JP5088707B2 - Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device - Google Patents

Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device Download PDF

Info

Publication number
JP5088707B2
JP5088707B2 JP2010003454A JP2010003454A JP5088707B2 JP 5088707 B2 JP5088707 B2 JP 5088707B2 JP 2010003454 A JP2010003454 A JP 2010003454A JP 2010003454 A JP2010003454 A JP 2010003454A JP 5088707 B2 JP5088707 B2 JP 5088707B2
Authority
JP
Japan
Prior art keywords
wave plate
light
wavelength
laminated
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010003454A
Other languages
Japanese (ja)
Other versions
JP2010140039A (en
Inventor
正之 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010003454A priority Critical patent/JP5088707B2/en
Publication of JP2010140039A publication Critical patent/JP2010140039A/en
Application granted granted Critical
Publication of JP5088707B2 publication Critical patent/JP5088707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、積層波長板に関し、特に変換効率を改善した高次モードの積層波長板と、これを用いた偏光変換子と、該偏光変換子を用いた偏光照明装置bと、高次モードの積層波長板を用いたピックアップ装置に関する。   The present invention relates to a laminated wave plate, in particular, a high-order mode laminated wave plate with improved conversion efficiency, a polarization converter using the same, a polarization illumination device b using the polarization converter, and a higher-order mode. The present invention relates to a pickup device using a laminated wave plate.

光学用の波長板は、従来から光ディスク装置、液晶ディスプレイ、液晶プロジェクタ等に用いられてきたが、使用される光の波長帯で波長板としての機能、例えば1/2波長板であれば、使用される波長帯に亘って位相が180°推移する等の機能を備えていることが必要である。水晶等の複屈折を用いて1/2波長板を1枚の水晶板で作る場合、水晶の常光線屈折率、異常光線屈折率を夫々no、neとし、水晶板の厚さをtとすると、波長λの光が1/2波長板を透過したときの、常光線と異常光線との位相差Γは、Γ=2π/λ×(ne−no)×tで与えられ、位相差Γは波長λに依存することになる。   Optical wave plates have been used for optical disk devices, liquid crystal displays, liquid crystal projectors, etc., but function as wave plates in the wavelength band of the light used, for example, a half wave plate is used. It is necessary to provide a function such as a phase shift of 180 ° over the wavelength band to be applied. When a half-wave plate is made of a single crystal plate using birefringence of quartz or the like, assuming that the ordinary ray refractive index and extraordinary ray refractive index of the quartz are no and ne, respectively, and the thickness of the quartz plate is t. The phase difference Γ between the ordinary ray and the extraordinary ray when the light of wavelength λ passes through the half-wave plate is given by Γ = 2π / λ × (ne−no) × t, and the phase difference Γ is It depends on the wavelength λ.

所望の波長帯で位相差がほぼ一定となる広帯域波長板が、特許文献1に開示されている。図12(a)に示す1/4波長板40は、1/2波長板41と、接着剤42と、1/4波長板43とから構成される。図12(b)に示すように、1/4波長板40に入射する直線偏光の偏光方向に対して1/2波長板41の延伸軸は−15°、1/4波長板43の延伸軸は−75°の方向に配置されている。尚、前記延伸軸の角度はyz平面内でy軸から右向きを正とした角度で記載されている。この1/2波長板41や1/4波長板43は、ポリカーボネイトを材料とした高分子フィルムを延伸処理したもので、1/4波長板40は可視光の範囲(400nm〜700nm)において、波長に依存しないほぼ完全な1/4波長板として機能することが開示され、1/4波長板40の作用を、ポアンカレ球を用いて説明している。   Patent Document 1 discloses a broadband wave plate in which the phase difference is substantially constant in a desired wavelength band. A quarter wavelength plate 40 shown in FIG. 12A is composed of a half wavelength plate 41, an adhesive 42, and a quarter wavelength plate 43. As shown in FIG. 12B, the stretching axis of the half-wave plate 41 is −15 ° with respect to the polarization direction of the linearly polarized light incident on the quarter-wave plate 40, and the stretching axis of the quarter-wave plate 43. Are arranged in the direction of −75 °. In addition, the angle of the said extending | stretching axis | shaft is described by the angle which made the right direction from the y-axis positive in the yz plane. The half-wave plate 41 and the quarter-wave plate 43 are obtained by stretching a polymer film made of polycarbonate. The quarter-wave plate 40 has a wavelength in the visible light range (400 nm to 700 nm). Functioning as an almost perfect quarter-wave plate that does not depend on the above, and the operation of the quarter-wave plate 40 is described using a Poincare sphere.

また、複数の水晶板を積層して1/2波長板としての機能を持たせた積層波長板が特許文献2に開示されている。図13(a)は1/2波長板44の構成を示す斜視図であって、水晶板45と46とを貼り合わせて構成されている。図13(b)は1/2波長板44の分解斜視図であって、波長420nmに対し位相差Γ1が190°、光学軸方位角θ1が19°の水晶板45と、同様に波長420nmに対し位相差Γ2が200°、光学軸方位角θ2が64°の水晶板46と、を夫々の光学軸49、50が45°の角度で交差するように貼り合わせて、全体として波長400nm〜700nmの高帯域で1/2波長板として機能するように構成したと開示されている。図13(a)に示すように、1/2波長板44にP偏光47が入射すると、出射面では位相が180°ずれるので、入射光の偏光面は90°回転し、S偏光に変換する機能を有していることが開示されている。
尚、光学軸方位角θ1とθ2の関係が、θ2=θ1+45°、0°<θ1<45°であることが開示されている。
Further, Patent Document 2 discloses a laminated wave plate in which a plurality of quartz plates are laminated to have a function as a half-wave plate. FIG. 13A is a perspective view showing the configuration of the half-wave plate 44, which is formed by bonding crystal plates 45 and 46 together. FIG. 13B is an exploded perspective view of the half-wave plate 44. Similarly to the crystal plate 45 having a phase difference Γ1 of 190 ° and an optical axis azimuth angle θ1 of 19 ° with respect to a wavelength of 420 nm, similarly to the wavelength of 420 nm. The quartz plate 46 having a phase difference Γ2 of 200 ° and an optical axis azimuth angle θ2 of 64 ° is bonded so that the optical axes 49 and 50 intersect at an angle of 45 °, and the wavelength is 400 nm to 700 nm as a whole. It is disclosed that it is configured to function as a half-wave plate in the high band. As shown in FIG. 13A, when the P-polarized light 47 is incident on the half-wave plate 44, the phase of the outgoing light is shifted by 180 °, so the polarization plane of the incident light is rotated by 90 ° and converted to S-polarized light. It is disclosed that it has a function.
It is disclosed that the relationship between the optical axis azimuth angles θ1 and θ2 is θ2 = θ1 + 45 ° and 0 ° <θ1 <45 °.

1/2波長板44の作用はポアンカレ球を用いて説明されるが、詳細な解析は水晶板45、46の夫々のミューラ行列A1、A2と、入射及び出射偏光状態を示す夫々のストークスベクトルT、Sとすると、ストークスベクトルSは次式で表される。
S=A2・A1・T・・・(1)
ストークスベクトルSの成分から1/2波長板44の位相差を求めることができる。
The operation of the half-wave plate 44 is explained using a Poincare sphere, but a detailed analysis is made for the respective Mueller matrices A1 and A2 of the quartz plates 45 and 46 and the respective Stokes vectors T indicating the incident and outgoing polarization states. , S, the Stokes vector S is expressed by the following equation.
S = A2 / A1 / T (1)
The phase difference of the half-wave plate 44 can be obtained from the Stokes vector S component.

特開平10−68816号公報JP-A-10-68816 特開2004−170853号公報JP 2004-170853 A

しかしながら、特許文献1に記載の1/4波長板を応用して、1/2波長板を製作し、液晶プロジェクタ等に使用してみると、熱の影響による黄変が生じるという問題があった。また、特許文献2に記載の1/2波長板はシングルモードの波長板で構成されており、2枚の水晶板の夫々の位相差を概ね180°程度となるように加工する必要がある。実際に水晶板を製造する場合、研磨のし易さ、歩留まり等を勘案すると水晶板の厚さを100μm以上に設定することが望ましい。しかるに水晶の常光、異常光の屈折率差から位相差180°程度の水晶板を製作すると、その厚さは数十μmとなり、歩留まりが悪いのと、加工に時間を要するという問題があった。   However, when a quarter-wave plate described in Patent Document 1 is applied to produce a half-wave plate and used in a liquid crystal projector or the like, there is a problem that yellowing occurs due to the influence of heat. . The half-wave plate described in Patent Document 2 is a single-mode wave plate and needs to be processed so that the phase difference between the two quartz plates is approximately 180 °. When actually manufacturing a quartz plate, it is desirable to set the thickness of the quartz plate to 100 μm or more in consideration of ease of polishing, yield, and the like. However, when a quartz plate having a phase difference of about 180 ° is produced from the difference in refractive index between the ordinary light and extraordinary light of the quartz, the thickness becomes several tens of μm, and the yield is poor and the processing takes time.

この厚さの問題を解決する手段として、水晶板の光学軸が水晶板の主面における法線方向から斜め方向になるように水晶板を切断することで、上記屈折率差を小さくし、水晶板の厚さを厚くすることは可能である。そこで、特許文献2においては、使用する水晶板の厚みの加工性を考慮して、水晶板の切断角度は、水晶板の主面における法線方向に対して光学軸が27°となる角度、所謂、カットアングルを27°Zとすることが開示している。しかし、水晶板の切断角度を27°Zとすると、入射角度に対する1/2波長板の位相差の変化が、大きくなるという問題が生ずる。液晶プロジェクタ又は光ピックアップの光学系で波長板を使用する場合、光源やレンズ系の配置の関係で波長板は、光が円錐状に収束(発散)する経路に配置されることがある。この場合、光線の中心付近は波長板に垂直に入射するが、円錐状の端では入射角が生じる。このため、入射角に対して位相差の変動が大きくなる1/2波長板を用いると光量のロスが生ずるという問題が生じる。   As a means for solving this thickness problem, the crystal plate is cut so that the optical axis of the crystal plate is inclined from the normal direction to the main surface of the crystal plate, thereby reducing the refractive index difference, It is possible to increase the thickness of the plate. Therefore, in Patent Document 2, in consideration of the workability of the thickness of the quartz plate to be used, the cutting angle of the quartz plate is an angle at which the optical axis is 27 ° with respect to the normal direction on the main surface of the quartz plate, It is disclosed that the so-called cut angle is 27 ° Z. However, if the cutting angle of the quartz plate is 27 ° Z, there arises a problem that the change in the phase difference of the half-wave plate with respect to the incident angle becomes large. When a wave plate is used in an optical system of a liquid crystal projector or an optical pickup, the wave plate may be arranged in a path where light converges (diverges) in a conical shape due to the arrangement of the light source and the lens system. In this case, the vicinity of the center of the light beam is perpendicularly incident on the wave plate, but an incident angle is generated at the conical end. For this reason, the use of a half-wave plate with a large variation in phase difference with respect to the incident angle causes a problem of loss of light quantity.

図14は、切断角度が27°Z板を用い、波長420nmに対し位相差Γ1が190°、光学軸方位角θ1が19°の水晶板45と、同様に波長420nmに対し位相差Γ2が200°、光学軸方位角θ2が64°の水晶板46と、を夫々の光学軸49、50が45°の角度で交差するように貼り合わせて構成したシングルモードの1/2波長板の、入射角を−5°、0°、5°と変化させ、350nm〜750nmの波長に対する変換効率を示した図である。
ここで、変換効率とはP偏光をS偏光に変換する割合を表し、変換効率が1のとき、P偏光が全てS偏光に変換されることを表している。この変換効率はできるだけ高いことが望ましいが、一般的には0.93程度は必要であると言われている。図14から明らかなように入射角5°では、波長が525nm以上で変換効率0.9を割り込むという問題があった。
本発明は、上記の黄変、加工上の歩留まり、入射角の問題等を解決する高次モード積層波長板を提供することにある。
14 shows a quartz plate 45 having a cutting angle of 27 ° Z plate, a phase difference Γ1 of 190 ° with respect to a wavelength of 420 nm and an optical axis azimuth angle θ1 of 19 °, and a phase difference Γ2 of 200 nm with respect to a wavelength of 420 nm. Incidence of a single-mode half-wave plate constructed by bonding a quartz plate 46 having an optical axis azimuth angle θ2 of 64 ° to each other so that the optical axes 49 and 50 intersect at an angle of 45 °. It is the figure which changed the angle | corner with -5 degrees, 0 degrees, and 5 degrees, and showed the conversion efficiency with respect to the wavelength of 350 nm-750 nm.
Here, the conversion efficiency represents the ratio of converting P-polarized light to S-polarized light. When the conversion efficiency is 1, it indicates that all P-polarized light is converted to S-polarized light. Although it is desirable that this conversion efficiency be as high as possible, it is generally said that about 0.93 is necessary. As apparent from FIG. 14, at an incident angle of 5 °, there is a problem that the wavelength is 525 nm or more and the conversion efficiency is 0.9.
An object of the present invention is to provide a high-order mode laminated wave plate that solves the above yellowing, processing yield, incident angle problems, and the like.

本発明に係る第1の形態は波長λの光に対して位相差Γ11の第1の波長板と位相差
Γ22の第2の波長板とを各々の光学軸が交差するように積層してなり、互いに波長が異
なる複数の波長において、入射する直線偏光の偏光面を90°回転させた直線偏光に変換
して出射する積層波長板であって、前記第1の波長板の面内方位角をθ3とし、前記第2
の波長板の面内方位角をθ4とし、前記第2の波長板の波長λ1に対する位相差をΓ21
1、波長λ2(λ1<λ2)に対する位相差をΓ222としたとき、下式(12)、(1
3)、(14)、(21)、及び(22)を満足するよう構成した積層波長板である。
Γ11=360°+360°×2×n ・・・・(12)
Γ22=180°+360°×n ・・・・(13)
ΔΓ2=(Γ222−Γ211)/2 ・・・・(14)
cos2θ3=1−(1−cosΔΓ2)/2{(1−cosmΔΓ2)}・・・・(2
1)
θ4=45°±10° ・・・・(22)
但し、nは1からはじまる自然数、m=2
このような積層波長板によれば、nを適切に設定することにより、積層波長板を構成す
る2つの波長板の厚さを加工し易い厚さとすることができるという効果がある。
本発明に係る第2の形態は、n=4、θ3=−16°若しくは−21°とした積層波長
板である。このように構成することにより、液晶プロジェクタで用いる青、緑、赤の波長
帯400nm帯、500nm帯、675nm帯において積層波長板の波長−変換効率特性
が0.94以上にできるという効果がある。
本発明に係る第3の形態は、n=5、θ3=−16°若しくは−21°とした積層波長
板である。このように構成することにより、3波長対応光ピックアップ用の波長板として
要求される波長帯405nm、660nm、785nm帯において積層波長板の波長−変
換効率特性がほぼ0.94以上にできるという効果がある。
本発明に係る第4の形態は、第1の主面を光入射面としかつ第2の主面を光出射面とす
る平板状の透光性基材と、前記基材中に設けられた第1及び第2の光学薄膜と、前記基材
の前記第2の主面に設けられた波長板とを備え、前記第1及び第2の光学薄膜が、前記第
1及び第2の主面に対して傾斜させて、交互にかつ互いに間隔をおいて平行に配置され、
前記第1の光学薄膜が、前記第1の主面側から入射した光を互いに直交する第1の直線偏
光と第2の直線偏光とに分離して、前記第1の直線偏光を透過させかつ第2の直線偏光を
反射し、前記第2の光学薄膜が、前記第1の光学薄膜により反射された第2の直線偏光を
反射して前記第2の主面から出射させ、前記波長板が、前記第2の主面に配置され、前記
第1の光学薄膜を透過した前記第1の直線偏光を第2の直線偏光に変換して出射させる偏
光変換素子であって、前記波長板を、第1の形態乃至第3の形態の何れかの積層波長板と
した偏光変換素子である。これにより、偏光変換子から出射する直線偏光(S偏光)の強
度を強めることができる。
本発明に係る第5の形態は、第1形態乃至第3の形態の何れかの積層波長板を備えて構
成される偏光照明装置である。このように第1形態乃至第3の形態の何れかの積層波長板
を用いて照明装置を構成することにより、照明装置から出射する直線偏光(S偏光)の強
度を強めることができるという効果がある。
本発明に係る第6の形態は、光源と、前記光源から出射した光を光記録媒体に集光する
ための対物レンズと、第1の形態乃至第3の形態の何れかの積層波長板を備えて構成され
る光ピックアップ装置である。このように第1の形態乃至第3の形態の何れかの積層波長
板を用いて3波長対応光ピックアップ装置を構成すると、従来3つ必要で波長板を1つの
積層波長板で実現することができる。
また、第1の形態乃至第3の形態の何れかの積層波長板と、3つの波長のレーザを出射
するレーザダイオードとにより3波長対応の光ピックアップ装置を構成すると、光学部品
を大幅に削減することが可能となり、光ピックアップ装置のコストを削減することができ
るという効果がある。
[適用例1]本発明の適用例1に係る積層波長板は、波長λ対して位相差Γ1の第1の
波長板と位相差Γ2の第2の波長板とを光軸が交差するよう貼り合わせて、全体として1
/2波長板として機能する積層波長板であって、前記第1の波長板の面内方位角をθ1と
し、前記第2の波長板の面内方位角をθ2とし、前記積層波長板に入射する直線偏光の偏
光方向と、前記積層波長板から出射する直線偏光の偏光方向とのなす角度をθとしたとき
に下式(1)〜(3)を満足するよう構成したことを特徴とする積層波長板。
Γ1=180°+360°×n・・・(1)、Γ2=180°+360°×n・・・(2
、θ2=θ1+θ/2・・・(3)、但し、nは1からはじまる自然数。
このような積層波長板によれば、nを適切に設定することにより、積層波長板を構成す
る2つの波長板の厚さを加工し易い厚さとすることができるという効果がある。
The first form according to the present invention is the same as the first wave plate having the phase difference Γ11 with respect to the light having the wavelength λ.
The second wavelength plate of Γ22 is laminated so that the optical axes intersect, and the wavelengths are different from each other.
Converted into linearly polarized light obtained by rotating the plane of polarization of incident linearly polarized light by 90 °
And the second wave plate is configured to emit an in-plane azimuth angle of the first wave plate, θ3,
The in-plane azimuth angle of the wave plate is θ4, and the phase difference of the second wave plate with respect to the wavelength λ1 is Γ21.
1. When the phase difference with respect to the wavelength λ2 (λ1 <λ2) is Γ222, the following equations (12), (1
3) A laminated wave plate configured to satisfy (14), (21), and (22).
Γ11 = 360 ° + 360 ° × 2 × n (12)
Γ22 = 180 ° + 360 ° × n (13)
ΔΓ2 = (Γ222−Γ211) / 2 (14)
cos2θ3 = 1− (1-cosΔΓ2) / 2 {(1-cosmΔΓ2)} (2)
1)
θ4 = 45 ° ± 10 ° (22)
However, n is a natural number starting from 1, m = 2
According to such a laminated wave plate, there is an effect that the thickness of the two wave plates constituting the laminated wave plate can be easily processed by appropriately setting n.
The second embodiment according to the present invention is a laminated wavelength in which n = 4, θ3 = −16 °, or −21 °.
It is a board. With this configuration, blue, green, and red wavelengths used in liquid crystal projectors
Wavelength-conversion efficiency characteristics of laminated wave plates in the 400 nm band, 500 nm band, and 675 nm band
Is effective to be 0.94 or more.
A third embodiment according to the present invention is a laminated wavelength in which n = 5, θ3 = −16 °, or −21 °.
It is a board. By configuring in this way, as a wave plate for a three-wavelength compatible optical pickup
Wavelength-variation of laminated wave plates in the required wavelength bands of 405 nm, 660 nm, and 785 nm
There is an effect that the conversion efficiency characteristic can be made approximately 0.94 or more.
According to a fourth aspect of the present invention, the first main surface is a light incident surface and the second main surface is a light emitting surface.
A plate-like translucent base material, first and second optical thin films provided in the base material, and the base material
A wave plate provided on the second main surface of the first and second optical thin films, wherein the first and second optical thin films are
Inclining relative to the first and second main surfaces, arranged alternately and parallel to each other,
The first optical thin film has a first linear polarization that is orthogonal to each other from light incident from the first main surface side.
Separating the light and the second linearly polarized light to transmit the first linearly polarized light and to convert the second linearly polarized light into
And the second optical thin film reflects the second linearly polarized light reflected by the first optical thin film.
Reflecting and emitting from the second main surface, the wave plate is disposed on the second main surface,
A polarization that converts the first linearly polarized light transmitted through the first optical thin film into a second linearly polarized light and emits it.
An optical conversion element, wherein the wave plate is a laminated wave plate according to any one of the first to third modes
This is a polarization conversion element. As a result, the intensity of linearly polarized light (S-polarized light) emitted from the polarization converter is increased.
The degree can be strengthened.
According to a fifth aspect of the present invention, there is provided the laminated wave plate according to any one of the first to third aspects.
This is a polarized illumination device. Thus, the laminated wave plate according to any one of the first to third embodiments
By constructing an illuminating device using this, the intensity of linearly polarized light (S-polarized light) emitted from the illuminating device
There is an effect that the degree can be strengthened.
According to a sixth aspect of the present invention, a light source and the light emitted from the light source are collected on an optical recording medium.
And a laminated wave plate according to any one of the first to third embodiments.
This is an optical pickup device. In this way, the laminated wavelength of any of the first to third forms
If a three-wavelength optical pickup device is configured using a plate, three conventional wavelength plates are required.
It can be realized with a laminated wave plate.
Also, the laminated wave plate according to any one of the first to third modes and a laser having three wavelengths are emitted.
If an optical pickup device for three wavelengths is configured with a laser diode that
The cost of the optical pickup device can be reduced.
There is an effect that.
Application Example 1 A laminated wave plate according to Application Example 1 of the present invention is affixed so that an optical axis intersects a first wave plate having a phase difference Γ1 and a second wave plate having a phase difference Γ2 with respect to the wavelength λ. In total, 1
A laminated wave plate that functions as a two-wave plate, wherein the in-plane azimuth angle of the first wave plate is θ1, the in-plane azimuth angle of the second wave plate is θ2, and is incident on the laminated wave plate When the angle between the polarization direction of the linearly polarized light and the polarization direction of the linearly polarized light emitted from the laminated wave plate is θ, the following expressions (1) to (3) are satisfied. Laminated wave plate.
Γ1 = 180 ° + 360 ° × n (1) , Γ2 = 180 ° + 360 ° × n (2)
) , Θ2 = θ1 + θ / 2 (3) where n is a natural number starting from 1 .
According to such a laminated wave plate, there is an effect that the thickness of the two wave plates constituting the laminated wave plate can be easily processed by appropriately setting n.

[適用例2]本発明の適用例2に係る積層波長板は、n=4、θ1=22.5°、θ2
=67.5°とした。このように構成することにより、液晶プロジェクタで用いる青、緑
、赤の波長帯400nm帯、500nm帯、675nm帯において積層波長板の波長−変
換効率特がほぼ1にできるという効果がある。
Application Example 2 A laminated wave plate according to Application Example 2 of the present invention has n = 4, θ1 = 22.5 °, θ2
= 67.5 °. With this configuration, blue used in a liquid crystal projector, green wavelength band 400nm band of red, 500 nm band, the wavelength of the laminated wave plate in 675nm band - there is an effect that it conversion efficiency characteristics approximately 1.

[適用例3]本発明の適用例3に係る積層波長板は、n=5、θ1=22.5°、θ2
=67.5°とした。このように構成されることにより、3波長対応光ピックアップ用の
波長板として要求される波長帯405nm帯、660nm帯、785nm帯において積層
波長板の波長−変換効率特がほぼ1にできるという効果がある。
Application Example 3 A laminated wave plate according to Application Example 3 of the present invention has n = 5, θ1 = 22.5 °, θ2
= 67.5 °. By being configured in this way, the wavelength-conversion efficiency characteristic of the laminated wave plate can be made almost 1 in the wavelength bands 405 nm band, 660 nm band, and 785 nm band required as a wave plate for a three-wavelength compatible optical pickup. is there.

[適用例4]本発明の適用例4に係る積層波長板は、波長λに対して位相差Γ11の第
1の波長板と位相差Γ22の第2の波長板とを光軸が交差するよう貼り合わせて、全体と
して1/2波長板として機能する積層波長板であって、前記第1の波長板の面内方位角を
θ3とし、前記第2の波長板の面内方位角をθ4とし、前記第2の波長板の波長λ1に対
する位相差をΓ211、波長λ2(λ1<λ2)に対する位相差をΓ222としたとき、
Γ1l=360°+360°×2×n、Γ22=180°+360°×n、cos2θ3
=1−(1−cosΔΓ2)/2(1−cos2ΔΓ2)、θ4=45°±10°、但し
、nは1からはじまる自然数、ΔΓ2=(Γ222−Γ211)/2、を満足するよう構
成した。このような積層波長板によれば、次数nl、n2を適切に設定することにより、
積層波長板を構成する2つの波長板の厚さを加工し易い厚さとすることができるという効
果がある。
Application Example 4 In the laminated wave plate according to Application Example 4 of the present invention , the optical axis intersects the first wave plate having the phase difference Γ11 and the second wave plate having the phase difference Γ22 with respect to the wavelength λ. A laminated wave plate that functions as a half-wave plate as a whole, the in-plane azimuth angle of the first wave plate is θ3, and the in-plane azimuth angle of the second wave plate is θ4. When the phase difference with respect to the wavelength λ1 of the second wave plate is Γ211 and the phase difference with respect to the wavelength λ2 (λ1 <λ2) is Γ222,
Γ1l = 360 ° + 360 ° × 2 × n, Γ22 = 180 ° + 360 ° × n, cos 2θ3
= 1- (1-cosΔΓ2) / 2 (1-cos2ΔΓ2), θ4 = 45 ° ± 10 °, where n is a natural number starting from 1, ΔΓ2 = (Γ222−Γ211) / 2. According to such a laminated wave plate, by appropriately setting the orders nl and n2,
There is an effect that the thickness of the two wave plates constituting the laminated wave plate can be easily processed.

[適用例5]本発明の適用例5に係る積層波長板は、n=4、θ3=−16°若しくは
−21°とした。このように構成することにより、液晶プロジェクタで用いる青、緑、赤
の波長帯400nm帯、500nm帯、675nm帯において積層1/2波長板の波長−
変換効率特性が0.94以上にできるという効果がある。
Application Example 5 In the laminated wave plate according to Application Example 5 of the present invention , n = 4, θ3 = −16 °, or −21 °. With this configuration, the wavelength of the laminated half-wave plate in the blue, green, and red wavelength bands 400 nm, 500 nm, and 675 nm used in the liquid crystal projector is −
There is an effect that the conversion efficiency characteristic can be 0.94 or more.

[適用例6]本発明の適用例6に係る積層波長板は、n=5、θ3=−16°若しくは
−21°とした。このように構成することにより、3波長対応光ピックアップ用の波長板
として要求される波長帯405nm帯、660nm帯、785nm帯において積層波長板
の波長−変換効率特が0.94以上にできるという効果がある。
[適用例7]本発明の適用例7に係る偏光変換子は、偏光ビームスプリッタアレイのP
偏光出面に、上記の積層波長板を貼り付けて構成することを特徴する。
このように、上記の積層波長板を用いて偏光変換子を構成することにより、偏光変換子
から出射する直線偏光(S偏光)の強度を強めることができるという効果がある。
Application Example 6 The laminated wave plate according to Application Example 6 of the present invention was set to n = 5, θ3 = −16 °, or −21 °. With this configuration, a wavelength band 405nm band required as a wavelength plate for three-wavelength handling optical pickup, 660 nm band, the wavelength of the laminated wave plate in 785nm band - that the conversion efficiency characteristic may be 0.94 or more effective.
Application Example 7 A polarization converter according to Application Example 7 of the present invention is a polarization beam splitter array P.
The Henkode morphism surface and characterized in that the configuration Paste the above laminated wave plate.
As described above, by configuring the polarization converter using the laminated wave plate, there is an effect that the intensity of the linearly polarized light (S-polarized light) emitted from the polarization converter can be increased.

[適用例8]本発明の適用例8に係る偏光照明装置は、本発明の適用例1乃至6の何れ
かの積層波長板を備えて構成される。このように本発明の適用例1乃至6の積層波長板を
用いて照明装置を構成することにより、照明装置から出射する直線偏光(S偏光)の強度
を強めることができるという効果がある。
Application Example 8 A polarized light illumination device according to Application Example 8 of the present invention includes the laminated wave plate according to any one of Application Examples 1 to 6 of the present invention . As described above, by configuring the illuminating device using the laminated wave plates of Application Examples 1 to 6 of the present invention, there is an effect that the intensity of linearly polarized light (S-polarized light) emitted from the illuminating device can be increased.

[適用例9]本発明の適用例9に係る光ピックアップ装置は、本発明の適用例1乃至6
何れかの積層波長板を備えて構成される。このように本発明の適用例1乃至6の何れか
積層波長板を用いて3波長対応光ピックアップ装置を構成すると、従来3つ必要であっ
た1/2波長板を1つの積層波長板で実現することができる。
また、本発明の適用例1乃至6の何れかの積層波長板と、3つの波長のレーザを出射す
るレーザダイオードとにより3波長対応の光ピックアップ装置を構成すると、光学部品を
大幅に削減することが可能となり、光ピックアップ装置のコストを低減することができる
という効果がある。
Application Example 9 The optical pickup device according to Application Example 9 of the present invention is applied in Application Examples 1 to 6 of the present invention.
Any one of the laminated wave plates is configured. Thus, any one of the application examples 1 to 6 of the present invention
When a three-wavelength compatible optical pickup device is configured using the laminated wave plates, it is possible to realize a half-wave plate, which has been conventionally required, with a single laminated wave plate.
In addition, if an optical pickup device corresponding to three wavelengths is configured by the laminated wave plate according to any one of the application examples 1 to 6 of the present invention and a laser diode that emits a laser having three wavelengths, optical components can be greatly reduced. Thus, the cost of the optical pickup device can be reduced.

(a)は本発明に係る高次モードの積層1/2波長板の構成を示した概略斜視図、(b)は分解斜視図。(A) is the schematic perspective view which showed the structure of the lamination | stacking 1/2 wavelength plate of the higher order mode which concerns on this invention, (b) is a disassembled perspective view. (a)は本発明を説明するためのポアンカレ球の斜視図、(b)はポアンカレ球のS1S2平面への透視図。(A) is a perspective view of the Poincare sphere for explaining the present invention, (b) is a perspective view of the Poincare sphere to the S1S2 plane. 本発明に係る積層1/2波長板の波長−変換効率特性図。The wavelength-conversion efficiency characteristic figure of the lamination | stacking 1/2 wavelength plate which concerns on this invention. 本発明に係る他の積層1/2波長板の波長−変換効率特性図。The wavelength-conversion efficiency characteristic view of the other laminated 1/2 wavelength plate which concerns on this invention. 第2の実施例の積層1/2波長板の分解斜視図。The exploded perspective view of the lamination half wave plate of the 2nd example. (a)は第2の実施例の積層1/2波長板の波長−変換効率特性図、(b)は最適化後の波長−変換効率特性図。(A) is the wavelength-conversion efficiency characteristic figure of the lamination | stacking 1/2 wavelength plate of 2nd Example, (b) is the wavelength-conversion efficiency characteristic figure after optimization. (a)は第2の実施例の他の積層1/2波長板の波長−変換効率特性図、(b)は最適化後の波長−変換効率特性図。(A) is the wavelength-conversion efficiency characteristic figure of the other lamination | stacking 1/2 wavelength plate of a 2nd Example, (b) is the wavelength-conversion efficiency characteristic figure after optimization. (a)は本発明を説明するためのポアンカレ球の斜視図、(b)はポアンカレ球のS1S3平面への透視図、(c)はポアンカレ球のS2S3平面への透視図。(A) is a perspective view of the Poincare sphere for explaining the present invention, (b) is a perspective view of the Poincare sphere to the S1S3 plane, and (c) is a perspective view of the Poincare sphere to the S2S3 plane. 本発明に係る偏光変換子の構成を示す概略図。Schematic which shows the structure of the polarization converter which concerns on this invention. 本発明に係る偏光照明装置の構成を示す概略図。Schematic which shows the structure of the polarization illumination apparatus which concerns on this invention. (a)は本発明に係る光ピックアップ装置のブロック構成図、(b)は本発明に係る他の光ピックアップ装置のブロック構成図。(A) is a block diagram of an optical pickup device according to the present invention, (b) is a block diagram of another optical pickup device according to the present invention. (a)は従来の1/4波長板の構成を示す斜視図、(b)は夫々の波長板の延伸軸方向を示す図。(A) is a perspective view which shows the structure of the conventional quarter wavelength plate, (b) is a figure which shows the extending | stretching axis direction of each wavelength plate. (a)は従来のシングルモードの積層1/2波長板の構成を示した概略斜視図、(b)は分解斜視図。(A) is the schematic perspective view which showed the structure of the conventional single mode lamination | stacking 1/2 wavelength plate, (b) is a disassembled perspective view. 従来のシングルモードの積層1/2波長板の波長−変換効率特性図。The wavelength-conversion efficiency characteristic view of the conventional single mode laminated half-wave plate.

以下、本発明に係る実施の形態を図面に基づいて詳細に説明する。図1(a)は高次モード積層1/2波長板(以下、積層1/2波長板と称す)1の構成を示す斜視図であって、水晶を用いた第1の波長板2と、第2の波長板3とを夫々の光学軸が交差するように貼り合わせた構成を備え、全体として1/2波長板として機能するように構成する。図1(b)は1/2波長板1の分解斜視図であって、第1の波長板2の光学軸方位角をθ1、第2の波長板3の光学軸方位角をθ2とする。所定の波長λ、例えば400nmに対する第1の波長板2の位相差をΓ1、第2の波長板3の位相差をΓ2とし、
Γ1=180°+360°×n・・・(2)
Γ2=180°+360°×n・・・(3)
を満足するように第1及び第2の波長板2、3の厚さを設定する。ここで、nは高次モードの次数で、1からはじまる自然数とする。
Embodiments according to the present invention will be described below in detail with reference to the drawings. FIG. 1A is a perspective view showing a configuration of a high-order mode laminated half-wave plate (hereinafter referred to as a laminated half-wave plate) 1, which includes a first wave plate 2 using crystal, The second wave plate 3 and the second wave plate 3 are bonded so that their optical axes intersect with each other, and the second wave plate 3 functions as a half-wave plate as a whole. FIG. 1B is an exploded perspective view of the half-wave plate 1 where the optical axis azimuth angle of the first wave plate 2 is θ1, and the optical axis azimuth angle of the second wave plate 3 is θ2. The phase difference of the first wave plate 2 with respect to a predetermined wavelength λ, for example, 400 nm is Γ1, the phase difference of the second wave plate 3 is Γ2, and
Γ1 = 180 ° + 360 ° × n (2)
Γ2 = 180 ° + 360 ° × n (3)
The thicknesses of the first and second wave plates 2 and 3 are set so as to satisfy the above. Here, n is the order of the higher order mode, and is a natural number starting from 1.

第1及び第2の波長板2、3に高次モードの波長板を用い、全体として1/2波長板1を構成する場合、波長350nmから750nmの全波長帯に亘って位相差を180°とすることは困難である。
そこで、所望する複数の波長帯で位相差を180°とするために、積層1/2波長板1の構成パラメータである第1及び第2の波長板2、3の夫々の高次モード次数n1、n2、所定の波長での夫々の位相差Γ1、Γ2、夫々の光学軸方位角θ1、θ2を、種々変化させて、積層1/2波長板1の出射光のストークスベクトルを算出し、これから位相差、変換効率等を求める手法をとった。
When a high-order mode wave plate is used for the first and second wave plates 2 and 3 and the half-wave plate 1 is configured as a whole, the phase difference is 180 ° over the entire wavelength band of wavelengths from 350 nm to 750 nm. It is difficult to do.
Therefore, in order to set the phase difference to 180 ° in a desired plurality of wavelength bands, the higher-order mode orders n1 of the first and second wavelength plates 2 and 3 which are the configuration parameters of the laminated half-wave plate 1 are used. , N2, and various phase differences Γ1, Γ2 at respective predetermined wavelengths and respective optical axis azimuth angles θ1, θ2 are variously calculated to calculate a Stokes vector of the emitted light from the laminated half-wave plate 1, A method for obtaining the phase difference, conversion efficiency, etc. was adopted.

はじめに、本発明に係る積層1/2波長板の実施例を見つけ出した計算手法を簡単に説明する。直線偏光が2枚の波長板を透過した後の偏光状態は、ミューラ行列、又はジョンズ行列を用いて表すことができる。   First, a calculation method for finding an example of the laminated half-wave plate according to the present invention will be briefly described. The polarization state after the linearly polarized light passes through the two wave plates can be expressed using a Mueller matrix or a Johns matrix.

E=R2・R1・I (4) E = R 2 · R 1 · I (4)

ここで、Iは入射光の偏光状態、Eは出射光の偏光状態を表すベクトルである。R1は積層1/2波長板1における第1の波長板2のミューラ行列、R2は第2の波長板3のミューラ行列で、夫々次式で表される。 Here, I is a vector representing the polarization state of incident light, and E is a vector representing the polarization state of outgoing light. R 1 is a Mueller matrix of the first wave plate 2 in the laminated half-wave plate 1, and R 2 is a Mueller matrix of the second wave plate 3, which are represented by the following equations, respectively.

Figure 0005088707
Figure 0005088707

Figure 0005088707
Figure 0005088707

第1及び第2の波長板2、3の高次モード次数nを決め、夫々の位相差Γ1、Γ2、光学軸方位角度θ1、θ2を設定して、式(5)、(6)よりミューラ行列R1、R2を求める。そして、入射光の偏光状態Iを設定すると、式(4)より出射光の偏光状態Eを算出することができる。
行列としてミューラ行列を用いた場合について説明すると、出射光の偏光状態Eは次式で表される。
The higher order mode orders n of the first and second wave plates 2 and 3 are determined, the respective phase differences Γ1 and Γ2, and the optical axis azimuth angles θ1 and θ2 are set. The matrices R 1 and R 2 are obtained. When the polarization state I of the incident light is set, the polarization state E of the emitted light can be calculated from the equation (4).
The case where a Mueller matrix is used as the matrix will be described. The polarization state E of the emitted light is expressed by the following equation.

Figure 0005088707
Figure 0005088707

Eの行列要素S01、S11、S21、S31はストークスパラメータと呼ばれ、偏光状態を表している。このストークスパラメータを用いて、波長板の位相差Γは次式のように表される。 The matrix elements S 01 , S 11 , S 21 and S 31 of E are called Stokes parameters and represent the polarization state. Using this Stokes parameter, the phase difference Γ of the wave plate is expressed as follows.

Figure 0005088707
Figure 0005088707

このように、式(8)を用いて位相差を算出することができる。   In this way, the phase difference can be calculated using Expression (8).

図1に示すように、本発明に係る積層1/2波長板1は、直線偏光の偏光面を所定の角度θだけ回転させる機能を有している。例えば、垂直方向の振動面を持つ直線偏光4を入力光として、積層1/2波長板1を透過させ、偏光面をθ=90°だけ回転(位相変調)させて水平方向の振動面を持つ直線偏光5として出射させる場合を、図2(a)に示すポアンカレ球用いて考える。この位相変調(90°回転)はポアンカレ球で考えると、入射偏光状態P0からP2へ変調させることであり、このとき必要な位相差は180°である。しかし、P0からPaへ、P0からPbへ変調させた場合も、位相差は同じく180°となる。即ち、位相差を用いて評価した場合、必要な偏光状態に変調されているかを判断することができない。ポアンカレ球上(赤道上)のP2と、異なるPa、Pbの点は偏光面の方位である。これを検出するため、出射光の偏光状態を表す行列Eと、偏光子の行列Pとの積を計算し、得られた光量を評価値とすれば、偏光状態を正確に判定することができる。これを変換効率と定義する。   As shown in FIG. 1, the laminated half-wave plate 1 according to the present invention has a function of rotating the polarization plane of linearly polarized light by a predetermined angle θ. For example, linearly polarized light 4 having a vertical vibration surface is input as input light, transmitted through the laminated half-wave plate 1, and the polarization surface is rotated by θ = 90 ° (phase modulation) to have a horizontal vibration surface. Consider a case where light is emitted as linearly polarized light 5 using the Poincare sphere shown in FIG. Considering the Poincare sphere, this phase modulation (90 ° rotation) is to modulate from the incident polarization state P0 to P2, and the necessary phase difference is 180 °. However, when modulation is performed from P0 to Pa and from P0 to Pb, the phase difference is also 180 °. That is, when the evaluation is performed using the phase difference, it cannot be determined whether the light is modulated to a necessary polarization state. P2 on the Poincare sphere (on the equator) and points of different Pa and Pb are directions of the plane of polarization. In order to detect this, the polarization state can be accurately determined by calculating the product of the matrix E representing the polarization state of the outgoing light and the matrix P of the polarizer and using the obtained light quantity as an evaluation value. . This is defined as conversion efficiency.

具体的には、偏光子の行列Pの透過軸を90°に設定し、行列Pと出射光偏光状態を表す行列Eとの積から得られる行列Tのストークスパラメータより、90°方向の偏光面成分の光量を算出することができる。出射光偏光状態を表す行列Eと、偏光子の行列Pとの積は次式のようになる。   Specifically, the polarization axis in the 90 ° direction is determined from the Stokes parameter of the matrix T obtained by setting the transmission axis of the matrix P of the polarizer to 90 ° and the product of the matrix P and the matrix E representing the outgoing light polarization state. The light quantity of the component can be calculated. The product of the matrix E representing the outgoing light polarization state and the polarizer matrix P is as follows.

T=P・E (9)   T = P ・ E (9)

ここで、行列Tは変換効率を表し、その要素のストークスパラメータで表すと次式のように表される。   Here, the matrix T represents the conversion efficiency, and is represented by the following equation when represented by the Stokes parameter of the element.

Figure 0005088707
Figure 0005088707

ここで、ベクトルTのストークスパラメータのS02が光量を表している。入射光量を1に設定すればS02が変換効率となる。位相差、変換効率とも積層1/2波長板を透過した後の偏光状態を表す行列Eから求めることができる。 Here, the Stokes parameter S 02 of the vector T represents the amount of light. If the amount of incident light is set to 1, S 02 becomes the conversion efficiency. Both the phase difference and the conversion efficiency can be obtained from the matrix E representing the polarization state after passing through the laminated half-wave plate.

上記の変換効率を評価基準とし、積層1/2波長板の諸パラメータである第1及び第2の波長板2、3の高次モード次数n、所定の波長(例えば波長400nm)での夫々の位相差Γ1、Γ2、夫々の光学軸方位角θ1、θ2を種々変化させ、計算機を用いてシミュレーションした。シミュレーションを繰り返し行い、所望の複数の波長帯において、変換効率が良い場合の上記パラメータを選び出した。高次モード次数nが大き過ぎると、変換効率が1に近い波長帯域幅が狭くなり、積層1/2波長板としても使いづらくなるので、製造し易さ等を含めて上記パラメータを選定した。その結果を以下に説明する。   Using the above conversion efficiency as an evaluation criterion, the higher-order mode orders n of the first and second wave plates 2 and 3 which are various parameters of the laminated half-wave plate, and the predetermined wavelength (for example, wavelength 400 nm), respectively. The phase differences Γ1 and Γ2 and the respective optical axis azimuth angles θ1 and θ2 were variously changed, and simulation was performed using a computer. The simulation was repeated and the above parameters were selected when the conversion efficiency was good in a desired plurality of wavelength bands. If the higher-order mode order n is too large, the wavelength bandwidth with a conversion efficiency close to 1 is narrowed, making it difficult to use as a laminated half-wave plate, so the above parameters were selected including the ease of manufacturing. The results will be described below.

図1に示す積層1/2波長板1の第1及び第2の波長板2、3の切断角度が夫々90°Z(水晶板の主面における法線方向と光学軸(z軸)との交差角度が90°)、高次モードの次数nが4で、波長λを400nmとしたとき、第1の波長板の位相差Γ1、光学軸方位角θ1が夫々1620°(=180°+360°×4)、22.5°、第2の波長板の位相差Γ2、光学軸方位角θ2が夫々1620°(=180°+360°×4)、67.5°に設定した場合に、積層1/2波長板1の変換効率をシミュレーションにより求めた結果、良好な波長−変換効率が得られた。図3は波長350nmから750nmに対する積層1/2波長板1の変換効率を示す図である。   The cutting angles of the first and second wave plates 2 and 3 of the laminated half-wave plate 1 shown in FIG. 1 are each 90 ° Z (the normal direction on the main surface of the quartz plate and the optical axis (z axis). When the crossing angle is 90 °, the order n of the higher order mode is 4, and the wavelength λ is 400 nm, the phase difference Γ1 of the first wave plate and the optical axis azimuth angle θ1 are 1620 ° (= 180 ° + 360 °), respectively. × 4) When the phase difference Γ2 of the second wave plate and the optical axis azimuth angle θ2 are set to 1620 ° (= 180 ° + 360 ° × 4) and 67.5 °, respectively, the laminate 1 As a result of obtaining the conversion efficiency of the / 2 wavelength plate 1 by simulation, a good wavelength-conversion efficiency was obtained. FIG. 3 is a diagram showing the conversion efficiency of the laminated half-wave plate 1 for wavelengths from 350 nm to 750 nm.

積層1/2波長板1への入射角度を0°とした場合の変換効率を実線で示し、入射角度を夫々−5°、+5°としたときの変換効率を、菱形、三角の印を付けて表示してあるが、ほぼ重なった曲線となっている。液晶プロジェクタで用いる青、緑、赤の波長は夫々400nm帯、500nm帯、675nm帯であるので、上記パラメータの積層1/2波長板1の変換効率はほぼ1となることが判明した。   The conversion efficiency when the incident angle to the laminated half-wave plate 1 is 0 ° is indicated by a solid line, and the conversion efficiency when the incident angle is −5 ° and + 5 ° are marked with diamonds and triangles, respectively. Although they are displayed, they are almost overlapping curves. Since the wavelengths of blue, green, and red used in the liquid crystal projector are 400 nm band, 500 nm band, and 675 nm band, respectively, it has been found that the conversion efficiency of the laminated half-wave plate 1 with the above parameters is almost 1.

また、積層1/2波長板1の第1及び第2の波長板2、3の切断角度が夫々90°Z(水晶板の主面における法線方向と光学軸(z軸)との交差角度が90°)、高次モードの次数nが5で、波長λを400nmとしたとき、第1の波長板の位相差Γ1、光学軸方位角θ1が夫々1980°(=180°+360°×5)、22.5°、第2の波長板の位相差Γ2、光学軸方位角θ2が夫々1980°(=180°+360°×5)、67.5°に設定した場合に、良好な変換効率が得られた。図4は350nmから750nmの波長に対する積層1/2波長板1の変換効率を示す図である。積層1/2波長板1への入射角度を0°とした場合の変換効率を実線で、−5°、+5°としたときの変換効率を、菱形、三角の印を付けて表示してあるが、ほぼ重なった曲線となっている。上記のパラメータを用いた積層1/2波長板1の場合、3波長対応光ピックアップ用の波長板として要求される405nm帯、660nm帯、785nm帯の波長で、変換効率がほぼ1となることが分かった。   Further, the cutting angles of the first and second wave plates 2 and 3 of the laminated half-wave plate 1 are each 90 ° Z (intersection angle between the normal direction on the main surface of the crystal plate and the optical axis (z axis)) Is 90 °), the order n of the higher-order mode is 5, and the wavelength λ is 400 nm, the phase difference Γ1 of the first wave plate and the optical axis azimuth angle θ1 are 1980 ° (= 180 ° + 360 ° × 5), respectively. ) Good conversion efficiency when the phase difference Γ2 of the second wave plate and the optical axis azimuth angle θ2 are set to 1980 ° (= 180 ° + 360 ° × 5) and 67.5 °, respectively. was gotten. FIG. 4 is a diagram showing the conversion efficiency of the laminated half-wave plate 1 for wavelengths from 350 nm to 750 nm. The conversion efficiency when the incident angle to the laminated half-wave plate 1 is 0 ° is indicated by a solid line, and the conversion efficiency when it is set to −5 ° and + 5 ° is indicated by diamonds and triangles. However, the curves are almost overlapping. In the case of the laminated half-wave plate 1 using the above parameters, the conversion efficiency may be almost 1 at wavelengths of 405 nm band, 660 nm band, and 785 nm band required as a wave plate for a three-wavelength compatible optical pickup. I understood.

ここで、第1の波長板2の光学軸方位角θ1と第2の波長板3の光学軸方位角θ2との関係について、図2に示すポアンカレ球を用いて説明する。図2(a)は1/2波長板1に入射した直線偏光のポアンカレ球上での軌道の推移を説明するための図である。赤道上の所定の位置P0から偏光方向が赤道に対して垂直な方向となる直線偏光4として光線が入射すると、第1の波長板2によって光軸R1を中心にして180°回転しP1(赤道上)へ移され、さらに第2の波長板3によって光軸R2を中心にして180°回転しP2(赤道上)に到達し、直線偏光4に対してθ=90°だけ回転した直線偏光5となって1/2波長板1を出射することが分かる。   Here, the relationship between the optical axis azimuth θ1 of the first wave plate 2 and the optical axis azimuth θ2 of the second wave plate 3 will be described using the Poincare sphere shown in FIG. FIG. 2A is a diagram for explaining the transition of the trajectory on the Poincare sphere of linearly polarized light incident on the half-wave plate 1. When light rays are incident as linearly polarized light 4 whose polarization direction is perpendicular to the equator from a predetermined position P0 on the equator, the first wave plate 2 rotates 180 ° about the optical axis R1 and P1 (equator) The linearly polarized light 5 is rotated by 180 ° about the optical axis R2 by the second wave plate 3 and reaches P2 (on the equator) and rotated by θ = 90 ° with respect to the linearly polarized light 4. It can be seen that the light is emitted from the half-wave plate 1.

次に、図2(b)を用いて、θ1とθ2との関係について検討する。
図2(b)は、図2(a)に示したポアンカレ球において1/2波長板1に入射した光線の偏光状態の軌跡をS3軸方向から見た図(S1S2平面に投影した図)を示す。第1の波長板2の光学軸方位角θ1、第2の波長板3の光学軸方位角θ2、及び直線偏光4(入射光)に対する直線偏光5(出射光)の回転角θの関係は、ポアンカレ球上では図2(b)のように表すことができる。
点O、P0、P1を結んでなる三角形OP0P1は点Oを頂点とする二等辺三角形であり光軸R1は三角形OP0P1の二等分線となり、辺OP0と光軸R1とのなす角及び辺OP1と光軸R1とのなす角は2θ1となる。点O、P1、P2を結んでなる三角形OP1P2は点Oを頂点とする二等辺三角形であり光軸R2は三角形OP1P2の二等分線となる。ここで、辺OP1と光軸R2とのなす角α及び辺OP2と光軸R2とのなす角αは以下のように求められる。
2θ=2×2θ1+2α
α=θ−2θ1
従って、辺OP0と光軸R2とのなす角2θ2は、以下のように表すことができる。
2θ2=α+2×2θ1=θ−2θ1+2×2θ1=θ+2θ1
従って、θ2は、
θ2=θ1+θ/2 ・・・(11)
と表すことができる。
Next, the relationship between θ1 and θ2 will be examined with reference to FIG.
FIG. 2B is a view (projected on the S1S2 plane) of the locus of the polarization state of the light beam incident on the half-wave plate 1 in the Poincare sphere shown in FIG. Show. The relationship between the optical axis azimuth angle θ1 of the first wave plate 2, the optical axis azimuth angle θ2 of the second wave plate 3, and the rotation angle θ of the linearly polarized light 5 (emitted light) with respect to the linearly polarized light 4 (incident light) is On the Poincare sphere, it can be represented as shown in FIG.
A triangle OP0P1 connecting the points O, P0, and P1 is an isosceles triangle having the point O as an apex, and the optical axis R1 is a bisector of the triangle OP0P1, and the angle and side OP1 formed by the side OP0 and the optical axis R1 And the optical axis R1 is 2θ1. A triangle OP1P2 connecting the points O, P1, and P2 is an isosceles triangle having the point O as an apex, and the optical axis R2 is a bisector of the triangle OP1P2. Here, the angle α formed by the side OP1 and the optical axis R2 and the angle α formed by the side OP2 and the optical axis R2 are obtained as follows.
2θ = 2 × 2θ1 + 2α
α = θ-2θ1
Therefore, the angle 2θ2 formed by the side OP0 and the optical axis R2 can be expressed as follows.
2θ2 = α + 2 × 2θ1 = θ-2θ1 + 2 × 2θ1 = θ + 2θ1
Therefore, θ2 is
θ2 = θ1 + θ / 2 (11)
It can be expressed as.

次に、図5は本発明に係る第2の実施例の高次モード積層1/2波長板(以下、積層1/2波長板と称す)1’の分解斜視図であって、第1の波長板2’と第2の波長板3’とを夫々の光学軸が交差するように貼り合わせた構成を備え、全体として1/2波長板として機能させる。第1及び第2の波長板2’、3’の高次モードの次数をn1、n2とし、第1及び第2の波長板2’、3’の夫々の位相差をΓ11、Γ22、光学軸方位角を夫々θ3、θ4とする。位相差を決める波長λは400nmとし、次数nは1からはじまる自然数とする。第2の実施例の積層1/2波長板1’の構成条件を次式のように設定した。
Γ11=360°+360°×2×n・・・(12)
Γ22=180°+360°×n・・・(13)
Next, FIG. 5 is an exploded perspective view of a high-order mode laminated half-wave plate (hereinafter referred to as a laminated half-wave plate) 1 ′ according to the second embodiment of the present invention. A structure in which the wave plate 2 ′ and the second wave plate 3 ′ are bonded so that their optical axes intersect with each other is provided, and functions as a half-wave plate as a whole. The higher order modes of the first and second wave plates 2 ′ and 3 ′ are n1 and n2, and the phase differences of the first and second wave plates 2 ′ and 3 ′ are Γ11, Γ22, and the optical axis. The azimuth angles are θ3 and θ4, respectively. The wavelength λ that determines the phase difference is 400 nm, and the order n is a natural number starting from 1. The configuration conditions of the laminated half-wave plate 1 ′ of the second example were set as follows:
Γ11 = 360 ° + 360 ° × 2 × n (12)
Γ22 = 180 ° + 360 ° × n (13)

第1及び第2の波長板2’、3’を構成する諸パラメータn、Γ11、Γ22、θ3、θ4を式(12)、(13)を満足するように設定して、積層1/2波長板1’構成する。上記のパラメータを種々変えてシミュレーションを行い、変換効率が良好なパラメータの組み合わせを求めた。その結果、第1及び第2の波長板2’、3’の切断角度が夫々90°Z(水晶板の主面における法線方向と光学軸(z軸)との交差角度が90°)、高次モードの次数nが4、波長λを400nmとしたときの第3及び4の波長板2’、3’の位相差Γ11、Γ22が夫々3240°(=360°+360°×2×4)、1620°(=180°+360°×4)、光学軸方位角θ3、θ4が−16°、45°の場合に、波長−変換効率特性が良好となった。   The parameters n, Γ11, Γ22, θ3, and θ4 constituting the first and second wave plates 2 ′ and 3 ′ are set so as to satisfy the expressions (12) and (13), and the laminated half wavelength A plate 1 'is constructed. A simulation was performed by changing the above parameters, and a combination of parameters having good conversion efficiency was obtained. As a result, the cutting angles of the first and second wave plates 2 ′ and 3 ′ are each 90 ° Z (the intersecting angle between the normal direction on the main surface of the quartz plate and the optical axis (z axis) is 90 °), When the order n of the higher-order mode is 4 and the wavelength λ is 400 nm, the phase differences Γ11 and Γ22 of the third and fourth wave plates 2 ′ and 3 ′ are 3240 ° (= 360 ° + 360 ° × 2 × 4), respectively. When the optical axis azimuth angles θ3 and θ4 are −16 ° and 45 °, 1620 ° (= 180 ° + 360 ° × 4), the wavelength-conversion efficiency characteristics are good.

図6(a)は波長350nmから750nmに対する積層1/2波長板1’の変換効率特性を示す図である。入射角度を0°とした場合の積層1/2波長板1’の変換効率を実線で示し、入射角度を夫々−5°、+5°としたときの変換効率を、菱形、三角の印を付けて表示してあるが、ほぼ重なった曲線となっている。液晶プロジェクタで用いる青、緑、赤の波長は夫々400nm帯、500nm帯、675nm帯であるので、夫々の波長帯における積層1/2波長板1’の変換効率は0.94以上となることが判明した。更に、θ3及びθ4について最適化を試みたところ、図6(a)に示した波長−変換効率特性に比べて、図6(b)に示すように波長−変換効率特性は、400nm帯、500nm帯、675nm帯の帯域幅を夫々広げることができた。尚、最適化を行った後の各光学軸方位角の値は、θ3=−21°、θ4=37.5°である。   FIG. 6A is a diagram showing the conversion efficiency characteristics of the laminated half-wave plate 1 'for wavelengths from 350 nm to 750 nm. The conversion efficiency of the laminated half-wave plate 1 ′ when the incident angle is 0 ° is indicated by a solid line, and the conversion efficiency when the incident angle is −5 ° and + 5 ° are marked with rhombuses and triangles, respectively. Although they are displayed, they are almost overlapping curves. Since the blue, green, and red wavelengths used in the liquid crystal projector are 400 nm band, 500 nm band, and 675 nm band, respectively, the conversion efficiency of the laminated half-wave plate 1 ′ in each wavelength band may be 0.94 or more. found. Furthermore, when optimization was attempted with respect to θ3 and θ4, the wavelength-conversion efficiency characteristics as shown in FIG. 6B are 400 nm band and 500 nm as compared to the wavelength-conversion efficiency characteristics shown in FIG. The bandwidth of the band and the 675 nm band could be expanded respectively. The values of the optical axis azimuth angles after the optimization are θ3 = −21 ° and θ4 = 37.5 °.

図7は、第2の実施例における他のパラメータの例で、第1及び第2の波長板2’、3’の切断角度が夫々90°Z、高次モードの次数nが5、波長λを400nmとしたときの第3及び4の波長板2’、3’の位相差Γ11、Γ22が夫々3960°、1980°、光学軸方位角θ3、θ4が−16°、45°と設定したの場合に変換効率が良好となった。
図7(a)は波長350nmから750nmに対する積層1/2波長板1’の変換効率を示す図である。積層1/2波長板1’への入射角度を0°とした場合の変換効率を実線で、−5°、+5°としたときの変換効率を、菱形、三角の印を付けて表示してあるが、ほぼ重なった曲線となっている。この実施例の場合、3波長対応光ピックアップ用の405nm帯、660nm帯、785nm帯で1/2波長板に要求される変換効率0.93をクリアして0.94以上の値が得られた。更に、θ3及びθ4について最適化を試みたところ、図7(a)に示した波長−変換効率特性に比べて、図7(b)に示すように波長−変換効率特性は、405nm帯、660nm帯、785nm帯の帯域幅を夫々広げることができた。尚、最適化を行った後の各光学軸方位角の値は、θ3=−21°、θ4=37.5°である。
FIG. 7 shows another example of parameters in the second embodiment. The cutting angles of the first and second wave plates 2 ′ and 3 ′ are 90 ° Z, the order n of the higher mode is 5, and the wavelength λ. The phase differences Γ11 and Γ22 of the third and fourth wave plates 2 ′ and 3 ′ are set to 3960 ° and 1980 °, and the optical axis azimuth angles θ3 and θ4 are set to −16 ° and 45 °, respectively. In some cases, the conversion efficiency was good.
FIG. 7A is a diagram showing the conversion efficiency of the laminated half-wave plate 1 ′ for wavelengths from 350 nm to 750 nm. The conversion efficiency when the incident angle to the laminated half-wave plate 1 ′ is 0 ° is indicated by a solid line, and the conversion efficiency when it is set to −5 ° and + 5 ° is indicated by diamonds and triangles. There are almost overlapping curves. In this example, the conversion efficiency of 0.93 required for the half-wave plate was cleared in the 405 nm band, 660 nm band, and 785 nm band for the three-wavelength optical pickup, and a value of 0.94 or more was obtained. . Furthermore, when optimization was attempted for θ3 and θ4, the wavelength-conversion efficiency characteristics as shown in FIG. 7B were 405 nm band, 660 nm as compared to the wavelength-conversion efficiency characteristics shown in FIG. The bandwidths of the band and the 785 nm band could be expanded respectively. The values of the optical axis azimuth angles after the optimization are θ3 = −21 ° and θ4 = 37.5 °.

ここで、図5に示した積層1/2波長板1’を構成する第1の波長板2’と第2の波長板3’の光学的な作用について図8を用いて説明する。図8(a)は、積層1/2波長板1’に入射した直線偏光4のポアンカレ球上での軌道の推移を説明するための図である。図8(b)は、図8(a)に示したポアンカレ球において積層1/2波長板1’に入射した光線の偏光状態の軌跡をS2軸方向から見た図(S1S3平面に投影した図)である。図8(c)は、本発明に係る積層1/2波長板1’の第1の波長板2’の機能について説明するために、前記偏光状態の軌跡をS1軸方向から見た図(S2S3平面に投影した図)である。図8(b)、(c)において、直線偏光4の光線がポアンカレ球の赤道上の所定の位置P0に入射すると、第1の波長板2’によって光軸R1を中心にして360°回転しP1に到達し(P0=P1)、さらに第2の波長板3’によって光軸R2を中心にして180°回転しP2(赤道)に到達することによって、積層1/2波長板1’を出射する光線が直線偏光4(入射光)に対してθ=90°だけ回転した直線偏光5となって積層1/2波長板1’を出射することが分かる。   Here, the optical action of the first wave plate 2 'and the second wave plate 3' constituting the laminated half-wave plate 1 'shown in FIG. 5 will be described with reference to FIG. FIG. 8A is a diagram for explaining the transition of the trajectory of the linearly polarized light 4 incident on the laminated half-wave plate 1 ′ on the Poincare sphere. FIG. 8B is a view of the locus of the polarization state of the light beam incident on the laminated half-wave plate 1 ′ in the Poincare sphere shown in FIG. 8A as seen from the S2 axis direction (projected on the S1S3 plane). ). FIG. 8C is a view of the locus of the polarization state seen from the S1 axis direction in order to explain the function of the first wave plate 2 ′ of the laminated half-wave plate 1 ′ according to the present invention (S2S3). The figure projected on the plane). In FIGS. 8B and 8C, when the light beam of the linearly polarized light 4 enters the predetermined position P0 on the equator of the Poincare sphere, it is rotated 360 ° around the optical axis R1 by the first wave plate 2 ′. It reaches P1 (P0 = P1), and further rotates by 180 ° about the optical axis R2 by the second wave plate 3 ′, and reaches P2 (equator), thereby exiting the laminated half-wave plate 1 ′. It can be seen that the light beam to be emitted becomes the linearly polarized light 5 rotated by θ = 90 ° with respect to the linearly polarized light 4 (incident light) and is emitted from the laminated half-wave plate 1 ′.

ここで、第2の波長板3’の位相差Γ22が入射光の波長の変化によりΔΓ2の位相変化を生じた場合、この位相変化ΔΓ2を第1の波長板2’の波長による位相変化ΔΓ1で相殺すれば、積層1/2波長板1’の波長依存性を抑圧し複数の波長帯で1/2波長板として機能できる。
更に、第2の波長板3’の波長による位相変化ΔΓ2は、基板材料の波長分散で決まる一定の数値を有しており、第1の波長板2’の波長による位相変化ΔΓ1は、第1の波長板2’の面内方位角θ3を調整することでその大きさを可変することが可能である。
そこで、第1の波長板2’と第2の波長板3’との関係式を以下に導出する。
入射光の波長が基準波長(設計波長)λ0から波長λ1〜λ2の間(λ1<λ2)で変化すると、波長板の有する波長依存性により第1の波長板2’及び第2の波長板3’の位相差が夫々Γ11及びΓ22より変化する。
また、第2波長板の位相差において、
Γ211:波長λ1のときの位相差
Γ222:波長λ2のときの位相差
と定義すると、第2の波長板3’の波長による位相変化ΔΓ2は、以下の式を満足する。
ΔΓ2=(Γ222−Γ211)/2・・・・(14)
Here, when the phase difference Γ22 of the second wave plate 3 ′ causes a phase change of ΔΓ2 due to the change of the wavelength of the incident light, this phase change ΔΓ2 is expressed by the phase change ΔΓ1 due to the wavelength of the first wave plate 2 ′. If cancelled, the wavelength dependence of the laminated half-wave plate 1 'can be suppressed and function as a half-wave plate in a plurality of wavelength bands.
Further, the phase change ΔΓ2 due to the wavelength of the second wave plate 3 ′ has a constant value determined by the wavelength dispersion of the substrate material, and the phase change ΔΓ1 due to the wavelength of the first wave plate 2 ′ is the first value. The size can be varied by adjusting the in-plane azimuth angle θ3 of the wave plate 2 ′.
Therefore, a relational expression between the first wave plate 2 ′ and the second wave plate 3 ′ is derived below.
When the wavelength of the incident light changes between the reference wavelength (design wavelength) λ0 and the wavelengths λ1 to λ2 (λ1 <λ2), the first wavelength plate 2 ′ and the second wavelength plate 3 are caused by the wavelength dependency of the wavelength plate. The phase difference of 'varies from Γ11 and Γ22, respectively.
In addition, in the phase difference of the second wave plate,
When defined as Γ211: phase difference at wavelength λ1, Γ222: phase difference at wavelength λ2, the phase change ΔΓ2 due to the wavelength of the second wave plate 3 ′ satisfies the following equation.
ΔΓ2 = (Γ222−Γ211) / 2 (14)

図8(b)において、第2の波長板3’に生じた位相変化ΔΓ2により、ポアンカレ球上の座標P0(P1)がP1”に変化したものとし、このP0→P1”の距離を近似的に直線x2で表すと、ΔΓ2とx2は下式(1)の関係を満足する。
(x2)2=2k2−2k2cosΔΓ2・・・・(15)
但し、kは、ポアンカレ球の半径を示す。
次に同様に、図8(c)において、第1の波長板2’に生じた位相変化ΔΓ1により、ポアンカレ球上の座標P0(P1)がP1’に変化したものとし、このP0→P1’の距離を近似的に直線x1で表すと、ΔΓ1とx1は下式(16)の関係を満足する。
(x1)2=2r2−2r2cosΔΓ1・・・・(16)
但し、rは、R1を回転軸としてΓ11回転させる時の半径である。
又、rは、第1の波長板2’の面内方位角θ3を用いて下式(17)により表すことができる。
2=2k2−2k2cos2θ3・・・・(17)
In FIG. 8B, it is assumed that the coordinate P0 (P1) on the Poincare sphere is changed to P1 ″ due to the phase change ΔΓ2 generated in the second wave plate 3 ′, and this distance P0 → P1 ″ is approximated. Is represented by a straight line x2, ΔΓ2 and x2 satisfy the relationship of the following expression (1).
(X2) 2 = 2k 2 -2k 2 cos ΔΓ2 (15)
However, k shows the radius of a Poincare sphere.
Next, similarly, in FIG. 8C, it is assumed that the coordinate P0 (P1) on the Poincare sphere is changed to P1 ′ by the phase change ΔΓ1 generated in the first wave plate 2 ′, and this P0 → P1 ′. Is approximately represented by a straight line x1, ΔΓ1 and x1 satisfy the relationship of the following expression (16).
(X1) 2 = 2r 2 -2r 2 cos ΔΓ1 (16)
However, r is a radius when rotating Γ11 with R1 as the rotation axis.
Further, r can be expressed by the following equation (17) using the in-plane azimuth angle θ3 of the first wave plate 2 ′.
r 2 = 2k 2 -2k 2 cos 2θ3 (17)

更に、式(17)を式(16)に代入すると、式(18)が得られる。
(x1)2=4k2(1−cos2θ3)(1−cosΔΓ1)・・・・(18)
そこで、第1の波長板2’と第2の波長板3’の位相変化がお互いに相殺しあうために
は、x1≒x2である必要があり、式(15)と式(18)より(x1)2=(x2)2
2−2k2cosΔΓ2=4k2(1−cos2θ3)(1−cosΔΓ1)の関係が成
立する。
そこで、kを正規化してまとめると式(19)が得られる。
cos2θ3=1−(1−cosΔΓ2)/2(1−cosΔΓ1)・・・(19

次に、第1の波長板2’と第2の波長板3’とが同じ分散の基板材料で構成されており
、Γ11/Γ22=mとすると、式(20)が得られる。
ΔΓ1=mΔΓ2・・・・(20)
そこで、式(20)を式(19)に代入すると式(21)が得られる。
cos2θ3=1−(1−cosΔΓ2)/2(1−cosmΔΓ2)・・・(2
1)
式(21)は、第2の波長板3’により生ずる位相変化ΔΓ2により第1の波長板2’
の面内方位角θ3が決定されることを示している。

Further, when Expression (17) is substituted into Expression (16), Expression (18) is obtained.
(X1) 2 = 4k 2 (1-cos 2θ3) (1-cos ΔΓ1) (18)
Therefore, in order for the phase changes of the first wave plate 2 ′ and the second wave plate 3 ′ to cancel each other, it is necessary that x1≈x2, and from the equations (15) and (18) ( x1) 2 = (x2) 2 2
The relationship k 2 −2k 2 cos ΔΓ 2 = 4 k 2 (1−cos 2θ3) (1−cos ΔΓ1) is established.
Therefore, when k is normalized and collected, Expression (19) is obtained.
cos2θ3 = 1− (1-cosΔΓ2) / { 2 (1-cosΔΓ1) } (19
)
Next, when the first wave plate 2 ′ and the second wave plate 3 ′ are made of the same dispersion substrate material, and Γ11 / Γ22 = m, Expression (20) is obtained.
ΔΓ1 = mΔΓ2 (20)
Therefore, when equation (20) is substituted into equation (19), equation (21) is obtained.
cos2θ3 = 1− (1-cosΔΓ2) / { 2 (1-cosmΔΓ2) } (2
1)
Equation (21) is obtained by the phase change ΔΓ2 caused by the second wave plate 3 ′.
It is shown that the in-plane azimuth angle θ3 is determined.

次に、上述した計算式を用いて積層1/2波長板1’を構成する第1の波長板2’と第2の波長板3’の具体的なパラメータを算出する。
具体例として、波長350nm〜850nmの帯域における複数の波長帯において1/2波長板として機能する積層1/2波長板についてパラメータを算出する。
例えば、第1の波長板2’の位相差Γ11=3240°(=360°+360°×2×4)、第2の波長板3の位相差Γ=1620°(=180°+360°×4)とすると、
m=Γ1/Γ2=2
となる。
次に、θ4については、第2の波長板3’に入射する直線偏光の偏光方向を90°回転した直線偏光として出射させるためにθ4の値を45°とするが、前述のシミュレーションにより得られた解に対して最適化を図るため、可変範囲を±10°と設定し、
θ4=45°±10°・・・(22)
とした。
Next, specific parameters of the first wave plate 2 ′ and the second wave plate 3 ′ constituting the laminated half-wave plate 1 ′ are calculated using the above-described calculation formula.
As a specific example, parameters are calculated for a laminated half-wave plate that functions as a half-wave plate in a plurality of wavelength bands in a wavelength band of 350 nm to 850 nm.
For example, the phase difference Γ11 = 3240 ° (= 360 ° + 360 ° × 2 × 4) of the first wave plate 2 ′, and the phase difference Γ = 1620 ° (= 180 ° + 360 ° × 4) of the second wave plate 3 Then,
m = Γ1 / Γ2 = 2
It becomes.
Next, as for θ4, the value of θ4 is set to 45 ° in order to emit the linearly polarized light incident on the second wave plate 3 ′ as linearly polarized light rotated by 90 °. In order to optimize the solution, the variable range is set to ± 10 °,
θ4 = 45 ° ± 10 ° (22)
It was.

図9は本発明に係る偏光変換子の実施例を示すで構成図であって、偏光ビームスプリッタアレイ(偏光分離素子)10のP偏光が出射する面に、本発明に係る上記の積層1/2波長板11を貼り付けて偏光変換子を構成する。周知のように、偏光ビームスプリッタアレイ10の構成は、図9に示すように光学ガラス等を用いて形成した平行六面体透明部材を、複数個互いの側面同士を接合して構成する。平行四辺形状のプリズムを複数個、斜面同士を貼り合わせ、接合したプリズムの一方の斜面に偏光分離部13を形成し、他方の斜面には反射膜14を形成する。偏光変換子の作用は、光(ランダム光)12が偏光ビームスプリッタアレイ10の入射面に入射すると、ランダム光のうち、P偏光は偏光分離部13を透過し、偏光ビームスプリッタアレイ10の出射面に貼り付けられた積層1/2波長板11によりS偏光に変換されて出射する。一方、ランダム光のうちのS偏光は偏光分離部13により反射され、さらに反射膜14で反射されて、偏光変換子を出射する。本発明の偏光変換子の特徴はP偏光からS偏光への変換効率がよく、強い偏光光を作り出せることである。   FIG. 9 is a block diagram showing an embodiment of the polarization converter according to the present invention. The polarization beam splitter array (polarization separation element) 10 has a laminated 1 / A polarization converter is formed by attaching the two-wavelength plate 11. As is well known, the configuration of the polarizing beam splitter array 10 is formed by joining a plurality of parallelepiped transparent members formed using optical glass or the like as shown in FIG. A plurality of parallelogram-shaped prisms are bonded to each other, and the polarization separating portion 13 is formed on one inclined surface of the bonded prism, and the reflection film 14 is formed on the other inclined surface. The action of the polarization converter is that when light (random light) 12 enters the incident surface of the polarization beam splitter array 10, among the random light, P-polarized light is transmitted through the polarization separation unit 13, and the exit surface of the polarization beam splitter array 10. Is converted to S-polarized light by the laminated half-wave plate 11 attached to the light and emitted. On the other hand, the S-polarized light in the random light is reflected by the polarization separation unit 13 and further reflected by the reflection film 14 to be emitted from the polarization converter. The feature of the polarization converter of the present invention is that it has high conversion efficiency from P-polarized light to S-polarized light and can produce strong polarized light.

図10は本発明に係る偏光照明装置の実施例を示すで構成図あって、発光光源15と、レンズアレイ18と、上記に説明した本発明の積層1/2波長板19と、を備えている。発光光源15は超高圧水銀ランプやキセノンランプ等のランプ16と反射鏡17、例えば放物面反射鏡とからなり、ランプ16から出射される光は放物面反射鏡17の光軸に略平行光となる。そして、ランプ16から発せられる光は自然光(ランダム光)であり、強度の等しい直交する2つの直線偏光(P偏光、S偏光)の和で表せる。ランダム光は積層1/2波長板19を透過すると、S偏光のみに変換される偏光照明装置である。   FIG. 10 is a block diagram showing an embodiment of the polarization illumination device according to the present invention, which includes a light emitting light source 15, a lens array 18, and the laminated half-wave plate 19 of the present invention described above. Yes. The light-emitting light source 15 includes a lamp 16 such as an ultra-high pressure mercury lamp or a xenon lamp and a reflecting mirror 17, for example, a parabolic reflecting mirror, and light emitted from the lamp 16 is substantially parallel to the optical axis of the parabolic reflecting mirror 17. It becomes light. The light emitted from the lamp 16 is natural light (random light), and can be represented by the sum of two orthogonal linearly polarized light (P-polarized light and S-polarized light) having the same intensity. When the random light is transmitted through the laminated half-wave plate 19, it is a polarized light illumination device that is converted into only S-polarized light.

図11(a)は本発明に係る3波長対応光ピックアップ20の実施例を示すブロック図である。CDに対応した785nm帯の波長のレーザ光を出射するレーザダイオード(以下、LDと称する)21と、DVDに対応した660nm帯の波長のレーザ光を出射するLD22と、前記LD21の出射する直線偏光であるレーザ光を反射すると共に、前記LD22が出射する直線偏光のレーザ光を透過するダイクロイックプリズム23と、BD(405nm帯の青紫色レーザを用いたブルーレイディスクや、HD−DVDに代表されるブルーレーザディスク)に対応した405nm帯の波長のレーザ光を出射するLD24と、LD24が出射する直線偏光のレーザ光を反射すると共に、前記ダイクロイックプリズム23を反射、及び透過したレーザ光を透過する波長分離素子25と、該波長分離素子25を反射、及び透過したレーザ光の位相を180°変換して出射する積層1/2波長板26と、該積層1/2波長板26を出射するレーザ光を所定の比率で反射、及び透過するミラー27と、ミラー27を透過したレーザ光をモニターするフロントモニター(FM)28と、ミラー27を反射したレーザ光を平行光とするコリメートレンズ29と、コリメートレンズ29を透過した直線偏光を円偏光に変換する1/4波長板30と、光ディスク31に形成されたピット32にレーザ光を集光する集光レンズ33と、ピット32にて反射したレーザ光を、前記集光レンズ33と、1/4波長板30と、コリメートレンズ29と、ミラー27と、を経由して検出する光検出素子PD34とにより構成する。光ピックアップでは1/2波長板をファーフィールドパターンと偏光面の相対角度を変える目的で使用している。   FIG. 11A is a block diagram showing an embodiment of the three-wavelength compatible optical pickup 20 according to the present invention. A laser diode (hereinafter referred to as LD) 21 that emits laser light having a wavelength of 785 nm corresponding to CD, an LD 22 that emits laser light having a wavelength of 660 nm corresponding to DVD, and linearly polarized light emitted from the LD 21. And a dichroic prism 23 that transmits linearly polarized laser light emitted by the LD 22 and a BD (Blu-ray disc using a 405 nm band blue-violet laser, and a blue represented by HD-DVD). LD 24 that emits laser light having a wavelength of 405 nm corresponding to a laser disk, and wavelength separation that reflects linearly polarized laser light emitted from the LD 24 and reflects and transmits the laser light transmitted through the dichroic prism 23. Element 25 and the position of the laser beam reflected and transmitted by the wavelength separation element 25. A half-wave plate 26 that emits light after being converted by 180 °, a mirror 27 that reflects and transmits laser light emitted from the half-wave plate 26 at a predetermined ratio, and a laser that passes through the mirror 27 A front monitor (FM) 28 for monitoring the light, a collimating lens 29 for converting the laser light reflected by the mirror 27 into parallel light, and a quarter-wave plate 30 for converting linearly polarized light transmitted through the collimating lens 29 into circularly polarized light The condensing lens 33 that condenses the laser light on the pit 32 formed on the optical disc 31, the laser light reflected by the pit 32, the condensing lens 33, the quarter-wave plate 30, and the collimating lens 29 And a photodetecting element PD34 that detects via the mirror 27. In the optical pickup, a half-wave plate is used for the purpose of changing the relative angle between the far field pattern and the polarization plane.

以上のように、本発明の積層1/2波長板を用いて3波長対応光ピックアップ装置を構成することにより、従来の構成では1/2波長板を3個必要としたが、本発明に係る積層1/2波長板を用いることにより、積層1/2波長板を1個のみで、3波長対応光ピックアップ装置を構成することができるという効果がある。   As described above, by configuring the three-wavelength compatible optical pickup device using the laminated half-wave plate of the present invention, the conventional configuration requires three half-wave plates. By using the laminated half-wave plate, there is an effect that a three-wavelength compatible optical pickup device can be configured with only one laminated half-wave plate.

更に、最近開発された三波長発光レーザダイオードと、本発明の積層1/2波長板を用いることにより、新たな3波長対応光ピックアップ装置を構成することができる。図11(a)と同じ光学デバイスには同じ符号を用いることにする。図11(b)は本発明に係る他の3波長対応光ピックアップ35の実施例を示すブロック図である。CD、DVD及びBDに夫々対応した785nm帯、660nm帯及び405nm帯の波長を出射するLD36a、36b及び36cを備えた複合LD36と、該複合LD36が出射する785nm帯、660nm帯、405nm帯のいずれか1つのレーザ光の位相を180°変換して出射する積層1/2波長板26と、該積層1/2波長板26を出射するレーザ光を所定の比率で反射、及び透過するミラー27と、ミラー27を透過したレーザ光をモニターするフロントモニター(FM)28と、ミラー27を反射したレーザ光を平行光とするコリメートレンズ29と、コリメートレンズ29を透過した直線偏光を円偏光に変換する1/4波長板30と、光ディスク31に形成されたピット32にレーザ光を集光する集光レンズ33と、ピット32にて反射したレーザ光を、前記集光レンズ33と、1/4波長板30と、コリメートレンズ29と、ミラー27と、を経由して検出する光検出素子PD34とにより構成する。   Furthermore, by using the recently developed three-wavelength laser diode and the laminated half-wave plate of the present invention, a new three-wavelength compatible optical pickup device can be constructed. The same reference numerals are used for the same optical devices as those in FIG. FIG. 11B is a block diagram showing an embodiment of another three-wavelength compatible optical pickup 35 according to the present invention. A composite LD 36 including LDs 36a, 36b, and 36c that emit wavelengths of 785 nm band, 660 nm band, and 405 nm band corresponding to CD, DVD, and BD, respectively, and any of the 785 nm band, 660 nm band, and 405 nm band that the composite LD 36 emits A laminated half-wave plate 26 that emits the phase of the single laser beam by 180 °, and a mirror 27 that reflects and transmits the laser beam emitted from the laminated half-wave plate 26 at a predetermined ratio. A front monitor (FM) 28 for monitoring the laser light transmitted through the mirror 27, a collimating lens 29 for converting the laser light reflected by the mirror 27 into parallel light, and the linearly polarized light transmitted through the collimating lens 29 is converted into circularly polarized light. A quarter-wave plate 30, a condensing lens 33 that condenses the laser light on the pits 32 formed on the optical disk 31, and a pin The laser light reflected by preparative 32, and the condenser lens 33, a 1/4-wave plate 30, constituted by a collimator lens 29, a mirror 27, a light detecting element PD34 detects via.

以上のように、本発明の積層1/2波長板を用いて3波長対応光ピックアップ装置を構成することにより、光学部品を大幅に削減することが可能となり、光ピックアップ装置の製造コストを大きく低減することができるという効果がある。   As described above, by constructing a three-wavelength optical pickup device using the laminated half-wave plate of the present invention, it becomes possible to significantly reduce optical components and greatly reduce the manufacturing cost of the optical pickup device. There is an effect that can be done.

1,1’,19,24…積層1/2波長板、2,2’,3,3’…波長板、4,5直線偏光,6,6’,7,7’…光学軸、θ1,θ2,θ3,θ4…光学軸の方位角、10…偏光変換子、11…ビームスプリッタアレイ、12…光軸、13…偏光分離部、14…反射膜、15…発光光源、16…ランプ、17…反射鏡、18…レンズアレイ、20,35…光ピックアップ装置、21,22,24,36a,36b,36c…レーザダイオード(LD)、23…ダイクロイックプリズム、25…波長分離素子、26…積層1/2波長板、27…ミラー、28…フロントモニター、29…コリメートレンズ、30…1/4波長板、33…集光レンズ、34…光検出素子(PD)、36…複合レーザダイオード(LD)。   1, 1 ', 19, 24 ... laminated half-wave plate, 2, 2', 3, 3 '... wave plate, 4, 5 linearly polarized light, 6, 6', 7, 7 '... optical axis, [theta] 1, θ2, θ3, θ4: azimuth angle of optical axis, 10: polarization converter, 11: beam splitter array, 12: optical axis, 13: polarization separation unit, 14: reflection film, 15: light source, 16: lamp, 17 Reflector, 18 ... Lens array, 20, 35 ... Optical pickup device, 21, 22, 24, 36a, 36b, 36c ... Laser diode (LD), 23 ... Dichroic prism, 25 ... Wavelength separation element, 26 ... Stack 1 / 2 wavelength plate, 27 ... mirror, 28 ... front monitor, 29 ... collimating lens, 30 ... 1/4 wavelength plate, 33 ... condensing lens, 34 ... photodetecting element (PD), 36 ... composite laser diode (LD) .

Claims (6)

波長λの光に対して位相差Γ11の第1の波長板と位相差Γ22の第2の波長板とを各  A first wave plate having a phase difference of Γ11 and a second wave plate having a phase difference of Γ22 for each light having a wavelength of λ.
々の光学軸が交差するように積層してなり、Laminated so that the optical axes intersect,
互いに波長が異なる複数の波長において、入射する直線偏光の偏光面を90°回転させ  Rotate the plane of polarization of incident linearly polarized light by 90 ° at multiple wavelengths with different wavelengths.
た直線偏光に変換して出射する積層波長板であって、A laminated wave plate that emits light after being converted into linearly polarized light,
前記第1の波長板の面内方位角をθ3とし、  An in-plane azimuth angle of the first wave plate is θ3,
前記第2の波長板の面内方位角をθ4とし、  The in-plane azimuth angle of the second wave plate is θ4,
前記第2の波長板の波長λ1に対する位相差をΓ211、波長λ2(λ1<λ2)に対  The phase difference of the second wave plate with respect to wavelength λ1 is set to Γ211 and wavelength λ2 (λ1 <λ2).
する位相差をΓ222としたとき、When the phase difference to be
下式(12)、(13)、(14)、(21)、及び(22)を満足するよう構成した  The following expressions (12), (13), (14), (21), and (22) are satisfied.
ことを特徴とする積層波長板。A laminated wave plate characterized by that.
Γ11=360°+360°×2×n ・・・・(12)Γ11 = 360 ° + 360 ° × 2 × n (12)
Γ22=180°+360°×n ・・・・(13)Γ22 = 180 ° + 360 ° × n (13)
ΔΓ2=(Γ222−Γ211)/2 ・・・・(14)ΔΓ2 = (Γ222−Γ211) / 2 (14)
cos2θ3=1−(1−cosΔΓ2)/2{(1−cosmΔΓ2)}・・・・(2cos2θ3 = 1− (1-cosΔΓ2) / 2 {(1-cosmΔΓ2)} (2)
1)1)
θ4=45°±10° ・・・・(22)θ4 = 45 ° ± 10 ° (22)
但し、nは1からはじまる自然数、m=2However, n is a natural number starting from 1, m = 2
請求項1において、  In claim 1,
n=4、n = 4,
θ3=−16°若しくは−21°θ3 = −16 ° or −21 °
であることを特徴とする積層波長板。A laminated wave plate, wherein
請求項1において、  In claim 1,
n=5、n = 5,
θ3=−16°若しくは−21°θ3 = −16 ° or −21 °
であることを特徴とする積層波長板。A laminated wave plate, wherein
第1の主面を光入射面としかつ第2の主面を光出射面とする平板状の透光性基材と、  A plate-like translucent substrate having the first main surface as a light incident surface and the second main surface as a light output surface;
前記基材中に設けられた第1及び第2の光学薄膜と、前記基材の前記第2の主面に設け  First and second optical thin films provided in the base material, and provided on the second main surface of the base material
られた波長板とを備え、A wave plate,
前記第1及び第2の光学薄膜が、前記第1及び第2の主面に対して傾斜させて、交互に  The first and second optical thin films are alternately inclined with respect to the first and second main surfaces.
かつ互いに間隔をおいて平行に配置され、And arranged parallel to each other at intervals,
前記第1の光学薄膜が、前記第1の主面側から入射した光を互いに直交する第1の直線  The first optical thin film is a first straight line orthogonal to the light incident from the first main surface side.
偏光と第2の直線偏光とに分離して、前記第1の直線偏光を透過させかつ第2の直線偏光Separated into polarized light and second linearly polarized light to transmit the first linearly polarized light and second linearly polarized light
を反射し、Reflect
前記第2の光学薄膜が、前記第1の光学薄膜により反射された第2の直線偏光を反射し  The second optical thin film reflects the second linearly polarized light reflected by the first optical thin film.
て前記第2の主面から出射させ、Emanating from the second main surface,
前記波長板が、前記第2の主面に配置され、前記第1の光学薄膜を透過した前記第1の  The first wave plate disposed on the second main surface and transmitted through the first optical thin film.
直線偏光を第2の直線偏光に変換して出射させる偏光変換子であって、A polarization converter that converts linearly polarized light into a second linearly polarized light and emits it;
前記波長板が、請求項1乃至請求項3のいずれか一項に記載の積層位相差板であること  The said wave plate is a laminated phase difference plate as described in any one of Claim 1 thru | or 3.
を特徴とすることを特徴とする偏光変換子。A polarization converter characterized by comprising:
請求項1乃至請求項3のいずれか一項に記載の積層波長板を備えていることを特徴する  A laminated wave plate according to any one of claims 1 to 3 is provided.
偏光照明装置。Polarized illumination device.
光源と、  A light source;
前記光源から出射した光を光記録媒体に集光するための対物レンズと、  An objective lens for condensing the light emitted from the light source onto an optical recording medium;
前記光記録媒体により反射された光を検出するための光検出器と、  A photodetector for detecting light reflected by the optical recording medium;
を備えた光ピックアップ装置であって、An optical pickup device comprising:
前記光源から前記対物レンズに至る光路中に請求項1乃至3のいずれか一項に記載の積  The product according to any one of claims 1 to 3 in an optical path from the light source to the objective lens.
層波長板を設置したことを特徴とする光ピックアップ装置。An optical pickup device comprising a layer wave plate.
JP2010003454A 2006-04-10 2010-01-09 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device Expired - Fee Related JP5088707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003454A JP5088707B2 (en) 2006-04-10 2010-01-09 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006107270 2006-04-10
JP2006107270 2006-04-10
JP2010003454A JP5088707B2 (en) 2006-04-10 2010-01-09 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007097996A Division JP4623042B2 (en) 2006-04-10 2007-04-04 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device

Publications (2)

Publication Number Publication Date
JP2010140039A JP2010140039A (en) 2010-06-24
JP5088707B2 true JP5088707B2 (en) 2012-12-05

Family

ID=42350173

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010003454A Expired - Fee Related JP5088707B2 (en) 2006-04-10 2010-01-09 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP2010243316A Expired - Fee Related JP5434885B2 (en) 2006-04-10 2010-10-29 Wave plate, polarization converter, polarization illumination device, and optical pickup device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010243316A Expired - Fee Related JP5434885B2 (en) 2006-04-10 2010-10-29 Wave plate, polarization converter, polarization illumination device, and optical pickup device

Country Status (1)

Country Link
JP (2) JP5088707B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088707B2 (en) * 2006-04-10 2012-12-05 セイコーエプソン株式会社 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP2012226121A (en) * 2011-04-20 2012-11-15 Seiko Epson Corp Polarization conversion element, polarization conversion unit, and projection device
JP5834970B2 (en) * 2011-05-27 2015-12-24 旭硝子株式会社 Wave plate and laser projector
WO2014027458A1 (en) * 2012-08-14 2014-02-20 日本電気株式会社 Polarization element, optical device, and video display device
JPWO2014027459A1 (en) * 2012-08-14 2016-07-25 日本電気株式会社 Optical element, optical device, and image display device
DE102014204941A1 (en) 2014-03-17 2015-09-17 Menlo Systems Gmbh Method for operating a laser device, resonator arrangement and use of a phase shifter
CN114518685B (en) * 2020-11-19 2023-01-03 中强光电股份有限公司 Illumination system and projection apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277514B2 (en) * 2002-11-22 2009-06-10 エプソントヨコム株式会社 Laminated wave plate
JP2004272140A (en) * 2003-03-12 2004-09-30 Toyo Commun Equip Co Ltd Wavelength plate and optical pickup device using same
JP4928056B2 (en) * 2003-04-24 2012-05-09 セイコーエプソン株式会社 Wave plate and optical pickup device using the same
JP4623042B2 (en) * 2006-04-10 2011-02-02 エプソントヨコム株式会社 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP5088707B2 (en) * 2006-04-10 2012-12-05 セイコーエプソン株式会社 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device

Also Published As

Publication number Publication date
JP2010140039A (en) 2010-06-24
JP2011076097A (en) 2011-04-14
JP5434885B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP4623042B2 (en) Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP5088707B2 (en) Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
TWI410965B (en) Optical pick-up apparatus
JP5040952B2 (en) Wave plate and optical pickup
JP5251671B2 (en) Laminated half-wave plate, optical pickup device, polarization conversion element, and projection display device
JP5051475B2 (en) 1/4 wavelength plate, optical pickup device and reflection type liquid crystal display device
US7986608B2 (en) Laminated wave plate and optical pickup device using the same
JP2010243641A (en) Cemented optical element and cementing method
JP5012171B2 (en) Reflective diffractive polarizer and optical device
JP5251672B2 (en) Laminated half-wave plate, optical pickup device, polarization conversion element, and projection display device
JP2008070690A (en) Wavelength plate and projector
JP2012078436A (en) Wavelength plate and polarizing conversion element, illumination optical system, and image display device using the same
WO2011049144A1 (en) Reflection type wavelength plate and optical head device
JP5024241B2 (en) Wave plate and optical pickup device using the same
JP5347911B2 (en) 1/2 wavelength plate, optical pickup device, polarization conversion element, and projection display device
JP2009103863A (en) Retardation plate and projector
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP2013003491A (en) Polarization conversion element, polarization conversion unit and projection device
JP2008070691A (en) Wavelength plate, lighting apparatus and projector
JP2009128568A (en) Polarization conversion element and projector
JP5109762B2 (en) Laminated retardation plate, polarization conversion element, and projection type image device
JP5088702B2 (en) Polarizing beam splitter, optical pickup and phase plate
JP2012226031A (en) Polarization conversion element, polarization conversion unit, and projection device
JP2010014795A (en) Optical apparatus and projector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120902

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees