JP4557022B2 - Laminated phase difference plate, projection type image device - Google Patents

Laminated phase difference plate, projection type image device Download PDF

Info

Publication number
JP4557022B2
JP4557022B2 JP2008054444A JP2008054444A JP4557022B2 JP 4557022 B2 JP4557022 B2 JP 4557022B2 JP 2008054444 A JP2008054444 A JP 2008054444A JP 2008054444 A JP2008054444 A JP 2008054444A JP 4557022 B2 JP4557022 B2 JP 4557022B2
Authority
JP
Japan
Prior art keywords
phase difference
plate
retardation plate
thickness
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008054444A
Other languages
Japanese (ja)
Other versions
JP2008268901A (en
Inventor
衆方 小林
正之 大戸
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008054444A priority Critical patent/JP4557022B2/en
Priority to US12/051,339 priority patent/US7855834B2/en
Publication of JP2008268901A publication Critical patent/JP2008268901A/en
Application granted granted Critical
Publication of JP4557022B2 publication Critical patent/JP4557022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、複数の水晶板を貼り合わせて構成された積層位相差板およびこの積層位相板を用いた投射型映像装置に関する。   The present invention relates to a laminated phase difference plate formed by laminating a plurality of crystal plates and a projection type video apparatus using the laminated phase plate.

従来、液晶プロジェクタなどに用いられ、光源からの入射光の偏光をそろえる光学素子として、特許文献1に開示されているような積層位相差板が知られている。
この積層位相差板は、水晶基板からなる2枚の位相差板により構成される。前記の位相差板の結晶光学軸(以下、光学軸と示す)が交差するように貼り合わされている。
この積層位相差板は、1/2波長位相差板として機能し、入射光の偏光面を90°回転した偏光面に変換する。この入射光は光源によって、三色波長帯(概ね400nm〜700nm)、青色波長帯(概ね400nm〜500nm)、緑色波長帯(概ね500nm〜600nm)、赤色波長帯(概ね600nm〜700nm)、のいずれかの波長帯に属する光である。
特許文献2に開示されているように、液晶プロジェクタ等では様々な光学素子を用いて、光源から上記の複数の波長帯の光を取り出し、これらの光を液晶シャッタで階調した後、再びこれらを合成し、映像情報を投射する。これらの光学素子で構成される光路中では多数の位相差板が用いられる。これらの位相差板に入射する光は前記のいずれかの波長帯に属する。なお、上記の波長帯の範囲は一例であって、液晶プロジェクタの設計に基づいて上記以外も設定される。
Conventionally, a laminated retardation plate as disclosed in Patent Document 1 is known as an optical element that is used in a liquid crystal projector or the like and aligns the polarization of incident light from a light source.
This laminated phase difference plate is composed of two phase difference plates made of a quartz substrate. The phase difference plate is bonded so that crystal optical axes (hereinafter referred to as optical axes) intersect.
This laminated retardation plate functions as a half-wave retardation plate and converts the polarization plane of incident light into a polarization plane rotated by 90 °. Depending on the light source, this incident light can be selected from any of the three-color wavelength band (approximately 400 nm to 700 nm), the blue wavelength band (approximately 400 nm to 500 nm), the green wavelength band (approximately 500 nm to 600 nm), and the red wavelength band (approximately 600 nm to 700 nm). It belongs to the wavelength band.
As disclosed in Patent Document 2, a liquid crystal projector or the like uses various optical elements to take out light in the above-mentioned plurality of wavelength bands from a light source, and gradation these light with a liquid crystal shutter, and then again these To project video information. A large number of retardation plates are used in the optical path constituted by these optical elements. The light incident on these retardation plates belongs to any one of the above-described wavelength bands. The above-mentioned wavelength band range is an example, and other ranges are set based on the design of the liquid crystal projector.

特開2004−170853号公報JP 2004-170853 A 特開2006−330282号公報JP 2006-330282 A

特許文献1に開示されている積層位相差板は、実施形態における最適な条件として、2枚の位相差板の板厚を共に100μmとしている。さらに、2枚の位相差板の水晶原石からの切り出し方向を共にZカット、光学軸方位角をそれぞれ19°、64°に設定している。この設計により400nm〜700nmの波長域での偏光変換効率の向上を得ている。   In the laminated phase difference plate disclosed in Patent Document 1, the thickness of the two phase difference plates is set to 100 μm as an optimum condition in the embodiment. Further, the cutting directions of the two retardation plates from the quartz crystal are both Z-cut, and the optical axis azimuth angles are set to 19 ° and 64 °, respectively. This design improves the polarization conversion efficiency in the wavelength range of 400 nm to 700 nm.

しかしながら、上記の従来技術の積層位相差板は、入射光の波長帯における、更なる偏光変換効率の向上要求に対して、不十分である。この偏光変換効率とは、例えばP波からS波に偏光する場合に、変換される割合を示し、P波が全てS波に偏光変換されたとすると、理想値の1.00として示される。この偏光変換効率が理想値1.00に近い程、積層位相差板を通過した光量は損失が少なく、明るい映像を有する液晶プロジェクタを生産するのに好適である。
また、液晶プロジェクタには様々な波長帯の入射光に対する積層位相差板が用いられるが、前記の様々な波長帯に対して、各々の波長帯に最適な偏光変換効率を向上できる手段が従来提案されていなかった。
However, the above-described conventional laminated phase difference plate is insufficient for further demand for improvement in polarization conversion efficiency in the wavelength band of incident light. This polarization conversion efficiency indicates, for example, the rate of conversion in the case of polarization from P wave to S wave. If all P waves are polarized and converted to S wave, it is indicated as an ideal value of 1.00. The closer the polarization conversion efficiency is to the ideal value of 1.00, the smaller the amount of light that has passed through the laminated retardation plate, and the more suitable it is for producing a liquid crystal projector having a bright image.
In addition, laminated phase difference plates for incident light in various wavelength bands are used in liquid crystal projectors, and means that can improve the polarization conversion efficiency optimum for each wavelength band have been proposed in the past. Was not.

本発明は、上記の課題に着目して、従来技術より偏光変換効率が向上し、光線の波長帯に好適な積層位相差板および該積層位相差板を用いた投射型映像装置を提供することを目的とする。   The present invention pays attention to the above-mentioned problems, and provides a laminated retardation plate suitable for the wavelength band of light and a projection type image device using the laminated retardation plate, which has improved polarization conversion efficiency compared to the prior art. With the goal.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]適用例1に係る積層位相差板は、波長λの光に対して位相差Γ’aの第1の位相差板と位相差Γ’bの第2の位相差板とを各々の光学軸が交差するように積層してなり、波長λ1〜λ2(但し、λ1<λ<λ2)の範囲において入射する直線偏光の偏光面を90deg回転させた直線偏光に変換して出射する積層位相差板であって、前記第1の位相差板と前記第2の位相差板はYカット水晶基板から形成され、前記入射する直線偏光の偏光面と前記第1の位相差板の光学軸とのなす角度を光学軸方位角θaとし、前記入射する直線偏光の偏光面と前記第2の位相差板の光学軸とのなす角度を光学軸方位角θbとしたとき、前記光学軸方位角θaと前記光学軸方位角θbとの関係が、θb=θa+α、0°<θa<45°、40°<α<50°を満足し、前記第1の位相差板の常光線の屈折率をNoa、異常光線の屈折率をNea、厚みをdaとしたきに、前記第1の位相差板の位相差Γ’aと偏光変換効率Taは、
Γ’a=2×π×da×(Nea−Noa)/λ、
Ta=4×(sin 2 θa)×(cos(2θa))×(sin 2 (Γ’a/2))
を満足し、前記第2の位相差板の常光線の屈折率をNob、異常光線の屈折率をNeb、厚みをdbとしたきに、前記第2の位相差板の位相差Γ’bと偏光変換効率Tbは、
Γ’b=2×π×db×(Neb−Nob)/λ、
Tb=4×(sin 2 θb)×(cos(2θb))×(sin 2 (Γ’b/2))
を満足し、前記位相差Γ’aと前記位相差Γ’bは、
Γ’a=Γa+ΔΓa、
Γ’b=Γb+ΔΓb、
Γa=180°、
Γb=180°
を満足し、前記ΔΓaと前記ΔΓbとの関係が、下式(1)を満足することを特徴とする。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
Application Example 1 A laminated retardation plate according to Application Example 1 includes a first retardation plate having a phase difference Γ′a and a second retardation plate having a phase difference Γ′b with respect to light having a wavelength λ. Each optical axis is stacked so as to intersect, and is converted into linearly polarized light obtained by rotating the polarization plane of linearly polarized light that is incident in the wavelength range of λ1 to λ2 (where λ1 <λ <λ2) by 90 degrees, and then emitted. It is a laminated phase difference plate, wherein the first phase difference plate and the second phase difference plate are formed from a Y-cut quartz substrate, and the polarization plane of the incident linearly polarized light and the optical of the first phase difference plate The optical axis azimuth θa is the angle formed with the axis, and the optical axis azimuth θb is the angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the second retardation plate. The relationship between the angle θa and the optical axis azimuth angle θb satisfies θb = θa + α, 0 ° <θa <45 °, and 40 ° <α <50 °. When the refractive index of ordinary light of the first retardation plate is Noa, the refractive index of extraordinary light is Nea, and the thickness is da, the phase difference Γ′a of the first retardation plate and polarization conversion Efficiency Ta is
Γ′a = 2 × π × da × (Nea-Noa) / λ,
Ta = 4 × (sin 2 θa) × (cos (2θa)) × (sin 2 (Γ′a / 2))
When the refractive index of ordinary light of the second retardation plate is Nob, the refractive index of extraordinary light is Neb, and the thickness is db, the phase difference Γ′b of the second retardation plate is The polarization conversion efficiency Tb is
Γ′b = 2 × π × db × (Neb−Nob) / λ,
Tb = 4 × (sin 2 θb) × (cos (2θb)) × (sin 2 (Γ′b / 2))
And the phase difference Γ′a and the phase difference Γ′b are
Γ′a = Γa + ΔΓa,
Γ′b = Γb + ΔΓb,
Γa = 180 °,
Γb = 180 °
And the relationship between ΔΓa and ΔΓb satisfies the following expression (1) .

Figure 0004557022
Figure 0004557022

第1の位相差板と第2の位相差板は水晶原石から切断された水晶基材を研磨して、貼り合わせ前の基板の厚みが設計上の厚みの目標値に加工される。この加工後の厚み値と設計上の厚みの目標値とのずれ量は、第1の位相差板と第2の位相差板を透過した光線の位相差の目標値とのずれ量に影響する。第1の位相差板の位相差の目標値とのずれ量に対し、第2の位相差板の位相差を制御すれば、貼り合わせ後の上気積層位相差板を透過した光線の位相差の目標値とのずれ量を小さくでき、偏光変換効率を向上できる。
そこで、第2の位相差板の位相差Γbの設計目標値からのずれ量ΔΓbを、第1の位相差板の位相差Γaの設計目標値からのずれ量ΔΓaと第2の位相差板の光学軸方位角θbから求める手段を見出した。そして、この手段により、位相差板の貼り合わせにおいて、位相差Γaの設計目標値からのずれ量ΔΓaを有する第1の位相差板と、これに最適な位相差Γbの設計目標値からのずれ量ΔΓbを有する第2の位相差板と、を貼りあわせて積層できる。この手段で得られた積層位相差板は、位相差Γaの設計目標値からのずれ量ΔΓaを位相差Γbの設計目標値からのずれ量ΔΓbで相殺するので、高い偏光変換効率を有することができる。
The first retardation plate and the second retardation plate polish the quartz base material cut from the quartz raw stone, and the thickness of the substrate before bonding is processed to the target value of the designed thickness. The amount of deviation between the processed thickness value and the designed thickness target value affects the amount of deviation between the first retardation plate and the target value of the phase difference of the light transmitted through the second retardation plate. . If the phase difference of the second phase difference plate is controlled with respect to the amount of deviation from the target value of the phase difference of the first phase difference plate, the phase difference of the light beam transmitted through the upper air laminated phase difference plate after bonding The amount of deviation from the target value can be reduced, and the polarization conversion efficiency can be improved.
Therefore, the amount of deviation ΔΓb from the design target value of the phase difference Γb of the second phase difference plate is changed from the amount of deviation ΔΓa of the phase difference Γa of the first phase difference plate from the design target value to the value of the second phase difference plate. A means for obtaining from the optical axis azimuth angle θb was found. By this means, when the retardation plates are bonded, the first retardation plate having a deviation amount ΔΓa from the design target value of the phase difference Γa and the deviation of the optimum phase difference Γb from the design target value. A second retardation plate having an amount ΔΓb can be laminated together. The laminated retardation plate obtained by this means cancels out the amount of deviation ΔΓa from the design target value of the phase difference Γa with the amount of deviation ΔΓb from the design target value of the phase difference Γb, and therefore has high polarization conversion efficiency. it can.

[適用例2]適用例1に係る積層位相差板おいて、λ1=400nm、λ2=700nmとしたときに、前記第1の位相差板の厚みdaが24μm〜31μmの範囲であり、且つ前記第2の位相差板の厚みdbが24μm〜31μmの範囲である、ことを特徴とする。 Application Example 2 In the laminated phase difference plate according to Application Example 1, when λ1 = 400 nm and λ2 = 700 nm, the thickness da of the first retardation plate is in the range of 24 μm to 31 μm , and The thickness db of the second retardation plate is in the range of 24 μm to 31 μm .

前記範囲の板厚を有する第1の位相差板と前記範囲の板厚を有する第2の位相差板とを上記適用例に係る方法で貼りあわせた積層位相差板は、400nm〜700nmの波長領域の入射光において、従来技術の積層位相差板と比較して高い偏光変換効率を得ることができる。   The laminated phase difference plate in which the first retardation plate having the thickness in the range and the second retardation plate having the thickness in the range are bonded together by the method according to the application example has a wavelength of 400 nm to 700 nm. In the incident light in the region, it is possible to obtain a high polarization conversion efficiency as compared with the conventional laminated phase difference plate.

[適用例3]適用例1に係る積層位相差板おいて、λ1=400nm、λ2=500nmとしたときに、前記第1の位相差板の厚みdaが21μm〜26μmの範囲であり、且つ前記第2の位相差板の厚みdbが21μm〜26μmの範囲である、ことを特徴とする。 Application Example 3 In the laminated phase difference plate according to Application Example 1, when λ1 = 400 nm and λ2 = 500 nm, the thickness da of the first retardation plate is in the range of 21 μm to 26 μm , and The thickness db of the second retardation plate is in the range of 21 μm to 26 μm .

前記範囲の板厚を有する第1の位相差板と前記範囲の板厚を有する第2の位相差板とを上記適用例に係る方法で貼りあわせた積層位相差板は、400nm〜500nmの波長領域の入射光において、従来技術の積層位相差板と比較して高い偏光変換効率を得ることができる。   The laminated retardation plate obtained by bonding the first retardation plate having the thickness in the range and the second retardation plate having the thickness in the range by the method according to the application example has a wavelength of 400 nm to 500 nm. In the incident light in the region, it is possible to obtain a high polarization conversion efficiency as compared with the conventional laminated phase difference plate.

[適用例4]適用例1に係る積層位相差板おいて、λ1=500nm、λ2=600nmとしたときに、上記適用例に係る積層位相差板であって、前記第1の位相差板の厚みdaが25μm〜35μmmの範囲であり、且つ前記第2の位相差板の厚みdbが25μm〜35μmの範囲である、ことを特徴とする。 Application Example 4 In the laminated phase difference plate according to Application Example 1, when λ1 = 500 nm and λ2 = 600 nm, the laminated phase difference plate according to the application example described above, The thickness da is in the range of 25 μm to 35 μm , and the thickness db of the second retardation plate is in the range of 25 μm to 35 μm .

前記範囲の板厚を有する第1の位相差板と前記範囲の板厚を有する第2の位相差板とを上記適用例に係る方法で貼りあわせた積層位相差板は、500nm〜600nmの波長領域の入射光において、従来技術の積層位相差板と比較して高い偏光変換効率を得ることができる。   The laminated phase difference plate in which the first retardation plate having the thickness in the range and the second retardation plate having the thickness in the range are bonded together by the method according to the application example has a wavelength of 500 nm to 600 nm. In the incident light in the region, it is possible to obtain a high polarization conversion efficiency as compared with the conventional laminated phase difference plate.

[適用例5]適用例1に係る積層位相差板おいて、λ1=600nm、λ2=700nmとしたときに、上記適用例に係る積層位相差板であって、前記第1の位相差板の厚みdaが24μm〜47μmの範囲であり、且つ前記第2の位相差板の厚みdbが24μm〜47μmの範囲である、ことを特徴とする。 Application Example 5 In the laminated phase difference plate according to Application Example 1, when λ1 = 600 nm and λ2 = 700 nm, the laminated phase difference plate according to the application example described above, The thickness da is in the range of 24 μm to 47 μm , and the thickness db of the second retardation plate is in the range of 24 μm to 47 μm .

前記範囲の板厚を有する第1の位相差板と前記範囲の板厚を有する第2の位相差板とを上記適用例に係る方法で貼りあわせた積層位相差板は、600nm〜700nmの波長領域の入射光において、従来技術の積層位相差板と比較して高い偏光変換効率を得ることができる。   A laminated retardation plate obtained by bonding a first retardation plate having a thickness in the above range and a second retardation plate having a thickness in the above range by the method according to the application example has a wavelength of 600 nm to 700 nm. In the incident light in the region, it is possible to obtain a high polarization conversion efficiency as compared with the conventional laminated phase difference plate.

[適用例6]適用例6に係る投射型映像装置は、適用例1乃至5に係る少なくともいずれかの積層位相差板を用いたことを特徴とする。
Application Example 6 A projection type video apparatus according to Application Example 6 is characterized in that at least one of the laminated retardation plates according to Application Examples 1 to 5 is used.

従来技術より偏光変換効率が向上した積層位相差板を用いた投射型映像装置では、光利用効率が向上し、同じ輝度の光源を採用しても更に明るい映像を表示することができる。特に、複数の異なる波長域の光源を組みあわせて用いる投射型映像装置では、光源の波長域毎に最も高い偏光変換効率を有する位相差板を用いることができるので、光利用効率の向上ができる。   In the projection type video apparatus using the laminated phase difference plate whose polarization conversion efficiency is improved as compared with the prior art, the light utilization efficiency is improved, and a brighter image can be displayed even if a light source having the same luminance is adopted. In particular, in a projection-type video apparatus that uses a combination of light sources in a plurality of different wavelength ranges, a phase difference plate having the highest polarization conversion efficiency can be used for each wavelength range of the light sources, so that the light utilization efficiency can be improved. .

以下、本発明に係る積層位相差板の実施形態について図面を参照して説明する。なお、以下の各実施形態における積層位相差板の板厚、光学軸方位角、偏光変換効率などは以下の式(2)、式(3)及びミューラ行列式などに基づいて得た。   Hereinafter, embodiments of a laminated retardation plate according to the present invention will be described with reference to the drawings. In addition, the plate | board thickness of the laminated phase difference plate in each following embodiment, an optical axis azimuth, polarization conversion efficiency, etc. were obtained based on the following formula | equation (2), Formula (3), Mueller determinant, etc.

Figure 0004557022
ここで、Γ:位相差、d:板厚、Ne:異常光線屈折率、No:常光線屈折率、λ:波長、T:偏光変換効率、θ:光学軸方位角を表す。
上記の式により、5nm間隔の波長ごとに偏光変換効率を得て、偏光変換効率の理想値1.00との差を乖離値とした。目的とする波長領域において、それぞれの乖離値を累積して累積乖離値を得た。
Figure 0004557022
Here, Γ: retardation, d: plate thickness, Ne: extraordinary ray refractive index, No: ordinary ray refractive index, λ: wavelength, T: polarization conversion efficiency, θ: optical axis azimuth.
From the above formula, polarization conversion efficiency was obtained for each wavelength of 5 nm intervals, and the difference from the ideal value 1.00 of the polarization conversion efficiency was defined as the deviation value. In the target wavelength region, the accumulated divergence values were obtained by accumulating the respective divergence values.

(第1の実施形態)
図1は、第1の実施形態の積層位相差板を説明する説明図である。図1は、入射光の偏光変換を説明する図、図2は、光学軸方位角を説明する図である。
図1に示すように、積層位相差板1は、第1の位相差板10と第2の位相差板20とを含んで構成されている。
図2に示すように、第1の位相差板10と第2の位相差板20とは、光学軸11,21が交差するように貼り合わされている。
(First embodiment)
FIG. 1 is an explanatory diagram for explaining the laminated retardation plate of the first embodiment. FIG. 1 is a diagram illustrating polarization conversion of incident light, and FIG. 2 is a diagram illustrating an optical axis azimuth angle.
As shown in FIG. 1, the laminated phase difference plate 1 includes a first phase difference plate 10 and a second phase difference plate 20.
As shown in FIG. 2, the first retardation plate 10 and the second retardation plate 20 are bonded together so that the optical axes 11 and 21 intersect each other.

図3は、本願発明に係わる1/2波長位相差板のポアンカレ球を示す。そこで、本ポアンカレ球を用いて1/2波長位相差板の位相差のずれを極小にする方法を説明する。先ず、設定条件を、入射偏光面:図3中、水平方向とする。
第1の位相差板:位相差Γa=180°
光学軸方位角;θa
第2の位相差板:位相差Γb=180°
光学軸方位角;θb
とすると、第1の位相差板、第2の位相差板を透過する光の偏光状態は、以下のように考察することができる。
FIG. 3 shows a Poincare sphere of a half-wave retardation plate according to the present invention. Therefore, a method for minimizing the phase difference deviation of the half-wave retardation plate using the Poincare sphere will be described. First, the setting condition is the incident polarization plane: the horizontal direction in FIG.
First retardation plate: retardation Γa = 180 °
Optical axis azimuth; θa
Second retardation plate: retardation Γb = 180 °
Optical axis azimuth; θb
Then, the polarization state of the light transmitted through the first retardation plate and the second retardation plate can be considered as follows.

1/2波長位相差板の機能は、偏光面を概ね90°回転させることにあり、これをポアンカレ球にて表すと座標P0(S1,S2,S3)=(1,0,0)の位置から座標P2(−1,0,0)に移動させることである。そこで、開始点をS1軸と球面の交点としての座標P0とする。次に、S1軸を2θa反時計回りに回転させた位置に回転軸R1を設定する。R1軸を回転軸としてP0を位相差180°時計方向に回転させ、到達した地点をP1とする。次に、S1軸を2θb反時計回りに回転させた位置に回転軸R2を設定する。R2軸を回転軸としてP1を位相差180deg時計方向に回転させ、到達した地点をP2とする。   The function of the half-wave retardation plate is to rotate the plane of polarization approximately 90 °, and this is represented by the Poincare sphere at coordinates P0 (S1, S2, S3) = (1, 0, 0). To the coordinate P2 (-1, 0, 0). Therefore, the start point is set as a coordinate P0 as an intersection of the S1 axis and the spherical surface. Next, the rotation axis R1 is set at a position where the S1 axis is rotated counterclockwise by 2θa. P0 is rotated clockwise by phase difference 180 ° with the R1 axis as the rotation axis, and the point reached is defined as P1. Next, the rotation axis R2 is set at a position obtained by rotating the S1 axis counterclockwise by 2θb. P1 is rotated in the clockwise direction by 180 degrees around the R2 axis as a rotation axis, and the point reached is defined as P2.

上記によると、P2が(−1,0,0)に到達するためには、光学軸方位角θa、及び光学軸方位角θbが次式の条件を満足すればよい。なお、位相差αは貼り合わせ精度を考慮して設定値の±5°とした。   According to the above, in order for P2 to reach (-1, 0, 0), the optical axis azimuth angle θa and the optical axis azimuth angle θb need only satisfy the following conditions. The phase difference α is set to ± 5 ° of the set value in consideration of the bonding accuracy.

Figure 0004557022
Figure 0004557022

図4は、図3のポアンカレ球を、S3軸から見た図を示す。座標P0から座標P1に移動する場合の回転軸R1は、S1軸から2θa回転させた位置にある。また、座標P1から座標P2に移動する場合の回転軸R2は、S1軸から2θb回転させた位置にある。
よってポアンカレ球の中心をOとし、座標P0と座標P1と中心Oとからなる角度を∠P0−O−P1、また、座標P1と座標P2と中心Oとからなる角度を∠P1−O−P2とすると、
FIG. 4 shows a view of the Poincare sphere of FIG. 3 as viewed from the S3 axis. The rotation axis R1 when moving from the coordinate P0 to the coordinate P1 is at a position rotated by 2θa from the S1 axis. The rotation axis R2 when moving from the coordinate P1 to the coordinate P2 is at a position rotated by 2θb from the S1 axis.
Therefore, the center of the Poincare sphere is O, the angle formed by the coordinates P0, P1, and the center O is ∠P0-O-P1, and the angle formed by the coordinates P1, the coordinates P2, and the center O is ∠P1-O-P2. Then,

Figure 0004557022
Figure 0004557022

図5は、図3のポアンカレ球の赤道面において、偏光が座標P0から座標P2へ移動する場合の位相差を直線的に表した図を示す。座標P0から座標P1を通過してP2に至る赤道面は曲線で表すべきであるが、わかりやすくする為に直線状で表した。rxは座標P0から座標P1へ、R1軸を回転軸として移動する場合の回転半径である。また、rzは座標P1から座標P2に、R2軸を回転軸として移動する場合の回転半径である。ポアンカレ球での回転半径r1でP0からP1に移動するように加工した第1の位相差板において、位相差板の厚みの加工精度が設計値からずれると、P1に移動できずにP1xとなる。P1からP2へ回転半径rzで移動するように加工する第2の位相差板において、P1をP1zになるように加工すれば、P1−P1x=P1−P1zとなり、P2の位置に移動できて正確な1/2波長位相差板の機能を有する積層位相差板を提供できる。   FIG. 5 is a diagram linearly representing the phase difference when the polarized light moves from the coordinate P0 to the coordinate P2 on the equator plane of the Poincare sphere in FIG. The equator plane from the coordinate P0 through the coordinate P1 to P2 should be represented by a curve, but is represented by a straight line for easy understanding. rx is a rotation radius when moving from the coordinate P0 to the coordinate P1 using the R1 axis as a rotation axis. Further, rz is a rotation radius when moving from the coordinate P1 to the coordinate P2 using the R2 axis as a rotation axis. In the first retardation plate processed so as to move from P0 to P1 with the radius of rotation r1 at the Poincare sphere, if the processing accuracy of the thickness of the retardation plate deviates from the design value, it cannot move to P1 but becomes P1x. . In the second retardation plate that is processed so as to move from P1 to P2 with the rotation radius rz, if P1 is processed so as to be P1z, P1−P1x = P1−P1z, and the position can be accurately moved to P2. A laminated retardation plate having a function of a half-wave retardation plate can be provided.

L=P1−P1x=P1−P1zとすると、   If L = P1-P1x = P1-P1z,

Figure 0004557022
式(8)及び式(9)より
Figure 0004557022
From formula (8) and formula (9)

Figure 0004557022
ポアンカレ球の半径をkとすると
Figure 0004557022
If the radius of the Poincare sphere is k

Figure 0004557022
式(10)、式(11)、および式(12)より
Figure 0004557022
From Formula (10), Formula (11), and Formula (12)

Figure 0004557022
上記より、ずれ量ΔΓbは以下の式に導かれる。
Figure 0004557022
From the above, the deviation amount ΔΓb is derived from the following equation.

Figure 0004557022
Figure 0004557022

複数の位相差板を組み合わせて貼り合わせる積層位相板において、式(1)を用いれば、互いに最適な位相差ΔΓを有する位相差板を組み合わせることができる。この式(1)の選択によって、積層位相差板としての位相差は上記のポアンカレ球で説明したように目標値通りとなり、偏光変換効率が最も良くなる。   In the laminated phase plate in which a plurality of phase difference plates are combined and bonded, using Equation (1), phase difference plates having optimum phase differences ΔΓ can be combined. By selecting this formula (1), the phase difference as the laminated phase difference plate becomes the target value as described in the Poincare sphere, and the polarization conversion efficiency becomes the best.

図6に式(1)より求められた最適な位相差を有する積層位相差板の第1位相差板と第2位相差板の板厚を式(2)および式(3)から求め、グラフとして示す。
光学軸方位角により、このような様々な好適な組み合わせがある。光学軸方位角θaが22.5°の場合のみ、2枚の板厚は光学軸方位角θaに依存せず常に同じ板厚が最適値となる。
FIG. 6 shows the thicknesses of the first retardation plate and the second retardation plate of the laminated retardation plate having the optimum phase difference obtained from the equation (1) in accordance with the equation (2) and the equation (3). As shown.
There are various such suitable combinations depending on the optical axis azimuth. Only when the optical axis azimuth angle θa is 22.5 °, the thickness of the two sheets does not depend on the optical axis azimuth angle θa, and the same thickness is always the optimum value.

表1に、1枚目の板厚T1の位相差板と二枚目の板厚T2の位相差板を貼り合わせた積層位相板の偏光変換効率について示す。これらは図7に示す条件の板厚の組み合わせでおこなった結果である。FとGとHは最適な条件を示す線上で組み合わされ、JとKはこの線上からはずれた、つまり最適でない組み合わせの積層位相板である。偏光変換効率ロスとは、図8の灰色部の乖離範囲56で示した偏光変換効率1.00に未達の部分の比率を示す。この比率が大きい程、変換効率の悪い積層位相差板となる。よって、偏光変換効率ロスは小さいほど良く、FとGとHはJとKよりも偏光変換効率ロスが小さいので高い偏光変換効率であるといえる。つまり、図7で示した実線部に沿った条件、すなわち式(1)を用いて組み合わせた積層位相差板は高い偏光変換効率を得ることができる。   Table 1 shows the polarization conversion efficiency of a laminated phase plate in which a first retardation plate having a thickness T1 and a second retardation plate having a thickness T2 are bonded together. These are results obtained by combining the plate thicknesses under the conditions shown in FIG. F, G, and H are combined on a line indicating an optimum condition, and J and K are laminated phase plates that deviate from the line, that is, a combination that is not optimal. The polarization conversion efficiency loss indicates a ratio of a portion that does not reach the polarization conversion efficiency 1.00 shown by the gray area divergence range 56 in FIG. The larger this ratio, the lower the retardation of the laminated phase difference plate. Accordingly, the smaller the polarization conversion efficiency loss, the better. F, G, and H have higher polarization conversion efficiency because the polarization conversion efficiency loss is smaller than that of J and K. That is, the laminated phase difference plate combined using the condition along the solid line portion shown in FIG. 7, that is, the expression (1), can obtain high polarization conversion efficiency.

Figure 0004557022
Figure 0004557022

次に、式(1)を用いて最適に組み合わされた積層位相板の波長依存性に好適な板厚の範囲に関する実施形態について説明する。
図1に示した積層位相差板1は、第1の位相差板10及び第2の位相差板20の各板厚が23.80μm〜31.39μmの範囲であるように形成されている。なお、第1の位相差板10と第2の位相差板20とは、概ね同程度の板厚で形成されている。
第1の位相差板10及び第2の位相差板20は、光学軸11,12が板面に沿って存在するYカット水晶基板から形成されている。
Next, an embodiment relating to a range of plate thicknesses suitable for wavelength dependency of the laminated phase plates optimally combined using Expression (1) will be described.
The laminated phase difference plate 1 shown in FIG. 1 is formed so that the thicknesses of the first phase difference plate 10 and the second phase difference plate 20 are in the range of 23.80 μm to 31.39 μm. The first retardation plate 10 and the second retardation plate 20 are formed with substantially the same thickness.
The first retardation plate 10 and the second retardation plate 20 are formed from a Y-cut quartz substrate in which the optical axes 11 and 12 exist along the plate surface.

積層位相差板1では、第1の位相差板10の光学軸方位角θa及び第2の位相差板20の光学軸方位角θbが、式(2)、式(3)及びミューラ行列式などから、設定されている。
光学軸方位角θa及び光学軸方位角θbは、入射光の水平の振動面13,14に対する光学軸11,12の成す角度を、振動面13,14から反時計回りに表したものである。
ここで、第1の位相差板10及び第2の位相差板20の板厚の範囲における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を例示する。
In the laminated phase difference plate 1, the optical axis azimuth angle θa of the first phase difference plate 10 and the optical axis azimuth angle θb of the second phase difference plate 20 are expressed by Equations (2), (3), Mueller determinants, and the like. Is set.
The optical axis azimuth angle θa and the optical axis azimuth angle θb represent the angles formed by the optical axes 11 and 12 with respect to the horizontal vibration surfaces 13 and 14 of the incident light counterclockwise from the vibration surfaces 13 and 14.
Here, the settable range of the optical axis azimuth θa and the optical axis azimuth θb in the thickness range of the first retardation plate 10 and the second retardation plate 20 is exemplified.

Figure 0004557022
表2は、第1の位相差板10及び第2の位相差板20の上記3種類の板厚における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を示したものである。
表2に示すように、板厚が下限値の23.80μmの場合には、光学軸方位角θaは、21.7°〜23.3°の範囲、光学軸方位角θbは、66.7°〜68.3°の範囲である。
板厚が略中心値の27.73μmの場合には、光学軸方位角θaは、12.0°〜33.0°の範囲、光学軸方位角θbは、57.0°〜78.0°の範囲である。
板厚が上限値の31.39μmの場合には、光学軸方位角θaは、21.4°〜23.6°の範囲、光学軸方位角θbは、66.4°〜68.6°の範囲である。
Figure 0004557022
Table 2 shows the settable ranges of the optical axis azimuth angle θa and the optical axis azimuth angle θb in the three types of thicknesses of the first phase difference plate 10 and the second phase difference plate 20.
As shown in Table 2, when the plate thickness is the lower limit of 23.80 μm, the optical axis azimuth θa is in the range of 21.7 ° to 23.3 °, and the optical axis azimuth θb is 66.7. It is in the range of ° to 68.3 °.
When the plate thickness is approximately 27.73 μm, the optical axis azimuth θa is in the range of 12.0 ° to 33.0 °, and the optical axis azimuth θb is 57.0 ° to 78.0 °. Range.
When the plate thickness is 31.39 μm, which is the upper limit, the optical axis azimuth θa is in the range of 21.4 ° to 23.6 °, and the optical axis azimuth θb is in the range of 66.4 ° to 68.6 °. It is a range.

なお、光学軸方位角θbは、光学軸方位角θaの設定値にαを加えた値である。上記の光学軸方位角θbの値は、光学軸方位角θaと光学軸方位角θbとの成す角αを、45°として算出してある。
この光学軸方位角θaと光学軸方位角θbとの成す角αは、45°に限定するものではなく、板厚と光学軸方位角θaとの組み合わせにより45°と異なる角度の設定も可能である。
The optical axis azimuth angle θb is a value obtained by adding α to the set value of the optical axis azimuth angle θa. The value of the optical axis azimuth angle θb is calculated by setting the angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb to 45 °.
The angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb is not limited to 45 °, and an angle different from 45 ° can be set by a combination of the plate thickness and the optical axis azimuth angle θa. is there.

上記の構成では、図1に示した積層位相差板1は、1/2波長位相差板として機能する。この積層位相差板1では、入射光のうちP偏光成分である直線偏光30が入射すると、直線偏光30の位相が180°ずれることにより偏光面が90°回転して、S偏光成分である直線偏光40に偏光変換されて出射する。   In the above configuration, the laminated phase difference plate 1 shown in FIG. 1 functions as a ½ wavelength phase difference plate. In this laminated phase difference plate 1, when the linearly polarized light 30 that is the P-polarized component of the incident light is incident, the phase of the linearly polarized light 30 is shifted by 180 °, so that the plane of polarization is rotated by 90 °, and the linearly polarized light that is the S-polarized component. Polarized light is converted into polarized light 40 and emitted.

ここで、第1の実施形態の積層位相差板1によるP偏光成分のS偏光成分への偏光変換効率について、前述した累積乖離値を用いて従来技術の積層位相差板と比較した結果を説明する。   Here, the polarization conversion efficiency from the P-polarized component to the S-polarized component by the multilayered retardation plate 1 of the first embodiment will be described with respect to the result of comparison with the conventional multilayered retardation plate using the cumulative divergence value. To do.

図8は、累積乖離値について説明するグラフである。図8に示すように、累積乖離値とは、入射光の5nm間隔の波長ごとの偏光変換効率を得て、偏光変換効率の理想値1.00との差を乖離値として、その乖離値を該当する波長領域全体で累積した値である。
例えば、図8で波長が650nmの場合には、偏光変換効率が0.97であり乖離値55は、1.00−0.97=0.03となる。累積乖離値は、このように該当する波長領域全体で行い、結果を累積して求める。
累積乖離値は、図8のグラフにおける乖離範囲56の概略面積を表しており、小さいほど偏光変換効率が高い。
FIG. 8 is a graph for explaining the accumulated divergence value. As shown in FIG. 8, the cumulative divergence value is obtained by obtaining the polarization conversion efficiency for each wavelength of the incident light at intervals of 5 nm and using the difference from the ideal value 1.00 of the polarization conversion efficiency as the divergence value. It is a value accumulated over the entire corresponding wavelength region.
For example, in FIG. 8, when the wavelength is 650 nm, the polarization conversion efficiency is 0.97, and the deviation value 55 is 1.00−0.97 = 0.03. The cumulative divergence value is obtained over the entire corresponding wavelength region as described above, and the result is accumulated.
The cumulative divergence value represents the approximate area of the divergence range 56 in the graph of FIG. 8, and the smaller the value, the higher the polarization conversion efficiency.

図9は、400nm〜700nmの波長領域において、第1の実施形態の積層位相差板の偏光変換効率と、従来技術の積層位相差板の偏光変換効率とを、位相差板の板厚における累積乖離値を用いて比較したグラフである。第1位相差板と第2位相差板は概ね同等と仮定して算出している。
ここで、図9の横軸は、位相差板の板厚を表し、図9の縦軸は、累積乖離値を表している。以下の図12、図13、図14も同様である。
FIG. 9 shows the cumulative polarization conversion efficiency of the multilayer retardation plate of the first embodiment and the polarization conversion efficiency of the multilayer retardation plate of the prior art in the thickness of the retardation plate in the wavelength region of 400 nm to 700 nm. It is the graph compared using the deviation value. The calculation is performed assuming that the first retardation plate and the second retardation plate are substantially equal.
Here, the horizontal axis of FIG. 9 represents the plate thickness of the phase difference plate, and the vertical axis of FIG. 9 represents the cumulative deviation value. The same applies to FIGS. 12, 13, and 14 below.

図9において、曲線60は、各板厚における累積乖離値を結んだ線である。
直線70は、従来技術の積層位相差板の累積乖離値を、横軸と平行に引いた線である。直線70よりも下であれば、累積乖離値が従来技術の積層位相差板よりも小さいことを意味する。なお、従来技術の上記偏光変換効率は特許文献1より算出した。
In FIG. 9, a curve 60 is a line connecting cumulative divergence values at each plate thickness.
A straight line 70 is a line obtained by drawing the cumulative divergence value of the conventional phase difference plate in parallel with the horizontal axis. If it is below the straight line 70, it means that the accumulated divergence value is smaller than that of the prior art laminated phase difference plate. In addition, the said polarization conversion efficiency of the prior art was computed from patent document 1. FIG.

図9に示すように、積層位相差板1は、第1の位相差板10及び第2の位相差板20の各板厚が24μm〜31μmの範囲で、累積乖離値が従来技術の積層位相差板を下回っており、従来の積層位相差板より偏光変換効率が向上していることが分かる。この板厚の範囲において、式(1)を用いて、第1位相差板と第2位相差板を組み合わせることにより、更に偏光変換効率を向上できる。   As shown in FIG. 9, the laminated phase difference plate 1 has a thickness of 24 μm to 31 μm in the thickness of each of the first phase difference plate 10 and the second phase difference plate 20, and the accumulated divergence value is the conventional level. It is below the phase difference plate, and it can be seen that the polarization conversion efficiency is improved as compared with the conventional laminated phase difference plate. In this thickness range, the polarization conversion efficiency can be further improved by combining the first retardation plate and the second retardation plate using the formula (1).

前記の板厚を有する積層位相差板1は、400nm〜700nmの波長領域において、従来技術の積層位相差板よりも高い偏光変換効率を得ることができる。上記の板厚の範囲の最適化では、二枚の位相板を概ね同等としたが、式(1)による二枚の板厚の最適化をこの板厚範囲の設定に組み合わせることにより更に400nm〜700nmの波長領域において高い偏光変換効率を得ることができる。   The laminated phase difference plate 1 having the above plate thickness can obtain higher polarization conversion efficiency than the conventional laminated phase difference plate in a wavelength region of 400 nm to 700 nm. In the optimization of the plate thickness range described above, the two phase plates are substantially equal, but by combining the optimization of the two plate thicknesses according to the formula (1) with the setting of the plate thickness range, a further 400 nm to High polarization conversion efficiency can be obtained in a wavelength region of 700 nm.

ここで、第1の実施形態の積層位相差板1を用いた偏光変換の光学素子の一例について説明する。
図10は、第1の実施形態の積層位相差板を備えた偏光変換の光学素子としての偏光ビームスプリッタ(以降、PBS(Polarization Beam Splitter)という)2の要部構成図である。
図10に示すように、PBS2は、ガラスなどからなるプリズム51の斜面に、偏光分離膜52が形成されたプリズムアレイ50において、光の出射側の所定の位置に複数の積層位相差板1を備えて構成されている。
PBS2は、図10の紙面左側からランダム偏光の光が入射光として入射されると、PBS2内で偏光成分が一つにそろえられ、図10の紙面右側へ出射されるという偏光変換機能を有する。
Here, an example of an optical element for polarization conversion using the laminated retardation plate 1 of the first embodiment will be described.
FIG. 10 is a main part configuration diagram of a polarization beam splitter (hereinafter referred to as PBS (Polarization Beam Splitter)) 2 as an optical element for polarization conversion provided with the laminated retardation plate of the first embodiment.
As shown in FIG. 10, the PBS 2 has a plurality of laminated phase difference plates 1 at predetermined positions on the light emission side in a prism array 50 in which a polarization separation film 52 is formed on the slope of a prism 51 made of glass or the like. It is prepared for.
The PBS 2 has a polarization conversion function in which when randomly polarized light is incident as incident light from the left side of FIG. 10, the polarization components are aligned in the PBS 2 and emitted to the right side of FIG.

ここで、PBS2の偏光変換機能を説明する。PBS2は、ランダム偏光の入射光が入射すると、第1の経路53では、入射光のP偏光成分がその光学特性により偏光分離膜52を透過して積層位相差板1に入り、積層位相差板1により偏光変換され、偏光面が90°回転されてS偏光成分として出射される。
第2の経路54では、入射光のS偏光成分がその光学特性により偏光分離膜52で図10の紙面下側へ反射されて、さらに下側の偏光分離膜52で右側へ反射されることにより、S偏光成分のまま出射される。
これにより、PBS2は、ランダム偏光の入射光の大部分がS偏光成分に偏光変換されて出射される。
Here, the polarization conversion function of the PBS 2 will be described. When randomly polarized incident light is incident on the PBS 2, in the first path 53, the P-polarized component of the incident light is transmitted through the polarization separation film 52 due to its optical characteristics and enters the laminated phase difference plate 1. 1 is subjected to polarization conversion, and the plane of polarization is rotated by 90 ° and emitted as an S-polarized component.
In the second path 54, the S-polarized component of the incident light is reflected by the polarization separation film 52 to the lower side in FIG. 10 due to its optical characteristics, and further reflected to the right by the lower polarization separation film 52. , S-polarized light components are emitted.
As a result, the PBS 2 emits most of the randomly polarized incident light after being converted into the S-polarized component.

ここで、上記のPBSを用いた投射型映像装置の一例について説明する。図11は複数の光源を有する投射型映像装置の一例の要部構成図である。
図11に示すように、上記のPBSは偏光変換素子540あるいは偏光変換素子541として用いられる。
この投射型映像装置は白色光源としてランプ501とリフレクタ511を有する。この光源から導かれた光はマルチレンズ531、マルチレンズ532等で分散、あるいは集光され、上記のPBSを用いた偏光変換素子540に入射する。上記の白色光源は概ね400nmから700nmの波長帯の自然光であり、第1の実施形態の積層位相差板1を用いたPBSを用いることにより、高い偏光変換効率であるので、光源からの光を有効に利用できる。よって、明るさに優れた投射型映像装置を提供できる。
Here, an example of the projection type video apparatus using the above PBS will be described. FIG. 11 is a main part configuration diagram of an example of a projection type video apparatus having a plurality of light sources.
As shown in FIG. 11, the PBS is used as a polarization conversion element 540 or a polarization conversion element 541.
This projection type video apparatus has a lamp 501 and a reflector 511 as a white light source. The light guided from this light source is dispersed or condensed by the multi-lens 531, multi-lens 532, etc., and is incident on the polarization conversion element 540 using the PBS. The white light source described above is natural light having a wavelength band of approximately 400 nm to 700 nm. Since the PBS using the multilayered phase difference plate 1 according to the first embodiment has high polarization conversion efficiency, the light from the light source is used. It can be used effectively. Therefore, it is possible to provide a projection type video apparatus with excellent brightness.

また、図11に示す光源502は発光ダイオードからなる単色光源である。この光源から導かれた光はマルチレンズ533、マルチレンズ534等で分散、あるいは集光され、上記のPBSを用いた偏光変換素子541に入射する。この単色光源は例えば、青色波長帯(概ね400nm〜500nm)、緑色波長帯(概ね500nm〜600nm)、赤色波長帯(概ね600nm〜700nm)のいずれかに属する光を提供できる。このような偏光変換素子に好適なPBSについては以下の実施形態で記述する。
なお、図11は一例として示されており、本願発明をランプによる白色光源のみの投射型映像装置、あるいは複数の単色光源のみの投射型映像装置に用いても好適である。
A light source 502 shown in FIG. 11 is a monochromatic light source made of a light emitting diode. The light guided from this light source is dispersed or condensed by the multi-lens 533, the multi-lens 534, etc., and enters the polarization conversion element 541 using the PBS. For example, the monochromatic light source can provide light belonging to any one of a blue wavelength band (approximately 400 nm to 500 nm), a green wavelength band (approximately 500 nm to 600 nm), and a red wavelength band (approximately 600 nm to 700 nm). A PBS suitable for such a polarization conversion element will be described in the following embodiment.
Note that FIG. 11 is shown as an example, and the present invention may be suitably used for a projection type video apparatus with only a white light source using a lamp or a projection type video apparatus with only a plurality of monochromatic light sources.

(第2の実施形態)
第2の実施形態の積層位相差板を始めとする以下の各実施形態における積層位相差板は、第1の実施形態の積層位相差板と比較して、第1の位相差板及び第2の位相差板の板厚の範囲及び光学軸方位角の範囲が異なる。
以下の各実施形態の説明では、図1および図2を共用し、図1および図2の符号を一部読み替えることにより第1の実施形態の積層位相差板と異なる点を中心に説明する。なお、読み替え前の符号を括弧付きで最初に示す。
(Second Embodiment)
The laminated phase difference plate in each of the following embodiments including the laminated phase difference plate of the second embodiment is different from the laminated phase difference plate of the first embodiment in that the first phase difference plate and the second phase difference plate. The thickness range of the retardation plate and the range of the optical axis azimuth are different.
In the following description of each embodiment, FIGS. 1 and 2 will be shared, and the difference from the laminated retardation plate of the first embodiment will be mainly described by partially replacing the reference numerals in FIGS. 1 and 2. In addition, the code | symbol before replacement is shown first with a parenthesis.

図1および図2に示すように、第2の実施形態の積層位相差板101(1)は、第1の位相差板110(10)と第2の位相差板120(20)とを含んで構成されている。
積層位相差板101は、第1の位相差板110及び第2の位相差板120の各板厚が20.73μm〜26.34μmの範囲であるように形成されている。なお、第1の位相差板110と第2の位相差板120とは、概ね同程度の板厚で形成されている。
積層位相差板101は、第1の位相差板110及び第2の位相差板120が、Yカット水晶基板から形成されている。
As shown in FIGS. 1 and 2, the laminated retardation film 101 (1) of the second embodiment includes a first retardation film 110 (10) and a second retardation film 120 (20). It consists of
The laminated phase difference plate 101 is formed so that the thickness of each of the first phase difference plate 110 and the second phase difference plate 120 is in the range of 20.73 μm to 26.34 μm. The first retardation plate 110 and the second retardation plate 120 are formed with substantially the same thickness.
In the laminated phase difference plate 101, the first phase difference plate 110 and the second phase difference plate 120 are formed from a Y-cut quartz crystal substrate.

積層位相差板101では、第1の位相差板110の光学軸方位角θa及び第2の位相差板120の光学軸方位角θbが、式(2)、式(3)及びミューラ行列式などから、設定されている。
ここで、第1の位相差板110及び第2の位相差板120の板厚の範囲における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を例示する。
In the laminated phase difference plate 101, the optical axis azimuth angle θa of the first phase difference plate 110 and the optical axis azimuth angle θb of the second phase difference plate 120 are expressed by Equation (2), Equation (3), Mueller determinant, and the like. Is set.
Here, a settable range of the optical axis azimuth θa and the optical axis azimuth θb in the thickness range of the first retardation plate 110 and the second retardation plate 120 is illustrated.

Figure 0004557022
表3は、第1の位相差板110及び第2の位相差板120の上記3種類の板厚における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を示したものである。
表3に示すように、板厚が下限値の20.73μmの場合には、光学軸方位角θaは、21.4°〜23.6°の範囲、光学軸方位角θbは、66.4°〜68.6°の範囲である。
板厚が略中心値の23.61μmの場合には、光学軸方位角θaは、11.5°〜33.5°の範囲、光学軸方位角θbは、56.5°〜78.5°の範囲である。
板厚が上限値の26.34μmの場合には、光学軸方位角θaは、21.3°〜23.7°の範囲、光学軸方位角θbは、66.3°〜68.7°の範囲である。
Figure 0004557022
Table 3 shows a settable range of the optical axis azimuth angle θa and the optical axis azimuth angle θb in the three types of plate thicknesses of the first phase difference plate 110 and the second phase difference plate 120.
As shown in Table 3, when the plate thickness is the lower limit of 20.73 μm, the optical axis azimuth θa is in the range of 21.4 ° to 23.6 °, and the optical axis azimuth θb is 66.4. It is in the range of ° to 68.6 °.
When the plate thickness is approximately the center value of 23.61 μm, the optical axis azimuth θa is in the range of 11.5 ° to 33.5 °, and the optical axis azimuth θb is 56.5 ° to 78.5 °. Range.
When the plate thickness is 26.34 μm, which is the upper limit value, the optical axis azimuth θa is in the range of 21.3 ° to 23.7 °, and the optical axis azimuth θb is in the range of 66.3 ° to 68.7 °. It is a range.

なお、上記の光学軸方位角θbの値は、光学軸方位角θaと光学軸方位角θbとの成す角αを、45°として算出してある。従って、光学軸方位角θbは、光学軸方位角θaの設定値に45°を加えた値となる。
この光学軸方位角θaと光学軸方位角θbとの成す角αは、45°に限定するものではなく、板厚と光学軸方位角θaとの組み合わせにより45°と異なる角度の設定も可能である。
The value of the optical axis azimuth angle θb is calculated by setting the angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb to 45 °. Therefore, the optical axis azimuth angle θb is a value obtained by adding 45 ° to the set value of the optical axis azimuth angle θa.
The angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb is not limited to 45 °, and an angle different from 45 ° can be set by a combination of the plate thickness and the optical axis azimuth angle θa. is there.

上記の構成により、積層位相差板101は、1/2波長位相差板として機能する。これにより積層位相差板101は、入射光のうちP偏光成分である直線偏光30が入射されると、直線偏光30の位相が180°ずれることにより偏光面が90°回転させられて、S偏光成分である直線偏光40に偏光変換されて出射される。   With the above configuration, the laminated retardation plate 101 functions as a half-wave retardation plate. As a result, when the linearly polarized light 30 that is the P-polarized component of the incident light is incident on the laminated phase difference plate 101, the plane of polarization of the linearly polarized light 30 is shifted by 180 °, and the polarization plane is rotated by 90 °. The light is converted into linearly polarized light 40, which is a component, and emitted.

ここで、積層位相差板101によるP偏光成分のS偏光成分への偏光変換効率について、従来の積層位相差板と比較した結果を図5に示す。
図12は、400nm〜500nmの波長領域において、積層位相差板101の偏光変換効率と、従来の積層位相差板の偏光変換効率とを、各板厚における累積乖離値を用いて比較したグラフである。
Here, the results of comparing the polarization conversion efficiency of the P-polarized component to the S-polarized component by the laminated retardation plate 101 with those of the conventional laminated retardation plate are shown in FIG.
FIG. 12 is a graph comparing the polarization conversion efficiency of the laminated phase difference plate 101 and the polarization conversion efficiency of the conventional laminated phase difference plate using the accumulated divergence values at each thickness in the wavelength region of 400 nm to 500 nm. is there.

図12において、曲線160は、積層位相差板101の各板厚における累積乖離値を結んだ線である。
直線170は、従来技術の積層位相差板の累積乖離値を、横軸と平行に引いた線である。
In FIG. 12, a curve 160 is a line connecting the accumulated divergence values at each plate thickness of the laminated phase difference plate 101.
A straight line 170 is a line obtained by drawing the cumulative divergence value of the conventional phase difference plate in parallel with the horizontal axis.

図12に示すように、積層位相差板101は、第1の位相差板110及び第2の位相差板120の各板厚が21μm〜26μmの範囲で、累積乖離値が従来技術の積層位相差板を下回っており、従来の積層位相差板より高い偏光変換効率を得ていることが分かる。   As shown in FIG. 12, the laminated phase difference plate 101 has a thickness of 21 μm to 26 μm in the thickness of each of the first phase difference plate 110 and the second phase difference plate 120, and the accumulated divergence value is the conventional level. It is lower than the phase difference plate, and it can be seen that the polarization conversion efficiency is higher than that of the conventional laminated phase difference plate.

積層位相差板101は、400nm〜500nmの波長領域において、従来技術の積層位相差板よりも高い偏光変換効率を得ることができる。上記の板厚の範囲の最適化では、二枚の位相板を概ね同等としたが、式(1)による二枚の板厚の最適化をこの板厚範囲の設定に組み合わせることにより更に400nm〜500nmの波長領域において高い偏光変換効率を得ることができる。
なお、第2の実施形態の積層位相差板101は、第1の実施形態の積層位相差板1と同様にPBS等の光学素子に用いられ、入射光が青色波長帯(概ね400nm〜500nm)である場合に偏光変換効率が高く、好適である。
The laminated retardation plate 101 can obtain higher polarization conversion efficiency than the conventional laminated retardation plate in the wavelength region of 400 nm to 500 nm. In the optimization of the plate thickness range described above, the two phase plates are substantially equal, but by combining the optimization of the two plate thicknesses according to the formula (1) with the setting of the plate thickness range, a further 400 nm to High polarization conversion efficiency can be obtained in a wavelength region of 500 nm.
The laminated phase difference plate 101 of the second embodiment is used for an optical element such as PBS like the laminated phase difference plate 1 of the first embodiment, and the incident light has a blue wavelength band (approximately 400 nm to 500 nm). Is preferable because of high polarization conversion efficiency.

(第3の実施形態)
図2に示すように、第3の実施形態の積層位相差板201(1)は、第1の位相差板210(10)と第2の位相差板220(20)とを含んで構成されている。
積層位相差板201は、第1の位相差板210及び第2の位相差板220の各板厚が24.04μm〜35.28μmの範囲であるように形成されている。なお、第1の位相差板210と第2の位相差板220とは、概ね同程度の板厚で形成されている。
積層位相差板201は、第1の位相差板210及び第2の位相差板220が、Yカット水晶基板から形成されている。
(Third embodiment)
As shown in FIG. 2, the laminated phase difference plate 201 (1) of the third embodiment is configured to include a first phase difference plate 210 (10) and a second phase difference plate 220 (20). ing.
The laminated phase difference plate 201 is formed so that the thickness of each of the first phase difference plate 210 and the second phase difference plate 220 is in the range of 24.04 μm to 35.28 μm. The first retardation plate 210 and the second retardation plate 220 are formed with substantially the same thickness.
In the laminated phase difference plate 201, a first phase difference plate 210 and a second phase difference plate 220 are formed from a Y-cut quartz crystal substrate.

積層位相差板201では、第1の位相差板210の光学軸方位角θa及び第2の位相差板220の光学軸方位角θbが、式(1)、式(2)及びミューラ行列式などから、設定されている。
ここで、第1の位相差板210及び第2の位相差板220の板厚の範囲における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を例示する。
In the laminated phase difference plate 201, the optical axis azimuth angle θa of the first phase difference plate 210 and the optical axis azimuth angle θb of the second phase difference plate 220 are expressed by Equation (1), Equation (2), Mueller determinant, and the like. Is set.
Here, a settable range of the optical axis azimuth angle θa and the optical axis azimuth angle θb in the thickness range of the first retardation plate 210 and the second retardation plate 220 is illustrated.

Figure 0004557022
表4は、第1の位相差板210及び第2の位相差板220の上記3種類の板厚における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を示したものである。
表4に示すように、板厚が下限値の24.04μmの場合には、光学軸方位角θaは、21.2°〜23.8°の範囲、光学軸方位角θbは、66.2°〜68.8°の範囲である。
板厚が略中心値の29.77μmの場合には、光学軸方位角θaは、−4.2°〜49.2°の範囲、光学軸方位角θbは、40.8°〜94.2°の範囲である。
板厚が上限値の35.28μmの場合には、光学軸方位角θaは、22.2°〜22.8°の範囲、光学軸方位角θbは、67.2°〜67.8°の範囲である。
Figure 0004557022
Table 4 shows the settable ranges of the optical axis azimuth angle θa and the optical axis azimuth angle θb in the three types of thicknesses of the first phase difference plate 210 and the second phase difference plate 220.
As shown in Table 4, when the plate thickness is the lower limit of 24.04 μm, the optical axis azimuth θa is in the range of 21.2 ° to 23.8 °, and the optical axis azimuth θb is 66.2. It is in the range of ° to 68.8 °.
When the plate thickness is approximately 29.77 μm, the optical axis azimuth θa is in the range of −4.2 ° to 49.2 °, and the optical axis azimuth θb is 40.8 ° to 94.2. It is in the range of °.
When the plate thickness is 35.28 μm, the upper limit, the optical axis azimuth θa is in the range of 22.2 ° to 22.8 °, and the optical axis azimuth θb is in the range of 67.2 ° to 67.8 °. It is a range.

なお、上記の光学軸方位角θbの値は、光学軸方位角θaと光学軸方位角θbとの成す角αを、45°として算出してある。従って、光学軸方位角θbは、光学軸方位角θaの設定値に45°を加えた値となる。
この光学軸方位角θaと光学軸方位角θbとの成す角αは、45°に限定するものではなく、板厚と光学軸方位角θaとの組み合わせにより45°と異なる角度の設定も可能である。
The value of the optical axis azimuth angle θb is calculated by setting the angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb to 45 °. Therefore, the optical axis azimuth angle θb is a value obtained by adding 45 ° to the set value of the optical axis azimuth angle θa.
The angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb is not limited to 45 °, and an angle different from 45 ° can be set by a combination of the plate thickness and the optical axis azimuth angle θa. is there.

上記の構成により、積層位相差板201は、1/2波長位相差板として機能する。これにより積層位相差板201は、入射光のうちP偏光成分である直線偏光30が入射されると、直線偏光30の位相が180°ずれることにより偏光面が90°回転させられて、S偏光成分である直線偏光40に偏光変換されて出射される。   With the above configuration, the laminated retardation plate 201 functions as a half-wave retardation plate. As a result, when the linearly polarized light 30 that is the P-polarized component of the incident light is incident on the laminated retardation plate 201, the plane of polarization of the linearly polarized light 30 is shifted by 180 °, and the polarization plane is rotated by 90 °. The light is converted into linearly polarized light 40, which is a component, and emitted.

ここで、積層位相差板201によるP偏光成分のS偏光成分への偏光変換効率について、従来の積層位相差板と比較した結果を図6に示す。
図13は、500nm〜600nmの波長領域において、積層位相差板201の偏光変換効率と、従来技術の積層水晶位相差板の偏光変換効率とを、各板厚における累積乖離値を用いて比較したグラフである。
Here, the result of comparing the polarization conversion efficiency of the P-polarized component to the S-polarized component by the laminated retardation plate 201 with that of the conventional laminated retardation plate is shown in FIG.
FIG. 13 compares the polarization conversion efficiency of the laminated phase difference plate 201 with the polarization conversion efficiency of the prior art laminated quartz phase difference plate using the accumulated divergence values at each thickness in the wavelength region of 500 nm to 600 nm. It is a graph.

図13において、曲線260は、積層位相差板201の各板厚における累積乖離値を結んだ線である。
直線270は、従来技術の積層位相差板の累積乖離値を、横軸と平行に引いた線である。
In FIG. 13, a curve 260 is a line connecting the accumulated divergence values at the respective plate thicknesses of the laminated phase difference plate 201.
A straight line 270 is a line obtained by drawing the cumulative divergence value of the conventional phase difference plate in parallel with the horizontal axis.

図13に示すように、積層位相差板201は、第1の位相差板210及び第2の位相差板220の各板厚が25μm〜35μmの範囲で、累積乖離値が従来技術の積層位相差板を下回っており、従来技術の積層位相差板より高い偏光変換効率を得ていることが分かる。   As shown in FIG. 13, the laminated phase difference plate 201 has a thickness of 25 μm to 35 μm in the thickness of each of the first phase difference plate 210 and the second phase difference plate 220, and the accumulated divergence value is the conventional level. It can be seen that the polarization conversion efficiency is higher than that of the prior art laminated phase difference plate.

積層位相差板201は、500nm〜600nmの波長領域において、従来技術の積層位相差板よりも高い偏光変換効率を得ることができる。上記の板厚の範囲の最適化では、二枚の位相板を概ね同等としたが、式(1)による二枚の板厚の最適化をこの板厚範囲の設定に組み合わせることにより更に500nm〜600nmの波長領域において高い偏光変換効率を得ることができる。
なお、第3の実施形態の積層位相差板201は、第1の実施形態の積層位相差板1と同様にPBS等の光学素子に用いられ、入射光が緑色波長帯(概ね500nm〜600nm)である場合に偏光変換効率が高く、好適である。
The laminated retardation plate 201 can obtain higher polarization conversion efficiency than the conventional laminated retardation plate in a wavelength region of 500 nm to 600 nm. In the optimization of the plate thickness range, the two phase plates are substantially equal, but by combining the optimization of the two plate thicknesses according to the equation (1) with the setting of the plate thickness range, the thickness of 500 nm to High polarization conversion efficiency can be obtained in a wavelength region of 600 nm.
The laminated phase difference plate 201 of the third embodiment is used for an optical element such as PBS like the laminated phase difference plate 1 of the first embodiment, and the incident light has a green wavelength band (approximately 500 nm to 600 nm). Is preferable because of high polarization conversion efficiency.

(第4の実施形態)
図2に示すように、第4の実施形態の積層位相差板301(1)は、第1の位相差板310(10)と第2の位相差板320(20)とを含んで構成されている。
積層位相差板301は、第1の位相差板310及び第2の位相差板320の各板厚が23.98μm〜47.41μmの範囲であるように形成されている。なお、第1の位相差板310と第2の位相差板320とは、概ね同程度の板厚で形成されている。
積層位相差板301は、第1の位相差板310及び第2の位相差板320が、Yカット水晶基板から形成されている。
(Fourth embodiment)
As shown in FIG. 2, the laminated retardation film 301 (1) of the fourth embodiment includes a first retardation film 310 (10) and a second retardation film 320 (20). ing.
The laminated phase difference plate 301 is formed such that the thickness of each of the first phase difference plate 310 and the second phase difference plate 320 is in the range of 23.98 μm to 47.41 μm. The first retardation plate 310 and the second retardation plate 320 are formed with substantially the same thickness.
In the laminated phase difference plate 301, the first phase difference plate 310 and the second phase difference plate 320 are formed from a Y-cut quartz crystal substrate.

積層位相差板301では、第1の位相差板310の光学軸方位角θa及び第2の位相差板320の光学軸方位角θbが、式(1)、式(2)及びミューラ行列式などから、設定されている。
ここで、第1の位相差板310及び第2の位相差板320の板厚の範囲における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を例示する。
In the laminated phase difference plate 301, the optical axis azimuth angle θa of the first phase difference plate 310 and the optical axis azimuth angle θb of the second phase difference plate 320 are expressed by equations (1), (2), Mueller determinant, and the like. Is set.
Here, a settable range of the optical axis azimuth angle θa and the optical axis azimuth angle θb in the thickness range of the first phase difference plate 310 and the second phase difference plate 320 is illustrated.

Figure 0004557022
表5は、第1の位相差板310及び第2の位相差板320の上記3種類の板厚における光学軸方位角θa及び光学軸方位角θbの設定可能範囲を示したものである。
表5に示すように、板厚が下限値の23.98μmの場合には、光学軸方位角θaは、21.1°〜23.9°の範囲、光学軸方位角θbは、66.1°〜68.9°の範囲である。
板厚が略中心値の35.76μmの場合には、光学軸方位角θaは、0.0°〜180.0°の範囲、光学軸方位角θbは、45.0°〜225.0°の範囲である。
板厚が上限値の47.41μmの場合には、光学軸方位角θaは、21.1°〜23.9°の範囲、光学軸方位角θbは、66.1°〜68.9°の範囲である。
Figure 0004557022
Table 5 shows a settable range of the optical axis azimuth angle θa and the optical axis azimuth angle θb in the three types of thicknesses of the first phase difference plate 310 and the second phase difference plate 320.
As shown in Table 5, when the plate thickness is the lower limit of 23.98 μm, the optical axis azimuth θa is in the range of 21.1 ° to 23.9 °, and the optical axis azimuth θb is 66.1. It is the range of ° to 68.9 °.
When the plate thickness is 35.76 μm, which is a substantially central value, the optical axis azimuth θa is in the range of 0.0 ° to 180.0 °, and the optical axis azimuth θb is 45.0 ° to 225.0 °. Range.
When the plate thickness is 47.41 μm, which is the upper limit, the optical axis azimuth θa is in the range of 21.1 ° to 23.9 °, and the optical axis azimuth θb is in the range of 66.1 ° to 68.9 °. It is a range.

なお、上記の光学軸方位角θbの値は、光学軸方位角θaと光学軸方位角θbとの成す角αを、45°として算出してある。従って、光学軸方位角θbは、光学軸方位角θaの設定値に45°を加えた値となる。
この光学軸方位角θaと光学軸方位角θbとの成す角αは、45°に限定するものではなく、板厚と光学軸方位角θaとの組み合わせにより45°と異なる角度の設定も可能である。
The value of the optical axis azimuth angle θb is calculated by setting the angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb to 45 °. Therefore, the optical axis azimuth angle θb is a value obtained by adding 45 ° to the set value of the optical axis azimuth angle θa.
The angle α formed by the optical axis azimuth angle θa and the optical axis azimuth angle θb is not limited to 45 °, and an angle different from 45 ° can be set by a combination of the plate thickness and the optical axis azimuth angle θa. is there.

上記の構成により、積層位相差板301は、1/2波長位相差板として機能する。これにより積層位相差板301は、入射光のうちP偏光成分である直線偏光30が入射されると、直線偏光30の位相が180°ずれることにより偏光面が90°回転させられて、S偏光成分である直線偏光40に偏光変換されて出射される。   With the above configuration, the laminated retardation plate 301 functions as a half-wave retardation plate. As a result, when the linearly polarized light 30 that is the P-polarized component of the incident light is incident on the laminated retardation plate 301, the plane of polarization of the linearly polarized light 30 is shifted by 180 °, and the polarization plane is rotated by 90 °. The light is converted into linearly polarized light 40, which is a component, and emitted.

ここで、積層位相差板301によるP偏光成分のS偏光成分への偏光変換効率について、従来技術の積層位相差板と比較した結果を図7に示す。
図14は、600nm〜700nmの波長領域において、積層位相差板301の偏光変換効率と、従来技術の積層位相差板の偏光変換効率とを、各板厚における累積乖離値を用いて比較したグラフである。
Here, FIG. 7 shows a result of comparing the polarization conversion efficiency of the P-polarized component into the S-polarized component by the laminated retardation plate 301 with that of the conventional laminated retardation plate.
FIG. 14 is a graph comparing the polarization conversion efficiency of the multilayer retardation plate 301 and the polarization conversion efficiency of the multilayer retardation plate of the prior art using the accumulated divergence values at each plate thickness in the wavelength region of 600 nm to 700 nm. It is.

図14において、曲線360は、積層位相差板301の各板厚における累積乖離値を結んだ線である。直線370は、従来技術の積層位相差板の累積乖離値を、横軸と平行に引いた線である。   In FIG. 14, a curve 360 is a line connecting the accumulated divergence values at the respective plate thicknesses of the laminated phase difference plate 301. A straight line 370 is a line obtained by drawing the cumulative divergence value of the conventional phase difference plate in parallel with the horizontal axis.

図14に示すように、積層位相差板301は、第1の位相差板310及び第2の位相差板320の各板厚が24μm〜47μmの範囲で、累積乖離値が従来技術の積層位相差板を下回っており、従来技術の積層位相差板より高い偏光変換効率を得ていることが分かる。   As shown in FIG. 14, the laminated phase difference plate 301 has a thickness of 24 μm to 47 μm in the thickness of each of the first phase difference plate 310 and the second phase difference plate 320, and the accumulated divergence value is the conventional level. It can be seen that the polarization conversion efficiency is higher than that of the prior art laminated phase difference plate.

積層位相差板301は、600nm〜700nmの波長領域において、従来技術の積層位相差板よりも高い偏光変換効率を得ることができる。上記の板厚の範囲の最適化では、二枚の位相板を概ね同等としたが、式(1)による二枚の板厚の最適化をこの板厚範囲の設定に組み合わせることにより更に600nm〜700nmの波長領域において高い偏光変換効率を得ることができる。
なお、第4の実施形態の積層位相差板301は、第1の実施形態の積層位相差板1と同様にPBS等の光学素子に用いられ、入射光が赤色波長帯(概ね600nm〜700nm)である場合に偏光変換効率が高く、好適である。
The laminated retardation plate 301 can obtain higher polarization conversion efficiency than the conventional laminated retardation plate in the wavelength region of 600 nm to 700 nm. In the optimization of the plate thickness range, the two phase plates are substantially equal, but by combining the optimization of the two plate thicknesses according to the formula (1) with the setting of the plate thickness range, the thickness of the plate is further increased from 600 nm. High polarization conversion efficiency can be obtained in a wavelength region of 700 nm.
Note that the laminated retardation film 301 of the fourth embodiment is used for an optical element such as PBS similarly to the laminated retardation film 1 of the first embodiment, and the incident light has a red wavelength band (approximately 600 nm to 700 nm). Is preferable because of high polarization conversion efficiency.

なお、第1〜第4の実施形態の説明において積層位相差板1,101,201,301の用途としてPBSを例示したが、これに限定するものではなく、例えば図9に示すクロスプリズム590の近くに設置される位相板572あるいは位相板573等に用いてもよい。   In the description of the first to fourth embodiments, the PBS is exemplified as the use of the laminated phase difference plates 1, 101, 201, 301. However, the present invention is not limited to this. For example, the cross prism 590 shown in FIG. You may use for the phase plate 572 or the phase plate 573 installed nearby.

積層位相差板の偏光の説明図。Explanatory drawing of the polarization | polarized-light of a laminated phase difference plate. 積層位相差板の光学軸方位の説明図。Explanatory drawing of the optical axis direction of a laminated phase difference plate. ポアンカレ球を示す図。The figure which shows a Poincare sphere. ポアンカレ球をS3軸方向から示した図。The figure which showed the Poincare sphere from S3 axial direction. ポアンカレ球の赤道面の偏光を直線上に示した図。The figure which showed on the straight line the polarization | polarized-light of the equatorial plane of a Poincare sphere. 本発明の好適な二枚の位相板の板厚の組み合わせを示すグラフ。The graph which shows the combination of the board thickness of the suitable two phase plate of this invention. 本発明の好適な二枚の位相板の板厚の組み合わせとの比較例を示すグラフ。The graph which shows a comparative example with the combination of the plate | board thickness of the suitable two phase plate of this invention. 本発明の実施形態における累積乖離値を説明するグラフ。The graph explaining the accumulation deviation value in the embodiment of the present invention. 第1の実施形態における積層位相差板と従来技術の積層位相差板との累積乖離値を比較したグラフ。The graph which compared the accumulated divergence value of the lamination | stacking phase difference plate in 1st Embodiment, and the lamination | stacking phase difference plate of a prior art. 積層位相差板を備えたPBSの要部構成図。The principal part block diagram of PBS provided with the laminated phase difference plate. 積層位相差板を備えた投射型映像装置の要部構成図。The principal part block diagram of the projection type imaging device provided with the laminated phase difference plate. 第2の実施形態における積層位相差板と従来技術の積層位相差板との累積乖離値を比較したグラフ。The graph which compared the cumulative deviation value of the lamination | stacking phase difference plate in 2nd Embodiment, and the lamination | stacking phase difference plate of a prior art. 第3の実施形態における積層位相差板と従来技術の積層位相差板との累積乖離値を比較したグラフ。The graph which compared the accumulated deviation value of the lamination | stacking phase difference plate in 3rd Embodiment, and the lamination | stacking phase difference plate of a prior art. 第4の実施形態における積層位相差板と従来技術の積層位相差板との累積乖離値を比較したグラフ。The graph which compared the accumulated divergence value of the lamination | stacking phase difference plate in 4th Embodiment, and the lamination | stacking phase difference plate of a prior art.

符号の説明Explanation of symbols

1,101,201,301…積層位相差板、2…PBS、10,110,210,310…第1の位相差板、11,12,21…光学軸、13,14…振動面、20,120,220,320…第2の位相差板、30,40…直線偏光、50…プリズムアレイ、51…プリズム、52…偏光分離膜、53…第1の経路、54…第2の経路、55…乖離値、56…乖離範囲、60,160,260,360…曲線、70,170,270,370…直線、501…ランプ、502…光源、511…リフレクタ、531,532,533,534…マルチレンズ、540,541…偏光変換素子、572,573…位相板、590…クロスプリズム、O…中心、R1,R2…回転軸、T1,T2…板厚、Γa,Γb,ΔΓ…位相差、ΔΓa,ΔΓb…ずれ量、θa…第1の位相差板の光学軸方位角、θb…第2の位相差板の光学軸方位角。   DESCRIPTION OF SYMBOLS 1,101,201,301 ... Laminated phase difference plate, 2 ... PBS, 10,110,210,310 ... 1st phase difference plate, 11, 12, 21 ... Optical axis, 13, 14 ... Vibrating surface, 20, 120, 220, 320 ... second retardation plate, 30, 40 ... linearly polarized light, 50 ... prism array, 51 ... prism, 52 ... polarization separation film, 53 ... first path, 54 ... second path, 55 ... Deviation value, 56 ... Deviation range, 60, 160, 260, 360 ... Curve, 70, 170, 270, 370 ... Straight line, 501 ... Lamp, 502 ... Light source, 511 ... Reflector, 531, 532, 533, 534 ... Multi Lens, 540, 541... Polarization conversion element, 572, 573... Phase plate, 590... Cross prism, O .. Center, R1, R2... Rotating axis, T1, T2. , ΔΓb ... Deviation amount, θa: optical axis azimuth angle of first retardation plate, θb: optical axis azimuth angle of second retardation plate.

Claims (6)

波長λの光に対して位相差Γ’aの第1の位相差板と位相差Γ’bの第2の位相差板とを各々の光学軸が交差するように積層してなり、
波長λ1〜λ2(但し、λ1<λ<λ2)の範囲において入射する直線偏光の偏光面を90deg回転させた直線偏光に変換して出射する積層位相差板であって、
前記第1の位相差板と前記第2の位相差板はYカット水晶基板から形成され、
前記入射する直線偏光の偏光面と前記第1の位相差板の光学軸とのなす角度を光学軸方位角θaとし、
前記入射する直線偏光の偏光面と前記第2の位相差板の光学軸とのなす角度を光学軸方位角θbとしたとき、前記光学軸方位角θaと前記光学軸方位角θbとの関係が、
θb=θa+α、
0°<θa<45°、
40°<α<50°
を満足し、
前記第1の位相差板の常光線の屈折率をNoa、異常光線の屈折率をNea、厚みをdaとしたきに、前記第1の位相差板の位相差Γ’aと偏光変換効率Taは、
Γ’a=2×π×da×(Nea−Noa)/λ、
Ta=4×(sinθa)×(cos(2θa))×(sin(Γ’a/2))
を満足し、
前記第2の位相差板の常光線の屈折率をNob、異常光線の屈折率をNeb、厚みをdbとしたきに、前記第2の位相差板の位相差Γ’bと偏光変換効率Tbは、
Γ’b=2×π×db×(Neb−Nob)/λ、
Tb=4×(sinθb)×(cos(2θb))×(sin(Γ’b/2))
を満足し、
前記位相差Γ’aと前記位相差Γ’bは、
Γ’a=Γa+ΔΓa、
Γ’b=Γb+ΔΓb、
Γa=180°、
Γb=180°
を満足し、
前記ΔΓaと前記ΔΓbとの関係が、下式(1)を満足することを特徴とする積層位相差板。
Figure 0004557022
A first retardation plate having a phase difference Γ′a and a second retardation plate having a phase difference Γ′b with respect to light having a wavelength λ are laminated so that the optical axes intersect with each other;
A laminated phase difference plate that converts linearly polarized light that is incident in a range of wavelengths λ1 to λ2 (where λ1 <λ <λ2) into a linearly polarized light that is rotated by 90 degrees, and emits the linearly polarized light;
The first retardation plate and the second retardation plate are formed from a Y-cut quartz substrate,
An angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the first retardation plate is defined as an optical axis azimuth angle θa,
When the angle formed between the polarization plane of the incident linearly polarized light and the optical axis of the second retardation plate is defined as an optical axis azimuth angle θb, the relationship between the optical axis azimuth angle θa and the optical axis azimuth angle θb is as follows. ,
θb = θa + α,
0 ° <θa <45 °,
40 ° <α <50 °
Satisfied,
When the refractive index of ordinary light of the first retardation plate is Noa, the refractive index of extraordinary light is Nea, and the thickness is da, the phase difference Γ′a of the first retardation plate and the polarization conversion efficiency Ta Is
Γ′a = 2 × π × da × (Nea-Noa) / λ,
Ta = 4 × (sin 2 θa) × (cos (2θa)) × (sin 2 (Γ′a / 2))
Satisfied,
When the refractive index of the ordinary ray of the second retardation plate is Nob, the refractive index of the extraordinary ray is Neb, and the thickness is db, the phase difference Γ′b of the second retardation plate and the polarization conversion efficiency Tb Is
Γ′b = 2 × π × db × (Neb−Nob) / λ,
Tb = 4 × (sin 2 θb) × (cos (2θb)) × (sin 2 (Γ′b / 2))
Satisfied,
The phase difference Γ′a and the phase difference Γ′b are:
Γ′a = Γa + ΔΓa,
Γ′b = Γb + ΔΓb,
Γa = 180 °,
Γb = 180 °
Satisfied,
A laminated phase difference plate, wherein the relationship between ΔΓa and ΔΓb satisfies the following expression (1).
Figure 0004557022
請求項1において、
λ1=400nm、λ2=700nmとしたときに、
前記第1の位相差板の厚みdaが24μm〜31μmの範囲であり、且つ前記第2の位相差板の厚みdbが24μm〜31μmの範囲であることを特徴とする積層位相差板。
In claim 1,
When λ1 = 400 nm and λ2 = 700 nm,
A laminated phase difference plate, wherein a thickness da of the first phase difference plate is in a range of 24 μm to 31 μm, and a thickness db of the second phase difference plate is in a range of 24 μm to 31 μm.
請求項1において、
λ1=400nm、λ2=500nmとしたときに、
前記第1の位相差板の厚みdaが21μm〜26μmの範囲であり、且つ前記第2の位相差板の厚みdbが21μm〜26μmの範囲であることを特徴とする請求項1に記載の積層位相差板。
In claim 1,
When λ1 = 400 nm and λ2 = 500 nm,
2. The laminate according to claim 1, wherein a thickness da of the first retardation plate is in a range of 21 μm to 26 μm, and a thickness db of the second retardation plate is in a range of 21 μm to 26 μm. Phase difference plate.
請求項1において、
λ1=500nm、λ2=600nmとしたときに、
前記第1の位相差板の厚みdaが25μm〜35μmの範囲であり、且つ前記第2の位相差板の厚みdbが25μm〜35μmの範囲であることを特徴とする請求項1に記載の積層位相差板。
In claim 1,
When λ1 = 500 nm and λ2 = 600 nm,
2. The laminate according to claim 1, wherein a thickness da of the first retardation plate is in a range of 25 μm to 35 μm, and a thickness db of the second retardation plate is in a range of 25 μm to 35 μm. Phase difference plate.
請求項1において、
λ1=600nm、λ2=700nmとしたときに、
前記第1の位相差板の厚みdaが24μm〜47μmの範囲であり、且つ前記第2の位相差板の厚みdbが24μm〜47μmの範囲であることを特徴とする請求項1に記載の積層位相差板。
In claim 1,
When λ1 = 600 nm and λ2 = 700 nm,
2. The laminate according to claim 1, wherein a thickness da of the first retardation plate is in a range of 24 μm to 47 μm, and a thickness db of the second retardation plate is in a range of 24 μm to 47 μm. Phase difference plate.
投射型映像装置であって、
請求項1乃至請求項5のいずれか一項に記載の積層位相差板を用いていることを特徴とする投射型映像装置。
A projection-type image device,
A projection type video apparatus using the laminated phase difference plate according to any one of claims 1 to 5.
JP2008054444A 2007-03-27 2008-03-05 Laminated phase difference plate, projection type image device Expired - Fee Related JP4557022B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008054444A JP4557022B2 (en) 2007-03-27 2008-03-05 Laminated phase difference plate, projection type image device
US12/051,339 US7855834B2 (en) 2007-03-27 2008-03-19 Multilayered phase difference plate and projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007080844 2007-03-27
JP2008054444A JP4557022B2 (en) 2007-03-27 2008-03-05 Laminated phase difference plate, projection type image device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010012904A Division JP2010146020A (en) 2007-03-27 2010-01-25 Laminated retardation plate, polarization converting element, and projection type video imaging apparatus

Publications (2)

Publication Number Publication Date
JP2008268901A JP2008268901A (en) 2008-11-06
JP4557022B2 true JP4557022B2 (en) 2010-10-06

Family

ID=40048413

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008054444A Expired - Fee Related JP4557022B2 (en) 2007-03-27 2008-03-05 Laminated phase difference plate, projection type image device
JP2010012904A Withdrawn JP2010146020A (en) 2007-03-27 2010-01-25 Laminated retardation plate, polarization converting element, and projection type video imaging apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010012904A Withdrawn JP2010146020A (en) 2007-03-27 2010-01-25 Laminated retardation plate, polarization converting element, and projection type video imaging apparatus

Country Status (1)

Country Link
JP (2) JP4557022B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230856A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device an polarized illumination optical device, and liquid crystal projector
JP2010230857A (en) * 2009-03-26 2010-10-14 Fujifilm Corp Polarization conversion device and polarized illumination optical device, and liquid crystal projector
JP5251671B2 (en) * 2009-03-30 2013-07-31 セイコーエプソン株式会社 Laminated half-wave plate, optical pickup device, polarization conversion element, and projection display device
JP5251672B2 (en) 2009-03-30 2013-07-31 セイコーエプソン株式会社 Laminated half-wave plate, optical pickup device, polarization conversion element, and projection display device
JP5347911B2 (en) 2009-11-02 2013-11-20 セイコーエプソン株式会社 1/2 wavelength plate, optical pickup device, polarization conversion element, and projection display device
WO2023149359A1 (en) * 2022-02-04 2023-08-10 富士フイルム株式会社 Optical laminate and image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170853A (en) * 2002-11-22 2004-06-17 Toyo Commun Equip Co Ltd Laminated wavelength plate
JP2006201302A (en) * 2005-01-18 2006-08-03 Epson Toyocom Corp Ultrathin wavelength plate, composite optical element and optical pickup device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928280B2 (en) * 1989-09-05 1999-08-03 株式会社リコー Automatic Document Feeder
JPH0746241A (en) * 1993-07-30 1995-02-14 Anritsu Corp Delay time measurement equipment for transmission protocol
JP2003287714A (en) * 2002-03-27 2003-10-10 Shin Etsu Chem Co Ltd Optical circulator
JP2003302523A (en) * 2002-04-10 2003-10-24 Nippon Shinku Kagaku Kenkyusho:Kk Polarization converting element and liquid crystal display device using the same
JP4928056B2 (en) * 2003-04-24 2012-05-09 セイコーエプソン株式会社 Wave plate and optical pickup device using the same
JP4329508B2 (en) * 2003-11-21 2009-09-09 エプソントヨコム株式会社 Optical rotation correction broadband quarter wave plate and optical pickup device using the same
JP2007093963A (en) * 2005-09-28 2007-04-12 Epson Toyocom Corp Wave plate using oblique angle deposition
JP4623042B2 (en) * 2006-04-10 2011-02-02 エプソントヨコム株式会社 Laminated wave plate, polarization converter, polarization illumination device, and optical pickup device
JP4380725B2 (en) * 2006-04-18 2009-12-09 エプソントヨコム株式会社 Laminated wave plate and optical pickup device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170853A (en) * 2002-11-22 2004-06-17 Toyo Commun Equip Co Ltd Laminated wavelength plate
JP2006201302A (en) * 2005-01-18 2006-08-03 Epson Toyocom Corp Ultrathin wavelength plate, composite optical element and optical pickup device

Also Published As

Publication number Publication date
JP2008268901A (en) 2008-11-06
JP2010146020A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP6083997B2 (en) Projection display
JP4652110B2 (en) Projection-type image display device
JP5970994B2 (en) Light source device and projector
JP4557022B2 (en) Laminated phase difference plate, projection type image device
JP4950446B2 (en) Lens array optical system, projection optical unit, and image projection apparatus
PH12017000156A1 (en) Light source device and projection display apparatus
JP2009086164A (en) Projection type liquid crystal display and compensation plate
JP2009133917A (en) Projection image display apparatus and polarization converter
US7855834B2 (en) Multilayered phase difference plate and projector
US10585342B2 (en) Light source device and projector
JP2008070690A (en) Wavelength plate and projector
US7222967B2 (en) Image display optical system and projection type image display apparatus
US8866977B2 (en) Projector
US20050275807A1 (en) Color combining optical system and image projection apparatus
US8643793B2 (en) Projector
JP5188612B2 (en) Lens array optical system, projection optical unit, image projection apparatus, and image display system
JP2009103863A (en) Retardation plate and projector
JP6176371B2 (en) projector
JP2007233208A (en) Optical element, projection type projector, and method for manufacturing optical element
JP5109762B2 (en) Laminated retardation plate, polarization conversion element, and projection type image device
JP2006323283A (en) Optical apparatus and projector
JPH1138528A (en) Liquid crystal projector
JP2009128568A (en) Polarization conversion element and projector
JP2013003491A (en) Polarization conversion element, polarization conversion unit and projection device
JP2024030405A (en) projector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees