JP4277514B2 - Laminated wave plate - Google Patents

Laminated wave plate Download PDF

Info

Publication number
JP4277514B2
JP4277514B2 JP2002339157A JP2002339157A JP4277514B2 JP 4277514 B2 JP4277514 B2 JP 4277514B2 JP 2002339157 A JP2002339157 A JP 2002339157A JP 2002339157 A JP2002339157 A JP 2002339157A JP 4277514 B2 JP4277514 B2 JP 4277514B2
Authority
JP
Japan
Prior art keywords
wave plate
phase difference
wavelength
optical axis
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002339157A
Other languages
Japanese (ja)
Other versions
JP2004170853A (en
Inventor
正之 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2002339157A priority Critical patent/JP4277514B2/en
Publication of JP2004170853A publication Critical patent/JP2004170853A/en
Application granted granted Critical
Publication of JP4277514B2 publication Critical patent/JP4277514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は400〜700nmにわたる広帯域な波長域において、1/2波長板として機能する波長依存性の少ない積層波長板に関する。
【0002】
【従来の技術】
近年、パソコン等が表示する画面を直接スクリーンに投写することを可能とする液晶プロジェクタは、プレゼンティション等の用途を目的に広く普及しつつあると共に、小型化、解像度の向上、そして光利用効率の改善などが図られている。
そこで、液晶プロジェクタに偏光変換素子を内蔵し、ハロゲンランプ等を用いた光源が出力する光線を偏光変換して、液晶パネルに入射する光線の偏光を揃え、効率のよい光エネルギーの利用が為されるようになっている。
【0003】
図8に、従来の偏光変換素子の構成例を示す。偏光変換素子1は、プリズムの斜面に光学薄膜2を成膜したプリズムアレイ3の所定の位置に1/2波長板4を備えた構造である。図8の機能を説明すると、ハロゲンランプ等の光源から放出される光線は、S偏光成分とP偏光成分とを含んでおり、偏光変換素子1の入射光としてプリズムアレイ3に入力される。ここで、液晶パネルを使用した画面の投写に必要な光線は、ある一方の偏光成分のみであるため、偏光変換素子1を用いて不要な偏光成分を偏光させて出射光の偏光を揃えることにより、効率よく光のエネルギーを使用できるよう機能させている。
【0004】
そのため、プリズムアレイ3に入力された入射光のP偏光成分は、光学薄膜2を透過して1/2波長板4に入力し、該1/2波長板を通過する際に偏光面が90deg回転して第一の経路としてS偏光として出射する。一方、プリズムアレイ3に入力した入射光に含まれるS偏光成分は、光学薄膜2において反射し、第二の経路としてS偏光を出射する。従って、偏光変換素子1から出力する出射光は、S偏光に揃えられ、効率のよい光エネルギーの利用が図られる。
【0005】
液晶プロジェクタで使用する光源の波長域は、通常、400〜700nm程度であり、偏光変換素子に求められる性能として、光学薄膜及び、1/2波長板夫々が、400〜700nmの広帯域な波長域で光の効率上損失を極限する必要がある。
そこで、以降、上述した偏光変換素子の構成要素である広帯域の1/2波長板について説明する。
【0006】
波長板は、水晶のような結晶材料、或いは樹脂製フィルム等により構成し、それらの複屈折性による常光線と異常光線との速度差を利用した素子であり、両光線間に位相差を作り出し、光の偏光状態を変化させるものである。周知のように、1/2波長板は、入射した光の偏光面を90deg回転させた直線偏光に変換させる機能を有する。更に、従来の波長板は、波長依存性の問題から特定の波長において1/2波長板として機能を果たしていた。
【0007】
図9は、従来の1/2波長板の位相差波長依存性の例を示す図である。図9は、縦軸に位相差を示し、横軸に波長を示したグラフであり、波長の変化に伴う位相差の変化を求めたものである。図9に示すように、従来の1/2波長板は、波長500nm近辺で位相差180degを示し、前後の波長帯においては、所定の傾斜により増加、或いは減少している。
【0008】
【発明が解決しようとする課題】
しかしながら、液晶プロジェクタで使用する偏光変換素子に内蔵する1/2波長板の性能は、波長400〜700nmの広帯域な波長域に対して位相が180degずれる必要があるが、従来の1/2波長板は波長依存性を有しているため、液晶プロジェクタの偏光変換素子として使用することが困難であった。
【0009】
ここで、波長板を広帯域にする手段としては、特許第3174367号により開示され、1/2波長の位相差を与える複数の延伸フィルムを積層してなる積層波長板が提案されているが、特許第3174367号による発明は、波長板の材料として延伸フィルムを使用しており、耐熱性、或いは信頼性に問題があった。そこで、本発明は上述したような問題点を解決するためになされたものであって、波長板の材料として耐熱性、或いは信頼性に優れた水晶基板を用い、波長400〜700nmの波長域において1/2波長板として機能する積層波長板を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の積層波長板は、波長λの光に対して位相差Γ1の第一の波長板と位相差Γ2の第二の波長板とを各々の光学軸が交差するように積層してなり、波長λ1〜λ2(但し、λ1<λ<λ2)の範囲において入射する直線偏光の偏光面を90deg回転させた直線偏光に変換して出射する積層波長板であって、
第一の波長板の材料及び第二の波長板の材料が水晶であり、
入射する直線偏光の偏光面と第一の波長板の光学軸とのなす角度を光学軸方位角θ1とし、入射する直線偏光の偏光面と第二の波長板の光学軸とのなす角度を光学軸方位角θ2としたとき、光学軸方位角θ1と光学軸方位角θ2との関係が、
θ2=θ1+45 ・・・(1)
0<θ1<45 ・・・(2)
を満足し、
波長λを
λ1<λ<(λ2−λ1)/2+λ1 ・・・(3)
の範囲に設定し、位相差Γ1を設定値180degとし、位相差Γ2を設定値180degとし、波長λが変化したときの第一の波長板の位相差のずれ量をΔΓ1とし、波長λが変化したときの前記第二の波長板の位相差のずれ量をΔΓ2としたとき、
ΔΓ1=ΔΓ2 ・・・(4)
を満足するように、光学軸方位角θ1が設定値22.5degからずらして設定されていることを特徴とする。
【0011】
この積層波長板において、或る実施例では、光学軸方位角θ1=25degに設定される。
【0012】
また、本発明の積層波長板は、波長λの光に対して位相差Γ1の第一の波長板と位相差Γ2の第二の波長板とを各々の光学軸が交差するように積層してなり、波長λ1〜λ2(但し、λ1<λ<λ2)の範囲において入射する直線偏光の偏光面を90deg回転させた直線偏光に変換して出射する積層波長板であって、
第一の波長板の材料及び第二の波長板の材料が水晶であり、
入射する直線偏光の偏光面と第一の波長板の光学軸とのなす角度を光学軸方位角θ1とし、入射する直線偏光の偏光面と第二の波長板の光学軸とのなす角度を光学軸方位角θ2としたとき、光学軸方位角θ1と光学軸方位角θ2との関係が、
θ2=θ1+45 ・・・(1)
0<θ1<45 ・・・(2)
を満足し、
波長λを
λ1<λ<(λ2−λ1)/2+λ1 ・・・(3)
の範囲に設定し、位相差Γ1と位相差Γ2との関係が、
Γ1=180deg+a ・・・(5)
Γ2=180deg+b ・・・(6)
b=2×a ・・・(7)
0deg<a≦10deg
を満足すると共に、
波長λが変化したときの第一の波長板の位相差のずれ量をΔΓ1とし、波長λが変化したときの第二の波長板の位相差のずれ量をΔΓ2としたとき、
ΔΓ1=ΔΓ2 ・・・(4)
を満足するように、光学軸方位角θ1が設定値22.5degからずらして設定されていることを特徴とする。
【0013】
この積層波長板において、或る実施例では、光学軸方位角θ1=19degに設定される。
【0014】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
図1は、本発明に係る1/2波長板の一実施形態の構成を示す図であり、図1(a)は、斜視概観図であり、図1(b)は、分解斜視図である。1/2波長板5は、波長420nmに対して位相差Γ1が190deg、及び光学軸方位角θ1が19degの第一の水晶波長板6と、波長420nmに対して位相差Γ2が200deg、及び光学軸方位角θ2が64degの第二の水晶波長板7とを、各々の結晶光学軸8、9が45degの角度で交差するよう積層し、全体として波長400〜700nmの広帯域において1/2波長板として機能するものである。つまり、この1/2波長板5にP偏光成分である直線偏光10が入射すると出射面で位相が180degずれるので、入射光の偏光面を90deg回転させたS偏光成分である直線偏光11として出力する機能を有している。
【0015】
次に、本実施例における1/2波長板5を構成する第一の水晶波長板6、及び第二の水晶波長板7について、光学特性の算出方法について説明する。
数値計算には、以下ミューラ行列を使用し各偏光状態を示すこととする。
【0016】
第一の水晶波長板6のミューラ行列A1は、下記の式(1)で表すことが出来る。
【0017】
【数1】

Figure 0004277514
【0018】
第二の水晶波長板7のミューラ行列A2は、下記の式(2)で表すことが出来る。
【0019】
【数2】
Figure 0004277514
【0020】
1/2波長板5に入射する入射偏光状態をストークスベクトルTとし、下記の式(3)で表す。
【0021】
【数3】
Figure 0004277514
【0022】
1/2波長板5から出射する出射偏光状態をストークスベクトルSとし、下記の式(4)で表す。
【0023】
【数4】
Figure 0004277514
【0024】
以上、式(1)〜(4)より下記の式(5)のミューラ行列式が得られる。
【0025】
【数5】
Figure 0004277514
【0026】
式(5)において、Tを下記の式(6)のような入射偏光状態とすると、
【0027】
【数6】
Figure 0004277514
【0028】
式(5)は、
【0029】
【数7】
Figure 0004277514
【0030】
となり、1/2波長板の位相差Γは、
【0031】
【数8】
Figure 0004277514
と表すことが出来、この式をもとにシミュレーション解析を行う。
【0032】
そこで、上述した式(8)に推定されるθ1、Γ1、θ2、Γ2を入力して演算を行い、最適値を求めるが、組み合わせが莫大であるため、ポアンカレ球上での考察を加え、ある程度の目安を求める。
【0033】
図2は、本発明に係わる1/2波長板のポアンカレ球を示す。そこで、本ポアンカレ球を用いて1/2波長板の波長依存性を相殺する方法を説明する。先ず、設定条件を、
入射偏光面:図2中、水平方向とする。
第一の水晶波長板:位相差Γ1=180deg
光学軸方位角 θ1
第二の水晶波長板:位相差Γ2=180deg
光学軸方位角 θ2
とすると、第一の水晶波長板、第二の水晶波長板を透過する光の偏光状態は、以下のように考察することができる。
【0034】
本1/2波長板の機能は、400〜700nmの帯域にて偏光面を90deg回転させることにあり、これをポアンカレ球にて表すと座標P0(S1、S2、S3)=(1、0、0)の位置からP2(−1、0、0)に移動させることである。そこで、開始点をS1軸と球面の交点P0とする。次に、S1軸を2θ1反時計回りに回転させた位置に回転軸R1を設定した後、R1軸を回転軸として位相差180deg時計方向に回転させ、到達した地点をP1とする。次に、S1軸を2θ2反時計回りに回転させた位置に回転軸R2を設定した後、R2軸を回転軸として位相差180deg時計方向に回転させ、到達した地点をP2とする。
【0035】
この操作方法によると、P2が(−1、0、0)に到達するためには、光学軸方向θ1、及びθ2が次式の条件を満足すればよい。
θ2=θ1+45 ・・・・(9)
0<θ1<45 ・・・・(10)
【0036】
又、波長が変化することは、第一の波長板、及び第二の波長板の位相差が180degからずれることを意味し、この時のずれ量を夫々ΔΓ1、ΔΓ2とすると、上述の操作方法から、
ΔΓ1=ΔΓ2 ・・・・(11)
であれば位相差を相殺出来、P2は常に赤道上に到達する。このことから、第一の波長板と第二の波長板は、同じ波長依存性を有したものである必要がある。
【0037】
又、位相差がずれるとS1座標に影響を与え、これによりP2→P2’となり、赤道上でのずれが生じ出射光偏光面の回転ずれとなる。このずれは、ΔΓ1とΔΓ2が小さいほど影響を少なくすることが出来るので、第一の波長板、及び第二の波長板は、波長依存性が極力小さいものを使用することが望ましい。従って、第一の波長板と第二の波長板は、シングルモードにより機能する波長板を使用することで最も良好な特性を得ることが出来る。
【0038】
以上の結果より、シミュレーション解析を行う際の1/2波長板のファクター及び関係式は、下記の通りとすればよい。
ファクター
第一の波長板光軸方位角:θ1
第一の波長板位相差:Γ1(180deg)
第二の波長板光軸方位角:θ2
第二の波長板位相差:Γ2(180deg)
出射光の偏光面角度:φ(90deg)
【0039】
関係式
θ2=θ1+φ/2
0<θ1<45
ΔΓ1=ΔΓ2
【0040】
次に、偏光変換素子に使用した場合の波長板の性能の評価方法について説明する。この場合の波長板に対する規定としては、通常、S偏光透過率Tsが用いられており、そこで、以下にTsについて説明する。
図3は、本発明に係わる1/2波長板を使用した偏光変換素子の一実施例を示す構成図である。偏光変換素子12は、プリズムの斜面に光学薄膜2を成膜したプリズムアレイ3の所定の位置に1/2波長板5を備えた構造である。
【0041】
そこで、図3において、1/2波長板の位相差が問題となるのは、経路1についてであり、経路1は、光学薄膜のP偏光透過率であるTpと1/2波長板の位相差の両方が影響し、通常、経路1に求められる平均透過率は、93%である。一方、光学薄膜のTpとしては、平均98%が得られており、以上のことから必要な1/2波長板のTsの出射特性についてシミュレーション式を求めると次の通りである。
【0042】
Tsの出射特性は、前述したミューラ行列演算により得られた位相差の値(式8)をジョーンズ行列演算に変換して求める。そこで、1/2波長板の位相差をδ、光学軸方位角をθとすると、下記の式(12)のようなジョーンズベクトル行列式が得られる。
【0043】
【数9】
Figure 0004277514
【0044】
次に、得られた行列解を二乗し強度を求めると下式の通りとなる。
Ts=4sin2θcos2sin2δ/2 ・・・・(13)
【0045】
そこで、光学薄膜のTpを98%とすると、出射光のS偏光成分Tsは下記の通りとなり、
Ts=(4sin2θcos2sin2δ/2)×0.98 ・・・・(14)
Tsの出射特性のシミュレーションは式(14)を用いて行う。
【0046】
次に、(14)式において、位相差と出射光S成分のTsに関する相関を、光学軸方位角をθ=45degとし、位相差δを変化させて求めてみると、Tsは、図4のとおりである。
図4は、本発明における1/2波長板において、位相差と出射光S成分のTsに関する相関を示すグラフである。この結果から、Ts≧0.93を満足するためには、位相差δは156≦δ≦204の範囲にあればよいことがわかる。
【0047】
次に、前述した(8)式、及び(14)式を用いて、1/2波長板の位相差、S偏光透過率についてシミュレーション解析した結果を示す。
先ず、第一段階として前述したポアンカレ球上で考察した結果より、1/2波長板の最適なファクターを推測し、それを用いてシミュレーション解析を行った結果、下記のファクターによる最適なシミュレーション結果が得られ、それを図5に示す。
θ1=25、θ2=70、Γ1=180(λ=490nm)、Γ2=180(λ=490nm)
【0048】
図5は、本発明における1/2波長板において、第一のシミュレーション結果を示すグラフである。図5(a)は、位相差波長依存性を示し、図5(b)は、S偏光透過率波長依存性を示す。波長依存性は、500nm近辺の短波長側において変化が大きいため、シミュレーションは短波長側に重きを置いて行った。図5に示す如く従来の1/2波長板と比べ大幅な広帯域化がなされた。
【0049】
次に、液晶プロジェクタに使用されている光源であるハロゲンランプは、400〜700nmの波長域を有すると共に、±5degの光の広がりを持っており、液晶プロジェクタに使用する1/2波長板は、光の入射角度が変化しても位相差が変化しないようにする必要性がある。そこで、前述の第一のシミュレーションにおいて、光の入射光が±5deg変化した場合のシミュレーションを行い、その結果を図6に示す。
【0050】
図6は、本発明における1/2波長板において第二のシミュレーション結果を示すグラフであり、図6(a)は、位相差波長依存性を示し、図6(b)は、S偏光透過率波長依存性を示す。又、図6(a)において、曲線13は入射角0deg、曲線14は入射角+5deg、曲線15は入射角−5degの場合を示し、図6(b)において、曲線16は入射角0deg、曲線17は入射角+5deg、曲線18は入射角−5degの場合を示す。図6に示すように、波長依存性は、500nm〜550nmの波長域で劣化しているが、光源であるハロゲンランプの波長域は、400nm〜700nmであるものの特に波長550nm付近の光が80%を占めるので、この波長における波長依存性の劣化を少なくすることが必要である。
【0051】
入射光の角度依存性を小さくするためには、第一の水晶波長板、及び第二の水晶波長板の角度依存性を夫々小さくする必要がある。水晶においては、Y−cutが角度依存性が最小であるが、水晶基板の厚みを数十ミクロンにする必要があり、水晶基板の加工の面から現実的ではない。そこで、水晶波長板の量産を行うことを前提に水晶基板の厚みを0.1tと設定すると、水晶基板の原石からの切り出し角度βは、27degZとすればよい。
【0052】
一方、入射光の角度依存性が劣化する原因としては、角度が変化した際にΔΓ1=ΔΓ2の条件を満たすことが出来なくなるためである。これは、2枚の水晶波長板の光軸方位角が異なるため、角度を変化させたときの位相差変化量が異なってしまうためである。そこで、この位相変化量が異ならないように、1/2波長板のファクターの最適値をシミュレーション解析を行って求め、下記に示すような最適な1/2波長板のファクターを得た。
θ1=19、θ2=64、Γ1=190(λ=420nm)、Γ2=200(λ=420nm)
【0053】
そこで、このファクターを用いた1/2波長板の位相差波長依存性とS偏光透過率波長依存性を図7に示す。
図7は、本発明に係わる1/2波長板の一実施例における波長依存性を示すグラフであり、図7(a)は、位相差波長依存性を示し、図7(b)は、S偏光透過率波長依存性を示す。又、図7(a)において、曲線19は入射角0deg、曲線20は入射角+5deg、曲線21は入射角−5degの場合を示し、図7(b)において、曲線22は入射角0deg、曲線23は入射角+5deg、曲線24は入射角−5degの場合を示す。本実施例に示すようなファクターを1/2波長板に適用することにより、波長550nm近辺で波長依存性に優れた1/2波長板を構成することができた。従って、前述したように所定の計算式によりシミュレーション解析を繰り返すことにより、400〜700nmの波長域において所望の性能を有する1/2波長板の構成を得ることが可能となった。
【0054】
【発明の効果】
上述したように、請求項1乃至3記載の発明は、所定の第一の波長板と第二の波長板とを積層することにより、波長400nmから700nmの波長域にわたって1/2波長板としての機能を有しており、1/2波長板を液晶プロジェクタの偏光変換素子等に用いる上で、著しい効果を発揮することが可能となる。
【0055】
請求項4記載の発明は、第一の波長板と第二の波長板を水晶基板により構成しており、耐熱性、或いは信頼性に優れた1/2波長板を提供する上で著しい効果を発揮することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る1/2波長板の一実施形態の構成を示す図である。
【図2】本発明に係わる1/2波長板のポアンカレ球を示す。
【図3】本発明に係わる1/2波長板を使用した偏光変換素子の一実施例を示す構成図である。
【図4】本発明における1/2波長板において、位相差と出射光S成分のTsに関する相関を示すグラフである。
【図5】本発明における1/2波長板において、第一のシミュレーション結果を示すグラフである。
【図6】本発明における1/2波長板において第二のシミュレーション結果を示すグラフである。
【図7】本発明に係わる1/2波長板の一実施例における波長依存性を示すグラフである。
【図8】従来の偏光変換素子の構成を示す図である。
【図9】従来の1/2波長板の位相差波長依存性を示すグラフである。
【符号の説明】
1・・偏光変換素子、 2・・光学薄膜、
3・・プリズムアレイ、 4・・1/2波長板、
5・・1/2波長板、 6・・第一の水晶波長板、
7・・第二の水晶波長板、 8・・結晶光学軸、
9・・結晶光学軸、 10・・直線偏光、
11・・直線偏光、 12・・偏光変換素子、
13・・入射角0deg波長依存性曲線、
14・・入射角+5deg波長依存性曲線、
15・・入射角−5deg波長依存性曲線、
16・・入射角0deg波長依存性曲線、
17・・入射角+5deg波長依存性曲線、
18・・入射角−5deg波長依存性曲線、
19・・入射角0deg波長依存性曲線、
20・・入射角+5deg波長依存性曲線、
21・・入射角−5deg波長依存性曲線、
22・・入射角0deg波長依存性曲線、
23・・入射角+5deg波長依存性曲線、
24・・入射角−5deg波長依存性曲線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated wavelength plate having a small wavelength dependency that functions as a half-wave plate in a wide wavelength range of 400 to 700 nm.
[0002]
[Prior art]
In recent years, liquid crystal projectors capable of directly projecting a screen displayed on a personal computer or the like to a screen are becoming widespread for the purpose of presentations, etc., and are also reduced in size, improved in resolution, and used in light efficiency. Improvements are being made.
Therefore, a polarization conversion element is built in the liquid crystal projector, and the light beam output from the light source using a halogen lamp or the like is converted into a polarized light beam so that the polarization of the light beam incident on the liquid crystal panel is aligned. It has become so.
[0003]
FIG. 8 shows a configuration example of a conventional polarization conversion element. The polarization conversion element 1 has a structure including a half-wave plate 4 at a predetermined position of a prism array 3 in which an optical thin film 2 is formed on the slope of a prism. 8 will be described. A light beam emitted from a light source such as a halogen lamp includes an S-polarized component and a P-polarized component, and is input to the prism array 3 as incident light of the polarization conversion element 1. Here, since the light beam necessary for the projection of the screen using the liquid crystal panel is only one polarization component, the polarization component 1 is used to polarize the unnecessary polarization component to align the polarization of the outgoing light. , Functioning to use light energy efficiently.
[0004]
Therefore, the P-polarized component of incident light input to the prism array 3 is transmitted through the optical thin film 2 and input to the half-wave plate 4, and the polarization plane rotates 90 degrees when passing through the half-wave plate. Then, it is emitted as S-polarized light as the first path. On the other hand, the S-polarized component contained in the incident light input to the prism array 3 is reflected by the optical thin film 2 and emits S-polarized light as the second path. Therefore, the outgoing light output from the polarization conversion element 1 is aligned with the S-polarized light, and efficient use of light energy is achieved.
[0005]
The wavelength range of a light source used in a liquid crystal projector is usually about 400 to 700 nm. As performance required for a polarization conversion element, an optical thin film and a half-wave plate are each in a wide wavelength range of 400 to 700 nm. It is necessary to limit the loss in light efficiency.
Therefore, hereinafter, a broadband half-wave plate which is a component of the above-described polarization conversion element will be described.
[0006]
A wave plate is an element made of a crystal material such as quartz, or a resin film, and uses the speed difference between ordinary and extraordinary rays due to their birefringence, and creates a phase difference between the two rays. This changes the polarization state of light. As is well known, the half-wave plate has a function of converting linearly polarized light obtained by rotating the polarization plane of incident light by 90 degrees. Further, the conventional wave plate has been functioning as a half wave plate at a specific wavelength due to the problem of wavelength dependency.
[0007]
FIG. 9 is a diagram illustrating an example of the retardation wavelength dependency of a conventional half-wave plate. FIG. 9 is a graph in which the vertical axis indicates the phase difference and the horizontal axis indicates the wavelength, and the change in the phase difference accompanying the change in the wavelength is obtained. As shown in FIG. 9, the conventional half-wave plate shows a phase difference of 180 deg in the vicinity of a wavelength of 500 nm, and increases or decreases by a predetermined inclination in the front and rear wavelength bands.
[0008]
[Problems to be solved by the invention]
However, the performance of the half-wave plate incorporated in the polarization conversion element used in the liquid crystal projector needs to be 180 degrees out of phase with respect to a wide wavelength range of 400 to 700 nm. Has a wavelength dependency, so it has been difficult to use as a polarization conversion element of a liquid crystal projector.
[0009]
Here, as a means for widening the wavelength plate, disclosed in Japanese Patent No. 3174367, a laminated wave plate formed by laminating a plurality of stretched films giving a half-wave phase difference has been proposed. The invention according to No. 3174367 uses a stretched film as the material of the wave plate and has a problem in heat resistance or reliability. Therefore, the present invention has been made to solve the above-described problems, and uses a quartz substrate having excellent heat resistance or reliability as a material of the wavelength plate, and in a wavelength range of 400 to 700 nm. An object of the present invention is to provide a laminated wave plate that functions as a half-wave plate.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the laminated wave plate of the present invention crosses the first wave plate having the phase difference Γ1 and the second wave plate having the phase difference Γ2 with respect to the light having the wavelength λ. A laminated wave plate that is converted into linearly polarized light obtained by rotating the polarization plane of linearly polarized light that is incident in the range of wavelengths λ1 to λ2 (where λ1 <λ <λ2), and rotated by 90 deg. ,
The material of the first wave plate and the material of the second wave plate are quartz,
The angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the first wave plate is defined as the optical axis azimuth angle θ1, and the angle formed between the incident plane of the linearly polarized light and the optical axis of the second wave plate is optical. Assuming that the axial azimuth angle θ2, the relationship between the optical axis azimuth angle θ1 and the optical axis azimuth angle θ2 is
θ2 = θ1 + 45 (1)
0 <θ1 <45 (2)
Satisfied,
The wavelength λ is changed to λ1 <λ <(λ2-λ1) / 2 + λ1 (3)
The phase difference Γ1 is set to a set value 180 deg, the phase difference Γ2 is set to a set value 180 deg, the amount of phase difference deviation of the first wave plate when the wavelength λ is changed is ΔΓ1, and the wavelength λ is changed. When the amount of phase difference deviation of the second wave plate is ΔΓ2,
ΔΓ1 = ΔΓ2 (4)
The optical axis azimuth angle θ1 is set so as to be shifted from the set value 22.5 deg so as to satisfy the above.
[0011]
In this laminated wave plate, in one embodiment, the optical axis azimuth angle θ1 is set to 25 deg.
[0012]
The laminated wave plate of the present invention is formed by laminating a first wave plate having a phase difference Γ1 and a second wave plate having a phase difference Γ2 with respect to light having a wavelength λ so that their optical axes intersect each other. A laminated wave plate for converting and emitting linearly polarized light obtained by rotating the polarization plane of linearly polarized light that is incident in the range of wavelengths λ1 to λ2 (where λ1 <λ <λ2),
The material of the first wave plate and the material of the second wave plate are quartz,
The angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the first wave plate is defined as the optical axis azimuth angle θ1, and the angle formed between the incident plane of the linearly polarized light and the optical axis of the second wave plate is optical. Assuming that the axial azimuth angle θ2, the relationship between the optical axis azimuth angle θ1 and the optical axis azimuth angle θ2 is
θ2 = θ1 + 45 (1)
0 <θ1 <45 (2)
Satisfied,
The wavelength λ is changed to λ1 <λ <(λ2−λ1) / 2 + λ1 (3)
The relationship between the phase difference Γ1 and the phase difference Γ2 is
Γ1 = 180 deg + a (5)
Γ2 = 180 deg + b (6)
b = 2 × a (7)
0deg <a ≦ 10deg
As well as
When the shift amount of the phase difference of the first wave plate when the wavelength λ changes is ΔΓ1, and the shift amount of the phase difference of the second wave plate when the wavelength λ changes is ΔΓ2.
ΔΓ1 = ΔΓ2 (4)
The optical axis azimuth angle θ1 is set so as to be shifted from the set value 22.5 deg so as to satisfy the above.
[0013]
In this laminated wave plate, in one embodiment, the optical axis azimuth θ1 = 19 deg is set.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
FIG. 1 is a diagram showing a configuration of an embodiment of a half-wave plate according to the present invention, FIG. 1 (a) is a perspective overview, and FIG. 1 (b) is an exploded perspective view. . The half-wave plate 5 has a phase difference Γ1 of 190 deg with respect to a wavelength of 420 nm and an optical axis azimuth angle θ1 of 19 deg, and a phase difference Γ2 with respect to a wavelength of 420 nm of 200 deg. A second quartz wave plate 7 having an axial azimuth angle θ2 of 64 deg is laminated so that the crystal optical axes 8 and 9 intersect at an angle of 45 deg. It functions as. That is, when the linearly polarized light 10 that is the P-polarized component is incident on the half-wave plate 5, the phase is shifted by 180 deg at the exit surface, so that it is output as the linearly polarized light 11 that is the S-polarized component obtained by rotating the polarization plane of the incident light by 90 deg. It has a function to do.
[0015]
Next, a method for calculating the optical characteristics of the first quartz wavelength plate 6 and the second quartz wavelength plate 7 constituting the half-wave plate 5 in this embodiment will be described.
In the numerical calculation, the following Mueller matrix is used to indicate each polarization state.
[0016]
The Mueller matrix A1 of the first quartz wave plate 6 can be expressed by the following equation (1).
[0017]
[Expression 1]
Figure 0004277514
[0018]
The Mueller matrix A2 of the second quartz wave plate 7 can be expressed by the following equation (2).
[0019]
[Expression 2]
Figure 0004277514
[0020]
The incident polarization state incident on the half-wave plate 5 is a Stokes vector T and is expressed by the following equation (3).
[0021]
[Equation 3]
Figure 0004277514
[0022]
The outgoing polarization state emitted from the half-wave plate 5 is a Stokes vector S and is expressed by the following equation (4).
[0023]
[Expression 4]
Figure 0004277514
[0024]
As described above, the Mueller determinant of the following equation (5) is obtained from the equations (1) to (4).
[0025]
[Equation 5]
Figure 0004277514
[0026]
In Equation (5), when T is an incident polarization state as in Equation (6) below,
[0027]
[Formula 6]
Figure 0004277514
[0028]
Equation (5) is
[0029]
[Expression 7]
Figure 0004277514
[0030]
The phase difference Γ of the half-wave plate is
[0031]
[Equation 8]
Figure 0004277514
The simulation analysis is performed based on this formula.
[0032]
Therefore, θ1, Γ1, θ2, and Γ2 estimated by the above equation (8) are inputted to perform calculation and an optimum value is obtained. However, since the combinations are enormous, consideration on the Poincare sphere is added to some extent. Ask for a guide.
[0033]
FIG. 2 shows a Poincare sphere of a half-wave plate according to the present invention. Therefore, a method for canceling the wavelength dependence of the half-wave plate using the present Poincare sphere will be described. First, the setting conditions
Incident polarization plane: horizontal direction in FIG.
First quartz wave plate: phase difference Γ1 = 180 deg
Optical axis azimuth θ1
Second quartz wave plate: phase difference Γ2 = 180 deg
Optical axis azimuth θ2
Then, the polarization state of the light transmitted through the first quartz wave plate and the second quartz wave plate can be considered as follows.
[0034]
The function of this half-wave plate is to rotate the polarization plane by 90 deg in the band of 400 to 700 nm, and this can be expressed by Poincare sphere with coordinates P0 (S1, S2, S3) = (1, 0, 0) is moved to P2 (-1, 0, 0). Therefore, the starting point is the intersection point P0 between the S1 axis and the spherical surface. Next, after setting the rotation axis R1 to the position where the S1 axis is rotated counterclockwise by 2θ1, the phase difference is rotated 180 deg clockwise with the R1 axis as the rotation axis, and the point reached is defined as P1. Next, after setting the rotation axis R2 at a position where the S1 axis is rotated counterclockwise by 2θ2, the phase difference is rotated clockwise by 180 deg using the R2 axis as a rotation axis, and the point reached is defined as P2.
[0035]
According to this operation method, in order for P2 to reach (−1, 0, 0), the optical axis directions θ1 and θ2 only need to satisfy the following conditions.
θ2 = θ1 + 45 (9)
0 <θ1 <45 (10)
[0036]
Further, the change of the wavelength means that the phase difference between the first wave plate and the second wave plate is shifted from 180 deg. When the shift amounts at this time are ΔΓ1 and ΔΓ2, respectively, the above-described operation method. From
ΔΓ1 = ΔΓ2 (11)
If so, the phase difference can be canceled out, and P2 always reaches the equator. For this reason, the first wave plate and the second wave plate need to have the same wavelength dependency.
[0037]
Further, if the phase difference is shifted, the S1 coordinate is affected, whereby P2 → P2 ′, and a shift on the equator occurs, resulting in a rotational shift of the outgoing light polarization plane. Since this shift can reduce the influence as ΔΓ1 and ΔΓ2 are smaller, it is desirable to use the first wave plate and the second wave plate having the smallest wavelength dependency. Therefore, the first wave plate and the second wave plate can obtain the best characteristics by using a wave plate that functions in a single mode.
[0038]
From the above results, the factor and the relational expression of the half-wave plate when performing the simulation analysis may be as follows.
Factor first wave plate optical axis azimuth: θ1
First wave plate phase difference: Γ1 (180 deg)
Second wave plate optical axis azimuth: θ2
Second wave plate phase difference: Γ2 (180 deg)
Polarization angle of outgoing light: φ (90 deg)
[0039]
Relational expression θ2 = θ1 + φ / 2
0 <θ1 <45
ΔΓ1 = ΔΓ2
[0040]
Next, a method for evaluating the performance of a wave plate when used in a polarization conversion element will be described. In this case, the S-polarized light transmittance Ts is usually used as a rule for the wave plate. Therefore, Ts will be described below.
FIG. 3 is a block diagram showing an embodiment of a polarization conversion element using a half-wave plate according to the present invention. The polarization conversion element 12 has a structure in which a half-wave plate 5 is provided at a predetermined position of a prism array 3 in which an optical thin film 2 is formed on the slope of a prism.
[0041]
Therefore, in FIG. 3, the phase difference of the half-wave plate becomes a problem for the path 1, and the path 1 is the phase difference between Tp which is the P-polarized light transmittance of the optical thin film and the half-wave plate. In general, the average transmittance required for the path 1 is 93%. On the other hand, as the Tp of the optical thin film, an average of 98% is obtained. From the above, the simulation formula for the required Ts emission characteristics of the half-wave plate is as follows.
[0042]
The emission characteristic of Ts is obtained by converting the phase difference value (Equation 8) obtained by the aforementioned Mueller matrix calculation into Jones matrix calculation. Therefore, when the phase difference of the half-wave plate is δ and the optical axis azimuth is θ, a Jones vector determinant as shown in the following equation (12) is obtained.
[0043]
[Equation 9]
Figure 0004277514
[0044]
Next, when the obtained matrix solution is squared to obtain the intensity, the following equation is obtained.
Ts = 4sin 2 θcos 2 sin 2 δ / 2 (13)
[0045]
Therefore, if the Tp of the optical thin film is 98%, the S-polarized component Ts of the emitted light is as follows:
Ts = (4sin 2 θcos 2 sin 2 δ / 2) × 0.98 (14)
The simulation of the emission characteristic of Ts is performed using Expression (14).
[0046]
Next, in equation (14), when the correlation between the phase difference and Ts of the emitted light S component is determined by setting the optical axis azimuth angle to θ = 45 deg and changing the phase difference δ, Ts is shown in FIG. It is as follows.
FIG. 4 is a graph showing the correlation between the phase difference and Ts of the outgoing light S component in the half-wave plate according to the present invention. From this result, in order to satisfy Ts ≧ 0.93, it is understood that the phase difference δ only needs to be in the range of 156 ≦ δ ≦ 204.
[0047]
Next, the results of simulation analysis of the phase difference of the half-wave plate and the S-polarized light transmittance using the above-described equations (8) and (14) are shown.
First, from the results discussed on the Poincare sphere described above as the first step, the optimum factor of the half-wave plate is estimated, and simulation analysis is performed using it. As a result, the optimum simulation result based on the following factors is obtained. Which is shown in FIG.
θ1 = 25, θ2 = 70, Γ1 = 180 (λ = 490 nm), Γ2 = 180 (λ = 490 nm)
[0048]
FIG. 5 is a graph showing a first simulation result in the half-wave plate according to the present invention. FIG. 5A shows the retardation wavelength dependency, and FIG. 5B shows the S polarization transmittance wavelength dependency. Since the wavelength dependence varies greatly on the short wavelength side near 500 nm, the simulation was performed with emphasis on the short wavelength side. As shown in FIG. 5, the bandwidth was significantly increased compared to the conventional half-wave plate.
[0049]
Next, a halogen lamp, which is a light source used in a liquid crystal projector, has a wavelength range of 400 to 700 nm and a light spread of ± 5 deg. There is a need to prevent the phase difference from changing even if the incident angle of light changes. Therefore, in the first simulation described above, a simulation is performed when the incident light changes by ± 5 degrees, and the result is shown in FIG.
[0050]
FIG. 6 is a graph showing the second simulation result in the half-wave plate according to the present invention, FIG. 6 (a) shows the retardation wavelength dependency, and FIG. 6 (b) shows the S-polarized light transmittance. Shows wavelength dependence. Further, in FIG. 6A, a curve 13 shows an incident angle of 0 deg, a curve 14 shows an incident angle of +5 deg, and a curve 15 shows an incident angle of -5 deg. In FIG. 6B, a curve 16 shows an incident angle of 0 deg and a curve. 17 shows an incident angle of +5 deg, and a curve 18 shows an incident angle of -5 deg. As shown in FIG. 6, the wavelength dependency is degraded in the wavelength range of 500 nm to 550 nm, but the wavelength range of the halogen lamp as the light source is 400 nm to 700 nm, but particularly light near the wavelength of 550 nm is 80%. Therefore, it is necessary to reduce the deterioration of the wavelength dependence at this wavelength.
[0051]
In order to reduce the angle dependency of incident light, it is necessary to reduce the angle dependency of the first quartz wavelength plate and the second quartz wavelength plate. In quartz, Y-cut has the smallest angle dependency, but the thickness of the quartz substrate needs to be several tens of microns, which is not practical from the viewpoint of processing the quartz substrate. Therefore, if the thickness of the quartz substrate is set to 0.1 t on the assumption that the quartz wavelength plate is mass-produced, the cut-out angle β from the raw quartz substrate may be 27 degZ.
[0052]
On the other hand, the reason why the angle dependency of incident light deteriorates is that the condition of ΔΓ1 = ΔΓ2 cannot be satisfied when the angle changes. This is because the optical axis azimuth angles of the two quartz wavelength plates are different, so that the amount of change in phase difference when the angle is changed is different. Therefore, the optimum value of the factor of the half-wave plate was obtained by simulation analysis so that the amount of phase change did not differ, and the optimum factor of the half-wave plate as shown below was obtained.
θ1 = 19, θ2 = 64, Γ1 = 190 (λ = 420 nm), Γ2 = 200 (λ = 420 nm)
[0053]
Accordingly, FIG. 7 shows the retardation wavelength dependency and S-polarized light transmittance wavelength dependency of a half-wave plate using this factor.
FIG. 7 is a graph showing the wavelength dependence in one embodiment of the half-wave plate according to the present invention, FIG. 7 (a) shows the phase difference wavelength dependence, and FIG. The polarization transmittance wavelength dependency is shown. Further, in FIG. 7A, a curve 19 shows an incident angle of 0 deg, a curve 20 shows an incident angle of +5 deg, and a curve 21 shows an incident angle of -5 deg. In FIG. 7B, a curve 22 shows an incident angle of 0 deg and a curve. Reference numeral 23 denotes an incident angle of +5 deg, and curve 24 denotes an incident angle of -5 deg. By applying the factor as shown in this example to the half-wave plate, a half-wave plate excellent in wavelength dependency in the vicinity of the wavelength of 550 nm could be configured. Therefore, by repeating the simulation analysis using a predetermined calculation formula as described above, it is possible to obtain a half-wave plate configuration having desired performance in the wavelength region of 400 to 700 nm.
[0054]
【The invention's effect】
As described above, the first to third aspects of the invention provide a ½ wavelength plate over a wavelength range from 400 nm to 700 nm by laminating the predetermined first wave plate and the second wave plate. It has a function, and when the half-wave plate is used for a polarization conversion element of a liquid crystal projector, a remarkable effect can be exhibited.
[0055]
The invention according to claim 4 comprises the first wave plate and the second wave plate made of a quartz substrate, and has a remarkable effect in providing a half wave plate excellent in heat resistance or reliability. It becomes possible to demonstrate.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an embodiment of a half-wave plate according to the present invention.
FIG. 2 shows a Poincare sphere of a half-wave plate according to the present invention.
FIG. 3 is a block diagram showing an embodiment of a polarization conversion element using a half-wave plate according to the present invention.
FIG. 4 is a graph showing a correlation between a phase difference and Ts of outgoing light S component in a half-wave plate according to the present invention.
FIG. 5 is a graph showing a first simulation result in the half-wave plate according to the present invention.
FIG. 6 is a graph showing a second simulation result in the half-wave plate according to the present invention.
FIG. 7 is a graph showing wavelength dependency in an example of a half-wave plate according to the present invention.
FIG. 8 is a diagram showing a configuration of a conventional polarization conversion element.
FIG. 9 is a graph showing the phase difference wavelength dependence of a conventional half-wave plate.
[Explanation of symbols]
1 .... Polarization conversion element, 2 .... Optical thin film,
3. Prism array, 4. Half wave plate,
5 ・ ・ 1/2 wave plate, 6 ・ ・ First crystal wave plate,
7 ・ ・ Second crystal wave plate, 8 ・ ・ Crystal optical axis,
9. ・ Crystal optical axis, 10. ・ Linear polarization,
11. Linear polarization, 12. Polarization conversion element,
13 .. Incident angle 0 deg wavelength dependence curve,
14 .. Incident angle + 5 deg wavelength dependence curve,
15. Incident angle-5deg wavelength dependence curve,
16 .. Incident angle 0 deg wavelength dependence curve,
17. Incident angle + 5 deg wavelength dependence curve,
18 .. Incident angle-5 deg wavelength dependence curve,
19 .. Incident angle 0 deg wavelength dependence curve,
20 .. Incident angle + 5 deg wavelength dependence curve,
21 .. Incident angle-5 deg wavelength dependence curve,
22 .. Incident angle 0 deg wavelength dependence curve,
23 .. Incident angle + 5 deg wavelength dependency curve,
24 .. Incident angle-5 deg wavelength dependence curve

Claims (4)

波長λの光に対して位相差Γ1の第一の波長板と位相差Γ2の第二の波長板とを各々の光学軸が交差するように積層してなり、
波長λ1〜λ2(但し、λ1<λ<λ2)の範囲において入射する直線偏光の偏光面を90deg回転させた直線偏光に変換して出射する積層波長板であって、
前記第一の波長板の材料及び前記第二の波長板の材料が水晶であり、
前記入射する直線偏光の偏光面と前記第一の波長板の光学軸とのなす角度を光学軸方位角θ1とし、
前記入射する直線偏光の偏光面と前記第二の波長板の光学軸とのなす角度を光学軸方位角θ2としたとき、前記光学軸方位角θ1と前記光学軸方位角θ2との関係が、
θ2=θ1+45 ・・・(1)
0<θ1<45 ・・・(2)
を満足し、
前記波長λを
λ1<λ<(λ2−λ1)/2+λ1 ・・・(3)
の範囲に設定し、
前記位相差Γ1を設定値180degとし、
前記位相差Γ2を設定値180degとし、
前記波長λが変化したときの前記第一の波長板の位相差のずれ量をΔΓ1とし、
前記波長λが変化したときの前記第二の波長板の位相差のずれ量をΔΓ2としたとき、
ΔΓ1=ΔΓ2 ・・・(4)
を満足するように、
前記光学軸方位角θ1が設定値22.5degからずらして設定されていることを特徴とする積層波長板。
A first wave plate having a phase difference Γ1 and a second wave plate having a phase difference Γ2 are stacked so that the optical axes intersect each other with respect to light having a wavelength λ.
A laminated wave plate for converting and emitting linearly polarized light obtained by rotating the polarization plane of linearly polarized light incident in the range of wavelengths λ1 to λ2 (where λ1 <λ <λ2) to 90 deg;
The material of the first wave plate and the material of the second wave plate are quartz,
An angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the first wave plate is an optical axis azimuth angle θ1,
When the angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the second wave plate is an optical axis azimuth angle θ2, the relationship between the optical axis azimuth angle θ1 and the optical axis azimuth angle θ2 is
θ2 = θ1 + 45 (1)
0 <θ1 <45 (2)
Satisfied,
The wavelength λ is changed to λ1 <λ <(λ2−λ1) / 2 + λ1 (3)
To the range of
The phase difference Γ1 is set to a set value of 180 deg.
The phase difference Γ2 is set to a set value of 180 deg.
A shift amount of the phase difference of the first wave plate when the wavelength λ is changed is ΔΓ1,
When the shift amount of the phase difference of the second wave plate when the wavelength λ changes is ΔΓ2,
ΔΓ1 = ΔΓ2 (4)
To satisfy
The laminated wave plate, wherein the optical axis azimuth angle θ1 is set to be shifted from a set value of 22.5 deg.
請求項1において、
θ1=25deg
であることを特徴とする積層波長板。
In claim 1,
θ1 = 25deg
A laminated wave plate, wherein
波長λの光に対して位相差Γ1の第一の波長板と位相差Γ2の第二の波長板とを各々の光学軸が交差するように積層してなり、A first wave plate having a phase difference Γ1 and a second wave plate having a phase difference Γ2 are stacked so that the optical axes intersect each other with respect to light having a wavelength λ.
波長λ1〜λ2(但し、λ1<λ<λ2)の範囲において入射する直線偏光の偏光面をThe plane of polarization of linearly polarized light incident in the range of wavelengths λ1 to λ2 (where λ1 <λ <λ2)
90deg回転させた直線偏光に変換して出射する積層波長板であって、A laminated wave plate that converts into 90-degree rotated linearly polarized light and emits it, 前記第一の波長板の材料及び前記第二の波長板の材料が水晶であり、The material of the first wave plate and the material of the second wave plate are quartz,
前記入射する直線偏光の偏光面と前記第一の波長板の光学軸とのなす角度を光学軸方位角θ1とし、An angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the first wave plate is an optical axis azimuth angle θ1,
前記入射する直線偏光の偏光面と前記第二の波長板の光学軸とのなす角度を光学軸方位角θ2としたとき、前記光学軸方位角θ1と前記光学軸方位角θ2との関係が、When the angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the second wave plate is an optical axis azimuth angle θ2, the relationship between the optical axis azimuth angle θ1 and the optical axis azimuth angle θ2 is
θ2=θ1+45 ・・・(1)θ2 = θ1 + 45 (1)
0<θ1<45 ・・・(2)0 <θ1 <45 (2)
を満足し、Satisfied,
前記波長λをThe wavelength λ
λ1<λ<(λ2−λ1)/2+λ1 ・・・(3)λ1 <λ <(λ2-λ1) / 2 + λ1 (3)
の範囲に設定し、To the range of
前記位相差Γ1と前記位相差Γ2との関係が、The relationship between the phase difference Γ1 and the phase difference Γ2 is
Γ1=180deg+a ・・・(5)Γ1 = 180 deg + a (5)
Γ2=180deg+b ・・・(6)Γ2 = 180 deg + b (6)
b=2×a ・・・(7)b = 2 × a (7)
0deg<a≦10deg0deg <a ≦ 10deg
を満足すると共に、As well as
前記波長λが変化したときの前記第一の波長板の位相差のずれ量をΔΓ1とし、A shift amount of the phase difference of the first wave plate when the wavelength λ is changed is ΔΓ1,
前記波長λが変化したときの前記第二の波長板の位相差のずれ量をΔΓ2としたとき、When the shift amount of the phase difference of the second wave plate when the wavelength λ changes is ΔΓ2,
ΔΓ1=ΔΓ2 ・・・(4)ΔΓ1 = ΔΓ2 (4)
を満足するように、To satisfy
前記光学軸方位角θ1が設定値22.5degからずらして設定されていることを特徴とする積層波長板。The laminated wave plate, wherein the optical axis azimuth angle θ1 is set to be shifted from a set value of 22.5 deg.
請求項3において、In claim 3,
θ1=19degθ1 = 19deg
であることを特徴とする積層波長板。A laminated wave plate, wherein
JP2002339157A 2002-11-22 2002-11-22 Laminated wave plate Expired - Fee Related JP4277514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339157A JP4277514B2 (en) 2002-11-22 2002-11-22 Laminated wave plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339157A JP4277514B2 (en) 2002-11-22 2002-11-22 Laminated wave plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009000451A Division JP4877612B2 (en) 2009-01-05 2009-01-05 Wave plate, polarization conversion element, and projection display device

Publications (2)

Publication Number Publication Date
JP2004170853A JP2004170853A (en) 2004-06-17
JP4277514B2 true JP4277514B2 (en) 2009-06-10

Family

ID=32702177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339157A Expired - Fee Related JP4277514B2 (en) 2002-11-22 2002-11-22 Laminated wave plate

Country Status (1)

Country Link
JP (1) JP4277514B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107351B2 (en) 2009-03-30 2012-01-31 Seiko Epson Corporation Laminated half-wave plate, optical pickup device, polarization converter, and projection display apparatus
US8233101B2 (en) 2009-03-30 2012-07-31 Seiko Epson Corporation Laminated wave plate, optical pickup device, polarization converter, and projection display apparatus
US9001279B2 (en) 2011-01-21 2015-04-07 Seiko Epson Corporation Polarization conversion device, polarization conversion unit, and projection type video apparatus
US9063294B2 (en) 2011-01-30 2015-06-23 Sony Corporation Wavelength plate, polarization conversion device using the same, illumination optical system, and image display apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971064B1 (en) * 2005-09-28 2010-07-20 엡슨 토요콤 가부시키 가이샤 Layered waveplate and optical pickup using the same
JP5088707B2 (en) * 2006-04-10 2012-12-05 セイコーエプソン株式会社 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP4623042B2 (en) 2006-04-10 2011-02-02 エプソントヨコム株式会社 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
US7855834B2 (en) 2007-03-27 2010-12-21 Epson Toyocom Corporation Multilayered phase difference plate and projector
JP4557022B2 (en) * 2007-03-27 2010-10-06 エプソントヨコム株式会社 Laminated phase difference plate, projection type image device
JP5024241B2 (en) * 2007-10-10 2012-09-12 セイコーエプソン株式会社 Wave plate and optical pickup device using the same
JP5245374B2 (en) 2007-11-28 2013-07-24 ソニー株式会社 Projection-type image display device and polarization conversion element
JP2010230856A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device an polarized illumination optical device, and liquid crystal projector
JP2010230857A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device and polarized illumination optical device, and liquid crystal projector
JP2013007830A (en) * 2011-06-23 2013-01-10 Seiko Epson Corp Transmissive diffraction grating and detecting device
CN104914497B (en) * 2015-06-25 2017-03-29 武汉颐光科技有限公司 A kind of composite wave plate phase delay device Optimization Design
JP2017090585A (en) * 2015-11-06 2017-05-25 日本電信電話株式会社 Broadband wave plate and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149015A (en) * 1997-11-14 1999-06-02 Nitto Denko Corp Laminated wavelength plate, circularly polarized light plate and liquid crystal display device
JP2001083326A (en) * 1999-07-13 2001-03-30 Sumitomo Chem Co Ltd Composite phase-contrast plate
JP2002031782A (en) * 2000-07-18 2002-01-31 Seiko Epson Corp Projector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107351B2 (en) 2009-03-30 2012-01-31 Seiko Epson Corporation Laminated half-wave plate, optical pickup device, polarization converter, and projection display apparatus
US8233101B2 (en) 2009-03-30 2012-07-31 Seiko Epson Corporation Laminated wave plate, optical pickup device, polarization converter, and projection display apparatus
US9001279B2 (en) 2011-01-21 2015-04-07 Seiko Epson Corporation Polarization conversion device, polarization conversion unit, and projection type video apparatus
US9063294B2 (en) 2011-01-30 2015-06-23 Sony Corporation Wavelength plate, polarization conversion device using the same, illumination optical system, and image display apparatus

Also Published As

Publication number Publication date
JP2004170853A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4277514B2 (en) Laminated wave plate
JP4608459B2 (en) Inclined C-plate retarder and display system incorporating the same
KR0152982B1 (en) Illumination system for an lcd display system
US6234634B1 (en) Image projection system with a polarizing beam splitter
US6452724B1 (en) Polarizer apparatus for producing a generally polarized beam of light
US6208463B1 (en) Polarizer apparatus for producing a generally polarized beam of light
US6795243B1 (en) Polarizing light pipe
WO2004023203A2 (en) Image projection system with a polarizing beam splitter
JP2002544561A (en) Reflective LCD projection system using wide-angle polarizing beam splitter
JP2000180785A (en) Optical image formation device
TWI226474B (en) Projection type optical display system
JP2007515664A (en) High efficiency single panel and two panel projection engines
US6945651B2 (en) Optical unit and projection type projector apparatus using the same
JP2012078436A (en) Wavelength plate and polarizing conversion element, illumination optical system, and image display device using the same
JP4877612B2 (en) Wave plate, polarization conversion element, and projection display device
JP4422986B2 (en) Image display device
JP2008185768A (en) Wavelength plate and optical device
JP2002048911A (en) Beam splitter and laser system using the same
JP3060720B2 (en) Polarizing device and projection display device using the polarizing device
JP2004354935A (en) Laminated wave length plate and projector using the same
JP2020106616A (en) Optical switching element
JPH0476517A (en) Transmission type liquid crystal panel, polarized light source, and color projector
JPH10300930A (en) Depolarizer
JP2004012864A (en) Projection type image display device
JP2022135684A (en) Wide-band circular polarizer and measurement apparatus using wide-band circular polarizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees