JP4277254B2 - Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography - Google Patents

Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography Download PDF

Info

Publication number
JP4277254B2
JP4277254B2 JP2002374291A JP2002374291A JP4277254B2 JP 4277254 B2 JP4277254 B2 JP 4277254B2 JP 2002374291 A JP2002374291 A JP 2002374291A JP 2002374291 A JP2002374291 A JP 2002374291A JP 4277254 B2 JP4277254 B2 JP 4277254B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
organic solvent
resin
fine particles
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002374291A
Other languages
Japanese (ja)
Other versions
JP2004204032A (en
JP2004204032A5 (en
Inventor
悟郎 岩村
謹爾 真造
伸佳 白井
安信 廣田
恭義 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2002374291A priority Critical patent/JP4277254B2/en
Publication of JP2004204032A publication Critical patent/JP2004204032A/en
Publication of JP2004204032A5 publication Critical patent/JP2004204032A5/ja
Application granted granted Critical
Publication of JP4277254B2 publication Critical patent/JP4277254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子写真用トナー、インキ等の印刷材料、塗料、接着剤、粘着材、繊維加工、製紙・紙加工、土木用等に用いられる熱可塑性樹脂微粒子水性分散体の製造方法と、この製造方法で得られる熱可塑性樹脂微粒子を含有する電子写真用トナーに関するものである。
【0002】
【従来の技術】
熱可塑性樹脂微粒子水性分散体の製造方法としては、例えば転相乳化法が挙げられる。転相乳化法は、樹脂を微粒子化する分散造粒法の一種であり、例えば、着色剤と自己水分散性樹脂を含有する有機溶剤溶液と水性媒体とを連続式乳化分散機を使用して転相乳化させた後、有機溶媒の除去と乾燥を行う電子写真用トナーの製造方法が知られている。これらの方法では自己水分散性熱可塑性樹脂を用いているため、乳化剤、懸濁安定剤等の補助材料を用いることなく、熱可塑性樹脂微粒子水性分散体を効率良く製造することができる(例えば、特許文献1参照。)。
【0003】
また、中和された酸基含有ポリエステル樹脂と沸点60〜200℃の水溶性有機化合物と水とを特定の配合比で配合してなる水系分散体も知られている(例えば、特許文献2および特許文献3参照。)。
【0004】
前記特許文献1に記載された転相乳化法は、様々な熱可塑性樹脂に適用できる有用な手段であるが、自己水分散性熱可塑性樹脂の有機溶剤溶液を調製することを念頭に考えられていたため、自己水分散性熱可塑性樹脂とこの熱可塑性樹脂を溶解できる有機溶剤(良溶媒)との組み合わせについての検討のみが提案されていた。そのため、自己水分散性熱可塑性樹脂とこの熱可塑性樹脂を溶解しない有機溶剤の組み合わせに対しては適用されていなかった。また、自己水分散性ポリエステル樹脂とこのポリエステル樹脂を溶解できる有機溶剤(良溶媒)の組み合わせであるが故に、水性媒体中に自己水分散性ポリエステル樹脂を分散させた後も自己水分散性ポリエステル樹脂と有機溶剤との間の親和性が高く、結果として有機溶剤の除去工程後も、高濃度で有機溶剤が樹脂粒子内に残留してしまう欠点があった。
【0005】
前記特許文献2および3には、沸点60〜200℃の水溶性有機化合物として前記ポリエステル樹脂を溶解する沸点100℃以上の有機溶剤と共に前記ポリエステル樹脂を溶解しない沸点100℃未満の有機溶剤も例示されているが、得られた水系分散体から有機溶剤を除去すること、および、前記ポリエステル樹脂を、このポリエステル樹脂を溶解しない沸点100℃未満の有機溶剤と組み合わせて用いることに関する記載や示唆はなく、実施例では前記ポリエステル樹脂を溶解する沸点100℃以上の有機溶剤(良溶媒)を含む有機溶剤をいずれも使用して水系分散体を製造した後、有機溶剤の除去を行うことなくコーティング剤等に用いている。これら前記実施例で得られる水系分散体は、有機溶剤の除去を行ったとしても、高濃度で有機溶剤が樹脂粒子内に残留してしまい、環境衛生上の問題がある。
【0006】
【特許文献1】
特開平09−297431号公報(第3〜6頁)
【特許文献2】
特開昭56−088454号公報(第2頁、第4頁、第7頁)
【特許文献3】
特開昭56−125432号公報(第2頁、第4頁、第7頁)
【0007】
【発明が解決しようとする課題】
【0008】
本発明の課題は、粒度分布が狭く、樹脂粒子内に残存する残留溶剤が極めて少ない熱可塑性樹脂微粒子水性分散体を効率良く得るための製造方法と、残存溶剤が極めて少ない電子写真用トナーを提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の知見(a)〜(e)を見出し、本発明を完成するに至った。
【0010】
(a)有機溶剤として自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)を用い、この有機溶剤(S)を該自己水分散性熱可塑性樹脂(P)に吸収させて得られた膨潤体は、転送乳化することにより水性媒体中に微粒子状で分散させて熱可塑性樹脂微粒子水性分散体とすることが容易であること。
【0011】
(b)前記膨潤体を水性媒体中に微粒子状で分散させる際に、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機を用いることにより粒度分布が狭い熱可塑性樹脂微粒子を含む熱可塑性樹脂微粒子分散体が連続的に効率良く得られること。
【0012】
(c)有機溶剤として自己水分散性熱可塑性樹脂(P)を溶解しない沸点100℃未満の有機溶剤(S)を用いているため、得られた水分散樹脂中の有機溶剤の除去が容易で、残留有機溶剤の極めて少ない熱可塑性樹脂微粒子水性分散体得られること。
【0013】
(d)前記熱可塑性樹脂微粒子水性分散体の製造方法において、自己水分散性熱可塑性樹脂(P)と共に着色剤(C)を併用することにより、着色剤(C)で着色された自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中に分散した分散体が得られること。
【0014】
(e)前記熱可塑性樹脂微粒子水性分散体の製造方法で得た着色された熱可塑性樹脂微粒子水性分散体の微粒子を分離し、乾燥して得られる微粒子を含有させることにより残存溶剤が極めて少ない電子写真用トナーが連続的に効率良く得られること。
【0015】
即ち、本発明は、自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機の前記円筒型攪拌槽に前記膨潤体と水性媒体を送り込みながら前記円筒型攪拌翼を回転させて前記膨潤体と前記水性媒体とを攪拌槽内壁に沿って薄膜状で旋回させることにより前記膨潤体を水性媒体中に微粒子状で分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体を製造する第3工程とからなることを特徴とする熱可塑性樹脂微粒子水性分散体の製造方法を提供するものである。
【0016】
また、本発明は、前記製造方法において自己水分散性熱可塑性樹脂(P)と共に着色剤(C)を併用して得られた熱可塑性樹脂微粒子水性分散体から自己水分散性熱可塑性樹脂(P)の微粒子を分離し、乾燥して得られる微粒子を含有することを特徴とする電子写真用トナーを提供するものである。
【0017】
【発明の実施の形態】
以下に本発明を詳細に説明する。
自己水分散性熱可塑性樹脂(P)とは、乳化剤、懸濁安定剤等を用いることなく、水性媒体中に分散可能な熱可塑性樹脂または中和により水性媒体中への分散が可能となる熱可塑性樹脂であり、ビニル系樹脂、重付加系樹脂、重縮合系樹脂、天然樹脂等のいずれであってもよいが、なかでもテトラヒドロフランやメチルエチルケトン等の常温で該熱可塑性樹脂(P)を溶解できる有機溶剤に該熱可塑性樹脂(P)を溶解した後、得られた樹脂溶液に攪拌下で水性媒体(中和により水性媒体中に分散可能となる熱可塑性樹脂の場合は中和剤を含有する水性媒体)を滴下することにより転相乳化して平均粒子径が10μm以下の粒子状で分散することが可能な熱可塑性樹脂が好ましく、0.1μm以下の粒子状で分散することが可能な熱可塑性樹脂が特に好ましい。
【0018】
即ち、本発明は、自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機の前記円筒型攪拌槽に前記膨潤体と水性媒体を送り込みながら前記円筒型攪拌翼を回転させて前記膨潤体と前記水性媒体とを攪拌槽内壁に沿って薄膜状で旋回させることにより前記膨潤体を水性媒体中に微粒子状で分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体を製造する第3工程とからなる熱可塑性樹脂微粒子水性分散体の製造方法であり、前記自己水分散性熱可塑性樹脂(P)がカルボキシル基含有ポリエステル系樹脂で、且つ、中和により水性媒体中への分散が可能となる樹脂で、前記有機溶剤(S)が水と相溶する有機溶剤で、前記水性媒体が塩基性化合物を含有する水であることを特徴とする熱可塑性樹脂微粒子水性分散体の製造方法を提供するものである。
【0019】
前記した中和された酸基含有熱可塑性樹脂としては、例えば、中和された酸基含有ポリエステル系樹脂、中和された酸基含有ポリウレタン系樹脂、中和された酸基含有(メタ)アクリル系樹脂、中和された酸基含有スチレン系樹脂、中和された酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂、中和された酸基含有ロジン系樹脂、中和された酸基含有石油樹脂等が挙げられる。これらのなかでも、本発明の製造方法で得られた樹脂微粒子を電子写真用トナーのバインダーとして用いた時に定着性に優れ、画像品質が高い電子写真用トナーが得られることから中和された酸基含有ポリエステル系樹脂(PE)、中和された酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂が好ましく、中和された酸基含有ポリエステル系樹脂(PE)が特に好ましい。なお、中和された酸基含有ポリエステル系樹脂(PE)の中和を外した場合の酸価としては、1〜100が好ましく、5〜40がより好ましい。
【0020】
前記中和された酸基含有ポリエステル系樹脂(PE)としては、例えば、中和された酸基を有する化合物を必須成分として用いて得られたポリエステル系樹脂(PE1)、カルボキシル基等の酸基を含有し、中和により自己水分散性熱可塑性樹脂(P)となるポリエステル系樹脂を調製したのち、酸基を中和して得られたポリエステル系樹脂(PE2)等が挙げられる。これらの具体例としては、中和されたカルボキシル基含有ポリエステル系樹脂、中和されたスルフォン基含有ポリエステル系樹脂、中和されたリン酸基含有ポリエステル系樹脂等が挙げられる。前記ポリエステル系樹脂(PE1)としては中和されたスルフォン基含有ポリエステル系樹脂が好ましく、ポリエステル系樹脂(PE2)としては中和されたカルボキシル基含有ポリエステル系樹脂が好ましい。
【0021】
前記中和された酸基含有ポリエステル系樹脂(PE1)は、例えば、二塩基酸またはその無水物と二価のアルコールと中和された酸基を有する二塩基酸とを必須成分として、必要に応じて、三官能以上の多塩基酸、その無水物、一塩基酸、三官能以上のアルコール、一価のアルコール等を併用し、窒素雰囲気中で加熱下に酸価を測定しながら180〜260℃の反応温度で脱水縮合する方法等により調製することができる。
【0022】
また、前記した酸基含有熱可塑性樹脂としては、例えば、酸基含有ポリエステル系樹脂、酸基含有ポリウレタン系樹脂、酸基含有(メタ)アクリル系樹脂、酸基含有スチレン系樹脂、酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂、酸基含有ロジン系樹脂、酸基含有石油樹脂等が挙げられる。これらのなかでも、本発明の製造方法で得られた樹脂微粒子を電子写真用トナーのバインダーとして用いた時に定着性に優れ、画像品質が高い電子写真用トナーが得られることから酸基含有ポリエステル系樹脂(pe)、酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂が好ましく、酸基含有ポリエステル系樹脂(pe)が特に好ましい。なお、酸基含有ポリエステル系樹脂(pe)の酸価としては、1〜100が好ましく、5〜40がより好ましい。
【0023】
前記酸基含有ポリエステル系樹脂(pe)としては、例えば、カルボキシル基等の酸基を有する化合物を必須成分として用いて得られたポリエステル系樹脂(pe1)が好ましい。前記ポリエステル系樹脂(pe1)の具体例としては、カルボキシル基含有ポリエステル系樹脂、スルフォン酸基含有ポリエステル系樹脂、リン酸基含有ポリエステル系樹脂等が挙げられ、なかでもカルボキシル基含有ポリエステル系樹脂が好ましい。
【0024】
前記カルボキシル基含有ポリエステル系樹脂は、例えば、二塩基酸やその無水物と二価のアルコールとを必須として、必要に応じて三官能以上の多塩基酸、その無水物、一塩基酸、三官能以上のアルコール、一価のアルコール等をカルボキシル基が残存する組成比率で用い、窒素雰囲気中で加熱下に酸価を測定しながら180〜260℃の反応温度で脱水縮合する方法等により調製することができる。
【0025】
これらのポリエステル系樹脂(PE)や(pe)の調製に使用される装置としては、窒素導入口、温度計、攪拌装置、精留塔等を備えた反応容器の如き回分式の製造装置が好適に使用できるほか、脱気口を備えた押出機や連続式の反応装置、混練機等も使用できる。また、上記脱水縮合の際、必要に応じて反応系を減圧することによって、エステル化反応を促進することもできる。さらに、エステル化反応の促進のために、種々の触媒を添加することもできる。
【0026】
前記触媒としては、例えば、酸化アンチモン、酸化バリウム、酢酸亜鉛、酢酸マンガン、酢酸コバルト、琥珀酸亜鉛、ホウ酸亜鉛、蟻酸カドミウム、一酸化鉛、珪酸カルシウム、ジブチル錫オキシド、ブチルヒドロキシ錫オキシド、テトライソプロピルチタネート、テトラブチルチタネート、マグネシウムメトキシド、ナトリウムメトキシド等が挙げられる。
【0027】
前記中和された酸基を有する二塩基酸としては、例えば、スルフォテレフタル酸、3−スルフォイソフタル酸、4−スルフォフタル酸、4−スルフォナフタレン−2,7−ジカルボン酸、スルフォ−p−キシリレングリコール、2−スルフォ−1,4−ビス(ヒドロキシエトキシ)ベンゼン等のナトリウム塩、カリウム塩、カルシウム塩、バリウム塩、亜鉛塩などの金属塩が挙げられる。
【0028】
前記二塩基酸およびその無水物としては、例えば、マレイン酸、無水マレイン酸、フマ−ル酸、イタコン酸、無水イタコン酸、蓚酸、マロン酸、コハク酸、無水コハク酸、ドデシルコハク酸、ドデシル無水コハク酸、ドデセニルコハク酸、ドデセニル無水コハク酸、アジピン酸、アゼライン酸、セバチン酸、デカン−1,10−ジカルボン酸等の脂肪族二塩基酸;フタル酸、テトラヒドロフタル酸およびその無水物、ヘキサヒドロフタル酸およびその無水物、テトラブロムフタル酸およびその無水物、テトラクロルフタル酸およびその無水物、ヘット酸およびその無水物、ハイミック酸およびその無水物、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、2,6−ナフタレンジカルボン酸等の芳香族または脂環式の二塩基酸等が挙げられる。
【0029】
二価のアルコ−ルとしては、例えば、エチレングリコ−ル、1,2−プロピレングリコ−ル、1,4−ブタンジオ−ル、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、ジエチレングリコ−ル、ジプロピレングリコ−ル、トリエチレングリコ−ル、ネオペンチルグリコ−ル等の脂肪族ジオ−ル類;ビスフェノ−ルA、ビスフェノ−ルF等のビスフェノ−ル類;ビスフェノ−ルAのエチレンオキサイド付加物、ビスフェノ−ルAのプロピレンオキサイド付加物等のビスフェノ−ルAアルキレンオキサイド付加物;キシリレンジグリコ−ル等のアラルキレングリコ−ル類;1,4−シクロヘキサンジメタノ−ル、水添ビスフェノ−ルA等の脂環式のジオ−ル類等が挙げられる。
【0030】
三官能以上の多塩基酸やその無水物としては、例えば、トリメリット酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸、メチルシクロヘキセントリカルボン酸無水物、ピロメリット酸、無水ピロメリット酸等が挙げられる。
【0031】
一塩基酸としては、例えば、安息香酸、p−tert−ブチル安息香酸等が挙げられる。
【0032】
三官能以上のアルコールとしては、例えば、グリセリン、トリメチロ−ルエタン、トリメチロ−ルプロパン、ソルビト−ル、1,2,3,6−ヘキサンテトロ−ル、1,4−ソルビタン、ペンタエリスリト−ル、ジペンタエリスリト−ル、2−メチルプロパントリオ−ル、1,3,5−トリヒドロキシベンゼン、トリス(2−ヒドロキシエチル)イソシアヌレ−ト等が挙げられる。
【0033】
一価のアルコールとしては、例えば、ステアリルアルコール等の高級アルコール等が挙げられる。
【0034】
前記した二塩基酸、その無水物、三官能以上の塩基酸、その無水物、一塩基酸等はそれぞれ単独で使用してもよいし、2種以上のものを併用してもよい。また、カルボキシル基の一部または全部がアルキルエステル、アルケニルエステル又はアリ−ルエステルとなっているものも使用できる。
【0035】
前記した二価のアルコール、三官能以上のアルコール、一価のアルコール等は、単独で使用してもよいし2種以上のものを併用することもできる。
【0036】
また、例えば、ジメチロ−ルプロピオン酸、ジメチロ−ルブタン酸、6−ヒドロキシヘキサン酸のような、1分子中に水酸基とカルボキシル基を併有する化合物あるいはそれらの反応性誘導体も使用できる。
【0037】
前記カルボキシル基含有ポリエステル系樹脂としては、なかでも非オフセット領域の上限温度が高く、低温定着性も良好とな電子写真用トナーが得られることから、ゲル分が0.3重量%以下、GPC(ゲルパーミエーションクロマトグラフィ)法で測定した重量平均分子量(Mw)が3,000〜20,000、数平均分子量(Mn)が1,000〜5,000、これらの比(Mw/Mn)が2〜10、フローテスターでの1/2降下温度(T1/2)が80〜140℃および酸価が1〜100のポリエステル樹脂(I)と、ゲル分が2重量%以下、GPC法で測定した重量平均分子量(Mw)が200,000〜2,000,000、数平均分子量(Mn)が5,000〜20,000、これらの比(Mw/Mn)が10〜400、フローテスターでの1/2降下温度(T1/2)が150〜250℃および酸価が1〜100のポリエステル樹脂(II)とを混合してなるポリエステル樹脂を用いることが好ましい。
【0038】
前記ポリエステル樹脂(I)としては、なかでも重量平均分子量(Mw)が4,000〜10,000、数平均分子量(Mn)が2,000〜4,000、これらの比(Mw/Mn)が2〜5、かつ、フローテスターでの1/2降下温度(T1/2)が80〜120℃のポリエステル樹脂であることがより好ましい。
【0039】
また、前記ポリエステル樹脂(II)としては、なかでもゲル分が0.2〜0.7重量%、重量平均分子量(Mw)が200,000〜1,000,000、数平均分子量(Mn)が5,000〜10,000、これらのMw/Mnが20〜200、かつ、フローテスターでの1/2降下温度(T1/2)が160〜230℃のポリエステル樹脂であることがより好ましい。
【0040】
さらに前記ポリステル樹脂(II)の中でも、定着温度領域の広い電子写真用トナーが得られることから、二価の塩基酸と二価のアルコールと二官能エポキシ化合物とを反応させて得られるポリエステル樹脂が好ましく、なかでも、二官能エポキシ化合物の含有率が0.5〜2.5重量%の原料成分を用いて得られたポリエステル樹脂がより好ましい。
【0041】
前記二官能エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、エチレングリコールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等が挙げられ、なかでもビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。これらは単独で使用しても良いし、複数のものを併用しても良い。
【0042】
前記ポリステル樹脂(II)としては、二価の塩基酸と二価のアルコールと二官能エポキシ化合物に加えて、炭素原子数4〜28のアルキル基を有するモノエポキシ化合物を1〜10重量%含有する原料成分を用いて得られるポリエステル樹脂が特に好ましい。炭素原子数4〜28のアルキル基を有するモノエポキシ化合物としては、カルボン酸のグリシジルエステルが好ましく、なかでもネオデカン酸グリシジルエステルが特に好ましい。
【0043】
本発明においてゲル分とは、ポリエステル樹脂(I)とポリエステル樹脂(II)の各々を、テトラヒドロフランに25℃で24時間溶解させた時の不溶分の重量割合である。測定は300mlのガラス製容器に250mlのテトラヒドロフランを入れ、その中に細かく砕いたポリエステル樹脂1.5gを500メッシュの金網製袋(3×5cm)に入れて室温で24時間溶解させ、不溶分の割合を求める。
【0044】
本発明におけるポリエステル樹脂の重量平均分子量(Mw)と、数平均分子量(Mn)はテトラヒドロフランにより溶解する成分をGPC法により以下に示す条件で測定した値である。

Figure 0004277254
【0045】
本発明におけるフローテスターでの1/2降下温度(T1/2)とは、高化式フローテスターCFT−500(島津製作所製)を用い、荷重10kg/cm、ノズルの直径1mm、ノズルの長さ1mm、予備加熱70℃で5分間、昇温速度6℃/分とし、サンプル量を1.5gとして測定記録し、フローテスターのプランジャー降下量−温度曲線(軟化流動曲線)におけるS字曲線の高さをhとするとき、h/2の高さに対応する温度をいう。
【0046】
前記ポリエステル樹脂(I)とポリエステル樹脂(II)の重量比〔(I)/(II)〕としては、定着性、耐オフセット性(定着ロールにトナーが融着しない性質)、保存性に優れる電子写真用トナーが得られることから、30/70〜70/30の範囲であることが好ましい。
【0047】
更に、前記カルボキシル基含有ポリエステル系樹脂としては、自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中でより安定に存在できることから、アルキル基および/またはアルケニル基を含有するポリエステル樹脂であることがより好ましい。なかでも、末端に水酸基を有するポリエステル樹脂の末端水酸基に、炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する酸無水物を開環付加させて生成する末端構造を有するポリエステル樹脂、末端にカルボキシル基を有するポリエステル樹脂の末端カルボキシル基に炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する脂肪族モノエポキシ化合物を開環付加させて生成する末端構造を有するポリエステル樹脂が特に好ましい。
【0048】
前記炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する酸無水物としては、例えば、n−オクチル無水コハク酸、イソオクチル無水コハク酸、n−ドデセニル無水コハク酸、イソドデセニル無水コハク酸等が挙げられ、なかでも、イソドデシル無水コハク酸、ドデセニル無水コハク酸が好ましい。
【0049】
前記炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する脂肪族モノエポキシ化合物としては、例えば、シェルケミカル社製分岐脂肪酸のグリシジルエステルであるカ−ジュラ−E10;ヒマシ油脂肪酸、ヤシ油脂肪酸、大豆油脂肪酸、桐油脂肪酸等の脂肪酸のモノグリシジルエステル;イソノナン酸等の分岐脂肪酸のモノグリシジルエステル等が挙げられる。
【0050】
本発明で用いる有機溶剤(S)は、自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点〔常圧(101.3KPa)における沸点をいう。以下同様。〕100℃未満の有機溶剤であればよい。自己水分散性熱可塑性樹脂(P)を溶解する有機溶剤および/または沸点100℃以上の有機溶剤を用いた場合は、第3工程での有機溶剤が除去しにくくなるし、また、自己水分散性熱可塑性樹脂(P)を膨潤させることができない有機溶剤を用いた場合は、第2工程での自己水分散性熱可塑性樹脂(P)の水性媒体中への分散が困難となるため、いずれも好ましくない。
【0051】
なお、本発明で用いる自己水分散性熱可塑性樹脂(P)を溶解しない有機溶剤(S)とは、有機溶剤と自己水分散性熱可塑性樹脂(P)とを組み合わせて用いた場合に、25℃での自己水分散性熱可塑性樹脂(P)の前記有機溶剤への溶解度が15重量%以下となる有機溶剤を意味し、自己水分散性熱可塑性樹脂(P)の前記有機溶剤への溶解度が0重量%の有機溶剤を意味するものではない。
【0052】
本発明において、有機溶剤が自己水分散性熱可塑性樹脂(P)を溶解しない有機溶剤(S)に該当するか否かの判定は、例えば、ASTM D3132−84(Reapproved 1996)の7.2結果の判断の7.2.1.1〜7.2.1.3に記載された判定法を用いて行うことができる。
【0053】
前記有機溶剤(S)に該当するか否かの判定は、具体的には粒子状の自己水分散性熱可塑性樹脂(P)15重量部と有機溶剤85重量部をフラスコにとって密栓し、25℃で16時間振とうした後の溶解状態を観察し、前記ASTM D3132−84の7.2.1.1〜7.2.1.3に記載された下記判定区分で、1.「完全な溶液」か、2.「境界線の溶液」か、3.「不溶」かのどの区分に属するか判定することにより行うことができる。
1.「完全な溶液」;明瞭な固形物やゲル粒子を含まない単一の透明な相。
2.「境界線の溶液」;明瞭な相分離を含まない透明または混濁した相。
3.「不溶」;2相に分離:分離したゲル固体相を含む液体又は2相に相分離した液体。
尚、本発明では、粒子状の自己水分散性熱可塑性樹脂(P)として、孔径3mmのスクリーンを通過させた自己水分散性熱可塑性樹脂(P)の粗粉砕物を前記判定に使用した。
【0054】
本発明の製造方法は、自己水分散性熱可塑性樹脂(P)と有機溶剤(S)とを、前記有機溶剤(S)に該当するか否かの判定において、2.「境界線の溶液」、または、3.「不溶」となる組み合わせで用いる方法であり、この組み合わせで自己水分散性熱可塑性樹脂(P)と有機溶剤(S)を用いることにより第3工程において脱溶剤が容易に行える。
【0055】
本発明で用いる有機溶剤(S)としては、なかでも第3工程での脱溶剤が更に容易に行えることから、25℃での自己水分散性熱可塑性樹脂(P)の有機溶剤への溶解度が10重量%以下となる有機溶剤であることが好ましく、7重量%以下となる有機溶剤であることがより好ましい。このときの溶解度の判定は、有機溶剤が前記樹脂濃度15重量%で有機溶剤(S)に該当するか否かの判定を行う代わりに、樹脂濃度が10重量%または7重量%での判定を行うことにより可能である。
【0056】
さらに、前記有機溶剤(S)としては、水性媒体中に分散された粒子状の膨潤体からの除去が容易で、残留溶剤が極めて少ない樹脂粒子が容易に効率良く経済的に製造できることから、水と相溶する有機溶剤(S1)が好ましい。ただし、この有機溶剤(S1)としては、水と有機溶剤がすべての混合比で均一相を形成する必要はなく、自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させて得られる膨潤体の水性媒体への分散を行う際の温度および水と有機溶剤の組成範囲において相溶すれば十分である。該有機溶剤(S1)は、この条件を満たせるものであれば、単一もしくは混合溶剤のどちらでも差し支えないが、第3工程で有機溶剤(S1)の除去を行う際の温度において水と相溶するものが好ましく、25℃で水と相溶するものがより好ましい。なかでも、有機溶剤(S1)としては、25℃における水への溶解度が50重量%以上であることが好ましく、25℃において全ての割合で水と相溶することが特に好ましい。さらに、有機溶剤(S1)が混合溶剤の場合は、使用する有機溶剤の沸点がいずれも100℃未満であることが好ましい。また、有機溶剤(S1)の沸点は40〜90℃であることがより好ましい。更に好ましくは40〜85℃であり、最も好ましくは40〜60℃である。
【0057】
前記有機溶剤(S1)としては、例えば、アセトン(溶解度:全ての割合で水と相溶する。沸点:56.1℃)等のケトン類;メタノール(溶解度:全ての割合で水と相溶する、沸点:64.7℃)、エタノール(溶解度:全ての割合で水と相溶する、沸点:78.3℃)、イソプロピルアルコール(解度:全ての割合で水と相溶する、沸点:82.26℃)等のアルコール類;酢酸メチル(溶解度:24重量%、沸点:56.9℃)等のエステル類等が挙げらる。これらの有機溶剤(S1)は単独で用いても良いし、2種以上を混合した混合溶剤を用いても良い。有機溶剤(S1)として好ましいものはケトン類、アルコール類であり、より好ましいものはアセトン、イソプロピルアルコールであり、最も好ましいものはアセトンである。
【0058】
前記有機溶剤(S)の使用量としては、目的とする熱可塑性樹脂微粒子水性分散体中の樹脂微粒子の粒径にもよるが、第1工程において自己水分散性熱可塑性樹脂(P)が有機溶剤(S)を十分に吸収し、膨潤して微粒子状での分散が容易なのり状(paste)の膨潤体とすることができること、第2工程において前記膨潤体の水性媒体への分散が容易であること、分散を完結させるために用いる水性媒体の使用量が抑制でき、熱可塑性樹脂微粒子水性分散体中の有機溶剤の含有量が大きくならず製造効率が良好となることから、前記自己水分散性熱可塑性樹脂(P)100重量部に対して5〜300重量部が好ましく、より好ましくは10〜200重量部であり、最も好ましくは20〜150重量部である。
【0059】
また、水の使用量は、自己水分散性熱可塑性樹脂(P)と有機溶剤(S)の合計100重量部に対して70〜400重量部が好ましく、100〜250重量部がより好ましい。
【0060】
本発明で用いる水性媒体としては、例えば、自己水分散性熱可塑性樹脂(P)として、乳化剤、懸濁安定剤等を用いることなく水性媒体中への分散が可能な熱可塑性樹脂を用いた場合は水が好ましく、また、自己水分散性熱可塑性樹脂(P)として、乳化剤、懸濁安定剤等を用いることなく中和により水性媒体中への分散が可能となる熱可塑性樹脂を用いた場合は中和剤を含有させた水が好ましい。なお、これらの水性媒体には、必要に応じて、更に乳化剤、懸濁安定剤等を含有させることもできるが、通常は含有させないことが好ましい。
【0061】
本発明の製造方法では、自己水分散性熱可塑性樹脂(P)として、中和により水性媒体中への分散が可能となる熱可塑性樹脂を用いた場合、この熱可塑性樹脂に自己水分散性を付与するために、前記熱可塑性樹脂を有機溶剤(S)で膨潤させて得られる膨潤体を水性媒体中に分散させる第2工程までの任意の工程において中和剤による中和を行うが、なかでも前記膨潤体を水性媒体中に分散させる第2工程において中和剤を含有させた水性媒体を用いて中和することが好ましい。
【0062】
前記中和により水性媒体中への分散が可能となる熱可塑性樹脂が酸基含有熱可塑性樹脂である場合に酸基の中和に用いる中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ化合物;ナトリウム、カリウム、リチウム等のアルカリ金属の炭酸塩;前記アルカリ金属の酢酸塩類;アンモニア水;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミン類;ジエタノールアミン等のアルカノールアミン類等が挙げられる。なかでも、アンモニア水が好ましい。
【0063】
また、前記中和により水性媒体中への分散が可能となる熱可塑性樹脂が塩基性基含有熱可塑性樹脂である場合に塩基性基の中和に用いる中和剤としては、例えば、蟻酸、酢酸、プロピオン酸等の有機酸;塩酸、硫酸、硝酸、リン酸等の無機酸等が挙げられる。
【0064】
前記中和剤の使用量は、酸基含有熱可塑性樹脂中の酸基の当量、または、塩基性基含有熱可塑性樹脂中の塩基性基の当量に対して、それぞれ0.9〜5.0倍当量となる量であることが好ましく、1.0〜3.0倍当量となる量であることがより好ましい。
【0065】
本発明の製造方法の第1工程で膨潤体を製造する方法としては、特に限定されないが、短時間で前記膨潤体が得られるし、その後第2工程での前記膨潤体の水性媒体中への分散も容易になることから、粒子状の自己水分散性熱可塑性樹脂(P)を用い、前記有機溶剤(S)と共に加熱することにより前記膨潤体を製造することが好ましく、さらに加圧下で前記膨潤体を製造することがより好ましい。この際、前記自己水分散性熱可塑性樹脂(P)と前記有機溶剤(S)の加熱温度としては、前記有機溶剤(S)の沸点以上が好ましく、前記有機溶剤(S)の沸点〜180℃がより好ましく、前記有機溶剤(S)の沸点+10℃〜120℃が特に好ましい。また、この系内の加圧圧力としては、ゲージ圧で0.1〜2.0MPaが好ましく、より好ましくはゲージ圧で0.2〜1.5MPa、更に好ましくはゲージ圧で0.3〜1.0MPaである。系内を加圧する方法としては、例えば、前記膨潤体を得るための加熱により前記有機溶剤(S)を気化させて系内を加圧する方法、あらかじめ系内に不活性ガスを導入して予備加圧した後、加熱して前記有機溶剤(S)の気化によりさらに加圧する方法等が挙げられるが、有機溶剤(S)の還流、沸騰が抑制できると共に、粒度分布の狭い熱可塑性樹脂微粒子水性分散体を得られることから、予備加圧する方法が好ましい。予備加圧としては0.05〜0.5MPaが好ましい。
【0066】
第1工程で膨潤体を製造した後、第2工程で側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機の前記円筒型攪拌槽に前記膨潤体と水性媒体を送り込みながら前記円筒型攪拌翼を回転させて前記膨潤体と前記水性媒体とを攪拌槽内壁に沿って薄膜状で旋回させることにより前記膨潤体を水性媒体中に微粒子状で分散させて初期水性分散体を製造する。連続乳化分散機として、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機を用いることで、粒度分布の狭い樹脂微粒子を含有する初期水性分散体が得られる。このような側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機としては、例えば、前記円筒型攪拌翼を有し、かつ、前記円筒型攪拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えたT.K.フィルミックス(特殊機化工業株式会社)が挙げられる。
【0067】
以下、図面により前記円筒型攪拌翼を有し、かつ、前記円筒型攪拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機を用いた初期水性分散体の製造工程について説明する。
【0068】
図1は前記円筒型攪拌翼と円筒型攪拌槽を示したものである。図1に示すように、円筒型攪拌槽1と同心に回転軸2が設置されている。そして、前記回転軸2の下部には側面に孔を有する円筒型攪拌翼3が固着されている。
【0069】
円筒型攪拌槽1の底部には、図外の供給管が複数本接続されており、それぞれ水性媒体および膨潤体の供給に使用される。円筒型攪拌槽1の上部には攪拌槽内の液体の流れを堰き止める図外の板(以下、堰板と言う)が設置されており、堰板と回転軸の間には隙間が存在する。回転軸2は、上部に設けた図外のモータと固着しており高速駆動される。
【0070】
円筒型攪拌槽1の内径は、例えば80mmであり、円筒型攪拌翼3の外径は円筒型攪拌槽1の内径より僅かに小径の75〜78mmに設定されている。したがって両部の隙間は、2〜5mmである。また、円筒型攪拌翼3の高さは例えば55mm、厚さは3mm、孔の径は3mmである。尚、これらの数値は一例を示す数値であり、適宜変更できるものである。
【0071】
供給管から円筒型攪拌槽1に送り込まれた前記膨潤体と前記水性媒体は、円筒型攪拌翼3の高速回転によって円周方向に付勢されて回転し、前記回転によって生じる遠心力によって、円筒型攪拌槽1の内壁に薄膜円筒状に密着しながら回転するから、前記膨潤体と前記水性媒体との混合物は薄膜表面と攪拌槽1の内壁との速度差によるずれによって攪拌作用を受け、前記膨潤体が水性媒体中に微粒子状に分散される。薄膜円筒状に保持された混合液は薄膜円筒状態を維持しつつ、供給管から送り込まれた前記膨潤体と前記水性媒体により持ち上げられ円筒型攪拌槽1の上部方向へ上昇し前記膨潤体と前記水性媒体との混合物の一部は回転軸2と堰板との間の隙間より流出するが、大部分の混合液は円筒型攪拌槽1上部にある堰板により円筒型攪拌槽1の下部方向へと方向転換し、その結果、混合液は、円筒型攪拌翼3の内側へと流入する。そして、円筒型攪拌翼3に流入した混合物は、円筒型攪拌翼3が側面に有する貫通して設けた孔内に流入し、前記孔の内面によって強い回転力を受けるから遠心力も大きく、前記孔内から隙間に流入して圧力を上昇させると共に円筒型攪拌槽1の内壁と円筒型攪拌翼3との隙間内にある混合物の流れを乱すことにより攪拌作用を助長する。
【0072】
このようにして前記膨潤体を水性媒体中に微粒子状に分散して得られた初期水性分散体は、堰板と回転軸2との間の隙間からオーバーフローし、図外流出口から円筒型攪拌槽1外へと排出される。
【0073】
前記円筒型攪拌翼3の回転数を上げていくと、混合物は遠心力により容器内壁に強く押し付けられるとともに円筒型攪拌翼3はその先端の周速が最も早いので、混合物は大きな剪断力を与えられて、粒子の粒径は小さくなりやすくなる。
【0074】
前記円筒型攪拌翼の先端の周速は3〜55m/Secが強力な遠心力をかけることができるので好ましく、5〜30m/Secがより好ましい。
【0075】
円筒型攪拌翼の回転時間(円筒型攪拌槽内に液が流入してから流出するまでの滞留時間)は、円筒型攪拌翼の先端の周速が3〜55m/Secの時には、10〜500秒が好ましく、30〜300秒がより好ましい。
【0076】
前記膨潤体と水性媒体を円筒型攪拌槽に送り込む際の比率(膨潤体:水性媒体)としては、重量比で1:0.5〜1:4の範囲が好ましく、1:1〜1:2.5がより好ましい。
【0077】
膨潤体を水性媒体中に微粒子状で分散させる際には、前記膨潤体の水性媒体中への分散が容易になることから、第1工程において加圧下で前記有機溶剤(S)の沸点以上の温度に加熱することにより得られた膨潤体を用い、第2工程において前記膨潤体を加圧下で前記有機溶剤(S)の沸点以上120℃以下の温度で、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機により前記水性媒体中に微粒子状に分散させて初期水性分散体とするのが好ましい。この際の系の温度としては、前記有機溶剤(S)の沸点〜180℃が好ましく、前記有機溶剤(S)の沸点+10℃〜120℃が特に好ましい。また、この系の圧力としては、ゲージ圧で0.1〜2.0MPaが好ましく、より好ましくはゲージ圧で0.2〜1.5MPa、更に好ましくはゲージ圧で0.3〜1.0MPaである。水性媒体の温度としては、前記有機溶剤(S)の沸点以上120℃以下であることが好ましく、なかでも前記有機溶剤(S)の沸点以上100℃未満であって、かつ、第2工程開始時の系の温度−20℃〜第2工程開始時の系の温度の範囲内とすることがより好ましい。
【0078】
さらに、前記第1工程で膨潤体を製造する際の温度、および、前記第2工程で初期水性分散体を製造する際の温度は、いずれも前記自己水分散性熱可塑性樹脂(P)の融点や軟化点より低温であることが好ましく、前記自己水分散性熱可塑性樹脂(P)のガラス転移温度(Tg)以下の温度であってもよいが、なかでも前記有機溶剤(S)の沸点以上であって、かつ、ガラス転移温度(Tg)より10〜50℃高い温度であることが好ましい。なお、第1工程で膨潤体を製造する際の温度と第2工程で初期水性分散体を製造する際の温度は同一でも異なっていてもよい。
【0079】
本発明の熱可塑性樹脂微粒子水性分散体の製造方法としては、例えば以下の▲1▼〜▲2▼で示す方法が代表的な製造方法として挙げられる。
▲1▼第1工程として、密閉容器に自己水分散性熱可塑性樹脂(P)と有機溶剤(S)とを仕込み、加熱下、好ましくは加熱加圧下で、攪拌下に自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させることにより膨潤体を製造した後、得られた膨潤体と中和剤を含有していてもよい水性媒体とを側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機に連続的に供給しながら機械的剪断力により前記膨潤体を前記水性媒体中に微粒子状に分散させて初期水性分散体とし、次いで、第3工程として、得られた初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中に分散した分散体を製造する方法。
【0080】
▲2▼第1工程として、押出機等の溶融混練により溶融された自己水分散性熱可塑性樹脂(P)または合成された溶融状態の自己水分散性熱可塑性樹脂(P)に、圧入等の方法で有機溶剤(S)を連続的に供給し混合下に前記自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させることにより膨潤体を製造し、得られた膨潤体を該自己水分散性熱可塑性樹脂(P)の融点または軟化点未満の温度まで降温させた後、第2工程として、得られた膨潤体と中和剤を含有していてもよい水性媒体とを側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機に連続的に供給しながら機械的剪断力により前記膨潤体を前記水性媒体中に微粒子状に分散させて初期水性分散体とし、次いで、第3工程として、得られた初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中に分散した分散体を製造する方法。
【0081】
これらの方法の中でも、容易に熱可塑性樹脂微粒子水性分散体が得られることから、前記▲1▼の方法が好ましい。前記▲1▼の方法で用いる自己水分散性熱可塑性樹脂(P)の形状としては、比較的短時間で膨潤体とすることができることから、粒子状であることが好ましく、例えば、粒子径1〜7mmのペレット、孔径が2〜7mmのスクリーンを通過させた粗粉砕物、平均粒子径800μm以下の粉体等が挙げられる。
【0082】
以下に、前記▲1▼の方法による熱可塑性樹脂微粒子水性分散体の製造方法のより具体的な製造例を挙げる。
まず、プロペラ翼付のガラス製2Lのオートクレーブを用い、このオートクレーブに自己水分散性熱可塑性樹脂(P)を粉砕して得た粒子状物と有機溶剤(S)とを仕込み、不活性ガスを導入してオートクレーブ内を0.05〜0.5MPa予備加圧し、次いで10〜300rpmの攪拌下で有機溶剤(S)の沸点以上に昇温して有機溶剤(S)を一部気化させることによりオートクレーブ内を0.1〜2.0MPa(ゲージ圧)に加圧した後、50〜700rpmで3〜60分間攪拌して自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させて膨潤体とする(第1工程)。
【0083】
予備加圧に用いる不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス等が挙げられるが窒素ガスが好ましい。
【0084】
この工程で得られた前記膨潤体は、有機溶剤(S)を吸収した自己水分散性熱可塑性樹脂(P)と、自己水分散性熱可塑性樹脂(P)に吸収されずに残った有機溶剤(S)との混合物であり、半透明〜白濁のり状(paste)の混合物として観察されるものが好ましい。なお、例えば、ポリエステル樹脂とイソプロピルアルコールの系では、攪拌速度を50rpm程度にゆるめると、イソプロピルアルコールが樹脂相から分離して2相を形成するのが観察されるが、それでもよい。
【0085】
このようにして膨潤体を得た後、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機を使用して連続的に水性媒体中に前記膨潤体を微粒子状で分散させて初期水性分散体とする(第2工程)。
【0086】
前記膨潤体が微粒子状で分散した分散体を得た後、得られた分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中に分散した分散体が得られる(第3工程)。前記有機溶剤(S)の除去方法としては、例えば、減圧チャンバー中にスプレーする方法、脱溶剤缶壁内面に薄膜を形成させる方法、溶剤吸収用充填剤入りの脱溶剤缶を通過させる方法等が挙げられる。前記有機溶剤(S)を除去する方法の一例として、ロータリーエバポレーターを使用した除去方法を以下に記す。
試料量;500ml
容器;2Lなす型フラスコ
回転数;60rpm
バス温度;47℃
減圧度;13.3KPaから20分間かけて1.33KPaに減圧度を高め、引き続き10分間1.33KPaで脱溶剤する。
【0087】
なお、熱可塑性樹脂微粒子水性分散体中の樹脂微粒子を粉体塗料やホットメルト接着剤などとして利用する場合や、生成した粒子をトナーなど粉体として取り出す場合には、樹脂微粒子が分散した分散体からの有機溶剤(S)の除去は前記分散体の製造後直ちに行うのがよい。有機溶剤(S)が含有されたまま分散体を長期間保存しておくと分散体中の樹脂微粒子が自然と凝集する傾向を示すからである。
【0088】
本発明の熱可塑性樹脂微粒子水性分散体の製造方法は、平均粒径が0.01〜15μmである熱可塑性樹脂微粒子を含有する熱可塑性樹脂微粒子水性分散体を製造するのに好ましい。
【0089】
本発明の熱可塑性樹脂微粒子水性分散体の製造方法では製造条件を種々変更することにより熱可塑性樹脂微粒子水性分散体中の熱可塑性樹脂微粒子の平均粒径を制御できる。平均粒径を小さく制御するためには、例えば、次に記す手段等をとれば良い。
▲1▼自己水分散性熱可塑性樹脂(P)中の酸基または中和された酸基の濃度等の親水性セグメント濃度を高くする。
▲2▼自己水分散性熱可塑性樹脂(P)として中和により水性媒体中への分散が可能となる熱可塑性樹脂を用いた場合、中和剤の量を大きくする。
▲3▼自己水分散性熱可塑性樹脂(P)に対する有機溶剤(S)の使用量を大きくする。
▲4▼分散体製造時の温度を高くする。
▲5▼分散体製造時の攪拌速度を大きくする。
【0090】
逆に、本発明の熱可塑性樹脂微粒子水性分散体の製造方法において、得られる分散体中の樹脂微粒子の平均粒径を大きくするためには、これらの条件を逆にしてやれば良い。なお、自己水分散性熱可塑性樹脂(P)および有機溶剤(S)と共に、その他の成分、例えばカーボンブラック等の着色剤(C)、磁性粉、ワックス、帯電制御剤等の添加剤を用いることによっても、通常分散体中の樹脂微粒子の平均粒径は大きくなる。
【0091】
このような本発明の製造方法で得られた熱可塑性樹脂微粒子水性分散体中の樹脂微粒子は、得られた分散体の温度、pH、電解質濃度などの条件を制御することにより分散している樹脂微粒子を会合させて、より大きな粒子に成長させることも可能である。
【0092】
本発明で使用する有機溶剤(S)は、後述する分散体中の樹脂微粒子の会合の工程で樹脂微粒子同士の接着剤的役割も担っている。通常第3工程での脱溶剤は、この会合工程を終了した後に行われるが、会合工程前に一旦脱溶剤しておいて貯蔵しておき、会合工程で同一もしくは類似の有機溶剤の必要量を再添加してから会合させ、ついで脱溶剤してもよい。
【0093】
本発明の製造方法は粒度分布が1.36以下の熱可塑性樹脂微粒子を含有する熱可塑性樹脂微粒子を含有する熱可塑性樹脂微粒子分散体を製造するのに好ましく、粒度分布が1.25〜1.35の熱可塑性樹脂微粒子を含有する熱可塑性樹脂微粒子分散体を製造するのにより好ましい。ここで粒度分布とはベックマンコールター社製のコ−ルターマルチサイザーTM3を用いて粒子径の小さい側から積算した場合に累積重量が10%となるところの粒子経(D10)と粒子径の小さい側から積算した場合に累積重量が90%(D90)となるところの粒子経とを測定し、この比(D90/D10)を言う。粒度分布の値は小さい程粒度分布の幅が狭いことを表す。
【0094】
次に、本発明の電子写真用トナーを説明する。
本発明の電子写真用トナーは、本発明の熱可塑性樹脂微粒子水性分散体の製造方法で得られた分散体から自己水分散性熱可塑性樹脂(P)の微粒子を分離し、乾燥して得られる微粒子を含有する電子写真用トナーである。
【0095】
次に、本発明の電子写真用トナーを説明する。
本発明の電子写真用トナーは、本発明の熱可塑性樹脂微粒子水性分散体の製造方法で得られた分散体から自己水分散性熱可塑性樹脂(P)の微粒子を分離し、乾燥して得られる微粒子を含有する電子写真用トナーであり、本発明の方法で得た分散体をそのまま用い、この分散体から樹脂微粒子を分離し、乾燥して得られる樹脂微粒子を用いてなる電子写真用トナーや、本発明の方法でトナーサイズより小さい粒径の樹脂微粒子が分散した分散体を得た後、必要に応じて別途製造したトナーサイズより小さい粒径の樹脂微粒子が分散した分散体と混合し、得られた分散体の温度、pH、電解質濃度などの条件を適宜制御することにより分散体中の樹脂微粒子を会合させてトナーサイズの微粒子とした後、粒子を分離し、乾燥して得られる樹脂微粒子を用いてなる電子写真用トナーが挙げられる。
【0096】
このような本発明の電子写真用トナーとしては、以下の(1)〜(4)に示す電子写真感用トナーが例示できる。
【0097】
(1)本発明の熱可塑性樹脂微粒子水性分散体の製造方法において、自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させる第1工程で自己水分散性熱可塑性樹脂(P)と共に着色剤(C)を併用することにより得られる着色樹脂微粒子が水性媒体中に分散した分散体を得た後、得られた分散体から自己水分散性熱可塑性樹脂(P)の微粒子を分離し、乾燥して得られる微粒子を用いてなる電子写真用トナー。なお、着色剤(C)と共にワックス等の添加剤、磁性粉、電荷制御剤等を併用することもできる。この場合、前記分散体中の着色樹脂微粒子の平均粒径はトナーサイズ、例えば1〜10μmであることが好ましい。
【0098】
(2)前記(1)と同様にして着色樹脂微粒子が水性媒体中に分散した分散体を得た後、逆中和剤の添加などの方法で樹脂微粒子の表面電位を減少させて分散している樹脂微粒子同志を会合させて、より大きな平均粒径を有する着色樹脂粒子の分散体とし、次いで有機溶剤(S)の除去し、微粒子の分離を行った後、乾燥して得られる微粒子を用いてなる電子写真用トナー。なお、前記有機溶剤(S)の除去は、樹脂微粒子同志の会合後に行ってもよい。また、着色剤(C)と共にワックス等の添加剤、磁性粉、電荷制御剤等を併用することもできる。この場合、会合前の分散体中の着色樹脂微粒子の平均粒径は0.01〜1μmであることが好ましく、会合後の着色樹脂微粒子の平均粒径はトナーサイズであることが好ましい。
【0099】
(3)前記(1)と同様にして着色樹脂微粒子が水性媒体中に分散した分散体を得た後、前記(2)と同様に樹脂微粒子同志を会合させて、より大きな平均粒径を有する着色樹脂粒子(コア粒子)の分散体とし、次いで別途製造したシェル層用の樹脂微粒子の水性分散体と混合し、前記(2)と同様にして分散している着色樹脂粒子(コア粒子)にシェル層用の樹脂微粒子を会合させて、コア/シェル構造の着色樹脂粒子の分散体とし、次いで有機溶剤(S)の除去し、微粒子の分離を行った後、乾燥して得られる微粒子を用いてなる電子写真用トナー。なお、前記有機溶剤(S)の除去は、樹脂微粒子同志の会合後に行ってもよい。この場合、会合前の分散体中の着色樹脂微粒子の平均粒径は0.01〜1μmであることが好ましく、会合終了後の着色樹脂微粒子の平均粒径はトナーサイズであることが好ましい。
【0100】
前記(3)で用いるシェル層用の樹脂微粒子は、コア用の樹脂粒子のガラス転移温度(Tg)より1〜40℃高いTgを有する自己水分散性熱可塑性樹脂(P)からなる樹脂粒子か、後述する帯電制御剤を用いて樹脂微粒子を調製した時は該帯電制御剤の使用量を多く用いて調製された樹脂粒子が好ましい。
【0101】
(4)自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させることにより膨潤体を得た後、前記膨潤体を水性媒体中に微粒子状で分散させて分散体とし、次いで得られた分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中に分散した分散体を得た後、別途製造した着色剤の水性分散体もしくは別途製造した着色樹脂微粒子の水性分散体と混合し、逆中和剤の添加などの方法で樹脂微粒子の表面電位を減少させて分散している樹脂微粒子と着色剤粒子若しくは着色樹脂微粒子を会合させて、より大きな平均粒径を有する着色樹脂粒子の分散体とし、次いで微粒子の分離を行った後、乾燥して得られる微粒子を用いてなる電子写真用トナー。この場合、前記着色剤(C)と共にワックス等の添加剤、磁性粉、電荷制御剤等を併用することもできし、添加剤、磁性粉、電荷制御剤等を含有した樹脂微粒子の水性分散体を併用して会合させることもできる。また、前記有機溶剤(S)の除去は、樹脂微粒子と着色剤粒子若しくは着色樹脂微粒子の会合を行った後に行ってもよい。ここで用いる各分散体中の微粒子の平均粒径は0.01〜1μmであることが好ましく、会合後の着色樹脂微粒子の平均粒径はトナーサイズであることが好ましい。
【0102】
前記(4)で用いる別途製造した着色剤の水性分散体もしくは別途製造した着色樹脂微粒子の水性分散体としては、着色剤もしくは着色樹脂微粒子が水性媒体中に微粒子状で分散されているものであればよく、特に限定されないが、例えば、界面活性剤などを用いて着色剤を乳化処理した水性分散体、着色剤(C)と樹脂を加熱溶融したのち、分散剤を含有する水中に分散した水性分散体、着色剤(C)を分散させた自己水分散性樹脂を有機溶剤に溶解させた後、水を加えて転相乳化した水性分散体、本発明の製造方法で自己水分散性熱可塑性樹脂(P)を有機溶剤(S)で膨潤させる際に着色剤(C)を併用することにより得られる水性分散体等が挙げられ、なかでも本発明の製造方法で得られる水性分散体が好ましい。これら水性分散体中における着色剤(C)の濃度は、目的とするトナーの着色剤濃度の5〜10倍であることが好ましい。
【0103】
前記着色剤(C)としては、例えば、カーボンブラック、ベンガラ、紺青、酸化チタン、ニグロシン染料(C.I.No.50415B)、アニリンブルー(C.I.No.50405)、カルコオイルブルー(C.I.No.azoic Blue3)、クロムイエロー(C.I.No.14090)、ウルトラマリンブルー(C.I.No.77103)、デュポンオイルレッド(C.I.No.26105)、キノリンイエロー(C.I.No.47005)、メチレンブルークロライド(C.I.No.52015)、フタロシアニンブルー(C.I.No.74160)、マラカイトグリーンオクサレート(C.I.No.74160)、マラカイトグリーンオクサレート(C.I.No.42000)、ランプブラック(C.I.No.77266)、ローズベンガル(C.I.No.45435)等が挙げられる。
【0104】
前記着色剤(C)の含有量は、自己水分散性熱可塑性樹脂(P)100重量部に対して1〜20重量部の範囲内になるよう使用するのが好ましい。これらの着色剤は1種又は2種以上の組み合わせで使用することができる。
【0105】
以下に本発明の製造方法で言う「会合」という工程と現象について述べる。
一般に、本発明の製造方法により得られるような熱可塑性樹脂微粒子水性分散体中の樹脂微粒子は、その表面電荷に由来する静電反発力により凝集することなく水性媒体中に安定に存在するが、同時に、ファンデルワールス力によって樹脂粒子間には引力が働いている。そこで、何らかの作用で樹脂粒子表面電荷を適宜減少させてやると、静電反発力より引力が大きくなり、樹脂微粒子同志が凝集し始めて、より大きい粒子径に成長した樹脂粒子の分散体となる。これを本発明では会合という。この会合の温度は自己水分散性熱可塑性樹脂(P)のガラス転移温度(Tg)〜ガラス転移温度+50℃が好ましく、会合工程中に系内に存在している有機溶剤(S)の沸点との関係により、0.1〜1.0MPa(ゲージ圧)の加圧下に加熱するのが更に好ましい。会合に要する時間は、通常2〜12時間であり、4〜10時間が好ましい。また、会合は、穏やかな攪拌下、例えば、アンカー翼で10〜100rpm程度の回転数による攪拌下で行うと良い。
【0106】
前記の樹脂粒子表面電荷を減少もしくは失わせる方法としては、例えば、希塩酸、希硫酸、酢酸、蟻酸、炭酸などの酸をいわゆる逆中和剤として添加する方法が挙げられる。この際、必要に応じて塩析剤と呼ばれる塩化ナトリウム、塩化カリウム、硫酸アルミニウム、硫酸第2鉄、塩化カルシウム等の金属塩類やカルシウム、アルミニウム、マグネシウム、鉄等の金属錯体を添加しても良い。又、会合工程において着色剤などを分散処理したり、会合の進行を制御する目的で、必要に応じて界面活性剤を使用してもよい。
【0107】
前記界面活性剤としては、例えば、ドデシルベンゼンスルフォン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルジフェニルジスルフォン酸ナトリウム等のアニオン界面活性剤、トリメチルステアリルアンモニウムクロリド等のカチオン界面活性剤、アルキルフェノキシポリ(エチレンオキシ)エタノール等のノニオン界面活性剤等が挙げられ、適宜選択して使用することができる。
【0108】
本発明の電子写真用トナーの製造方法は、粒径が1〜10μmの電子写真用トナーを製造するのに特に好ましい。
【0109】
本発明の製造方法は、形状中に鋭利な尖点部分を含まない球形の樹脂粒子からなる水分散樹脂やトナーを製造することができる。ここで「球形」とは、真球状はもちろん楕円状、いびつな球状(ポテト状)等を含む幅広い概念を言う。
【0110】
本発明の熱可塑性樹脂微粒子水性分散体の製造方法や本発明の電子写真用トナーにおいては、磁性粉、ワックス等の添加剤を必要に応じて用いても良い。これらは、自己水分散性熱可塑性樹脂(P)と予め混練して混練物としておくのが良い。これらの添加剤は、それぞれ単独で使用しても良いし、2種以上を併用しても良い。
【0111】
磁性粉としては、例えば、マグネタイト、フェライト、コバルト、鉄、ニッケル等の金属単体やその合金等が挙げられる。
【0112】
ワックスは、電子写真用トナー用のオフセット防止剤として使用できる。ワックスとしては、例えば、例えばポリプロピレンワックス、ポリエチレンワックス、フィッシャートロフィシュワックス、ステアリルビスアミド、酸化ワックス等の合成ワックス類や、カルナバワックス、ライスワックス等の天然ワックス等が挙げられる。
【0113】
また、帯電制御剤を用いると帯電特性が良好なトナーが得られる。帯電制御剤としては、例えば、ニグロシン系の電子供与性染料、ナフテン酸、高級脂肪酸の金属塩、アルコキシル化アミン、4級アンモニウム塩、アルキルアミド、金属錯体、顔料、フッ素処理活性剤等のプラス帯電制御剤や、電子受容性の有機錯体、塩素化パラフィン、塩素化ポリエステル、銅フタロシアニンのスルホニルアミン等のマイナス帯電制御剤等が挙げられる。
【0114】
帯電制御剤を使用する際には、これらの帯電制御剤を有機溶剤(S)に予め溶解しておいてから自己水分散性熱可塑性樹脂(P)に加えると良い。コア粒子とシェル層からなるトナーを製造する際には、シェル層を製造する際に帯電制御剤を用いれば、帯電制御剤を前記シェル層に配置したトナーを製造することもできる。
【0115】
本発明において、熱可塑性樹脂微粒子水性分散体中の不揮発分の割合は、前記水性分散体を真空乾燥器中に100℃、0.1KPa、3時間の条件で放置し、前記水性分散体の重量変化から求めた。
【0116】
また、熱可塑性樹脂微粒子水性分散体中の残留溶剤の定量は、下記条件でガスクロマトグラフィ法で測定した。
測定機;島津GC−17A
カラム;ULBON HR−20M(PPG)
カラム温度;80〜150℃
昇温速度;10℃/分
【0117】
【実施例】
以下に本発明を、合成例、実施例および比較例を挙げて具体的に説明する。例中の部および%は、特に断らない限り重量基準である。
【0118】
合成例1〔カルボキシル基含有ポリエステル樹脂(I)の合成〕
エチレングリコール192部、プロピレングリコール235部、テレフタル酸498部、イソフタル酸498部およびテトラブチルチタネート1.0部を精留塔とコンデンサの付いたガラス製2リットル四つ口フラスコに仕込み、窒素気流下にて徐々に昇温し、240℃で8時間反応させた。反応進行に伴って留出する縮合水を分析して同伴したエチレングリコールとプロピレングリコールの量を測定し、補填しながら反応を進め、常温固体で酸価が12(mgKOH/g)のポリエステル樹脂(I−1)を得た。ポリエステル樹脂(I−1)の示差熱測定(DSC)法によるガラス転移温度(Tg)、環球法による軟化点、フローテスターでの1/2降下温度(T1/2)、ゲル分、Mw、Mn、Mw/Mnおよび酸価を第1表に示す。
【0119】
合成例2(同上)
エチレングリコール179部、ネオペンチルグリコール301部、テレフタル酸918部、イソフタル酸20部、無水トリメリット酸28部、パラターシャリーブチル安息香酸30部およびテトラブチルチタネート1.0部を精留塔とコンデンサの付いたガラス製2リットル四つ口フラスコに仕込み、窒素気流下にて徐々に昇温し、240℃で8時間反応させた。反応進行に伴って留出する縮合水を分析して同伴したエチレングリコールとネオペンチルグリコールの量を測定し、補填しながら反応を進め、常温固体で酸価が28のポリエステル樹脂(I−2)を得た。ポリエステル樹脂(I−2)のDSC法によるTg、軟化点、T1/2、ゲル分、Mw、Mn、Mw/Mnおよび酸価を第1表に示す。
【0120】
合成例3〔カルボキシル基含有ポリエステル樹脂(II)の合成〕
ガラス製四つ口フラスコにエチレングリコール224部、ネオペンチルグリコール250部、テレフタル酸996部、エピクロン830〔大日本インキ化学工業(株)製、ビスフェノールF型2官能エポキシ樹脂〕17部、カージュラE10(シェルジャパン社製、ネオデカン酸グリシジルエステル)30部およびジブチル錫オキサイド1.0部を入れ、窒素気流下にて徐々に昇温し、245℃にて18時間反応させた。反応進行に伴って留出する縮合水を分析して同伴したエチレングリコールとネオペンチルグリコールの量を測定し、補填しながら反応を進めた。常温固体で酸価が9のポリエステル樹脂(II−1)を得た。ポリエステル樹脂(II−1)のTg、軟化点、T1/2、ゲル分、Mw、Mn及びMw/Mnおよび酸価を第1表に示す。
【0121】
合成例4(同上)
ガラス製四つ口フラスコにプロピレングリコール228部、ネオペンチルグリコール312部、テレフタル酸996部、エピクロン850〔大日本インキ化学工業(株)製、ビスフェノールA型2官能エポキシ樹脂〕17部、カージュラE10 50部およびジブチル錫オキサイド1.0部を入れ、窒素気流下にて徐々に昇温し、245℃にて18時間反応させた。反応進行に伴って留出する縮合水を分析して同伴したプロピレングリコールとネオペンチルグリコールの量を測定し、補填しながら反応を進めた。常温固体で酸価が10のポリエステル樹脂(II−2)を得た。ポリエステル樹脂(II−2)のTg、軟化点、T1/2、ゲル分、Mw、Mn及びMw/Mnおよび酸価を第1表に示す。
【0122】
【表1】
Figure 0004277254
【0123】
実施例1
樹脂の濃度がそれぞれ10%となる条件でアセトンに対するポリエステル樹脂(I−1)およびポリエステル樹脂(II−2)の溶解性の判定をASTM D3132−84(Reapproved 1996)の7.2.1.1〜7.2.1.3に記載された判定法を用いて行ったところ、該判定法の判定区分でポリエステル樹脂(I−2)は「境界線上の溶液」であり、ポリエステル樹脂(II−2)は「不溶」であった。
【0124】
ポリエステル樹脂(I−1)36部、ポリエステル樹脂(II−2)54部、カーボンブラックMA−11(三菱化学製)7部、ボントロンE−81(オリエント化学製帯電制御剤)1.5部およびビスコール550P(三洋化成製ポリプロピレンワックス)3.5部を加えて、ヘンシェルミキサーにてミキシングを行い、加圧ニーダーで混練し混練物を調製した。この混練物の粗粉砕物(孔径3mmのスクリーンを通過させたもの。以下同様。)100部およびアセトン30部をプロペラ翼付の2Lのオートクレーブに仕込み、窒素ガスで0.2MPaに予備加圧し、100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.40MPaに増加していた。系内が90℃になった後、500rpmにプロペラ翼の回転数を上げて10分間攪拌しながら粗粉砕物にアセトンを吸収させることにより黒色のり状の膨潤体を得た。膨潤体の温度を90℃に維持しながら側面に孔を有する円筒型攪拌翼を有し、かつ、該円筒型攪拌翼と攪拌槽内壁との隙間が3mmである円筒型攪拌槽を有するT.K.フィルミックス(特殊機化工業社製の連続乳化分散機)に毎分49gの速度で円筒型攪拌槽底部から導入した。別途準備した水生媒体タンクに25%アンモニア水5部とイオン交換水400部からなる水性媒体405部を90℃に加熱しながら毎分0.15リットルの速度で前記膨潤体と同時に円筒型攪拌槽低部から導入し、フィルミックスの円筒型攪拌翼の先端の周速が20m/Secとなる条件で運転して初期水性分散体を得た。フィルミックスの流出口から排出された初期水性分散体を容器に回収し、30℃まで水冷した。その後、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去してポリエステル樹脂微粒子水性分散体1を得た。得られたポリエステル樹脂微粒子水性分散体1中の不揮発分、体積平均粒子径、残留溶剤量、粒度分布を測定した。測定結果を第2表に示す。
【0125】
実施例2
実施例1と同様にしてポリエステル樹脂(I−2)およびポリエステル樹脂(II−1)の溶解性の判定を行ったところ、該判定法の判定区分でポリエステル樹脂(I−2)は「境界線上の溶液」であり、ポリエステル樹脂(II−1)は「不溶」であった。
【0126】
ポリエステル樹脂(I−2)の粗粉砕物45部、ポリエステル樹脂(II−1)の粗粉砕物55部およびアセトン100部をプロペラ翼付の2Lのオートクレーブに仕込み、窒素ガスで0.2MPaに予備加圧し、100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.45MPaに増加していた。系内が90℃になった後、500rpmにプロペラ翼の回転数を上げて10分間攪拌しながら粒子状物にアセトンを吸収させることにより半透明なのり状の膨潤体を得た。膨潤体の温度を90℃に維持しながら側面に孔を有する円筒型攪拌翼を有し、かつ、該円筒型攪拌翼と攪拌槽内壁との隙間が3mmである円筒型攪拌槽を有するT.K.フィルミックスに毎分56gの速度で攪拌槽低部から導入した。別途準備した水生媒体タンクに25%アンモニア水2部とイオン交換水400部からなる水性媒体402を90℃に加熱しながら毎分0.14リットルの速度で前記膨潤体と同時に攪拌槽低部から導入し、フィルミックスの円筒型攪拌翼の先端の周速が30m/Secとなる条件で運転して初期水性分散体を得た。フィルミックスの流出口から排出された初期水性分散体を別の容器に回収し、30℃まで水冷した。その後、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去してポリエステル樹脂微粒子水性分散体2を得た。得られたポリエステル樹脂微粒子水性分散体中の不揮発分、体積平均粒子径、残留溶剤量、粒度分布を測定した。測定結果を第2表に示す。
【0127】
比較例1
樹脂の濃度を10%から15%に変更し、かつ、アセトンの代わりにテトラヒドロフラン(THF)を用いた以外は実施例1と同様にして、ポリエステル樹脂(I−1)およびポリエステル樹脂(II−2)の溶解性の判定を行ったところ、判定区分は共に「完全な溶液」であった。
【0128】
ポリエステル樹脂(I−1)36部、ポリエステル樹脂(II−2)54部、カーボンブラックMA−11(三菱化学製)7部、ボントロンE−81(オリエント化学製帯電制御剤)1.5部およびビスコール550P(三洋化成製ポリプロピレンワックス)3.5部を加えて、ヘンシェルミキサーにてミキシングを行い、加圧ニーダーで混練し混練物を調製した。この混練物の粗粉砕物100部とTHF30部とを混合し溶液とした。この溶液をキャビトロンCD1010(ユーロテック社製の連続乳化分散機)に毎分75gの速度で移送した。別途準備した水性媒体タンクに25%アンモニア水1.5部とイオン交換水400部からなる水性媒体401.5部を毎分0.23リットルの速度で前記溶液と同時にキャビトロンに移送し、キャビトロンの回転子の回転速度6500rpmの条件で運転して分散体を得た。得られた分散体を30℃まで水冷して取り出した。その後、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去して比較対照用ポリエステル樹脂微粒子水性分散体1′を得た。得られたポリエステル樹脂微粒子水性分散体1′中の不揮発分、体積平均粒子径、残留溶剤量、粒度分布を測定した。測定結果を第2表に示す。
【0129】
比較例2
樹脂の濃度を10%から15%に変更し、かつ、アセトンの代わりにテトラヒドロフラン(THF)を用いた以外は実施例1と同様にして、ポリエステル樹脂(I−2)およびポリエステル樹脂(II−1)の溶解性の判定を行ったところ、判定区分は共に「完全な溶液」であった。
【0130】
ポリエステル樹脂(I−2)の粗粉砕物45部、ポリエステル樹脂(II−1)の粗粉砕物55部およびTHF100部を混合し溶液とした。これをキャビトロンCD1010に毎分143gの速度で移送した。別途準備した水性媒体タンクに25%アンモニア水2部とイオン交換水400部からなる水性媒体402部を毎分0.23リットルの速度で前記溶液と同時にキャビトロンに移送し、キャビトロンの回転子の回転速度7500rpmの条件で運転して分散体を得た。得られた分散体を30℃まで水冷した。その後、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去して比較対照用ポリエステル樹脂微粒子水性分散体2′を得た。得られたポリエステル樹脂微粒子水性分散体2′中の不揮発分、体積平均粒子径、残留溶剤量、粒度分布を測定した。測定結果を第2表に示す。
【0131】
【表2】
Figure 0004277254
【0132】
【発明の効果】
本発明の製造方法は、自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることができる沸点100℃未満の有機溶剤(S)、好ましくは水と相溶する有機溶剤を用い、前記自己水分散性熱可塑性樹脂(P)に前記有機溶剤(S)で吸収させて膨潤体とした後、転相乳化して前記膨潤体を微粒子状で水性媒体中に分散させ、次いで得られた分散体から前記有機溶剤の除去を行うため、有機溶剤の除去が容易で、樹脂微粒子内に残存する残存溶剤が極めて少ない熱可塑性樹脂微粒子水性分散体が得られる。
前記樹脂微粒子内に残存する残存溶剤が極めて少ない熱可塑性樹脂微粒子水性分散体は、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機を使用することで効率良く得られる。
また、前記連続式乳化分散機を用いることで粒度分布が狭い樹脂微粒子を含有する熱可塑性樹脂微粒子水性分散体が得られる。
更に、前記本発明の製造方法で得られる熱可塑性樹脂微粒子水性分散から樹脂微粒子を分離し、乾燥して得られる微粒子を含有する本発明の電子写真用トナーは、残存溶剤が極めて少ないという利点がある。
【図面の簡単な説明】
【図1】 本発明で用いる連続乳化分散機の円筒型攪拌槽部分の一例を示す斜視図である。
【符号の説明】
1 円筒型攪拌槽
2 回転軸
3 側面に孔を有する円筒型攪拌翼[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aqueous dispersion of thermoplastic resin fine particles used for printing materials such as electrophotographic toners, inks, paints, adhesives, pressure-sensitive adhesives, fiber processing, papermaking / paper processing, civil engineering, and the like. The present invention relates to an electrophotographic toner containing thermoplastic resin fine particles obtained by the method.
[0002]
[Prior art]
Examples of the method for producing the thermoplastic resin fine particle aqueous dispersion include a phase inversion emulsification method. The phase inversion emulsification method is a kind of dispersion granulation method in which a resin is made into fine particles. For example, an organic solvent solution containing a colorant and a self-water dispersible resin and an aqueous medium are used by using a continuous emulsification disperser. There is known a method for producing an electrophotographic toner in which an organic solvent is removed and dried after phase inversion emulsification. Since these methods use a self-water dispersible thermoplastic resin, an aqueous dispersion of thermoplastic resin particles can be efficiently produced without using auxiliary materials such as emulsifiers and suspension stabilizers (for example, (See Patent Document 1).
[0003]
Also known is an aqueous dispersion obtained by blending a neutralized acid group-containing polyester resin, a water-soluble organic compound having a boiling point of 60 to 200 ° C., and water at a specific blending ratio (for example, Patent Document 2 and (See Patent Document 3).
[0004]
The phase inversion emulsification method described in Patent Document 1 is a useful means that can be applied to various thermoplastic resins. However, it is considered in view of preparing an organic solvent solution of a self-water dispersible thermoplastic resin. For this reason, only a study on a combination of a self-water dispersible thermoplastic resin and an organic solvent (good solvent) capable of dissolving the thermoplastic resin has been proposed. Therefore, it has not been applied to a combination of a self-water dispersible thermoplastic resin and an organic solvent that does not dissolve the thermoplastic resin. In addition, since it is a combination of a self-water-dispersible polyester resin and an organic solvent (good solvent) that can dissolve the polyester resin, the self-water-dispersible polyester resin is dispersed after the self-water-dispersible polyester resin is dispersed in an aqueous medium. As a result, the organic solvent remains in the resin particles at a high concentration even after the organic solvent removal step.
[0005]
Patent Documents 2 and 3 also exemplify an organic solvent having a boiling point of less than 100 ° C. that does not dissolve the polyester resin together with an organic solvent having a boiling point of 100 ° C. or higher that dissolves the polyester resin as a water-soluble organic compound having a boiling point of 60 to 200 ° C. However, there is no description or suggestion regarding removing an organic solvent from the obtained aqueous dispersion and using the polyester resin in combination with an organic solvent having a boiling point of less than 100 ° C. that does not dissolve the polyester resin. In Examples, an aqueous dispersion was produced using any organic solvent containing an organic solvent (good solvent) having a boiling point of 100 ° C. or higher that dissolves the polyester resin, and then applied to a coating agent or the like without removing the organic solvent. Used. Even when the organic solvent is removed, the aqueous dispersion obtained in these Examples has a problem in environmental hygiene because the organic solvent remains in the resin particles at a high concentration.
[0006]
[Patent Document 1]
JP 09-297431 A (pages 3 to 6)
[Patent Document 2]
JP 56-088454 (page 2, page 4, page 7)
[Patent Document 3]
Japanese Patent Laid-Open No. 56-125432 (Page 2, Page 4, Page 7)
[0007]
[Problems to be solved by the invention]
[0008]
An object of the present invention is to provide a production method for efficiently obtaining an aqueous dispersion of thermoplastic resin fine particles having a narrow particle size distribution and very little residual solvent remaining in resin particles, and an electrophotographic toner having very little residual solvent It is to be.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found the following findings (a) to (e), and have completed the present invention.
[0010]
(A) An organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water-dispersible thermoplastic resin (P) but can swell is used as the organic solvent, and the organic solvent (S) is dispersed in the self-water dispersion. The swelling body obtained by absorbing in the thermoplastic resin (P) can be easily dispersed into an aqueous medium in the form of fine particles by transfer emulsification to obtain an aqueous dispersion of fine thermoplastic resin particles.
[0011]
(B) When the swollen body is dispersed in the form of fine particles in an aqueous medium, it has a cylindrical stirring blade having holes on the side surfaces, and a gap between the cylindrical stirring blade and the inner wall of the stirring tank is 2 to 5 mm. By using a continuous emulsifying disperser equipped with a cylindrical stirring tank, a thermoplastic resin particle dispersion containing thermoplastic resin particles having a narrow particle size distribution can be obtained continuously and efficiently.
[0012]
(C) Since the organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water dispersible thermoplastic resin (P) is used as the organic solvent, it is easy to remove the organic solvent in the obtained water-dispersed resin. An aqueous dispersion of thermoplastic resin fine particles with extremely little residual organic solvent can be obtained.
[0013]
(D) In the method for producing the thermoplastic resin fine particle aqueous dispersion, the self-water dispersion colored with the colorant (C) by using the self-water-dispersible thermoplastic resin (P) together with the colorant (C). A dispersion in which fine particles of the thermoplastic resin (P) are dispersed in an aqueous medium is obtained.
[0014]
(E) Electrons with very little residual solvent by containing fine particles obtained by separating and drying fine particles of the colored thermoplastic resin fine particle aqueous dispersion obtained by the method for producing the aqueous dispersion of fine thermoplastic resin particles. Photographic toner can be obtained continuously and efficiently.
[0015]
That is, the present invention is an organic solvent (S) having a boiling point of less than 100 ° C. that can swell the self-water dispersible thermoplastic resin (P) without dissolving the self-water dispersible thermoplastic resin (P). Cylindrical stirring having a first step for producing a swollen body by swelling, a cylindrical stirring blade having a hole on a side surface, and a gap between the cylindrical stirring blade and the inner wall of the stirring tank being 2 to 5 mm A thin film is formed along the inner wall of the stirring tank by rotating the cylindrical stirring blade while feeding the swelling body and the aqueous medium to the cylindrical stirring tank of the continuous emulsification disperser equipped with a tank. A second step of producing the initial aqueous dispersion by dispersing the swollen body in the form of fine particles in an aqueous medium by swirling in the form of an aqueous solution, and removing the organic solvent (S) from the initial aqueous dispersion Self-water dispersible thermoplastic resin (P) Particles is to provide a method for producing a thermoplastic resin particle aqueous dispersion characterized by comprising a third step of producing a distributed dispersion in the aqueous medium.
[0016]
In addition, the present invention provides a self-water dispersible thermoplastic resin (P) from a thermoplastic resin fine particle aqueous dispersion obtained by using the colorant (C) together with the self-water dispersible thermoplastic resin (P) in the production method. The toner for electrophotography is characterized by containing fine particles obtained by separating and drying the fine particles.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
Self-water-dispersible thermoplastic resin (P) is a thermoplastic resin that can be dispersed in an aqueous medium without using an emulsifier, a suspension stabilizer, or the like, or heat that can be dispersed in an aqueous medium by neutralization. It is a plastic resin and may be any of vinyl resin, polyaddition resin, polycondensation resin, natural resin, etc. Among them, the thermoplastic resin (P) can be dissolved at room temperature such as tetrahydrofuran and methyl ethyl ketone. After dissolving the thermoplastic resin (P) in an organic solvent, the resulting resin solution is stirred with an aqueous medium (in the case of a thermoplastic resin that can be dispersed in an aqueous medium by neutralization, contains a neutralizing agent). A thermoplastic resin that can be dispersed and dispersed in the form of particles having an average particle size of 10 μm or less by phase inversion emulsification by adding an aqueous medium) is preferred, and heat that can be dispersed in the form of particles of 0.1 μm or less. Plastic resin Is particularly preferred.
[0018]
That is, the present invention is an organic solvent (S) having a boiling point of less than 100 ° C. that can swell the self-water dispersible thermoplastic resin (P) without dissolving the self-water dispersible thermoplastic resin (P). Cylindrical stirring having a first step for producing a swollen body by swelling, a cylindrical stirring blade having a hole on a side surface, and a gap between the cylindrical stirring blade and the inner wall of the stirring tank being 2 to 5 mm A thin film is formed along the inner wall of the stirring tank by rotating the cylindrical stirring blade while feeding the swelling body and the aqueous medium to the cylindrical stirring tank of the continuous emulsification disperser equipped with a tank. A second step of producing the initial aqueous dispersion by dispersing the swollen body in the form of fine particles in an aqueous medium by swirling in the form of an aqueous solution, and removing the organic solvent (S) from the initial aqueous dispersion Self-water dispersible thermoplastic resin (P) I and a third step of producing a dispersion in which fine particles are dispersed in the aqueous medium Heat Production method of aqueous dispersion of plastic resin fine particles Wherein the self-water dispersible thermoplastic resin (P) is a carboxyl group-containing polyester resin and can be dispersed in an aqueous medium by neutralization, and the organic solvent (S) is water. The aqueous medium is water containing a basic compound. The present invention provides a method for producing an aqueous dispersion of fine thermoplastic resin particles.
[0019]
Examples of the neutralized acid group-containing thermoplastic resin include, for example, a neutralized acid group-containing polyester resin, a neutralized acid group-containing polyurethane resin, and a neutralized acid group-containing (meth) acrylic. Resin, neutralized acid group-containing styrene resin, neutralized acid group-containing styrene- (meth) acrylic acid ester copolymer resin, neutralized acid group-containing rosin resin, neutralized acid Examples include group-containing petroleum resins. Among these, the neutralized acid is obtained because the resin fine particles obtained by the production method of the present invention are used as a binder for an electrophotographic toner, so that an electrophotographic toner having excellent fixability and high image quality can be obtained. A group-containing polyester resin (PE) and a neutralized acid group-containing styrene- (meth) acrylic ester copolymer resin are preferable, and a neutralized acid group-containing polyester resin (PE) is particularly preferable. In addition, as an acid value at the time of removing neutralization of the neutralized acid group containing polyester-type resin (PE), 1-100 are preferable and 5-40 are more preferable.
[0020]
Examples of the neutralized acid group-containing polyester resin (PE) include, for example, a polyester resin (PE1) obtained using a compound having a neutralized acid group as an essential component, and an acid group such as a carboxyl group. And a polyester resin (PE2) obtained by neutralizing acid groups after preparing a polyester resin that becomes a self-water dispersible thermoplastic resin (P) by neutralization. Specific examples thereof include neutralized carboxyl group-containing polyester resins, neutralized sulfone group-containing polyester resins, and neutralized phosphoric acid group-containing polyester resins. The polyester resin (PE1) is preferably a neutralized sulfone group-containing polyester resin, and the polyester resin (PE2) is preferably a neutralized carboxyl group-containing polyester resin.
[0021]
The neutralized acid group-containing polyester resin (PE1), for example, requires a dibasic acid or an anhydride thereof, a divalent alcohol, and a dibasic acid having a neutralized acid group as essential components. Accordingly, tribasic or higher polybasic acid, its anhydride, monobasic acid, trifunctional or higher alcohol, monohydric alcohol, etc. are used in combination, and the acid value is measured under heating in a nitrogen atmosphere. It can be prepared by a method of dehydration condensation at a reaction temperature of ° C.
[0022]
Examples of the acid group-containing thermoplastic resin include acid group-containing polyester resins, acid group-containing polyurethane resins, acid group-containing (meth) acrylic resins, acid group-containing styrene resins, and acid group-containing styrene. -(Meth) acrylic ester copolymer resins, acid group-containing rosin resins, acid group-containing petroleum resins, and the like. Among these, the acid group-containing polyester system is excellent in fixability when the resin fine particles obtained by the production method of the present invention are used as a binder for an electrophotographic toner, and an electrophotographic toner having high image quality can be obtained. A resin (pe) and an acid group-containing styrene- (meth) acrylic ester copolymer resin are preferable, and an acid group-containing polyester resin (pe) is particularly preferable. In addition, as an acid value of acid group containing polyester-type resin (pe), 1-100 are preferable and 5-40 are more preferable.
[0023]
As the acid group-containing polyester resin (pe), for example, a polyester resin (pe1) obtained by using a compound having an acid group such as a carboxyl group as an essential component is preferable. Specific examples of the polyester resin (pe1) include a carboxyl group-containing polyester resin, a sulfonic acid group-containing polyester resin, and a phosphoric acid group-containing polyester resin, and among them, a carboxyl group-containing polyester resin is preferable. .
[0024]
The carboxyl group-containing polyester resin is, for example, a dibasic acid or an anhydride thereof and a dihydric alcohol as essential, a tribasic or more polybasic acid, an anhydride, a monobasic acid, a trifunctional as necessary. Use the above alcohol, monohydric alcohol, etc. in a composition ratio in which carboxyl groups remain, and prepare by a method such as dehydration condensation at a reaction temperature of 180 to 260 ° C. while measuring the acid value under heating in a nitrogen atmosphere. Can do.
[0025]
As an apparatus used for the preparation of these polyester resins (PE) and (pe), a batch-type production apparatus such as a reaction vessel equipped with a nitrogen inlet, a thermometer, a stirrer, a rectifying tower, etc. is suitable. In addition, an extruder equipped with a deaeration port, a continuous reaction apparatus, a kneader, or the like can also be used. In the dehydration condensation, the esterification reaction can be promoted by reducing the pressure of the reaction system as necessary. Furthermore, various catalysts can also be added to accelerate the esterification reaction.
[0026]
Examples of the catalyst include antimony oxide, barium oxide, zinc acetate, manganese acetate, cobalt acetate, zinc oxalate, zinc borate, cadmium formate, lead monoxide, calcium silicate, dibutyltin oxide, butylhydroxytin oxide, tetra Examples include isopropyl titanate, tetrabutyl titanate, magnesium methoxide, sodium methoxide and the like.
[0027]
Examples of the dibasic acid having a neutralized acid group include sulfoterephthalic acid, 3-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and sulfo-p. -Metal salts such as sodium salts such as xylylene glycol and 2-sulfo-1,4-bis (hydroxyethoxy) benzene, potassium salts, calcium salts, barium salts, and zinc salts.
[0028]
Examples of the dibasic acid and its anhydride include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, succinic acid, malonic acid, succinic acid, succinic anhydride, dodecyl succinic anhydride, and dodecyl anhydride. Aliphatic dibasic acids such as succinic acid, dodecenyl succinic acid, dodecenyl succinic anhydride, adipic acid, azelaic acid, sebacic acid, decane-1,10-dicarboxylic acid; phthalic acid, tetrahydrophthalic acid and its anhydride, hexahydrophthal Acid and its anhydride, tetrabromophthalic acid and its anhydride, tetrachlorophthalic acid and its anhydride, het acid and its anhydride, hymic acid and its anhydride, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, 2, Aromatic or alicyclic dibasic acids such as 6-naphthalenedicarboxylic acid It is below.
[0029]
Examples of the divalent alcohol include ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol. Of diols such as bisphenol A and bisphenol F; aliphatic diols such as diol, dipropylene glycol, triethylene glycol and neopentyl glycol; Bisphenol A alkylene oxide adducts such as ethylene oxide adducts and propylene oxide adducts of bisphenol A; Aralkylene glycols such as xylylene diglycol; 1,4-cyclohexanedimethanol, water And alicyclic diols such as bisphenol A.
[0030]
Examples of the tribasic or higher polybasic acid and its anhydride include trimellitic acid, trimellitic anhydride, methylcyclohexentrycarboxylic acid, methylcyclohexentricarboxylic acid anhydride, pyromellitic acid, pyromellitic anhydride, and the like.
[0031]
Examples of the monobasic acid include benzoic acid and p-tert-butylbenzoic acid.
[0032]
Examples of the tri- or higher functional alcohol include glycerin, trimethylolethane, trimethylolpropane, sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, diethylene Examples include pentaerythritol, 2-methylpropanetriol, 1,3,5-trihydroxybenzene, tris (2-hydroxyethyl) isocyanurate and the like.
[0033]
Examples of the monovalent alcohol include higher alcohols such as stearyl alcohol.
[0034]
The above-mentioned dibasic acid, its anhydride, trifunctional or higher basic acid, its anhydride, monobasic acid, etc. may be used alone or in combination of two or more. Further, those in which a part or all of the carboxyl groups are alkyl esters, alkenyl esters or aryl esters can also be used.
[0035]
The aforementioned dihydric alcohol, trifunctional or higher functional alcohol, monohydric alcohol and the like may be used alone or in combination of two or more.
[0036]
Further, for example, compounds having both a hydroxyl group and a carboxyl group in one molecule such as dimethylolpropionic acid, dimethylolbutanoic acid and 6-hydroxyhexanoic acid or reactive derivatives thereof can be used.
[0037]
Among the carboxyl group-containing polyester resins, the upper limit temperature in the non-offset region is high, and the low-temperature fixability is improved, so that an electrophotographic toner is obtained. Therefore, the gel content is 0.3% by weight or less, GPC ( The weight average molecular weight (Mw) measured by gel permeation chromatography) is 3,000 to 20,000, the number average molecular weight (Mn) is 1,000 to 5,000, and the ratio (Mw / Mn) thereof is 2 to 2. 10. Weight of the polyester resin (I) having a 1/2 drop temperature (T1 / 2) of 80 to 140 ° C. and an acid value of 1 to 100 in a flow tester, a gel content of 2% by weight or less, measured by GPC method The average molecular weight (Mw) is 200,000 to 2,000,000, the number average molecular weight (Mn) is 5,000 to 20,000, the ratio (Mw / Mn) thereof is 10 to 400, 1 / in the flow tester 2 It is preferable to use a polyester resin under the temperature (T1 / 2) is the 150 to 250 ° C. and an acid number formed by combining an 1 to 100 of a polyester resin (II).
[0038]
The polyester resin (I) has a weight average molecular weight (Mw) of 4,000 to 10,000, a number average molecular weight (Mn) of 2,000 to 4,000, and a ratio (Mw / Mn) thereof. More preferably, the polyester resin is 2 to 5 and has a 1/2 drop temperature (T1 / 2) in a flow tester of 80 to 120 ° C.
[0039]
The polyester resin (II) has a gel content of 0.2 to 0.7% by weight, a weight average molecular weight (Mw) of 200,000 to 1,000,000, and a number average molecular weight (Mn). More preferably, it is a polyester resin having a Mw / Mn of 5,000 to 10,000, a Mw / Mn of 20 to 200, and a 1/2 drop temperature (T1 / 2) in a flow tester of 160 to 230 ° C.
[0040]
Furthermore, among the polyester resins (II), an electrophotographic toner having a wide fixing temperature range can be obtained. Therefore, a polyester resin obtained by reacting a divalent basic acid, a divalent alcohol and a bifunctional epoxy compound is provided. Among these, a polyester resin obtained by using a raw material component having a bifunctional epoxy compound content of 0.5 to 2.5% by weight is more preferable.
[0041]
Examples of the bifunctional epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, ethylene glycol diglycidyl ether, hydroquinone diglycidyl ether, neopentyl glycol diglycidyl ether, and the like. Resin, bisphenol F type epoxy resin is preferred. These may be used alone or in combination.
[0042]
The polyester resin (II) contains 1 to 10% by weight of a monoepoxy compound having an alkyl group having 4 to 28 carbon atoms in addition to a divalent basic acid, a divalent alcohol, and a bifunctional epoxy compound. A polyester resin obtained using raw material components is particularly preferred. As the monoepoxy compound having an alkyl group having 4 to 28 carbon atoms, glycidyl ester of carboxylic acid is preferable, and neodecanoic acid glycidyl ester is particularly preferable.
[0043]
In the present invention, the gel content is a weight ratio of the insoluble content when each of the polyester resin (I) and the polyester resin (II) is dissolved in tetrahydrofuran at 25 ° C. for 24 hours. For measurement, 250 ml of tetrahydrofuran is placed in a 300 ml glass container, and 1.5 g of the finely crushed polyester resin is placed in a 500 mesh wire mesh bag (3 × 5 cm) and dissolved at room temperature for 24 hours. Find the percentage.
[0044]
The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyester resin in the present invention are values measured by the GPC method under the conditions shown below for components dissolved in tetrahydrofuran.
Figure 0004277254
[0045]
The 1/2 drop temperature (T1 / 2) in the flow tester in the present invention is a Koka type flow tester CFT-500 (manufactured by Shimadzu Corporation), and the load is 10 kg / cm. 2 , Nozzle diameter 1mm, Nozzle length 1mm, Preheating 70 ° C for 5 minutes, Heating rate 6 ° C / min, Sample amount measured and recorded as 1.5g, Flow tester plunger drop-temperature curve When the height of the S-shaped curve in (softening flow curve) is h, it means the temperature corresponding to the height of h / 2.
[0046]
The weight ratio [(I) / (II)] of the polyester resin (I) to the polyester resin (II) is an electron having excellent fixability, offset resistance (property that toner is not fused to the fixing roll), and storage stability. The range of 30/70 to 70/30 is preferable because a photographic toner can be obtained.
[0047]
Further, the carboxyl group-containing polyester resin is a polyester resin containing an alkyl group and / or an alkenyl group because the fine particles of the self-water dispersible thermoplastic resin (P) can exist more stably in an aqueous medium. It is more preferable. Among them, a terminal structure formed by ring-opening addition of an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms is added to the terminal hydroxyl group of a polyester resin having a hydroxyl group at the terminal. Produced by ring-opening addition of an aliphatic monoepoxy compound having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms at the terminal carboxyl group of the polyester resin having a carboxyl group at the terminal A polyester resin having a terminal structure is particularly preferred.
[0048]
Examples of the acid anhydride having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms include n-octyl succinic anhydride, isooctyl succinic anhydride, n-dodecenyl succinic anhydride, isododecenyl. Examples thereof include succinic anhydride, and among them, isododecyl succinic anhydride and dodecenyl succinic anhydride are preferable.
[0049]
Examples of the aliphatic monoepoxy compound having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms include Cardura-E10 which is a glycidyl ester of a branched fatty acid manufactured by Shell Chemical Co .; Examples thereof include monoglycidyl esters of fatty acids such as oil fatty acids, coconut oil fatty acids, soybean oil fatty acids, and tung oil fatty acids; monoglycidyl esters of branched fatty acids such as isononanoic acid.
[0050]
The organic solvent (S) used in the present invention refers to a boiling point that does not dissolve the self-water dispersible thermoplastic resin (P) but can be swollen [a boiling point at normal pressure (101.3 KPa). The same applies below. Any organic solvent lower than 100 ° C. may be used. When an organic solvent that dissolves the self-water-dispersible thermoplastic resin (P) and / or an organic solvent having a boiling point of 100 ° C. or higher is used, it becomes difficult to remove the organic solvent in the third step. When an organic solvent that cannot swell the water-soluble thermoplastic resin (P) is used, it is difficult to disperse the self-water dispersible thermoplastic resin (P) in the aqueous medium in the second step. Is also not preferred.
[0051]
The organic solvent (S) that does not dissolve the self-water dispersible thermoplastic resin (P) used in the present invention is 25 when the organic solvent and the self-water dispersible thermoplastic resin (P) are used in combination. Means an organic solvent in which the solubility of the self-water dispersible thermoplastic resin (P) in the organic solvent at 15 ° C. is 15% by weight or less, and the solubility of the self-water dispersible thermoplastic resin (P) in the organic solvent Does not mean 0% by weight of organic solvent.
[0052]
In the present invention, whether or not the organic solvent corresponds to the organic solvent (S) that does not dissolve the self-water dispersible thermoplastic resin (P) is determined by, for example, the 7.2 result of ASTM D3132-84 (Reapproved 1996). It can be performed using the determination method described in 7.2.1.1 to 7.2.1.3.
[0053]
Specifically, the determination as to whether or not the organic solvent (S) is applicable is made by sealing 15 parts by weight of a particulate self-water-dispersible thermoplastic resin (P) and 85 parts by weight of an organic solvent with a flask at 25 ° C. The dissolution state after shaking for 16 hours was observed, and in the following judgment categories described in 7.2.1.1 to 7.2.1.3 of the ASTM D3132-84, 1. 1. “Complete solution” or 2. “Boundary solution”; This can be done by determining which category is “insoluble”.
1. "Complete solution"; a single transparent phase free of distinct solids or gel particles.
2. "Borderline solution"; a clear or turbid phase without a clear phase separation.
3. “Insoluble”; separated into two phases: a liquid containing a separated gel solid phase or a liquid separated into two phases.
In the present invention, as the particulate self-water dispersible thermoplastic resin (P), a coarsely pulverized product of the self-water dispersible thermoplastic resin (P) that has been passed through a screen having a pore diameter of 3 mm was used for the determination.
[0054]
The production method of the present invention comprises the steps of determining whether the self-water dispersible thermoplastic resin (P) and the organic solvent (S) correspond to the organic solvent (S). 2. “Boundary solution” or This method is used in a combination of “insoluble”. By using this combination of the self-water dispersible thermoplastic resin (P) and the organic solvent (S), the solvent removal can be easily performed in the third step.
[0055]
As the organic solvent (S) used in the present invention, since the solvent removal in the third step can be more easily performed, the solubility of the self-water dispersible thermoplastic resin (P) in the organic solvent at 25 ° C. The organic solvent is preferably 10% by weight or less, and more preferably 7% by weight or less. The determination of the solubility at this time is performed by determining whether the organic solvent corresponds to the organic solvent (S) at the resin concentration of 15% by weight, instead of determining whether the resin concentration is 10% by weight or 7% by weight. It is possible by doing.
[0056]
Further, as the organic solvent (S), resin particles that are easy to remove from the particulate swelling body dispersed in the aqueous medium and have very little residual solvent can be easily and efficiently produced economically. An organic solvent (S1) that is compatible with the organic solvent is preferred. However, as this organic solvent (S1), it is not necessary that water and the organic solvent form a uniform phase at all mixing ratios, and the self-water dispersible thermoplastic resin (P) is swollen with the organic solvent (S). It is sufficient that the resulting swollen body is compatible with each other at the temperature at which the aqueous medium is dispersed and the composition range of water and the organic solvent. The organic solvent (S1) may be either a single solvent or a mixed solvent as long as this condition can be satisfied, but is compatible with water at the temperature at which the organic solvent (S1) is removed in the third step. Those that are compatible with water at 25 ° C. are more preferable. Especially, as an organic solvent (S1), it is preferable that the solubility to water at 25 degreeC is 50 weight% or more, and it is especially preferable that it is compatible with water in all the ratios at 25 degreeC. Furthermore, when the organic solvent (S1) is a mixed solvent, it is preferable that the boiling point of the organic solvent to be used is less than 100 ° C. The boiling point of the organic solvent (S1) is more preferably 40 to 90 ° C. More preferably, it is 40-85 degreeC, Most preferably, it is 40-60 degreeC.
[0057]
Examples of the organic solvent (S1) include ketones such as acetone (solubility: compatible with water in all proportions; boiling point: 56.1 ° C.); methanol (solubility: compatible with water in all proportions). , Boiling point: 64.7 ° C.), ethanol (solubility: compatible with water in all proportions, boiling point: 78.3 ° C.), isopropyl alcohol (dissolution: compatible with water in all proportions), boiling point: 82 Alcohols such as .26 ° C.) and esters such as methyl acetate (solubility: 24% by weight, boiling point: 56.9 ° C.). These organic solvents (S1) may be used alone, or a mixed solvent in which two or more kinds are mixed may be used. Preferred as the organic solvent (S1) are ketones and alcohols, more preferred are acetone and isopropyl alcohol, and most preferred is acetone.
[0058]
The amount of the organic solvent (S) used depends on the particle size of the resin fine particles in the desired aqueous dispersion of thermoplastic resin fine particles, but the self-water dispersible thermoplastic resin (P) is organic in the first step. The solvent (S) can be sufficiently absorbed and swelled to form a paste-like swellable material that can be easily dispersed in the form of fine particles. In the second step, the swellable material can be easily dispersed in an aqueous medium. The amount of the aqueous medium used to complete the dispersion can be suppressed, and the content of the organic solvent in the thermoplastic resin particle aqueous dispersion is not increased and the production efficiency is improved. 5 to 300 parts by weight is preferable with respect to 100 parts by weight of the thermoplastic resin (P), more preferably 10 to 200 parts by weight, and most preferably 20 to 150 parts by weight.
[0059]
Moreover, 70-400 weight part is preferable with respect to a total of 100 weight part of self-water-dispersible thermoplastic resin (P) and organic solvent (S), and, as for the usage-amount of water, 100-250 weight part is more preferable.
[0060]
As the aqueous medium used in the present invention, for example, as a self-water dispersible thermoplastic resin (P), a thermoplastic resin that can be dispersed in an aqueous medium without using an emulsifier, a suspension stabilizer or the like is used. Is preferably water, and the self-water dispersible thermoplastic resin (P) is a thermoplastic resin that can be dispersed in an aqueous medium by neutralization without using an emulsifier, suspension stabilizer, etc. Is preferably water containing a neutralizing agent. These aqueous media can further contain an emulsifier, a suspension stabilizer and the like as required, but it is usually preferable not to contain them.
[0061]
In the production method of the present invention, when a thermoplastic resin that can be dispersed in an aqueous medium by neutralization is used as the self-water-dispersible thermoplastic resin (P), the thermoplastic resin has self-water dispersibility. In order to impart, neutralization with a neutralizing agent is performed in any step up to the second step of dispersing the swollen body obtained by swelling the thermoplastic resin with an organic solvent (S) in an aqueous medium. However, it is preferable to neutralize using an aqueous medium containing a neutralizing agent in the second step of dispersing the swelling body in the aqueous medium.
[0062]
Examples of the neutralizing agent used for neutralizing acid groups when the thermoplastic resin that can be dispersed in an aqueous medium by neutralization is an acid group-containing thermoplastic resin include sodium hydroxide and potassium hydroxide. Alkaline compounds such as lithium hydroxide; carbonates of alkali metals such as sodium, potassium and lithium; acetates of the alkali metals; ammonia water; alkylamines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine and triethylamine Alkanolamines such as diethanolamine and the like. Of these, aqueous ammonia is preferable.
[0063]
In addition, when the thermoplastic resin that can be dispersed in an aqueous medium by neutralization is a basic group-containing thermoplastic resin, examples of the neutralizing agent used for neutralizing the basic group include formic acid and acetic acid. And organic acids such as propionic acid; inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.
[0064]
The amount of the neutralizing agent used is 0.9 to 5.0 with respect to the equivalent of the acid group in the acid group-containing thermoplastic resin or the equivalent of the basic group in the basic group-containing thermoplastic resin, respectively. The amount is preferably equivalent to a double equivalent, and more preferably 1.0 to 3.0 equivalent.
[0065]
The method for producing the swollen body in the first step of the production method of the present invention is not particularly limited, but the swollen body can be obtained in a short time, and then the swollen body into the aqueous medium in the second step is obtained. Since dispersion is also facilitated, it is preferable to produce the swollen body by heating with the organic solvent (S) using a particulate self-water dispersible thermoplastic resin (P), and further under pressure It is more preferable to produce a swollen body. At this time, the heating temperature of the self-water dispersible thermoplastic resin (P) and the organic solvent (S) is preferably not less than the boiling point of the organic solvent (S), and the boiling point of the organic solvent (S) to 180 ° C. Is more preferable, and the boiling point of the organic solvent (S) + 10 ° C. to 120 ° C. is particularly preferable. Further, the pressurizing pressure in the system is preferably 0.1 to 2.0 MPa in gauge pressure, more preferably 0.2 to 1.5 MPa in gauge pressure, and still more preferably 0.3 to 1 in gauge pressure. 0.0 MPa. As a method of pressurizing the system, for example, a method of pressurizing the system by evaporating the organic solvent (S) by heating to obtain the swollen body, or a preliminary application by introducing an inert gas into the system in advance. Examples include a method of heating and further pressurizing by vaporizing the organic solvent (S), etc., and refluxing and boiling of the organic solvent (S) can be suppressed, and an aqueous dispersion of thermoplastic resin fine particles having a narrow particle size distribution The method of prepressurizing is preferable because a body can be obtained. The pre-pressurization is preferably 0.05 to 0.5 MPa.
[0066]
After producing the swollen body in the first step, a cylindrical type having a cylindrical stirring blade having a hole on the side surface in the second step, and a gap between the cylindrical stirring blade and the inner wall of the stirring tank is 2 to 5 mm The cylindrical stirring blade is rotated while feeding the swelling body and the aqueous medium to the cylindrical stirring tank of the continuous emulsification disperser provided with the stirring tank, and the swelling body and the aqueous medium are moved along the inner wall of the stirring tank. By swirling in the form of a thin film, the swelling body is dispersed in the form of fine particles in an aqueous medium to produce an initial aqueous dispersion. As a continuous emulsifying and dispersing machine, a continuous emulsifying dispersion having a cylindrical stirring blade having a hole on the side surface and a clearance between the cylindrical stirring blade and the inner wall of the stirring tank is 2 to 5 mm. By using a machine, an initial aqueous dispersion containing resin fine particles having a narrow particle size distribution can be obtained. As a continuous type emulsification disperser having a cylindrical stirring blade having a hole on such a side surface and a cylindrical stirring tank in which a gap between the cylindrical stirring blade and the inner wall of the stirring tank is 2 to 5 mm. For example, T.K. provided with a cylindrical stirring vessel having the cylindrical stirring blade and having a gap of 2 to 5 mm between the cylindrical stirring blade and the inner wall of the stirring vessel. K. Philmix (Special Machine Industries Co., Ltd.) can be mentioned.
[0067]
Hereinafter, the initial aqueous solution using a continuous emulsification disperser having the cylindrical stirring blade according to the drawings and provided with a cylindrical stirring tank in which the gap between the cylindrical stirring blade and the inner wall of the stirring tank is 2 to 5 mm. The manufacturing process of a dispersion is demonstrated.
[0068]
FIG. 1 shows the cylindrical stirring blade and the cylindrical stirring tank. As shown in FIG. 1, a rotating shaft 2 is installed concentrically with the cylindrical stirring tank 1. A cylindrical stirring blade 3 having a hole on the side surface is fixed to the lower portion of the rotating shaft 2.
[0069]
A plurality of supply pipes (not shown) are connected to the bottom of the cylindrical stirring tank 1 and are used for supplying an aqueous medium and a swollen body, respectively. An unillustrated plate (hereinafter referred to as a weir plate) that blocks the flow of the liquid in the agitation tank is installed in the upper part of the cylindrical stirring vessel 1, and there is a gap between the weir plate and the rotating shaft. . The rotating shaft 2 is fixed to a motor (not shown) provided at the upper portion and is driven at a high speed.
[0070]
The inner diameter of the cylindrical stirring tank 1 is, for example, 80 mm, and the outer diameter of the cylindrical stirring blade 3 is set to 75 to 78 mm that is slightly smaller than the inner diameter of the cylindrical stirring tank 1. Therefore, the gap between the two parts is 2 to 5 mm. The height of the cylindrical stirring blade 3 is, for example, 55 mm, the thickness is 3 mm, and the hole diameter is 3 mm. In addition, these numerical values are numerical values showing an example, and can be changed as appropriate.
[0071]
The swelling body and the aqueous medium fed from the supply pipe to the cylindrical stirring tank 1 are rotated by being urged in the circumferential direction by the high-speed rotation of the cylindrical stirring blade 3, and the centrifugal force generated by the rotation causes the cylinder to rotate. Since it rotates while closely adhering to the inner wall of the mold stirring tank 1 in the form of a thin film, the mixture of the swelling body and the aqueous medium is subjected to a stirring action due to the difference in speed between the thin film surface and the inner wall of the stirring tank 1, The swelling body is dispersed in the form of fine particles in the aqueous medium. The mixed liquid held in the thin film cylindrical shape is lifted by the swollen body fed from the supply pipe and the aqueous medium while being maintained in the thin film cylindrical state, and rises in the upper direction of the cylindrical stirring tank 1, and the swollen body and the A part of the mixture with the aqueous medium flows out from the gap between the rotating shaft 2 and the weir plate, but most of the mixed liquid is directed toward the lower part of the cylindrical stirring vessel 1 by the weir plate on the upper portion of the cylindrical stirring vessel 1. As a result, the liquid mixture flows into the inside of the cylindrical stirring blade 3. The mixture that has flowed into the cylindrical stirring blade 3 flows into a hole provided in the side surface of the cylindrical stirring blade 3 and receives a strong rotational force by the inner surface of the hole. The pressure is increased by flowing into the gap from the inside, and the stirring action is promoted by disturbing the flow of the mixture in the gap between the inner wall of the cylindrical stirring tank 1 and the cylindrical stirring blade 3.
[0072]
Thus, the initial aqueous dispersion obtained by dispersing the swelling body in the aqueous medium in the form of fine particles overflows from the gap between the weir plate and the rotating shaft 2, and the cylindrical stirring tank from the outflow outlet in the figure. 1 is discharged outside.
[0073]
When the rotational speed of the cylindrical stirring blade 3 is increased, the mixture is strongly pressed against the inner wall of the container by centrifugal force, and the cylindrical stirring blade 3 has the fastest peripheral speed at the tip, so that the mixture gives a large shearing force. As a result, the particle size of the particles tends to be small.
[0074]
The peripheral speed at the tip of the cylindrical stirring blade is preferably 3 to 55 m / Sec because a strong centrifugal force can be applied, and more preferably 5 to 30 m / Sec.
[0075]
The rotation time of the cylindrical stirring blade (the residence time from when the liquid flows into the cylindrical stirring tank until it flows out) is 10 to 500 when the peripheral speed at the tip of the cylindrical stirring blade is 3 to 55 m / Sec. Second is preferable, and 30 to 300 seconds is more preferable.
[0076]
The ratio (swelled body: aqueous medium) when the swollen body and the aqueous medium are fed into the cylindrical stirring tank is preferably in the range of 1: 0.5 to 1: 4 by weight ratio, and 1: 1 to 1: 2. .5 is more preferred.
[0077]
When the swelled body is dispersed in the aqueous medium in the form of fine particles, the swelled body is easily dispersed in the aqueous medium. Therefore, in the first step, the pressure exceeds the boiling point of the organic solvent (S) under pressure. A cylindrical stirring blade having a hole on a side surface at a temperature not lower than the boiling point of the organic solvent (S) and not higher than 120 ° C. under pressure in the second step, using the swollen body obtained by heating to a temperature And having a gap between the cylindrical stirring blade and the inner wall of the stirring tank of 2 to 5 mm, dispersed in the aqueous medium in the form of fine particles by a continuous emulsification disperser. A dispersion is preferred. The temperature of the system at this time is preferably from the boiling point of the organic solvent (S) to 180 ° C, particularly preferably the boiling point of the organic solvent (S) + 10 ° C to 120 ° C. The pressure of this system is preferably 0.1 to 2.0 MPa in gauge pressure, more preferably 0.2 to 1.5 MPa in gauge pressure, and still more preferably 0.3 to 1.0 MPa in gauge pressure. is there. The temperature of the aqueous medium is preferably not less than the boiling point of the organic solvent (S) and not more than 120 ° C., in particular, not less than the boiling point of the organic solvent (S) and less than 100 ° C., and at the start of the second step. More preferably, the temperature of the system is within a range of -20 ° C to the temperature of the system at the start of the second step.
[0078]
Furthermore, the temperature at which the swollen body is produced in the first step and the temperature at which the initial aqueous dispersion is produced in the second step are both melting points of the self-water dispersible thermoplastic resin (P). It is preferable that the temperature is lower than the softening point, and may be a temperature not higher than the glass transition temperature (Tg) of the self-water dispersible thermoplastic resin (P), and above all, not lower than the boiling point of the organic solvent (S). And it is preferable that it is 10-50 degreeC higher than a glass transition temperature (Tg). In addition, the temperature at the time of manufacturing a swelling body at a 1st process and the temperature at the time of manufacturing an initial stage aqueous dispersion at a 2nd process may be the same or different.
[0079]
As a method for producing the aqueous dispersion of thermoplastic resin fine particles of the present invention, for example, the following methods (1) to (2) can be mentioned as typical production methods.
(1) As a first step, a self-water-dispersible thermoplastic resin (P) and an organic solvent (S) are charged into a closed container, and the self-water-dispersible thermoplastic is heated, preferably heated and pressurized, and stirred. After the swelling body is produced by swelling the resin (P) with an organic solvent (S), the obtained swelling body and an aqueous medium that may contain a neutralizing agent are provided with a cylindrical stirring having holes on the side surface. While continuously supplying to a continuous emulsifying disperser having a blade and having a cylindrical stirring tank with a gap of 2 to 5 mm between the cylindrical stirring blade and the inner wall of the stirring tank, The swelling body is dispersed in the form of fine particles in the aqueous medium to form an initial aqueous dispersion, and then, as the third step, the organic solvent (S) is removed from the obtained initial aqueous dispersion to form the self-water dispersion. Of fine particles of water-soluble thermoplastic resin (P) dispersed in an aqueous medium A method of manufacturing the body.
[0080]
(2) As a first step, press-fitting etc. into the self-water dispersible thermoplastic resin (P) melted by melt kneading with an extruder or the like or the synthesized self-water dispersible thermoplastic resin (P) The organic solvent (S) is continuously supplied by the method, and the self-water dispersible thermoplastic resin (P) is swollen with the organic solvent (S) while mixing to produce a swollen body. After the temperature is lowered to a temperature lower than the melting point or softening point of the self-water dispersible thermoplastic resin (P), as a second step, the obtained swollen body and an aqueous medium that may contain a neutralizing agent are used. Continuously supplied to a continuous emulsification disperser having a cylindrical stirring blade having a hole on the side surface and a cylindrical stirring tank having a gap of 2 to 5 mm between the cylindrical stirring blade and the inner wall of the stirring tank The swelling body is dispersed finely in the aqueous medium by mechanical shearing force. Then, in the third step, by removing the organic solvent (S) from the obtained initial aqueous dispersion, fine particles of the self-water dispersible thermoplastic resin (P) are contained in the aqueous medium. A method for producing a dispersion dispersed in a glass.
[0081]
Among these methods, the method (1) is preferable because an aqueous dispersion of fine thermoplastic resin particles can be easily obtained. The shape of the self-water-dispersible thermoplastic resin (P) used in the method (1) is preferably particulate because it can be made into a swollen body in a relatively short time. Examples include pellets of ˜7 mm, coarsely pulverized products that have been passed through a screen having a pore diameter of 2 to 7 mm, and powders having an average particle size of 800 μm or less.
[0082]
Hereinafter, more specific production examples of the method for producing the aqueous dispersion of thermoplastic resin fine particles by the method (1) will be given.
First, using a 2L glass autoclave with propeller blades, the autoclave was charged with the particulate matter obtained by pulverizing the self-water dispersible thermoplastic resin (P) and the organic solvent (S), and the inert gas was removed. By introducing and prepressurizing the inside of the autoclave at 0.05 to 0.5 MPa, and then evaporating part of the organic solvent (S) by raising the temperature to the boiling point of the organic solvent (S) with stirring at 10 to 300 rpm. After pressurizing the inside of the autoclave to 0.1 to 2.0 MPa (gauge pressure), the mixture is stirred at 50 to 700 rpm for 3 to 60 minutes to swell the self-water dispersible thermoplastic resin (P) with the organic solvent (S). To make a swollen body (first step).
[0083]
Examples of the inert gas used for the pre-pressurization include nitrogen gas, helium gas, neon gas, and argon gas, and nitrogen gas is preferable.
[0084]
The swollen body obtained in this step includes the self-water dispersible thermoplastic resin (P) that has absorbed the organic solvent (S) and the organic solvent remaining without being absorbed by the self-water dispersible thermoplastic resin (P). It is a mixture with (S), and what is observed as a translucent to cloudy paste (paste) mixture is preferable. For example, in a polyester resin and isopropyl alcohol system, when the stirring speed is reduced to about 50 rpm, it is observed that isopropyl alcohol separates from the resin phase to form two phases, but that may be used.
[0085]
After obtaining a swelling body in this manner, a cylindrical stirring vessel having a cylindrical stirring blade having a hole on the side surface and a gap between the cylindrical stirring blade and the inner wall of the stirring vessel being 2 to 5 mm is provided. The swollen body is continuously dispersed in the form of fine particles in an aqueous medium using a continuous emulsifying disperser to obtain an initial aqueous dispersion (second step).
[0086]
After obtaining the dispersion in which the swelling body is dispersed in the form of fine particles, the organic solvent (S) is removed from the obtained dispersion, whereby the fine particles of the self-water dispersible thermoplastic resin (P) are contained in the aqueous medium. A dispersion dispersed in (1) is obtained. Examples of the method for removing the organic solvent (S) include a method of spraying in a reduced pressure chamber, a method of forming a thin film on the inner surface of the solvent removal can wall, and a method of passing through a solvent removal can containing a solvent absorbing filler. Can be mentioned. As an example of a method for removing the organic solvent (S), a removal method using a rotary evaporator will be described below.
Sample volume: 500ml
Container; 2L eggplant flask
Rotation speed: 60rpm
Bath temperature: 47 ° C
Depressurization degree: The depressurization degree is increased from 13.3 KPa to 1.33 KPa over 20 minutes, and then the solvent is removed at 1.33 KPa for 10 minutes.
[0087]
In addition, when the resin fine particles in the aqueous dispersion of thermoplastic resin fine particles are used as a powder paint or hot melt adhesive, or when the generated particles are taken out as a powder such as toner, a dispersion in which resin fine particles are dispersed The organic solvent (S) is preferably removed from the dispersion immediately after the dispersion is produced. This is because if the dispersion is stored for a long time while containing the organic solvent (S), the resin fine particles in the dispersion tend to aggregate naturally.
[0088]
The method for producing an aqueous dispersion of thermoplastic resin fine particles of the present invention is preferable for producing an aqueous dispersion of thermoplastic resin fine particles containing thermoplastic resin fine particles having an average particle diameter of 0.01 to 15 μm.
[0089]
In the method for producing a thermoplastic resin fine particle aqueous dispersion of the present invention, the average particle diameter of the thermoplastic resin fine particles in the thermoplastic resin fine particle aqueous dispersion can be controlled by variously changing the production conditions. In order to control the average particle size to be small, for example, the following means may be taken.
(1) Increase the hydrophilic segment concentration such as the concentration of acid groups or neutralized acid groups in the self-water dispersible thermoplastic resin (P).
(2) When a thermoplastic resin that can be dispersed in an aqueous medium by neutralization is used as the self-water dispersible thermoplastic resin (P), the amount of the neutralizing agent is increased.
(3) Increase the amount of the organic solvent (S) used for the self-water dispersible thermoplastic resin (P).
(4) Increase the temperature during the production of the dispersion.
(5) Increase the stirring speed during the production of the dispersion.
[0090]
Conversely, in the method for producing an aqueous dispersion of thermoplastic resin fine particles of the present invention, these conditions may be reversed in order to increase the average particle size of the resin fine particles in the resulting dispersion. In addition to the self-water dispersible thermoplastic resin (P) and the organic solvent (S), other components such as a colorant (C) such as carbon black, an additive such as magnetic powder, wax, and a charge control agent are used. Also, the average particle size of the resin fine particles in the dispersion is usually increased.
[0091]
Resin fine particles in the aqueous dispersion of thermoplastic resin fine particles obtained by the production method of the present invention are dispersed by controlling conditions such as temperature, pH, and electrolyte concentration of the obtained dispersion. It is also possible to grow fine particles by associating fine particles.
[0092]
The organic solvent (S) used in the present invention also serves as an adhesive between the resin fine particles in the process of associating the resin fine particles in the dispersion described later. Usually, the solvent removal in the third step is performed after the association step is completed, but the solvent is once removed and stored before the association step, and the required amount of the same or similar organic solvent is reduced in the association step. Re-addition may be followed by association, followed by solvent removal.
[0093]
The production method of the present invention is preferable for producing a thermoplastic resin particle dispersion containing thermoplastic resin fine particles containing thermoplastic resin fine particles having a particle size distribution of 1.36 or less. It is more preferable to produce a thermoplastic resin particle dispersion containing 35 thermoplastic resin particles. Here, the particle size distribution is a Coulter Multisizer manufactured by Beckman Coulter. TM When accumulated from the small particle diameter side using 3 and the particle diameter (D10) where the cumulative weight is 10% and when accumulated from the small particle diameter side is 90% (D90) The particle diameter is measured and the ratio (D90 / D10) is referred to. The smaller the particle size distribution value, the narrower the particle size distribution.
[0094]
Next, the electrophotographic toner of the present invention will be described.
The toner for electrophotography of the present invention is obtained by separating the fine particles of the self-water dispersible thermoplastic resin (P) from the dispersion obtained by the method for producing the aqueous dispersion of thermoplastic resin fine particles of the present invention, and drying. An electrophotographic toner containing fine particles.
[0095]
Next, the electrophotographic toner of the present invention will be described.
The toner for electrophotography of the present invention is obtained by separating the fine particles of the self-water dispersible thermoplastic resin (P) from the dispersion obtained by the method for producing the aqueous dispersion of thermoplastic resin fine particles of the present invention, and drying. An electrophotographic toner containing fine particles, using the dispersion obtained by the method of the present invention as it is, separating the resin fine particles from this dispersion, and drying the resulting resin fine particles. Then, after obtaining a dispersion in which resin fine particles having a particle size smaller than the toner size are dispersed by the method of the present invention, if necessary, mixed with a dispersion in which resin fine particles having a particle size smaller than the toner size are dispersed, Resin obtained by appropriately controlling conditions such as temperature, pH, electrolyte concentration, etc. of the obtained dispersion to associate the resin fine particles in the dispersion into toner-sized fine particles, and separating and drying the particles Fine It includes electrophotographic toner obtained by using the child.
[0096]
Examples of the electrophotographic toner of the present invention include the following electrophotographic toners (1) to (4).
[0097]
(1) In the method for producing a thermoplastic resin fine particle aqueous dispersion of the present invention, the self-water-dispersible thermoplastic resin (P) is swelled in the first step of swelling the self-water-dispersible thermoplastic resin (P) with the organic solvent (S). ) Together with a colorant (C) to obtain a dispersion in which colored resin fine particles obtained are dispersed in an aqueous medium, and then the self-dispersible thermoplastic resin (P) fine particles are obtained from the obtained dispersion. An electrophotographic toner comprising fine particles obtained by separation and drying. In addition, an additive such as wax, magnetic powder, a charge control agent and the like can be used in combination with the colorant (C). In this case, the average particle diameter of the colored resin fine particles in the dispersion is preferably a toner size, for example, 1 to 10 μm.
[0098]
(2) After obtaining a dispersion in which colored resin fine particles are dispersed in an aqueous medium in the same manner as in the above (1), the surface potential of the resin fine particles is decreased and dispersed by a method such as addition of a reverse neutralizing agent. Using the fine particles obtained by assembling together the fine resin particles to obtain a dispersion of colored resin particles having a larger average particle diameter, then removing the organic solvent (S), separating the fine particles, and drying An electrophotographic toner. The removal of the organic solvent (S) may be performed after the association of the resin fine particles. In addition to the colorant (C), additives such as wax, magnetic powder, charge control agent and the like can be used in combination. In this case, the average particle size of the colored resin fine particles in the dispersion before the association is preferably 0.01 to 1 μm, and the average particle size of the colored resin fine particles after the association is preferably the toner size.
[0099]
(3) After obtaining a dispersion in which colored resin fine particles are dispersed in an aqueous medium in the same manner as in (1) above, the resin fine particles are associated with each other in the same manner as in (2) to have a larger average particle size. A dispersion of colored resin particles (core particles) is mixed with an aqueous dispersion of resin fine particles for a shell layer, which is separately produced, and dispersed into colored resin particles (core particles) in the same manner as in (2) above. Using the fine particles obtained by associating the fine resin particles for the shell layer into a dispersion of colored resin particles having a core / shell structure, then removing the organic solvent (S) and separating the fine particles, followed by drying. An electrophotographic toner. The removal of the organic solvent (S) may be performed after the association of the resin fine particles. In this case, the average particle diameter of the colored resin fine particles in the dispersion before the association is preferably 0.01 to 1 μm, and the average particle diameter of the colored resin fine particles after the association is preferably the toner size.
[0100]
The resin fine particles for the shell layer used in the above (3) are resin particles made of a self-water dispersible thermoplastic resin (P) having a Tg that is 1 to 40 ° C. higher than the glass transition temperature (Tg) of the resin particles for the core. When resin fine particles are prepared using a charge control agent described later, resin particles prepared using a large amount of the charge control agent are preferred.
[0101]
(4) After obtaining a swollen body by swelling the self-water dispersible thermoplastic resin (P) with an organic solvent (S), the swollen body is dispersed in the form of fine particles in an aqueous medium, and then a dispersion is obtained. After removing the organic solvent (S) from the obtained dispersion to obtain a dispersion in which fine particles of the self-water dispersible thermoplastic resin (P) are dispersed in an aqueous medium, Resin fine particles and colorant particles or colored resin mixed with an aqueous dispersion or an aqueous dispersion of colored resin fine particles produced separately and dispersed by reducing the surface potential of the resin fine particles by a method such as addition of a reverse neutralizer An electrophotographic toner comprising fine particles obtained by associating fine particles into a dispersion of colored resin particles having a larger average particle size, followed by separation and drying. In this case, an additive such as wax, magnetic powder, charge control agent and the like can be used together with the colorant (C), and an aqueous dispersion of resin fine particles containing the additive, magnetic powder, charge control agent and the like. Can also be used together. The removal of the organic solvent (S) may be performed after association of the resin fine particles with the colorant particles or the colored resin fine particles. The average particle size of the fine particles in each dispersion used here is preferably 0.01 to 1 μm, and the average particle size of the colored resin fine particles after the association is preferably the toner size.
[0102]
The aqueous dispersion of the separately produced colorant or the separately produced aqueous dispersion of the colored resin fine particles used in the above (4) is one in which the colorant or the colored resin fine particles are dispersed in the form of fine particles in an aqueous medium. Although not particularly limited, for example, an aqueous dispersion obtained by emulsifying a colorant using a surfactant or the like, an aqueous dispersion obtained by heating and melting a colorant (C) and a resin, and then dispersing in water containing the dispersant Dispersion, aqueous dispersion in which self-water dispersible resin in which colorant (C) is dispersed is dissolved in an organic solvent, and then phase inversion emulsified by adding water, self-water dispersible thermoplastic by the production method of the present invention Examples thereof include an aqueous dispersion obtained by using the colorant (C) together when the resin (P) is swollen with the organic solvent (S), and the aqueous dispersion obtained by the production method of the present invention is particularly preferable. . The concentration of the colorant (C) in these aqueous dispersions is preferably 5 to 10 times the colorant concentration of the target toner.
[0103]
Examples of the colorant (C) include carbon black, bengara, bitumen, titanium oxide, nigrosine dye (CI No. 50415B), aniline blue (CI No. 50405), calco oil blue (CI No. azoic Blue 3), chrome yellow ( CI No.14090), Ultramarine Blue (CINo.77103), DuPont Oil Red (CINo.26105), Quinoline Yellow (CINo.47005), Methylene Blue Chloride (CINo.52015), Phthalocyanine Blue (CINo.74160), Malachite Green Oxa Rate (CI No. 74160), malachite green oxalate (CI No. 42000), lamp black (CI No. 77266), rose bengal (CI No. 45435) and the like.
[0104]
It is preferable to use the colorant (C) so that the content thereof is in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the self-water dispersible thermoplastic resin (P). These colorants can be used alone or in combination of two or more.
[0105]
The process and phenomenon of “association” in the production method of the present invention will be described below.
In general, the resin fine particles in the aqueous dispersion of thermoplastic resin fine particles as obtained by the production method of the present invention are stably present in an aqueous medium without agglomeration due to electrostatic repulsion derived from the surface charge, At the same time, attractive force is acting between the resin particles by van der Waals force. Therefore, if the surface charge of the resin particles is appropriately reduced by some action, the attractive force becomes larger than the electrostatic repulsive force, and the resin fine particles start to aggregate to form a dispersion of resin particles grown to a larger particle diameter. This is called a meeting in the present invention. The temperature of this association is preferably from the glass transition temperature (Tg) to the glass transition temperature + 50 ° C. of the self-water dispersible thermoplastic resin (P), and the boiling point of the organic solvent (S) present in the system during the association process. Therefore, it is more preferable to heat under pressure of 0.1 to 1.0 MPa (gauge pressure). The time required for the meeting is usually 2 to 12 hours, preferably 4 to 10 hours. The association may be performed under gentle stirring, for example, stirring with an anchor blade at a rotational speed of about 10 to 100 rpm.
[0106]
Examples of the method for reducing or eliminating the resin particle surface charge include a method of adding an acid such as dilute hydrochloric acid, dilute sulfuric acid, acetic acid, formic acid or carbonic acid as a so-called reverse neutralizer. At this time, a metal salt such as sodium chloride, potassium chloride, aluminum sulfate, ferric sulfate, calcium chloride or a metal complex such as calcium, aluminum, magnesium, iron or the like, which is called a salting-out agent, may be added as necessary. . Further, a surfactant may be used as necessary for the purpose of dispersing the colorant or the like in the association step or controlling the progress of the association.
[0107]
Examples of the surfactant include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, and sodium alkyldiphenyldisulfonate, cationic surfactants such as trimethylstearyl ammonium chloride, and alkylphenoxypoly (ethyleneoxy). Nonionic surfactants such as ethanol can be used, and can be appropriately selected and used.
[0108]
The method for producing an electrophotographic toner of the present invention is particularly preferable for producing an electrophotographic toner having a particle diameter of 1 to 10 μm.
[0109]
The production method of the present invention can produce a water-dispersed resin or toner composed of spherical resin particles that do not contain a sharp pointed portion in the shape. Here, the term “spherical” refers to a broad concept including not only a true spherical shape but also an elliptical shape, an irregular spherical shape (potato shape), and the like.
[0110]
In the method for producing the aqueous dispersion of thermoplastic resin fine particles of the present invention and the electrophotographic toner of the present invention, additives such as magnetic powder and wax may be used as necessary. These are preferably kneaded with the self-water dispersible thermoplastic resin (P) in advance to obtain a kneaded product. These additives may be used alone or in combination of two or more.
[0111]
Examples of the magnetic powder include simple metals such as magnetite, ferrite, cobalt, iron, nickel, and alloys thereof.
[0112]
Wax can be used as an anti-offset agent for electrophotographic toners. Examples of the wax include synthetic waxes such as polypropylene wax, polyethylene wax, Fischer-Tropsch wax, stearyl bisamide, and oxidized wax, and natural waxes such as carnauba wax and rice wax.
[0113]
Further, when a charge control agent is used, a toner having good charging characteristics can be obtained. Examples of the charge control agent include positive charges such as nigrosine electron donating dyes, naphthenic acid, higher fatty acid metal salts, alkoxylated amines, quaternary ammonium salts, alkylamides, metal complexes, pigments, and fluorination activators. Control agents, electron-accepting organic complexes, chlorinated paraffins, chlorinated polyesters, negative charge control agents such as sulfonylamines of copper phthalocyanine, and the like.
[0114]
When using a charge control agent, these charge control agents are preferably dissolved in the organic solvent (S) in advance and then added to the self-water dispersible thermoplastic resin (P). When producing a toner comprising a core particle and a shell layer, if a charge control agent is used in producing the shell layer, a toner in which the charge control agent is disposed in the shell layer can be produced.
[0115]
In the present invention, the ratio of the non-volatile content in the aqueous dispersion of the thermoplastic resin fine particles is determined based on the weight of the aqueous dispersion by leaving the aqueous dispersion in a vacuum dryer at 100 ° C. and 0.1 KPa for 3 hours. Obtained from change.
[0116]
Further, the residual solvent in the thermoplastic resin fine particle aqueous dispersion was quantified by gas chromatography under the following conditions.
Measuring machine: Shimadzu GC-17A
Column; ULBON HR-20M (PPG)
Column temperature: 80-150 ° C
Temperature increase rate: 10 ° C / min
[0117]
【Example】
Hereinafter, the present invention will be specifically described with reference to synthesis examples, examples and comparative examples. Parts and% in the examples are based on weight unless otherwise specified.
[0118]
Synthesis Example 1 [Synthesis of carboxyl group-containing polyester resin (I)]
192 parts of ethylene glycol, 235 parts of propylene glycol, 498 parts of terephthalic acid, 498 parts of isophthalic acid and 1.0 part of tetrabutyl titanate are charged into a glass 2-liter four-necked flask equipped with a rectifying column and a condenser, under a nitrogen stream The temperature was gradually raised at 240 ° C. and reacted at 240 ° C. for 8 hours. Analyzing the condensed water distilled as the reaction proceeds, measuring the amount of ethylene glycol and propylene glycol entrained, proceeding the reaction while supplementing, polyester resin having a normal temperature solid acid value of 12 (mgKOH / g) ( I-1) was obtained. Glass transition temperature (Tg) by differential thermal measurement (DSC) method of polyester resin (I-1), softening point by ring and ball method, 1/2 drop temperature (T1 / 2) by flow tester, gel content, Mw, Mn , Mw / Mn and acid value are shown in Table 1.
[0119]
Synthesis example 2 (same as above)
A rectifying column and a condenser were 179 parts ethylene glycol, 301 parts neopentyl glycol, 918 parts terephthalic acid, 20 parts isophthalic acid, 28 parts trimellitic anhydride, 30 parts paratertiary butylbenzoic acid and 1.0 part tetrabutyl titanate. Was added to a glass 2-liter four-necked flask, gradually heated in a nitrogen stream, and reacted at 240 ° C. for 8 hours. The amount of ethylene glycol and neopentyl glycol entrained is analyzed by analyzing the condensed water distilled as the reaction progresses, and the reaction proceeds while supplementing. Polyester resin (I-2) that is solid at room temperature and has an acid value of 28 Got. Table 1 shows the Tg, softening point, T1 / 2, gel content, Mw, Mn, Mw / Mn and acid value of the polyester resin (I-2) by DSC method.
[0120]
Synthesis Example 3 [Synthesis of carboxyl group-containing polyester resin (II)]
In a glass four-necked flask, 224 parts of ethylene glycol, 250 parts of neopentyl glycol, 996 parts of terephthalic acid, 17 parts of Epicron 830 [manufactured by Dainippon Ink and Chemicals, bisphenol F type bifunctional epoxy resin], Cardura E10 ( 30 parts (manufactured by Shell Japan Co., Ltd., glycidyl ester of neodecanoic acid) and 1.0 part of dibutyltin oxide were added, and the temperature was gradually raised under a nitrogen stream, followed by reaction at 245 ° C. for 18 hours. The condensed water distilled as the reaction progressed was analyzed to measure the amount of ethylene glycol and neopentyl glycol entrained, and the reaction proceeded while supplementing. A polyester resin (II-1) having a solid at room temperature and an acid value of 9 was obtained. Table 1 shows the Tg, softening point, T1 / 2, gel content, Mw, Mn, Mw / Mn, and acid value of the polyester resin (II-1).
[0121]
Synthesis example 4 (same as above)
In a glass four-necked flask, 228 parts of propylene glycol, 312 parts of neopentyl glycol, 996 parts of terephthalic acid, 17 parts of Epicron 850 [manufactured by Dainippon Ink & Chemicals, Inc., bisphenol A type bifunctional epoxy resin], Cardura E10 50 And 1.0 part of dibutyltin oxide were added, the temperature was gradually raised under a nitrogen stream, and the mixture was reacted at 245 ° C. for 18 hours. The condensed water distilled as the reaction progressed was analyzed to measure the amount of propylene glycol and neopentyl glycol entrained, and the reaction proceeded while supplementing. A polyester resin (II-2) having a solid at room temperature and an acid value of 10 was obtained. Table 1 shows the Tg, softening point, T1 / 2, gel content, Mw, Mn, Mw / Mn and acid value of the polyester resin (II-2).
[0122]
[Table 1]
Figure 0004277254
[0123]
Example 1
Determination of the solubility of the polyester resin (I-1) and the polyester resin (II-2) in acetone under the condition that the concentration of the resin is 10%, respectively, is 7.2.1.1 of ASTM D3132-84 (Reapproved 1996). When the determination method described in -7.2.1.3 was used, the polyester resin (I-2) was a "solution on the boundary line" in the determination category of the determination method, and the polyester resin (II- 2) was “insoluble”.
[0124]
36 parts of polyester resin (I-1), 54 parts of polyester resin (II-2), 7 parts of carbon black MA-11 (manufactured by Mitsubishi Chemical), 1.5 parts of Bontron E-81 (charge control agent made by Orient Chemical) and Viscol 550P (Sanyo Kasei Polypropylene Wax) 3.5 parts was added, mixed with a Henschel mixer, and kneaded with a pressure kneader to prepare a kneaded product. A coarsely pulverized product of this kneaded product (passed through a screen with a hole diameter of 3 mm; the same applies hereinafter) and 30 parts of acetone were charged into a 2 L autoclave with a propeller blade, pre-pressurized to 0.2 MPa with nitrogen gas, The system was heated to 90 ° C. while rotating the propeller blade at 100 rpm. At this time, the pressure in the autoclave was increased to 0.40 MPa. After the inside of the system reached 90 ° C., the rotation speed of the propeller blade was increased to 500 rpm, and acetone was absorbed into the coarsely pulverized product while stirring for 10 minutes to obtain a black paste-like swelling body. T. has a cylindrical stirring blade having a hole on the side surface while maintaining the temperature of the swollen body at 90 ° C., and a cylindrical stirring tank having a gap of 3 mm between the cylindrical stirring blade and the inner wall of the stirring tank. K. It was introduced from the bottom of the cylindrical stirring tank into a film mix (a continuous emulsification disperser manufactured by Tokushu Kika Kogyo Co., Ltd.) at a rate of 49 g / min. In a separately prepared aquatic medium tank, 405 parts of an aqueous medium consisting of 5 parts of 25% aqueous ammonia and 400 parts of ion-exchanged water is heated to 90 ° C., and at the same time as the swelling body, the cylindrical stirring tank at a rate of 0.15 liters The initial aqueous dispersion was obtained by operating from the low part under the condition that the peripheral speed at the tip of the cylindrical stirring blade of Fillmix was 20 m / Sec. The initial aqueous dispersion discharged from the outlet of the film mix was collected in a container and cooled with water to 30 ° C. Then, acetone was distilled off using a rotary evaporator at 47 ° C. for 30 minutes to obtain an aqueous polyester resin fine particle dispersion 1. The obtained polyester resin fine particle aqueous dispersion 1 was measured for non-volatile content, volume average particle size, residual solvent amount, and particle size distribution. The measurement results are shown in Table 2.
[0125]
Example 2
When the solubility of the polyester resin (I-2) and the polyester resin (II-1) was determined in the same manner as in Example 1, the polyester resin (I-2) was “on the boundary line” in the determination category of the determination method. The polyester resin (II-1) was “insoluble”.
[0126]
45 parts of a coarsely pulverized polyester resin (I-2), 55 parts of a coarsely pulverized polyester resin (II-1) and 100 parts of acetone are charged into a 2 L autoclave with a propeller blade and preliminarily set to 0.2 MPa with nitrogen gas. The inside of the system was heated to 90 ° C. while rotating the propeller blade at 100 rpm. At this time, the pressure in the autoclave was increased to 0.45 MPa. After the temperature in the system reached 90 ° C., the rotational speed of the propeller blade was increased to 500 rpm, and acetone was absorbed into the particulate matter while stirring for 10 minutes to obtain a translucent paste-like swelling body. T. has a cylindrical stirring blade having a hole on the side surface while maintaining the temperature of the swollen body at 90 ° C., and a cylindrical stirring tank having a gap of 3 mm between the cylindrical stirring blade and the inner wall of the stirring tank. K. It was introduced into the fill mix from the lower part of the stirring tank at a rate of 56 g / min. An aqueous medium 402 consisting of 2 parts of 25% ammonia water and 400 parts of ion exchange water is heated to 90 ° C. in a separately prepared aquatic medium tank at a rate of 0.14 liters per minute from the lower part of the stirring tank at the same time as the swelling body. The initial aqueous dispersion was obtained by operating under the condition that the peripheral speed at the tip of the cylindrical stirring blade of Fillmix was 30 m / Sec. The initial aqueous dispersion discharged from the outlet of the film mix was collected in another container and cooled with water to 30 ° C. Thereafter, acetone was distilled off at 47 ° C. for 30 minutes using a rotary evaporator to obtain polyester resin fine particle aqueous dispersion 2. The nonvolatile content, volume average particle size, residual solvent amount, and particle size distribution in the obtained polyester resin fine particle aqueous dispersion were measured. The measurement results are shown in Table 2.
[0127]
Comparative Example 1
The polyester resin (I-1) and the polyester resin (II-2) were changed in the same manner as in Example 1 except that the resin concentration was changed from 10% to 15% and tetrahydrofuran (THF) was used instead of acetone. ) Was judged to be “complete solution”.
[0128]
36 parts of polyester resin (I-1), 54 parts of polyester resin (II-2), 7 parts of carbon black MA-11 (manufactured by Mitsubishi Chemical), 1.5 parts of Bontron E-81 (charge control agent made by Orient Chemical) and Viscol 550P (Sanyo Kasei Polypropylene Wax) 3.5 parts was added, mixed with a Henschel mixer, and kneaded with a pressure kneader to prepare a kneaded product. 100 parts of this coarsely pulverized product and 30 parts of THF were mixed to obtain a solution. This solution was transferred to Cavitron CD1010 (a continuous emulsification disperser manufactured by Eurotech) at a rate of 75 g / min. 401.5 parts of an aqueous medium consisting of 1.5 parts of 25% aqueous ammonia and 400 parts of ion-exchanged water was transferred to the Cavitron simultaneously with the solution at a rate of 0.23 liters per minute in a separately prepared aqueous medium tank. The dispersion was obtained by operating at a rotational speed of the rotor of 6500 rpm. The obtained dispersion was cooled to 30 ° C. and taken out. Thereafter, acetone was distilled off using a rotary evaporator at 47 ° C. for 30 minutes to obtain a comparative polyester resin fine particle aqueous dispersion 1 ′. The obtained polyester resin fine particle aqueous dispersion 1 ′ was measured for non-volatile content, volume average particle size, residual solvent amount, and particle size distribution. The measurement results are shown in Table 2.
[0129]
Comparative Example 2
The polyester resin (I-2) and the polyester resin (II-1) were changed in the same manner as in Example 1 except that the resin concentration was changed from 10% to 15% and tetrahydrofuran (THF) was used instead of acetone. ) Was judged to be “complete solution”.
[0130]
A solution was prepared by mixing 45 parts of the coarsely pulverized polyester resin (I-2), 55 parts of the coarsely pulverized polyester resin (II-1) and 100 parts of THF. This was transferred to Cavitron CD1010 at a rate of 143 g / min. 402 parts of an aqueous medium consisting of 2 parts of 25% aqueous ammonia and 400 parts of ion-exchanged water are transferred to the Cavitron simultaneously with the solution at a rate of 0.23 liters per minute in a separately prepared aqueous medium tank, and the Cavitron rotor is rotated. The dispersion was obtained by operating at a speed of 7500 rpm. The obtained dispersion was water-cooled to 30 ° C. Thereafter, acetone was distilled off at 47 ° C. for 30 minutes using a rotary evaporator to obtain a comparative polyester resin fine particle aqueous dispersion 2 ′ for comparison. The obtained polyester resin fine particle aqueous dispersion 2 ′ was measured for non-volatile content, volume average particle size, residual solvent amount, and particle size distribution. The measurement results are shown in Table 2.
[0131]
[Table 2]
Figure 0004277254
[0132]
【The invention's effect】
The production method of the present invention uses an organic solvent (S) having a boiling point of less than 100 ° C., preferably an organic solvent compatible with water, which does not dissolve the self-water dispersible thermoplastic resin (P) but can swell. A self-water dispersible thermoplastic resin (P) was absorbed with the organic solvent (S) to form a swollen body, and then phase-inverted emulsified to disperse the swollen body in the form of fine particles in an aqueous medium. Since the organic solvent is removed from the dispersion, it is easy to remove the organic solvent, and an aqueous dispersion of thermoplastic resin particles that has very little residual solvent remaining in the resin particles can be obtained.
The aqueous dispersion of thermoplastic resin fine particles with very little residual solvent remaining in the resin fine particles has a cylindrical stirring blade having a hole on the side surface, and a gap between the cylindrical stirring blade and the inner wall of the stirring tank is 2 It can be efficiently obtained by using a continuous emulsification disperser equipped with a cylindrical stirring tank of ˜5 mm.
Further, by using the continuous emulsification disperser, an aqueous thermoplastic resin particle dispersion containing resin particles having a narrow particle size distribution can be obtained.
Furthermore, the electrophotographic toner of the present invention containing fine particles obtained by separating and drying resin fine particles from the aqueous dispersion of thermoplastic resin fine particles obtained by the production method of the present invention has the advantage that the residual solvent is extremely small. is there.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a cylindrical stirring tank portion of a continuous emulsification disperser used in the present invention.
[Explanation of symbols]
1 Cylindrical stirring tank
2 Rotating shaft
3 Cylindrical stirring blade with holes on the side

Claims (12)

自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、側面に孔を有する円筒型撹拌翼を有し、かつ、前記円筒型撹拌翼と攪拌槽内壁との隙間が2〜5mmである円筒型攪拌槽を備えた連続式乳化分散機の前記円筒型攪拌槽に前記膨潤体と水性媒体を送り込みながら前記円筒型攪拌翼を回転させて前記膨潤体と前記水性媒体とを攪拌槽内壁に沿って薄膜状で旋回させることにより前記膨潤体を水性媒体中に微粒子状で分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体を製造する第3工程とからなる熱可塑性樹脂微粒子水性分散体の製造方法であり、前記自己水分散性熱可塑性樹脂(P)がカルボキシル基含有ポリエステル系樹脂で、且つ、中和により水性媒体中への分散が可能となる樹脂で、前記有機溶剤(S)が水と相溶する有機溶剤で、前記水性媒体が塩基性化合物を含有する水であることを特徴とする熱可塑性樹脂微粒子水性分散体の製造方法。  A swelling body obtained by swelling a self-water dispersible thermoplastic resin (P) with an organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water dispersible thermoplastic resin (P) but can swell. A continuous type equipped with a cylindrical stirring vessel having a first stirring step and a cylindrical stirring blade having a hole on the side surface, and a gap between the cylindrical stirring blade and the inner wall of the stirring vessel being 2 to 5 mm By rotating the cylindrical stirring blade while feeding the swollen body and the aqueous medium into the cylindrical stirring tank of the emulsifying disperser, and rotating the swollen body and the aqueous medium in a thin film along the inner wall of the stirring tank. A second step of producing an initial aqueous dispersion by dispersing the swelling body in the form of fine particles in an aqueous medium, and removing the organic solvent (S) from the initial aqueous dispersion to produce the self-water-dispersible thermoplastic resin. Resin (P) fine particles are the water A method for producing an aqueous dispersion of thermoplastic resin fine particles comprising a third step of producing a dispersion dispersed in a medium, wherein the self-water dispersible thermoplastic resin (P) is a carboxyl group-containing polyester resin, and A resin which can be dispersed in an aqueous medium by neutralization, wherein the organic solvent (S) is an organic solvent compatible with water, and the aqueous medium is water containing a basic compound. A method for producing an aqueous dispersion of thermoplastic resin fine particles. 自己水分散性熱可塑性樹脂(P)と有機溶剤(S)とを加熱することにより前記膨潤体を製造する請求項1に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  The method for producing an aqueous dispersion of thermoplastic resin fine particles according to claim 1, wherein the swelling body is produced by heating the self-water dispersible thermoplastic resin (P) and the organic solvent (S). 前記第1工程において自己水分散性熱可塑性樹脂(P)と有機溶剤(S)とを加圧下で有機溶剤(S)の沸点以上の温度に加熱することにより前記膨潤体を製造し、前記第2工程において前記膨潤体を加圧下で有機溶剤(S)の沸点以上120℃以下の温度で機械的剪断力により前記水性媒体中に微粒子状に分散させて前記初期水性分散体を製造する請求項1に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  In the first step, the swelling body is produced by heating the self-water dispersible thermoplastic resin (P) and the organic solvent (S) to a temperature equal to or higher than the boiling point of the organic solvent (S) under pressure. The initial aqueous dispersion is produced by dispersing the swelled body in a fine particle form in the aqueous medium by a mechanical shearing force under pressure at a temperature not lower than the boiling point of the organic solvent (S) and not higher than 120 ° C in two steps. 2. A process for producing an aqueous dispersion of thermoplastic resin fine particles according to 1. 前記第1工程において自己水分散性熱可塑性樹脂(P)のガラス転移温度(Tg)より10〜50℃高い温度で前記膨潤体を製造し、前記第2工程において自己水分散性熱可塑性樹脂(P)のガラス転移温度(Tg)より10〜50℃高い温度で前記初期水性分散体を製造する請求項3に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  In the first step, the swelling body is produced at a temperature 10 to 50 ° C. higher than the glass transition temperature (Tg) of the self-water dispersible thermoplastic resin (P), and in the second step, the self-water dispersible thermoplastic resin ( The method for producing an aqueous dispersion of thermoplastic resin fine particles according to claim 3, wherein the initial aqueous dispersion is produced at a temperature 10 to 50 ° C higher than the glass transition temperature (Tg) of P). 有機溶剤(S)がアセトンおよび/またはイソプロピルアルコールである請求項1に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  The method for producing an aqueous dispersion of thermoplastic resin particles according to claim 1, wherein the organic solvent (S) is acetone and / or isopropyl alcohol. 自己水分散性熱可塑性樹脂(P)100重量部に対する有機溶剤(S)の使用量が10〜200重量部で、かつ、自己水分散性熱可塑性樹脂(P)と有機溶剤(S)の合計100重量部に対する水の使用量が70〜400重量部である請求項3に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  The amount of the organic solvent (S) used is 10 to 200 parts by weight with respect to 100 parts by weight of the self-water dispersible thermoplastic resin (P), and the total of the self-water dispersible thermoplastic resin (P) and the organic solvent (S). The method for producing an aqueous dispersion of thermoplastic resin particles according to claim 3, wherein the amount of water used is 100 to 400 parts by weight with respect to 100 parts by weight. 前記側面に孔を有する円筒型撹拌翼の先端の周速が3〜55m/secである請求項1〜のいずれか1項に記載の熱可塑性樹脂微粒子水性分散体の製造方法。The method for producing an aqueous dispersion of thermoplastic resin particles according to any one of claims 1 to 6 , wherein a peripheral speed of a tip of a cylindrical stirring blade having a hole on the side surface is 3 to 55 m / sec. カルボキシル基含有ポリエステル系樹脂で、且つ、中和により水性媒体中への分散が可能となる樹脂が、ゲル分が0.3重量%以下、GPC(ゲルパーミエーションクロマトグラフィ)法で測定した重量平均分子量(Mw)が3,000〜20,000、数平均分子量(Mn)が1,000〜5,000、これらの比(Mw/Mn)が2〜10、フローテスターでの1/2降下温度(T1/2)が80〜140℃および酸価が1〜100のポリエステル樹脂(I)と、ゲル分が2重量%以下、GPC法で測定した重量平均分子量(Mw)が200,000〜2,000,000、数平均分子量(Mn)が5,000〜20,000、これらの比(Mw/Mn)が10〜400、フローテスターでの1/2降下温度(T1/2)が150〜250℃および酸価が1〜100のポリエステル樹脂(II)とを混合してなる樹脂である請求項1に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  Weight average molecular weight measured by GPC (gel permeation chromatography), which is a carboxyl group-containing polyester-based resin and can be dispersed in an aqueous medium by neutralization and has a gel content of 0.3% by weight or less. (Mw) is 3,000 to 20,000, number average molecular weight (Mn) is 1,000 to 5,000, ratio (Mw / Mn) thereof is 2 to 10, and 1/2 drop temperature in flow tester ( Polyester resin (I) having a T1 / 2 of 80 to 140 ° C. and an acid value of 1 to 100, a gel content of 2% by weight or less, and a weight average molecular weight (Mw) measured by GPC method of 200,000 to 2, 1,000,000, number average molecular weight (Mn) of 5,000 to 20,000, ratio (Mw / Mn) of 10 to 400, and 1/2 drop temperature (T1 / 2) in flow tester of 150 to 250 ℃ and acid value The method for producing a thermoplastic resin particle aqueous dispersion according to claim 1 is a polyester resin (II) obtained by mixing a resin of 100. 自己水分散性熱可塑性樹脂(P)と共に着色剤(C)を併用することにより、着色剤(C)で着色された自己水分散性熱可塑性樹脂(P)の微粒子が水性媒体中に分散した分散体を製造する請求項1〜8のいずれか1項記載の熱可塑性樹脂微粒子水性分散体の製造方法。  By using the colorant (C) together with the self-water dispersible thermoplastic resin (P), the fine particles of the self-water dispersible thermoplastic resin (P) colored with the colorant (C) are dispersed in the aqueous medium. The method for producing an aqueous dispersion of thermoplastic resin fine particles according to any one of claims 1 to 8, wherein the dispersion is produced. 前記側面に孔を有する円筒型撹拌翼の先端の周速が3〜55m/secである請求項1〜8のいずれか1項に記載の熱可塑性樹脂微粒子水性分散体の製造方法。The method for producing a thermoplastic resin fine particle aqueous dispersion according to any one of claims 1 to 8, wherein a peripheral speed of a tip of a cylindrical stirring blade having a hole on the side surface is 3 to 55 m / sec. カルボキシル基含有ポリエステル系樹脂で、且つ、中和により水性媒体中への分散が可能となる樹脂が、ゲル分が0.3重量%以下、GPC(ゲルパーミエーションクロマトグラフィ)法で測定した重量平均分子量(Mw)が3,000〜20,000、数平均分子量(Mn)が1,000〜5,000、これらの比(Mw/Mn)が2〜10、フローテスターでの1/2降下温度(T1/2)が80〜140℃および酸価が1〜100のポリエステル樹脂(I)と、ゲル分が2重量%以下、GPC法で測定した重量平均分子量(Mw)が200,000〜2,000,000、数平均分子量(Mn)が5,000〜20,000、これらの比(Mw/Mn)が10〜400、フローテスターでの1/2降下温度(T1/2)が150〜250℃および酸価が1〜100のポリエステル樹脂(II)とを混合してなる樹脂である請求項10に記載の熱可塑性樹脂微粒子水性分散体の製造方法。  Weight average molecular weight measured by GPC (gel permeation chromatography), which is a carboxyl group-containing polyester-based resin and can be dispersed in an aqueous medium by neutralization and has a gel content of 0.3% by weight or less. (Mw) is 3,000 to 20,000, number average molecular weight (Mn) is 1,000 to 5,000, ratio (Mw / Mn) thereof is 2 to 10, and 1/2 drop temperature in flow tester ( Polyester resin (I) having a T1 / 2) of 80 to 140 ° C. and an acid value of 1 to 100, a gel content of 2% by weight or less, and a weight average molecular weight (Mw) measured by the GPC method of 200,000 to 2, 1,000,000, number average molecular weight (Mn) of 5,000 to 20,000, ratio (Mw / Mn) of 10 to 400, and 1/2 drop temperature (T1 / 2) in flow tester of 150 to 250 ℃ and acid value The method for producing a thermoplastic resin particle aqueous dispersion of claim 10 which is a polyester resin (II) obtained by mixing a resin of 100. 請求項9〜11のいずれか1項に記載の製造方法で得られた熱可塑性樹脂微粒子水性分散体から自己水分散性熱可塑性樹脂(P)の微粒子を分離し、乾燥して得られる微粒子を含有することを特徴とする電子写真用トナー。  Fine particles obtained by separating fine particles of a self-water dispersible thermoplastic resin (P) from the aqueous dispersion of fine thermoplastic resin particles obtained by the production method according to any one of claims 9 to 11, and drying the fine particles. An electrophotographic toner containing the toner.
JP2002374291A 2002-12-25 2002-12-25 Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography Expired - Fee Related JP4277254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374291A JP4277254B2 (en) 2002-12-25 2002-12-25 Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374291A JP4277254B2 (en) 2002-12-25 2002-12-25 Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography

Publications (3)

Publication Number Publication Date
JP2004204032A JP2004204032A (en) 2004-07-22
JP2004204032A5 JP2004204032A5 (en) 2005-11-24
JP4277254B2 true JP4277254B2 (en) 2009-06-10

Family

ID=32812351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374291A Expired - Fee Related JP4277254B2 (en) 2002-12-25 2002-12-25 Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography

Country Status (1)

Country Link
JP (1) JP4277254B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148085A (en) * 2005-11-29 2007-06-14 Tomoegawa Paper Co Ltd Toner for electrostatic image development and method for manufacturing the same
JP4393540B2 (en) 2006-08-01 2010-01-06 シャープ株式会社 Method for producing aggregate of resin-containing particles, toner, developer, developing device and image forming apparatus
JP2008122623A (en) 2006-11-10 2008-05-29 Sharp Corp Method for producing aggregated particle and electrophotographic toner
KR100833919B1 (en) * 2007-02-23 2008-05-30 삼성정밀화학 주식회사 Method for preparing toner using micro-suspension particle and toner prepared by the same
JP2009251248A (en) * 2008-04-04 2009-10-29 Sanyo Chem Ind Ltd Polyester resin for toner and toner composition
CN102585079B (en) * 2011-12-22 2013-11-06 中昊晨光化工研究院 Preparation method of high-fluoride polytetrafluoroethylene-contained resin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126824A (en) * 1981-01-29 1982-08-06 Sumitomo Chem Co Ltd Production of polyester fiber-treating agent
JPS60248735A (en) * 1984-05-24 1985-12-09 Teijin Ltd Production of coating composition dispersed in water
JP3040532B2 (en) * 1991-05-10 2000-05-15 帝人株式会社 Aqueous dispersion of polyester and easily adhered polyester film coated with the same
JP3075902B2 (en) * 1994-02-01 2000-08-14 帝人株式会社 Method for producing water-dispersed coating composition
JP3685274B2 (en) * 1996-05-01 2005-08-17 大日本インキ化学工業株式会社 Molded products and chemical containers for waterworks
JP3661819B2 (en) * 1996-11-21 2005-06-22 大日本インキ化学工業株式会社 Manufacturing method of resin fine particles and electrophotographic toner
JP4269655B2 (en) * 2001-12-03 2009-05-27 Dic株式会社 Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
JP4106613B2 (en) * 2002-11-29 2008-06-25 Dic株式会社 Method for producing polyester resin fine particle aqueous dispersion and toner for electrophotography

Also Published As

Publication number Publication date
JP2004204032A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4269655B2 (en) Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
US6894090B2 (en) Method for producing aqueous dispersion of thermoplastic resin microparticles and toner for electrophotography
JP4106613B2 (en) Method for producing polyester resin fine particle aqueous dispersion and toner for electrophotography
WO2008059646A1 (en) Ester-type hyperbranch polymer and toner for electrophotography using the same
JP4277254B2 (en) Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
JP4241029B2 (en) Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
JP2004326001A (en) Method for manufacturing electrophotographic toner
JP2004354706A (en) Method for manufacturing electrophotographic toner
JP2003107798A (en) Electrophotographic toner
JP2004263027A (en) Method for producing thermoplastic resin particulate aqueous dispersion and electrophotographic toner
JP4048942B2 (en) Method for producing toner for developing electrostatic image
JP2005077603A (en) Electrophotographic toner and method for manufacturing same
JP6333146B2 (en) Toner particles and developer
JP4356223B2 (en) Toner for electrostatic image development
JP2005077602A (en) Electrophotographic toner and method for manufacturing same
JP5010338B2 (en) Method for producing toner for electrophotography
JP2005049440A (en) Electrophotographic toner and its manufacturing method
JP2004295030A (en) Method for manufacturing electrophotographic toner
JP2004354707A (en) Method for manufacturing electrophotographic toner
JP2005017837A (en) Electrophotographic toner and its manufacturing method
JP4942542B2 (en) Method for producing toner for electrophotography
JP4332993B2 (en) Spherical toner for electrophotography and manufacturing method thereof
JP2001330989A (en) Electrophotographic spheric toner and method for manufacturing the same
JP6205116B2 (en) Method for producing toner for developing electrostatic image
JP4356222B2 (en) Toner for electrostatic image development

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees