcement method of this embodiment, about the structure same or equivalent to the said 1st Embodiment, the same code | symbol is attached | subjected to drawing and the description is abbreviate | omitted.

(第3実施形態)
図6に示すように、本実施形態に係る橋脚1の耐震補強方法においては、打ち継ぎ目Aを境とした橋脚上部1aと橋脚下部1bとを予め連結する連結鋼(エネルギー吸収部材)33が取り付けられる。この連結鋼33は、鎹形状をなしており、連結鋼13の両端部は、橋脚上部1a、橋脚下部1bの各側面に予め形成された穴に挿入され、穴に充填されるモルタルによって橋脚上部1a,橋脚下部1bに固定される。このような連結鋼33が、橋脚1の側面全周に多数配列されることで、橋脚上部1aと橋脚下部1bとは、全周に亘って予め上下に連結される。そして、これらの連結鋼33が、上述のように打ち継ぎ目Aを境にして橋脚1が上下に分離された場合に、橋脚上部1aの橋脚下部1bに対する水平移動を制限するための移動制限手段として機能する。なお、この連結鋼33としては、弾塑性部材である鉄筋、PC鋼棒、鋼材、PC鋼線等を好適に用いることができる。
(Third embodiment)
As shown in FIG. 6, in the seismic reinforcement method for the pier 1 according to this embodiment, a connecting steel (energy absorbing member) 33 for connecting the pier upper part 1a and the pier lower part 1b in advance with the joint A as a boundary is attached. It is done. This connecting steel 33 has a bowl shape, and both ends of the connecting steel 13 are inserted into holes formed in advance on the respective sides of the pier upper part 1a and the pier lower part 1b, and the pier upper part is formed by mortar filled in the hole. 1a, fixed to the pier lower part 1b. A large number of such connecting steels 33 are arranged on the entire circumference of the side surface of the pier 1 so that the pier upper part 1a and the pier lower part 1b are connected in advance vertically over the entire circumference. And these connection steels 33 as movement restriction means for restricting the horizontal movement of the pier upper part 1a with respect to the pier lower part 1b when the pier 1 is separated vertically with the joint A as the boundary as described above. Function. As the connecting steel 33, an elastic-plastic member such as a reinforcing bar, a PC steel bar, a steel material, a PC steel wire, or the like can be suitably used.

このような耐震補強方法によっても、第1実施形態と同様に、橋脚上部1cと橋脚下部1dとの摺動に伴う摩擦及び連結鋼33の変形によって地震のエネルギーが吸収され、連結鋼33による橋脚上部1cの移動量制限によって橋脚1が崩壊に至ることが抑制される。また、連結鋼33は、打ち継ぎ目Aの周囲において橋脚1の全周に配置されているので、橋脚上部1aが水平な何れの方向に移動する場合にも、連結鋼33の変形により地震のエネルギー吸収が行われる。なお、本実施形態の耐震補強方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。   According to such a seismic strengthening method, as in the first embodiment, the energy of the earthquake is absorbed by friction caused by sliding between the pier upper part 1 c and the pier lower part 1 d and the deformation of the connecting steel 33, and the pier by the connecting steel 33 is used. The pier 1 is prevented from collapsing due to the movement amount limitation of the upper part 1c. Further, since the connecting steel 33 is arranged around the joint A in the entire circumference of the pier 1, even if the pier upper portion 1 a moves in any horizontal direction, the energy of the earthquake is caused by the deformation of the connecting steel 33. Absorption takes place. In addition, in the seismic reinforcement method of this embodiment, about the structure same or equivalent to said each embodiment, the same code | symbol is attached | subjected to drawing and the description is abbreviate | omitted.

(第4実施形態)
図7に示すように、本実施形態に係る橋脚1の耐震補強方法においては、打ち継ぎ目Aを境とした橋脚上部1aと橋脚下部1bとを予め連結する連結部(エネルギー吸収部材)35が取り付けられる。この連結部35は、短冊形状をなしており、連結鋼13の両端部は、ボルト止め、接着剤による接着、又はボルト止めと接着剤との併用といった固定手段を用いて、橋脚上部1a、橋脚下部1bの各側面にそれぞれ固定される。このような連結部35が、橋脚1の側面全周に多数配列されることで、橋脚上部1aと橋脚下部1bとは、全周に亘って予め上下に連結される。そして、これらの連結部35が、上述のように打ち継ぎ目Aを境にして橋脚1が上下に分離された場合に、橋脚上部1aの橋脚下部1bに対する水平移動を制限するための移動制限手段として機能する。このような連結部35の好適な材料としては、弾性材料である炭素繊維シート、アラミド繊維シート、ガラス繊維シート、ナイロンシート、ポリエステルや、弾塑性材料である鋼板等が挙げられる。
(Fourth embodiment)
As shown in FIG. 7, in the seismic reinforcement method for the pier 1 according to the present embodiment, a connecting portion (energy absorbing member) 35 for connecting the pier upper portion 1a and the pier lower portion 1b in advance with the joint A as a boundary is attached. It is done. The connecting portion 35 has a strip shape, and both ends of the connecting steel 13 are fixed to the pier upper portion 1a and the pier by using fixing means such as bolting, bonding with an adhesive, or a combination of bolting and an adhesive. It is fixed to each side surface of the lower part 1b. A large number of such connecting portions 35 are arranged on the entire circumference of the side surface of the pier 1 so that the pier upper portion 1a and the pier lower portion 1b are connected in advance vertically over the entire circumference. And when these bridge | bridging parts 35 restrict | limit the bridge pier 1 to the pier lower part 1b with respect to the bridge pier lower part 1b when the pier 1 is separated into the upper and lower sides by the joint line A as mentioned above as a movement limitation means. Function. Examples of suitable materials for the connecting portion 35 include carbon fiber sheets that are elastic materials, aramid fiber sheets, glass fiber sheets, nylon sheets, polyester, and steel plates that are elastic-plastic materials.

このような耐震補強方法によっても、第1実施形態と同様に、橋脚上部1cと橋脚下部1dとの摺動に伴う摩擦及び連結部35の変形によって地震のエネルギーが吸収され、連結部35による橋脚上部1cの移動量制限によって橋脚1が崩壊に至ることが抑制される。また、連結部35は、打ち継ぎ目Aの周囲において橋脚1の全周に配置されているので、橋脚上部1aが水平な何れの方向に移動する場合にも、連結部35の変形により地震のエネルギー吸収が行われる。なお、本実施形態の耐震補強方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。   Even in such a seismic reinforcement method, as in the first embodiment, the energy of the earthquake is absorbed by the friction caused by the sliding between the pier upper part 1c and the pier lower part 1d and the deformation of the connecting part 35. The pier 1 is prevented from collapsing due to the movement amount limitation of the upper part 1c. Moreover, since the connection part 35 is arrange | positioned in the circumference | surroundings of the joint seam A around the pier 1, even if the pier upper part 1a moves in any horizontal direction, the energy of the earthquake is generated by the deformation of the connection part 35. Absorption takes place. In addition, in the seismic reinforcement method of this embodiment, about the structure same or equivalent to said each embodiment, the same code | symbol is attached | subjected to drawing and the description is abbreviate | omitted.

(第5実施形態)
図8に示すように、本実施形態に係る橋脚1の耐震補強方法においては、まず、橋脚1の側面に予め断面欠損部(脆弱部)41を形成することにより、その部分に地震時の亀裂を発生し易くする。この断面欠損部41は、水平に延びるV溝として全周に亘って形成される。次に、図9に示すように、この断面欠損部41を覆い、断面欠損部41の上下に亘る位置に、帯状部材13を取り付ける。なお、帯状部材13の構成及び設置の仕方は、上記第1実施形態で説明した通りである。
(Fifth embodiment)
As shown in FIG. 8, in the seismic reinforcement method for a pier 1 according to this embodiment, first, a cross-sectional defect (fragile portion) 41 is formed in advance on the side surface of the pier 1 so that a crack at the time of an earthquake occurs in that portion. It is easy to generate. The cross-sectional defect 41 is formed as a V groove extending horizontally over the entire circumference. Next, as shown in FIG. 9, the belt-like member 13 is attached at a position covering the cross-sectional defect portion 41 and extending above and below the cross-sectional defect portion 41. In addition, the structure of the strip | belt-shaped member 13 and the method of installation are as having demonstrated the said 1st Embodiment.

この場合、橋脚1が地震による大きいエネルギーを受けると、最も脆弱な断面欠損部41に亀裂が発生し、その亀裂が水平方向に成長することで、当該断面欠損部41を含む水平面を境にして橋脚上部1c及び橋脚下部1dとが上下に分離される。このように、橋脚1側面に予め断面欠損部41を設けておくことで、帯状部材13が予め設けられた所望の位置に上記分離を誘発することができる。その後は、第1実施形態と同様に、橋脚上部1cと橋脚下部1dとの摺動に伴う摩擦及び帯状部材13の変形によって地震のエネルギーが吸収され、帯状部材13による橋脚上部1cの移動量制限によって橋脚1が崩壊に至ることが抑制される。   In this case, when the pier 1 receives a large amount of energy due to the earthquake, a crack is generated in the weakest cross-sectional defect portion 41 and the crack grows in the horizontal direction, so that the horizontal plane including the cross-sectional defect portion 41 is a boundary. The pier upper part 1c and the pier lower part 1d are separated vertically. Thus, by providing the cross-sectional defect | deletion part 41 in advance on the pier 1 side surface, the said isolation | separation can be induced in the desired position in which the strip | belt-shaped member 13 was previously provided. Thereafter, as in the first embodiment, the energy of the earthquake is absorbed by friction caused by sliding between the pier upper part 1c and the pier lower part 1d and the deformation of the strip member 13, and the movement amount limitation of the pier upper part 1c by the strip member 13 is limited. This suppresses the pier 1 from collapsing.

また、この耐震補強方法では、滑動面が誘発される断面欠損部41の周囲にのみ予め帯状部材13を設置しているので、橋脚1の側面全部に補強を施す場合よりも、補強用の部材を節約することができ、効率のよい耐震補強を図ることができる。   Moreover, in this seismic reinforcement method, since the band-shaped member 13 is installed in advance only around the cross-sectional defect part 41 where the sliding surface is induced, the reinforcing member is more than the case where the entire side surface of the pier 1 is reinforced. Can be saved, and effective seismic reinforcement can be achieved.

また、この場合、帯状部材13に代えて、図10に示すように、断面欠損部41を境とした橋脚上部1cと橋脚下部1dとを予め連結する連結鋼23が取り付けられてもよい。または、帯状部材13に代えて、図11に示すように、橋脚上部1cと橋脚下部1dとを予め連結する連結鋼33が取り付けられてもよい。または、帯状部材13に代えて、図12に示すように、橋脚上部1cと橋脚下部1dとを予め連結する連結部35が取り付けられてもよい。この場合、連結鋼23、連結鋼33、及び連結部35の構成及び設置の仕方は、それぞれ、上記第2〜第4実施形態で説明した通りである。このような耐震補強方法によっても、上記同様の作用効果が奏される。なお、本実施形態の耐震補強方法において、上記各実施形態と同一又は同等な構成については、図面に同一符号を付し、その説明は省略する。   In this case, instead of the belt-like member 13, as shown in FIG. 10, a connecting steel 23 for connecting the pier upper part 1 c and the pier lower part 1 d in advance with the cross-sectional defect part 41 as a boundary may be attached. Alternatively, instead of the belt-like member 13, as shown in FIG. 11, a connecting steel 33 that connects the pier upper part 1c and the pier lower part 1d in advance may be attached. Alternatively, instead of the belt-like member 13, as shown in FIG. 12, a connecting portion 35 that connects the pier upper portion 1c and the pier lower portion 1d in advance may be attached. In this case, the structure of the connection steel 23, the connection steel 33, and the connection part 35 and the way of installation are as having demonstrated in the said 2nd-4th embodiment, respectively. The same effect as described above can be obtained by such a seismic reinforcement method. In addition, in the seismic reinforcement method of this embodiment, about the structure same or equivalent to said each embodiment, the same code | symbol is attached | subjected to drawing and the description is abbreviate | omitted.

本発明に係る耐震補強方法が適用される橋脚が用いられる橋梁の一例を示す図である。It is a figure which shows an example of the bridge in which the bridge pier to which the seismic reinforcement method concerning this invention is applied is used. 本発明に係る耐震補強方法の第1実施形態を示す橋脚の斜視図である。It is a perspective view of the pier which shows 1st Embodiment of the earthquake-proof reinforcement method which concerns on this invention. 図2の橋脚の地震時の動きを示す側面図である。It is a side view which shows the motion at the time of the earthquake of the pier of FIG. 本発明に係る耐震補強方法の第2実施形態を示す橋脚の斜視図である。It is a perspective view of the pier which shows 2nd Embodiment of the earthquake-proof reinforcement method which concerns on this invention. 図4の橋脚の地震時の動きを示す側面図である。It is a side view which shows the motion at the time of the earthquake of the pier of FIG. 本発明に係る耐震補強方法の第3実施形態を示す橋脚の斜視図である。It is a perspective view of the pier which shows 3rd Embodiment of the earthquake-proof reinforcement method which concerns on this invention. 本発明に係る耐震補強方法の第4実施形態を示す橋脚の斜視図である。It is a perspective view of the pier which shows 4th Embodiment of the earthquake-proof reinforcement method which concerns on this invention. 本発明に係る耐震補強方法の第5実施形態を示す橋脚の斜視図である。It is a perspective view of the pier which shows 5th Embodiment of the earthquake-proof reinforcement method which concerns on this invention. 本発明に係る耐震補強方法の第5実施形態を示す橋脚の斜視図である。It is a perspective view of the pier which shows 5th Embodiment of the earthquake-proof reinforcement method which concerns on this invention. 第5実施形態の変形例を示す橋脚の斜視図である。It is a perspective view of the pier which shows the modification of 5th Embodiment. 第5実施形態の他の変形例を示す橋脚の斜視図である。It is a perspective view of the pier which shows the other modification of 5th Embodiment. 第5実施形態の更に他の変形例を示す橋脚の斜視図である。It is a perspective view of the pier which shows the other modification of 5th Embodiment.

符号の説明Explanation of symbols

1…橋脚(無筋コンクリート構造物)、1a…橋脚上部(弱点部よりも上方の部分)、1b…橋脚下部(弱点部よりも下方の部分)、1c…橋脚上部(弱点部よりも上方の部分)、1d…橋脚下部(弱点部よりも下方の部分)、13…帯状部材(移動制限手段、エネルギー吸収部材)、23…連結鋼(移動制限手段、エネルギー吸収部材)、33…連結鋼(移動制限手段、エネルギー吸収部材)、35…連結部(移動制限手段、エネルギー吸収部材)、41…断面欠損部(弱点部、脆弱部)、A…コンクリートの打ち継ぎ目(弱点部)。   DESCRIPTION OF SYMBOLS 1 ... Pier (unreinforced concrete structure), 1a ... Upper part of pier (above the weak part), 1b ... Lower part of the pier (part below the weak part), 1c ... Upper part of the pier (above the weak part) Part), 1d ... lower part of the pier (the part below the weak point part), 13 ... belt-like member (movement restricting means, energy absorbing member), 23 ... connecting steel (movement restricting means, energy absorbing member), 33 ... connecting steel ( Movement restricting means, energy absorbing member), 35... Connecting part (movement restricting means, energy absorbing member), 41. Cross-sectional defect (weak point, weak part), A ... concrete joint (weak point).

Claims (5)

柱状の無筋コンクリート構造物を補強する耐震補強方法であって、
前記無筋コンクリート構造物において強度が弱い弱点部よりも上方の部分と下方の部分とを連結し相対的な移動を制限する移動制限手段を前記弱点部に設置し、
前記弱点部は、
損傷したときに、前記無筋コンクリート構造物が水平面を境に前記上方の部分と前記下方の部分とに上下に分離する部分であり、
前記移動制限手段の前記弱点部への設置は、前記上方の部分と前記下方の部分との分離前に行われ、
前記移動制限手段は、
前記上方の部分と前記下方の部分との分離後において、前記上方の部分と前記下方の部分との水平方向への相対的な移動を制限する
ことを特徴とする無筋コンクリート構造物の耐震補強方法。
A seismic reinforcement method for reinforcing columnar unreinforced concrete structures,
In the unreinforced concrete structure, a movement limiting means for connecting the upper part and the lower part of the weak point part having weak strength and restricting relative movement is installed in the weak point part,
The weak point is
When damaged, the unreinforced concrete structure is a part that separates up and down into the upper part and the lower part across a horizontal plane,
Installation of the movement restricting means on the weak spot is performed before separation of the upper part and the lower part,
The movement restriction means includes
An unreinforced concrete structure that restricts relative movement in the horizontal direction between the upper part and the lower part after separation of the upper part and the lower part. Seismic reinforcement method for objects.
前記移動制限手段は、
変形によってエネルギーを吸収するエネルギー吸収部材を備えることを特徴とする請求項1に記載の無筋コンクリート構造物の耐震補強方法。
The movement restriction means includes
The method for seismic reinforcement of an unreinforced concrete structure according to claim 1, further comprising an energy absorbing member that absorbs energy by deformation.
前記エネルギー吸収部材は、
前記弱点部の上下に亘る幅で前記無筋コンクリート構造物の周囲に巻き付けられる帯状の部材を有することを特徴とする請求項2に記載の無筋コンクリート構造物の耐震補強方法。
The energy absorbing member is
The method for seismic reinforcement of an unreinforced concrete structure according to claim 2, further comprising a belt-like member wound around the unreinforced concrete structure with a width extending up and down the weak point.
前記弱点部は、前記無筋コンクリート構造物におけるコンクリートの打ち継ぎ目であることを特徴とする請求項1〜3の何れか1項に記載の無筋コンクリート構造物の耐震補強方法。   The method for seismic reinforcement of an unreinforced concrete structure according to any one of claims 1 to 3, wherein the weak point portion is a joint of concrete in the unreinforced concrete structure. 前記弱点部として前記無筋コンクリート構造物に予め脆弱部を設ける工程を更に備えたことを特徴とする請求項1〜3の何れか1項に記載の無筋コンクリート構造物の耐震補強方法。
The method for seismic reinforcement of an unreinforced concrete structure according to any one of claims 1 to 3, further comprising a step of providing a weakened portion in the unreinforced concrete structure in advance as the weak point portion.
JP2006251271A 2006-09-15 2006-09-15 Seismic reinforcement method for unreinforced concrete structures Expired - Fee Related JP4279305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251271A JP4279305B2 (en) 2006-09-15 2006-09-15 Seismic reinforcement method for unreinforced concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251271A JP4279305B2 (en) 2006-09-15 2006-09-15 Seismic reinforcement method for unreinforced concrete structures

Publications (2)

Publication Number Publication Date
JP2008069601A JP2008069601A (en) 2008-03-27
JP4279305B2 true JP4279305B2 (en) 2009-06-17

Family

ID=39291425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251271A Expired - Fee Related JP4279305B2 (en) 2006-09-15 2006-09-15 Seismic reinforcement method for unreinforced concrete structures

Country Status (1)

Country Link
JP (1) JP4279305B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809487B2 (en) * 2011-09-02 2015-11-11 東日本旅客鉄道株式会社 Column structure and column reinforcement method

Also Published As

Publication number Publication date
JP2008069601A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
JP4281010B2 (en) Tunnel structure
JP4992042B2 (en) Precast horizontal beam and pier using it
JP2010031558A (en) Seismic strengthening structure and seismic strengthening method
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP2007063941A (en) Aseismic support structure of boiler
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP4279305B2 (en) Seismic reinforcement method for unreinforced concrete structures
JP2003313815A (en) Rigid connecting structure between steel girder and steel pipe pier
JP5132503B2 (en) Seismic structure and building
JP3882633B2 (en) Steel pipe damper and rocking foundation structure using the same
JP4045504B2 (en) Damping structure
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
JP2020114980A (en) Road bridge pier structure
JP2006077492A (en) Earthquake resisting pier
JP2005083136A (en) Composite structure support
JP3997289B2 (en) Structural member with hysteretic damper
JP4405879B2 (en) Steel girder bridge reinforcement method
JP4950259B2 (en) Construction method of the falling bridge prevention device
KR100448486B1 (en) Apparatus for supporting bridge structures
JP2009068295A (en) Elevated structure
JP2010285804A (en) Floor slab structure
JP4698389B2 (en) Seismic retrofit equipment and seismic retrofit method for buildings
KR102408101B1 (en) Out-of-plane overturning prevention device of masonry partition wall and construction method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees