JP2004295030A - Method for manufacturing electrophotographic toner - Google Patents

Method for manufacturing electrophotographic toner Download PDF

Info

Publication number
JP2004295030A
JP2004295030A JP2003090853A JP2003090853A JP2004295030A JP 2004295030 A JP2004295030 A JP 2004295030A JP 2003090853 A JP2003090853 A JP 2003090853A JP 2003090853 A JP2003090853 A JP 2003090853A JP 2004295030 A JP2004295030 A JP 2004295030A
Authority
JP
Japan
Prior art keywords
fine particles
aqueous dispersion
water
acrylic resin
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090853A
Other languages
Japanese (ja)
Inventor
Yasunobu Hirota
安信 廣田
Hideki Watanabe
英樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003090853A priority Critical patent/JP2004295030A/en
Publication of JP2004295030A publication Critical patent/JP2004295030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing electrophotographic toner by which good image quality is obtained and in which an amount of a residual organic solvent is also small. <P>SOLUTION: In the method for manufacturing an electrophotographic toner having a core/shell structure by mixing an aqueous dispersion (I) of fine acrylic resin particles and an aqueous dispersion (II) of fine polyester resin particles, at least one of the dispersions (I) and (II) is an aqueous dispersion obtained by the following manufacturing method (1) or (2). The manufacturing method (1) comprises a first step of preparing a swollen body by swelling a self-water-dispersible acrylic resin (P1) with an organic solvent (S) having a boiling point of <100°C, a second step of dispersing the swollen body in a fine particle shape in an aqueous medium, and a third step of preparing a dispersion in which fine particles of the resin (P1) are dispersed by removing the organic solvent (S). The manufacturing method (2) is a manufacturing method in which a self-water-dispersible polyester resin (P2) is used in place of the resin (P1) in the manufacturing method (1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は残留する有機溶剤が少なく、かつ、良好な画質が得られる電子写真用トナーの製造方法に関するものである。
【0002】
【従来の技術】
電子写真用トナーとしては例えば、ポリエステル系樹脂を用いたトナーやアクリル系樹脂を用いたトナーがある。これらのトナーは、例えば、分散造粒法により製造される。転相乳化法はこの分散造粒法の一種であり、例えば、有機溶剤で溶解された自己水分散性樹脂中に疎水性物質を分散または溶解させてなる有機相を水と混合することにより転相乳化させた後、有機溶剤を除去する微小カプセルの製造方法(例えば、特許文献1参照。)、アニオン型自己水分散性樹脂の有機溶剤溶液に着色剤を分散させ、樹脂を中和した後、水性媒体中へ転相乳化し、次いで有機溶剤の除去と乾燥を行うカプセル型トナーの製造方法(例えば、特許文献2参照。)、前記アニオン型自己水分散性樹脂として中和塩構造を有するポリエステル樹脂を用いるトナーの製造方法(例えば、特許文献3参照。)、着色剤と自己水分散性樹脂を含有する有機溶剤溶液と水性媒体とを連続式乳化分散機を使用して乳化させた後、有機溶媒の除去と乾燥を行う電子写真用トナーの製造方法(例えば、特許文献4参照。)等が知られている。これらの方法では自己水分散性熱可塑性樹脂を用いているため、乳化剤、懸濁安定剤等の補助材料を用いることなく、熱可塑性樹脂微粒子水性分散体を製造することができる。
また、中和された酸基含有ポリエステル樹脂と沸点60〜200℃の水溶性有機化合物と水とを特定の配合比で配合してなる水系分散体も知られている(例えば、特許文献5および特許文献6参照。)。更に、樹脂粒子を分散させてなる分散液中で凝集粒子を形成し、該凝集粒子の分散液中に別途調製した微粒子の分散液を添加混合して前記凝集粒子の表面に前記微粒子を付着させるトナーの製造方法もある(例えば、特許文献7参照。)。
【0003】
前記転相乳化法は、様々な熱可塑性樹脂に適用できる有用な手段であるが、自己水分散性熱可塑性樹脂の有機溶剤溶液を調製することを念頭に考えられていたため、自己水分散性熱可塑性樹脂とこの熱可塑性樹脂を溶解できる有機溶剤(良溶媒)との組み合わせについての検討のみが提案されていた。そのため、自己水分散性熱可塑性樹脂とこの熱可塑性樹脂を溶解しない有機溶剤の組み合わせに対しては適用されていなかった。
【0004】
また、前記転送乳化法は、自己水分散性熱可塑性樹脂とこの熱可塑性樹脂を溶解できる有機溶剤(良溶媒)の組み合わせであるが故に、水性媒体中に自己水分散性熱可塑性樹脂を分散させた後も自己水分散性熱可塑性樹脂と有機溶剤との間の親和性が高く、結果として有機溶剤の除去工程後も、高濃度で有機溶剤が樹脂粒子内に残留してしまう欠点があった。
【0005】
前記特許文献5および特許文献6には、沸点60〜200℃の水溶性有機化合物として前記ポリエステル樹脂を溶解する沸点100℃以上の有機溶剤と共に前記ポリエステル樹脂を溶解しない沸点100℃未満の有機溶剤も例示されているが、得られた水系分散体から有機溶剤を除去すること、および、前記ポリエステル樹脂を、このポリエステル樹脂を溶解しない有機溶剤と組み合わせて用いることに関する記載や示唆はなく、実施例では前記ポリエステル樹脂を溶解する沸点100℃以上の有機溶剤(良溶媒)を含む有機溶剤をいずれも使用して水系分散体を製造した後、有機溶剤の除去を行うことなくコーティング剤等に用いている。これら前記実施例で得られる水系分散体は、有機溶剤の除去を行ったとしても、高濃度で有機溶剤が樹脂粒子内に残留してしまう。
【0006】
前記特許文献7の製造方法で得られるトナーは前記凝集粒子をコア粒子として、このコア粒子の表面に別途製造した微粒子を付着させてシェル層を形成したコアシェル構造を有するトナーであり、コアシェル構造を持たせることにより得られる画質の向上を図っている。しかしながら特許文献7では自己水分散性の樹脂を使用する記載はなく、実施例では乳化剤を用いて樹脂を分散した分散液を用いている。一般的に乳化剤を除去するのは困難であるため、残留乳化剤の影響によりこのトナーから得られる画像の質が十分ではない。
【0007】
【特許文献1】
特開平03−221137号公報(特許請求の範囲、第3〜6頁)
【特許文献2】
特開平05−066600号公報(特許請求の範囲、第6〜7頁)
【特許文献3】
特開平08−211655号公報(特許請求の範囲、第4〜6頁)
【特許文献4】
特開平09−297431号公報(特許請求の範囲、第3〜6頁)
【特許文献5】
特開昭56−088454号公報(第2頁、第4頁、第7頁)
【特許文献6】
特開昭56−125432号公報(第2頁、第4頁、第7頁)
【特許文献7】
特開平10−026842号公報(第2頁、第10〜11頁)
【0008】
【発明が解決しようとする課題】
本発明の目的は、残存する残留溶剤が少なく、かつ、得られる画質が良好な電子写真用トナーの製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の知見(a)〜(e)を見出し、本発明を完成するに至った。
【0010】
(a) 自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、前記膨潤体を水性媒体中に微粒子状に分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体とする第3工程を有する製法により得られ水性分散体であって、自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いるとアクリル系樹脂微粒子水性分散体の水性分散体が容易に得られ、また、自己水分散性熱可塑性樹脂(P)として自己水分散性ポリエステル系樹脂(P2)を用いるとポリエステル系樹脂微粒子水性分散体の水性分散体が容易に得られること。
ること。
【0011】
(b)前記製法において前記有機溶剤(S)として前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を溶解しない沸点100℃未満の有機溶剤を用いているため、得られた水分散樹脂中の有機溶剤の除去が容易で、残留有機溶剤の極めて少ないアクリル系樹脂の微粒子水性分散体およびポリエステル系樹脂の樹脂微粒子水性分散体が得られること。
【0012】
(c)前記アクリル系樹脂(P1)の樹脂微粒子水性分散体やポリエステル系樹脂(P2)の樹脂微粒子水性分散体を製造する際に着色された膨潤体を用いることにより着色されたアクリル系樹脂の樹脂微粒子水性分散体やポリエステル系樹脂の樹脂微粒子水性分散体が得られること。
【0013】
(d)前記アクリル系樹脂微粒子水性分散体とポリエステル系樹脂微粒子水性分散体の少なくとも一方に前記法で得られた分散体を用い、アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)とを混合し、アクリル系樹脂微粒子をコア粒子として、該コア粒子の表面にポリエステル系樹脂微粒子を会合させてシェル層を形成する製造方法によりコアシェル構造を有する電子写真用トナーが得られること。
【0014】
(e)前記製造方法により得られる電子写真用トナーは、残留溶剤量が少なく、アクリル系樹脂微粒子水性分散体またはポリエステル系樹脂微粒子水性分散体として乳化剤を使用した分散体を用いても乳化剤の残存量が少ないので得られる画質も良好なこと。
【0015】
即ち、本発明は、アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)とを混合し、アクリル系樹脂微粒子をコア粒子として、該コア粒子の表面にポリエステル系樹脂微粒子を会合させてシェル層を形成する電子写真用トナーの製造方法において、アクリル系樹脂微粒子の一部乃至全部および/またはポリエステル系樹脂微粒子の一部乃至全部が着色された樹脂粒子で、かつ、前記アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)の少なくとも一方が、下記製法(1)または製法(2)で得られた水性分散体であることを特徴とする電子写真用トナーの製造方法を提供するものである。
製法(1):自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、前記膨潤体を水性媒体中に微粒子状に分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体とする第3工程を有する製造方法により得られ水性分散体であって、自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いるアクリル系樹脂微粒子水性分散体の水性分散体の製法。
製法(2):前記製法(1)において自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いる代わりに自己水分散性ポリエステル系樹脂(P2)を用いるポリエステル系樹脂微粒子水性分散体の製法。
【0016】
【発明の実施の形態】
以下に本発明を詳細に説明する。
自己水分散性アクリル系樹脂(P1)とは、乳化剤、懸濁安定剤等を用いることなく、水性媒体中に分散可能なアクリル系樹脂または中和により水性媒体中への分散が可能となるアクリル系樹脂であるが、なかでもテトラヒドロフランやメチルエチルケトン等の常温で該アクリル系樹脂(P1)を溶解できる有機溶剤に該アクリル系樹脂(P1)を溶解した後、得られた樹脂溶液に攪拌下で水性媒体(中和により水性媒体中に分散可能となるアクリル系樹脂の場合は中和剤を含有する水性媒体)を滴下することにより転相乳化して平均粒子径が10μm以下の粒子状で分散することが可能なアクリル系樹脂が好ましく、0.1μm以下の粒子状で分散することが可能なアクリル系樹脂が特に好ましい。
【0017】
このような自己水分散性アクリル系樹脂としては、例えば、スルフォン酸金属塩、カルボン酸金属塩等の中和された酸基含有アクリル系樹脂;中和された塩基性基含有アクリル系樹脂;ヒドロキシポリオキシエチレンのようないわゆるノニオン構造が導入されたアクリル系樹脂等の親水性セグメント含有アクリル系樹脂;カルボキシル基等の酸基を有し、アルカノールアミンなどの有機塩基、アンモニア、水酸化ナトリウムなどの無機塩基等の中和剤を添加することにより水相中にてアニオン化することの可能なアクリル系樹脂;アミノ基やピリジン環等の塩基性基を有し、有機酸、無機酸等の中和剤を添加することにより水相中でカチオン化することの可能なアクリル系樹脂等が挙げられ、なかでも、中和された酸基含有アクリル系樹脂や酸基含有アクリル系樹脂が好ましく、吸湿性が低く保存が容易なことから酸基含有アクリル系樹脂が特に好ましい。
【0018】
前記した中和された酸基含有アクリル系樹脂としては、例えば、中和された酸基含有(メタ)アクリル系樹脂、中和された酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂等が挙げられ、なかでも、中和された酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂が好ましい。また、中和されたアクリル樹脂の中和を外した場合の酸価としては、1〜100が好ましく、5〜40がより好ましい。
【0019】
前記中和された酸基含有アクリル系樹脂としては、例えば、中和された酸基を有する化合物を必須成分として用いて得られたアクリル系樹脂(P1−1)、カルボキシル基等の酸基を含有し、中和により自己水分散性アクリル系樹脂(P1)となるアクリル系樹脂を調製したのち、酸基を中和して得られたアクリル系樹脂(P1−2)等が挙げられる。これらの具体例としては、中和されたカルボキシル基含有アクリル系樹脂、中和されたスルフォン基含有アクリル系樹脂、中和されたリン酸基含有アクリル系樹脂等が挙げられる。前記アクリル系樹脂(P1−1)としては中和されたスルフォン基含有アクリル系樹脂が好ましく、アクリル系樹脂(P1−2)としては中和されたカルボキシル基含有アクリル系樹脂が好ましい。
【0020】
前記中和された酸基含有アクリル系樹脂(P1−1)は、例えば、中和された基を有する単量体を必須として必要により他の単量体と共に分散剤や界面活性剤等を含有する水に加え、更に易溶性の重合開始剤を添加して行う懸濁重合法等により調製することができる。
【0021】
前記した酸基含有アクリル系樹脂としては、例えば、酸基含有(メタ)アクリル系樹脂、酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂等が挙げられ、なかでも、酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂が好ましい。なお、酸基含有アクリル系樹脂の酸価としては、1〜100が好ましく、5〜40がより好ましい。
【0022】
前記酸基含有アクリル系樹脂としては、例えば、カルボキシル基等の酸基を有する化合物を必須成分として用いて得られたアクリル系樹脂が好ましい。前記アクリル系樹脂の具体例としては、カルボキシル基含有アクリル系樹脂、スルフォン酸基含有アクリル系樹脂、リン酸基含有アクリル系樹脂等が挙げられ、なかでもカルボキシル基含有アクリル系樹脂が好ましい。
【0023】
前記カルボキシル基含有アクリル系樹脂は、カルボキシル基を有する単量体を必須として必要により他の単量体と共に分散剤や界面活性剤等を含有する水に加え、更に該単量体に易溶性の重合開始剤を添加して行う懸濁重合法等により調製することができる。
【0024】
前記中和された酸基含有アクリル系樹脂や酸基含有アクリル系樹脂の調製に使用される装置としては、窒素導入口、温度計、攪拌装置、精留塔等を備えた反応容器の如き回分式の製造装置が好適に使用できるほか、脱気口を備えた押出機や連続式の反応装置、混練機等も使用できる。
【0025】
前記中和された基を有する単量体としては、例えば、(メタ)アクリル酸のナトリウム塩等が挙げられる。
【0026】
前記酸基を有する単量体としては、例えば(メタ)アクリル酸等が挙げられる。
【0027】
前記した中和された基を有する単量体や酸基を有する単量体と共に、(メタ)アクリル系樹脂、中和された酸基含有スチレン−(メタ)アクリル酸エステル系共重合樹脂等のアクリル系樹脂の調製に用いることの出来る他の単量体としては、例えば、スチレン;α−メチルスチレン、p−クロロスチレン、3,4−ジクロロスチレン、p−フェニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−t−ブチルスチレン等のスチレン誘導体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸イソプロピル、メタクリル酸2−エチルヘキシル等のメタクリル酸エステル誘導体;アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸2−エチルヘキシル等の(メタ)アクリル酸エステル誘導体;アクリロニトリル、メタクリロニトリル、アクリルアミド、N−ブチルアクリルアミド、N,N−ジブチルアクリルアミド、メタクリルアミド、N−ブチルメタクリルアミド、N−オクタデシルアクリルアミド等の(メタ)アクリル酸誘導体等が挙げられる。これらは単独で使用してもよいし、複数のものを併用してよい。
【0028】
自己水分散性アクリル系樹脂(P1)のゲルパーミエーションクロマトグラフィー(GPC)法による重量平均分子量は5,000〜300,000が好ましく、70,000〜250,000がより好ましく、10,000〜150,000が特に好ましい。自己水分散性アクリル系樹脂(P1)の環球法による軟化点は80〜170℃が好ましく、85〜160℃がより好ましく、90〜150℃が特に好ましい。自己水分散性アクリル系樹脂(P1)の示差走査熱量計(DSC)によるガラス転移温度(Tg)は45〜80℃が好ましく、50〜75℃がより好ましく、54〜70℃が特に好ましい。
【0029】
自己水分散性ポリエステル系樹脂(P2)とは、乳化剤、懸濁安定剤等を用いることなく、水性媒体中に分散可能なポリエステル系樹脂または中和により水性媒体中への分散が可能となるポリエステル系樹脂であるが、なかでもテトラヒドロフランやメチルエチルケトン等の常温で該ポリエステル系樹脂(P2)を溶解できる有機溶剤に該ポリエステル系樹脂(P2)を溶解した後、得られた樹脂溶液に攪拌下で水性媒体(中和により水性媒体中に分散可能となる熱可塑性樹脂の場合は中和剤を含有する水性媒体)を滴下することにより転相乳化して平均粒子径が10μm以下の粒子状で分散することが可能なポリエステル系樹脂が好ましく、0.1μm以下の粒子状で分散することが可能なポリエステル系樹脂が特に好ましい。
【0030】
このような自己水分散性ポリエステル系樹脂としては、例えば、スルフォン酸金属塩、カルボン酸金属塩等の中和された酸基含有ポリエステル系樹脂;中和された塩基性基含有ポリエステル系樹脂;ヒドロキシポリオキシエチレンのようないわゆるノニオン構造が導入されたポリエステル系樹脂等の親水性セグメント含有ポリエステル系樹脂;カルボキシル基等の酸基を有し、アルカノールアミンなどの有機塩基、アンモニア、水酸化ナトリウムなどの無機塩基等の中和剤を添加することにより水相中にてアニオン化することの可能なポリエステル系樹脂;アミノ基やピリジン環等の塩基性基を有し、有機酸、無機酸等の中和剤を添加することにより水相中でカチオン化することの可能なポリエステル系樹脂等が挙げられ、なかでも、中和された酸基含有ポリエステル系樹脂や酸基含有ポリエステル系が好ましく、吸湿性が低く保存が容易なことから酸基含有ポリエステル系樹脂が特に好ましい。
【0031】
前記中和された酸基含有ポリエステル系樹脂としては、例えば、中和された酸基を有する化合物を必須成分として用いて得られたポリエステル系樹脂(P2−1)、カルボキシル基等の酸基を含有し、中和により自己水分散性ポリエステル系樹脂(P2)となるポリエステル系樹脂を調製したのち、酸基を中和して得られたポリエステル系樹脂(P2−2)等が挙げられる。これらの具体例としては、中和されたカルボキシル基含有ポリエステル系樹脂、中和されたスルフォン基含有ポリエステル系樹脂、中和されたリン酸基含有ポリエステル系樹脂等が挙げられる。前記ポリエステル系樹脂(P2−1)としては中和されたスルフォン基含有ポリエステル系樹脂が好ましく、ポリエステル系樹脂(P2−2)としては中和されたカルボキシル基含有ポリエステル系樹脂が好ましい。なお、中和された酸基含有ポリエステル系樹脂の中和を外した場合の酸価としては、1〜100が好ましく、5〜40がより好ましい。
【0032】
前記中和された酸基含有ポリエステル系樹脂(P2−1)は、例えば、二塩基酸またはその無水物と二価のアルコールと中和された酸基を有する二塩基酸とを必須成分として、必要に応じて、三官能以上の多塩基酸、その無水物、一塩基酸、三官能以上のアルコール、一価のアルコール等を併用し、窒素雰囲気中で加熱下に酸価を測定しながら180〜260℃の反応温度で脱水縮合する方法等により調製することができる。
【0033】
前記酸基含有ポリエステル系樹脂としては、例えば、カルボキシル基含有ポリエステル系樹脂等、スルフォン酸基含有ポリエステル系樹脂、リン酸基含有ポリエステル樹脂等が挙げられる。なかでも、カルボキシル基含有ポリエステル系樹脂がより好ましい。酸基含有ポリエステル系樹脂の酸価としては1〜100が好ましく、5〜40がより好ましい。
【0034】
前記カルボキシル基含有ポリエステル系樹脂は、例えば、二塩基酸やその無水物と二価のアルコールとを必須として、必要に応じて三官能以上の多塩基酸、その無水物、一塩基酸、三官能以上のアルコール、一価のアルコール等をカルボキシル基が残存する組成比率で用い、窒素雰囲気中で加熱下に酸価を測定しながら180〜260℃の反応温度で脱水縮合する方法等により調製することができる。
【0035】
前記中和された酸基含有ポリエステル系樹脂や酸基含有ポリエステル系樹脂の調製に使用される装置としては、窒素導入口、温度計、攪拌装置、精留塔等を備えた反応容器の如き回分式の製造装置が好適に使用できるほか、脱気口を備えた押出機や連続式の反応装置、混練機等も使用できる。また、上記脱水縮合の際、必要に応じて反応系を減圧することによって、エステル化反応を促進することもできる。さらに、エステル化反応の促進のために、種々の触媒を添加することもできる。
【0036】
前記触媒としては、例えば、酸化アンチモン、酸化バリウム、酢酸亜鉛、酢酸マンガン、酢酸コバルト、琥珀酸亜鉛、ホウ酸亜鉛、蟻酸カドミウム、一酸化鉛、珪酸カルシウム、ジブチル錫オキシド、ブチルヒドロキシ錫オキシド、テトライソプロピルチタネート、テトラブチルチタネート、マグネシウムメトキシド、ナトリウムメトキシド等が挙げられる。
【0037】
前記中和された酸基を有する二塩基酸としては、例えば、スルフォテレフタル酸、3−スルフォイソフタル酸、4−スルフォフタル酸、4−スルフォナフタレン−2,7−ジカルボン酸、スルフォ−p−キシリレングリコール、2−スルフォ−1,4−ビス(ヒドロキシエトキシ)ベンゼン等のナトリウム塩、カリウム塩、カルシウム塩、バリウム塩、亜鉛塩などの金属塩が挙げられる。
【0038】
前記二塩基酸およびその無水物としては、例えば、マレイン酸、無水マレイン酸、フマ−ル酸、イタコン酸、無水イタコン酸、蓚酸、マロン酸、コハク酸、無水コハク酸、ドデシルコハク酸、ドデシル無水コハク酸、ドデセニルコハク酸、ドデセニル無水コハク酸、アジピン酸、アゼライン酸、セバチン酸、デカン−1,10−ジカルボン酸等の線状脂肪族の二塩基酸;フタル酸、テトラヒドロフタル酸およびその無水物、ヘキサヒドロフタル酸およびその無水物、テトラブロムフタル酸およびその無水物、テトラクロルフタル酸およびその無水物、ヘット酸およびその無水物、ハイミック酸およびその無水物、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、2,6−ナフタレンジカルボン酸等の環状脂肪族の二塩基酸や芳香族の二塩基酸等が挙げられる。
【0039】
二価のアルコ−ルとしては、例えば、エチレングリコ−ル、1,2−プロピレングリコ−ル、1,4−ブタンジオ−ル、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、ジエチレングリコ−ル、ジプロピレングリコ−ル、トリエチレングリコ−ル、ネオペンチルグリコ−ル等の脂肪族ジオ−ル類;ビスフェノ−ルA、ビスフェノ−ルF等のビスフェノ−ル類;ビスフェノ−ルAのエチレンオキサイド付加物、ビスフェノ−ルAのプロピレンオキサイド付加物等のビスフェノ−ルAアルキレンオキサイド付加物;キシリレンジグリコ−ル等のアラルキレングリコ−ル類;1,4−シクロヘキサンジメタノ−ル、水添ビスフェノ−ルA等の脂環式のジオ−ル類等が挙げられる。
【0040】
三官能以上の多塩基酸やその無水物としては、例えば、トリメリット酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸、メチルシクロヘキセントリカルボン酸無水物、ピロメリット酸、無水ピロメリット酸等が挙げられる。
【0041】
一塩基酸としては、例えば、安息香酸、p−tert−ブチル安息香酸等が挙げられる。
【0042】
三官能以上のアルコールとしては、例えば、グリセリン、トリメチロ−ルエタン、トリメチロ−ルプロパン、ソルビト−ル、1,2,3,6−ヘキサンテトロ−ル、1,4−ソルビタン、ペンタエリスリト−ル、ジペンタエリスリト−ル、2−メチルプロパントリオ−ル、1,3,5−トリヒドロキシベンゼン、トリス(2−ヒドロキシエチル)イソシアヌレ−ト等が挙げられる。
【0043】
一価のアルコールとしては、例えば、ステアリルアルコール等の高級アルコール等が挙げられる。
【0044】
前記した二塩基酸、その無水物、三官能以上の塩基酸、その無水物、一塩基酸等はそれぞれ単独で使用してもよいし、2種以上のものを併用してもよい。また、カルボキシル基の一部または全部がアルキルエステル、アルケニルエステル又はアリ−ルエステルとなっているものも使用できる。
【0045】
前記した二価のアルコール、三官能以上のアルコール、一価のアルコール等は、単独で使用してもよいし2種以上のものを併用することもできる。
【0046】
また、例えば、ジメチロ−ルプロピオン酸、ジメチロ−ルブタン酸、6−ヒドロキシヘキサン酸のような、1分子中に水酸基とカルボキシル基を併有する化合物あるいはそれらの反応性誘導体も使用できる。
【0047】
自己水分散性ポリエステル系樹脂(P2)のGPC法による重量平均分子量は3,000〜50,000が好ましく、4,000〜40,000がより好ましく、5,000〜35,000が特に好ましい。自己水分散性ポリエステル系樹脂(P2)の環球法による軟化点は70〜130℃が好ましく、75〜120℃がより好ましく、80〜115℃が特に好ましい。自己水分散性ポリエステル系樹脂(P2)の示差走査熱量計(DSC)によるガラス転移温度(Tg)は40〜75℃が好ましく、45〜70℃がより好ましく、50〜65℃が特に好ましい。
【0048】
自己水分散性ポリエステル系樹脂(P2)は、アクリル系樹脂(P1)からなるコア粒子との親和力が強力なポリエステル系樹脂微粒子水性分散体が得られ、良好な画質が得られる電子写真用トナーが得られるので、芳香族ニ塩基酸の水素添加物やその無水物を含有する二塩基酸を用いて調製されたポリエステル樹脂が好ましく、フタル酸の水素添加物やその無水物を用いて調製されたポリエステル樹脂がより好ましい。前記フタル酸の水素添加物やその無水物のなかでもヘキサヒドロフタル酸やその無水物および/またはテトラヒドロフタル酸やその無水物が好ましい。前記芳香族ニ塩基酸の水素添加物やその無水物の使用量としては、ポリエステル樹脂重量の0.1〜50重量%が好ましく、0.5〜20重量%がより好ましく、1〜10重量%が特に好ましい。
【0049】
また、前記ポリエステル系樹脂(P2)としては、自己水分散性ポリエステル系樹脂(P2)の微粒子の粒度分布が小さくなり、画質が良好な得られる電子写真用トナーが得られるから、アルキル基および/またはアルケニル基を含有するポリエステル樹脂であることがより好ましい。なかでも、末端に水酸基を有するポリエステル樹脂の末端水酸基に、炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する酸無水物を開環付加させて生成する末端構造を有するポリエステル樹脂、末端にカルボキシル基を有するポリエステル樹脂の末端カルボキシル基に炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する脂肪族モノエポキシ化合物を開環付加させて生成する末端構造を有するポリエステル樹脂が特に好ましい。
【0050】
前記炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する酸無水物としては、例えば、n−オクチル無水コハク酸、イソオクチル無水コハク酸、n−ドデセニル無水コハク酸、イソドデセニル無水コハク酸等が挙げられ、なかでも、イソドデシル無水コハク酸、ドデセニル無水コハク酸が好ましい。
【0051】
前記炭素原子数4〜20のアルキル基または炭素原子数4〜20のアルケニル基を有する脂肪族モノエポキシ化合物としては、例えば、シェルケミカル社製分岐脂肪酸のグリシジルエステルであるカ−ジュラ−E10;ヒマシ油脂肪酸、ヤシ油脂肪酸、大豆油脂肪酸、桐油脂肪酸等の脂肪酸のモノグリシジルエステル;イソノナン酸等の分岐脂肪酸のモノグリシジルエステル等が挙げられる。
【0052】
本発明で用いるアクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)の少なくとも一方は、残存する残留溶剤の量が少ない電子写真用トナーが得られることから、下記製法(1)または(2)で得られることが必要である。
製法(1):自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、前記膨潤体を水性媒体中に微粒子状に分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体を製造する第3工程とからなる製造方法により得られ水性分散体であって、自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いるアクリル系樹脂微粒子水性分散体の製法。
製法(2):前記製法(1)において自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いる代わりに自己水分散性ポリエステル系樹脂(P2)を用いるポリエステル系樹脂微粒子水性分散体の製法。
【0053】
本発明においては、前記アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)の少なくとも一方が前記製法(1)または製法(2)で得られたものである必要があるが、ポリエステル系樹脂微粒子水性分散体(II)として前記製法(2)で得られる水性分散体を用いるのが好ましく、アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(I)が共に前記製法(1)または製法(2)で得られたものを用いるのがより好ましい。また、前記製法(1)や製法(2)では、必要に応じて例えば会合等の工程を行っても良い。
【0054】
前記製法(1)や製法(2)で用いる有機溶剤(S)は、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を溶解しないが膨潤させることが可能な沸点〔常圧(101.3KPa)における沸点をいう。以下同様。〕100℃未満の有機溶剤であればよい。自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を溶解する有機溶剤および/または沸点100℃以上の有機溶剤を用いた場合は、第3工程での有機溶剤が除去しにくくなるし、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を膨潤させることができない有機溶剤を用いた場合は、第2工程での自己水分散性アクリル系樹脂(P1)および自己水分散性ポリエステル系樹脂(P2)の水性媒体中への分散が困難となるため、いずれも好ましくない。
【0055】
なお、前記有機溶剤(S)とは、有機溶剤と自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)と組み合わせて用いた場合に、25℃での自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の前記有機溶剤への溶解度が15重量%以下となる有機溶剤を意味し、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の前記有機溶剤への溶解度が0重量%の有機溶剤を意味するものではない。
【0056】
前記有機溶剤(S)に該当するか否かの判定は、例えば、ASTM D3132−84(Reapproved 1996)の7.2結果の解釈(Interpretation of Results:)の7.2.1.1〜7.2.1.3に記載された判定法を用いて行うことができる。
【0057】
前記有機溶剤(S)に該当するか否かの判定は、具体的には粒子状の自己水分散性アクリル系樹脂(P1)または自己水分散性ポリエステル系樹脂(P2)15重量部と有機溶剤85重量部をフラスコにとって密栓し、25℃で16時間振とうした後の溶解状態を観察し、前記ASTM D3132−84の7.2.1.1〜7.2.1.3に記載された下記判定区分で、1.「完全な溶液」か、2.「境界線の溶液」か、3.「不溶」かのどの区分に属するか判定することにより行うことができる。
1.「完全な溶液(Complete Solution)」;明瞭な固形物やゲル粒子を含まない単一の透明な相(A single, clear liquid phase with no distinct solid or gel particle)。
2.「境界線の領域(Borderline Solution)」;明瞭な相分離を含まない透明または混濁した相(Cloudy or turbid but without distinct phase separation)。
3.「不溶(Insoluble)」;2相に分離:分離したゲル固体相を含む液体又は2相に相分離した液体(Two phases : either a liquid with separate gel solid phase or two separate liquids)。
尚、本発明では、粒子状の自己水分散性アクリル系樹脂(P1)や粒子状の自己水分散性ポリエステル系樹脂(P2)として、孔径3mmのスクリーンを通過させた自己水分散性アクリル系樹脂の粗粉砕物と自己水分散性ポリエステル系樹脂の粗粉砕物を前記判定に使用した。
【0058】
本発明では、自己水分散性アクリル系樹脂(P1)と有機溶剤(S)とを、また、自己水分散性ポリエステル系樹脂(P2)と有機溶剤(S)とを、前記有機溶剤(S)に該当するか否かの判定において、2.「境界線の溶液」、または、3.「不溶」となる組み合わせで用いる。この組み合わせで自己水分散性アクリル系樹脂(P1)と有機溶剤(S)とを、および自己水分散性ポリエステル系樹脂(P2)と有機溶剤(S)とを用いることにより第3工程において脱溶剤が容易に行える。
【0059】
本発明で用いる有機溶剤(S)としては、なかでも前記したアクリル系樹脂微粒子水性分散体の製法(1)やポリエステル系樹脂微粒子水性分散体の製法(2)の第3工程での脱溶剤が更に容易に行えることから、25℃での自己水分散性アクリル系樹脂(P1)の有機溶剤への溶解度が10重量%以下となる有機溶剤や25℃での自己水分散性ポリエステル系樹脂(P2)の有機溶剤への溶解度が10重量%以下となる有機溶剤であることが好ましく、7重量%以下となる有機溶剤であることがより好ましい。このときの溶解度の判定は、有機溶剤が前記樹脂濃度15重量%で有機溶剤(S)に該当するか否かの判定を行う代わりに、樹脂濃度が10重量%または7重量%での判定を行うことにより可能である。
【0060】
さらに、前記有機溶剤(S)としては、水性媒体中に分散された粒子状の膨潤体からの除去が容易で、残留溶剤が極めて少ない樹脂粒子が容易に効率良く経済的に製造できることから、水と相溶する有機溶剤が好ましい。ただし、この水と相溶する有機溶剤としては、水と有機溶剤がすべての混合比で均一相を形成する必要はなく、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を有機溶剤(S)で膨潤させて得られる膨潤体の水性媒体への分散を行う際の温度および水と有機溶剤の組成範囲において相溶すれば十分である。有機溶剤(S)は、この条件を満たせるものであれば、単一もしくは混合溶剤のどちらでも差し支えないが、第3工程で有機溶剤(S)の除去を行う際の温度において水と相溶するものが好ましく、25℃で水と相溶するものがより好ましい。なかでも、有機溶剤(S)としては、25℃における水への溶解度が50重量%以上であることが好ましく、25℃において全ての割合で水と相溶することが特に好ましい。さらに、有機溶剤(S)が混合溶剤の場合は、使用する有機溶剤の沸点がいずれも100℃未満であることが好ましい。また、有機溶剤(S)の沸点は40〜90℃であることがより好ましい。更に好ましくは40〜85℃であり、最も好ましくは40〜60℃である。
【0061】
前記前記水と相溶する有機溶剤としては、例えば、アセトン(溶解度:全ての割合で水と相溶する。沸点:56.1℃)等のケトン類;メタノール(溶解度:全ての割合で水と相溶する、沸点:64.7℃)、エタノール(溶解度:全ての割合で水と相溶する、沸点:78.3℃)、イソプロピルアルコール(解度:全ての割合で水と相溶する、沸点:82.26℃)等のアルコール類;酢酸メチル(溶解度:24重量%、沸点:56.9℃)等のエステル類等が挙げられる。これらの有機溶剤は単独で用いても良いし、2種以上を混合した混合溶剤を用いても良い。有機溶剤として好ましいものはケトン類、アルコール類であり、より好ましいものはアセトン、イソプロピルアルコールであり、最も好ましいものはアセトンである。
【0062】
前記有機溶剤(S)の使用量としては、目的とするアクリル系樹脂微粒子水性分散体中のアクリル系樹脂微粒子の粒径やポリエステル系樹脂微粒子水性分散体中のポリエステル系樹脂微粒子の粒径にもよるが、第1工程において自己水分散性アクリル系樹脂(P1)やポリエステル系樹脂(P2)が有機溶剤(S)を十分に吸収し、膨潤して微粒子状での分散が容易なのり状の膨潤体とすることができること、第2工程において前記膨潤体の水性媒体への分散が容易であること、分散を完結させるために用いる水性媒体の使用量が抑制でき、アクリル系樹脂微粒子水性分散体やポリエステル系樹脂微粒子水性分散体中の有機溶剤(S)の含有量が大きくならず製造効率が良好となることから、前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)100重量部に対して5〜300重量部が好ましく、より好ましくは10〜200重量部であり、最も好ましくは20〜150重量部である。
【0063】
水性媒体の使用量は、自己水分散性アクリル系樹脂(P1)と有機溶剤(S1)との合計、または自己水分散性ポリエステル系樹脂(P2)と有機溶剤(S)との合計100重量部に対して70〜400重量部が好ましく、100〜250重量部がより好ましい。
【0064】
本発明で用いる水性媒体としては、例えば、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)として、乳化剤、懸濁安定剤等を用いることなく水性媒体中への分散が可能な樹脂を用いた場合は水が好ましく、また、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)として、乳化剤、懸濁安定剤等を用いることなく中和により水性媒体中への分散が可能となる樹脂を用いた場合は中和剤を含有させた水が好ましい。なお、これらの水性媒体には、必要に応じて、更に乳化剤、懸濁安定剤等を含有させることもできるが、通常は含有させないことが好ましい。
【0065】
前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル樹脂(P2)として、中和により水性媒体中への分散が可能となるアクリル系樹脂やポリエステル系樹脂を用いた場合、これらの樹脂に自己水分散性を付与するために、前記アクリル系樹脂やポリエステル系樹脂を有機溶剤(S)で膨潤させて得られる膨潤体を水性媒体中に分散させる第2工程までの任意の工程において中和剤による中和を行うが、なかでも前記膨潤体を水性媒体中に分散させる第2工程において中和剤を含有させた水性媒体を用いて中和することが好ましい。
【0066】
前記中和により水性媒体中への分散が可能となるアクリル系樹脂やポリエステル系樹脂が酸基含有樹脂である場合に酸基の中和に用いる中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ化合物;ナトリウム、カリウム、リチウム等のアルカリ金属の炭酸塩;前記アルカリ金属の酢酸塩類;アンモニア水;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン等のアルキルアミン類;ジエタノールアミン等のアルカノールアミン類等が挙げられる。なかでも、アンモニア水が好ましい。
【0067】
また、前記中和により水性媒体中への分散が可能となるアクリル系樹脂やポリエステル系樹脂が塩基性基含有樹脂である場合に塩基性基の中和に用いる中和剤としては、例えば、蟻酸、酢酸、プロピオン酸等の有機酸;塩酸、硫酸、硝酸、リン酸等の無機酸等が挙げられる。
【0068】
前記中和剤の使用量は、酸基含有樹脂中の酸基の当量、または、塩基性基含有樹脂中の塩基性基の当量に対して、それぞれ0.9〜5.0倍当量となる量であることが好ましく、1.0〜3.0倍当量となる量であることがより好ましい。
【0069】
アクリル系樹脂微粒子水性分散体を製造する際の第1工程で膨潤体を製造する方法と、ポリエステル系樹脂微粒子水性分散体を製造する際の第1工程で膨潤対を製造する方法としては、特に限定されないが、短時間で前記膨潤体が得られるし、その後第2工程での前記膨潤体の水性媒体中への分散も容易になることから、粒子状の自己水分散性アクリル系樹脂(P1)や粒子状の自己水分散性ポリエステル樹脂(P2)を用い、前記有機溶剤(S)と共に加熱することにより前記膨潤体を製造することが好ましく、さらに加圧下で前記膨潤体を製造することがより好ましい。この際、前記自己水分散性アクリル系樹脂(P1)と有機溶剤(S)の加熱温度や前記自己水分散性ポリエステル系樹脂(P2)と有機溶剤(S)の加熱温度としては、前記有機溶剤(S)の沸点以上が好ましく、前記有機溶剤(S)の沸点〜180℃がより好ましく、前記有機溶剤(S)の沸点+10℃〜120℃が特に好ましい。また、系内の加圧圧力としては、ゲージ圧で0.1〜2.0MPaが好ましく、より好ましくはゲージ圧で0.2〜1.5MPa、更に好ましくはゲージ圧で0.3〜1.0MPaである。系内を加圧する方法としては、例えば、前記膨潤体を得るための加熱により前記有機溶剤(S)を気化させて系内を加圧する方法、あらかじめ系内に不活性ガスを導入して予備加圧した後、加熱して前記有機溶剤(S)の気化によりさらに加圧する方法等が挙げられるが、有機溶剤(S)の還流、沸騰が抑制できると共に、粒度分布の狭いアクリル系樹脂微粒子水性分散体やポリエステル系樹脂微粒子水性分散体を得られることから、予備加圧する方法が好ましい。予備加圧としては0.05〜0.5MPaが好ましい。
【0070】
アクリル系樹脂微粒子水性分散体やポリエステル系樹脂微粒子水性分散体を製造する前記第1工程において前記膨潤体を得た後、第2工程で膨潤体中に微粒子状で分散させて初期水性分散体を製造する方法としては、特に限定されないが、前記膨潤体の水性媒体中への分散が容易になることから、第1工程において加圧下で前記有機溶剤(S)の沸点以上の温度に加熱することにより得られた膨潤体を用い、前記膨潤体を加圧下で前記有機溶剤(S)の沸点以上120℃以下の温度で機械的剪断力により前記水性媒体中に微粒子状に分散させて初期水性分散体とする方法が好ましい。この際の系の温度としては、前記有機溶剤(S)の沸点〜180℃が好ましく、前記有機溶剤(S)の沸点+10℃〜120℃が特に好ましい。また、この系の圧力としては、ゲージ圧で0.1〜2.0MPaが好ましく、より好ましくはゲージ圧で0.2〜1.5MPa、更に好ましくはゲージ圧で0.3〜1.0MPaである。なお、前記膨潤体の作成とこの分散体の作成とを同一容器内で行う場合、分散体作成開始時の系の加熱加圧条件は、前記膨潤体の作成終了時の温度および圧力と同様であることが好ましい。ここで用いる水性媒体の温度としては、前記有機溶剤(S)の沸点以上120℃以下であることが好ましく、なかでも前記有機溶剤(S)の沸点以上100℃未満であって、かつ、第2工程開始時の系の温度−20℃〜第2工程開始時の系の温度の範囲内がより好ましい。
【0071】
さらに、前記第1工程で膨潤体を製造する際の温度、および、前記第2工程で初期水性分散体を製造する際の温度は、いずれも前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の融点や軟化点より低温であることが好ましく、前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)のガラス転移温度(Tg)以下の温度、であってもよいが、なかでも前記有機溶剤(S)の沸点以上であって、かつ、ガラス転移温度(Tg)より10〜50℃高い温度であることが好ましい。なお、第1工程で膨潤体を製造する際の温度と第2工程で初期水性分散体を製造する際の温度は同一でも異なっていてもよい。
【0072】
前記アクリル系樹脂微粒子水性分散体の製法(1)やポリエステル系樹脂微粒子水性分散体(2)の製法としては、例えば以下の▲1▼〜▲3▼で示す方法等が代表的な製法として挙げられる。
▲1▼第1工程として、密閉容器に自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)と有機溶剤(S)とを仕込み、加熱下、好ましくは加熱加圧下で、攪拌下に自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を有機溶剤(S)で膨潤させることにより膨潤体を製造した後、第2工程として、得られた膨潤体を攪拌等の機械的剪断力により、好ましくは加熱加圧下で、中和剤を含有していてもよい水性媒体中に微粒子状に分散させて初期水性分散体とし、次いで、第3工程として、得られた初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の微粒子が水性媒体中に分散した分散体を製造する方法。
【0073】
▲2▼前記▲1▼の第1工程と同様にして前記膨潤体を得た後、第2工程として、得られた膨潤体と中和剤を含有していてもよい水性媒体とを連続乳化分散機に連続的に供給しながら機械的剪断力により前記膨潤体を前記水性媒体中に微粒子状に分散させて初期水性分散体とし、次いで、第3工程として、得られた初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の微粒子が水性媒体中に分散した分散体を製造する方法。
【0074】
▲3▼第1工程として、押出機等の溶融混練により溶融された自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)または合成された溶融状態の自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)に、圧入等の方法で有機溶剤(S)を連続的に供給し混合下に前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を有機溶剤(S)で膨潤させることにより膨潤体を製造し、得られた膨潤体を該自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の融点または軟化点未満の温度まで降温させた後、第2工程として、得られた膨潤体と中和剤を含有していてもよい水性媒体とを連続乳化分散機に連続的に供給しながら機械的剪断力により前記膨潤体を前記水性媒体中に微粒子状に分散させて初期水性分散体とし、次いで、第3工程として、得られた初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の微粒子が水性媒体中に分散した分散体を製造する方法。
【0075】
これらの方法の中でも、比較的容易に自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の樹脂微粒子水性分散体が得られることから、前記▲1▼または▲2▼の方法が好ましい。前記▲1▼および▲2▼の方法で用いる自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の形状としては、比較的短時間で膨潤体とすることができることから、粒子状であることが好ましく、例えば、粒子径1〜7mmのペレット、孔径が2〜7mmのスクリーンを通過させた粗粉砕物、平均粒子径800μm以下の粉体等が挙げられる。
【0076】
以下に、前記▲1▼、▲2▼の方法によるアクリル系樹脂微粒子水性分散体やポリエステル系樹脂微粒子水性分散体の製法のより具体的な製造例を挙げる。
まず、プロペラ翼付のガラス製2Lのオートクレーブを用い、このオートクレーブに自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を粉砕して得た粒子状物と有機溶剤(S)とを仕込み、不活性ガスを導入してオートクレーブ内を0.05〜0.5MPa予備加圧し、次いで10〜300rpmの攪拌下で有機溶剤(S)の沸点以上に昇温して有機溶剤(S1)を一部気化させることによりオートクレーブ内を0.1〜2.0MPa(ゲージ圧)に加圧した後、50〜700rpmで3〜60分間攪拌して自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)を有機溶剤で膨潤させて膨潤体とする(第1工程)。
【0077】
予備加圧に用いる不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス等が挙げられるが窒素ガスが好ましい。
【0078】
この工程で得られた前記膨潤体は、有機溶剤(S)を吸収した自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)と、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)に吸収されずに残った有機溶剤(S)との混合物である。なお、例えば、ポリエステル樹脂とイソプロピルアルコールの系では、攪拌速度を50rpm程度にゆるめると、イソプロピルアルコールが樹脂相から分離して2相を形成するのが観察されるが、それでもよい。
【0079】
このようにして膨潤体を得た後、前記▲1▼の方法では、300〜1500rpmで攪拌しながら予め加熱しておいた水性媒体、例えば水もしくはアンモニア水を2〜30分間かけて加圧注入して転相乳化させて、前記膨潤体が微粒子状に分散した初期水性分散体とする(第2工程)。このとき、前記膨潤体中の有機溶剤(S1)は局部的な沸騰と還流が起こっており、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)と親和性の低い有機溶剤(S)の分子は自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)から離れやすく、かつ転相乳化しやすくする環境を形成していると考えられる。
【0080】
また、前記▲2▼の方法では、膨潤体を得た後、連続乳化分散機、例えば、特開平9−311502号公報に開示されているスリットを有するリング状固定子とスリットを有するリング状回転子とを同軸状に設けた高速回転型連続乳化分散機等を使用して連続的に水性媒体中に該膨潤体を微粒子状で分散させて分散体とする(第2工程)。この場合、前記膨潤体と前記水性媒体とを所定の温度、圧力条件で連続乳化分散機に送り込み、前記回転子を300〜10000rpmで回転させれば良い。
【0081】
前記膨潤体が微粒子状で分散した分散体を得た後、得られた分散体から前記有機溶剤(S)を除去することにより前記自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)の微粒子が水性媒体中に分散した分散体が得られる(第3工程)。前記有機溶剤(S)の除去方法としては、例えば、減圧チャンバー中にスプレーする方法、脱溶剤缶壁内面に薄膜を形成させる方法、溶剤吸収用充填剤入りの脱溶剤缶を通過させる方法等が挙げられる。前記有機溶剤(S)を除去する方法の一例として、ロータリーエバポレーターを使用した除去方法を以下に記す。
試料量;500ml
容器;2Lなす型フラスコ
回転数;60rpm
バス温度;47℃
減圧度;13.3KPaから20分間かけて1.33KPaに減圧度を高め、引き続き10分間1.33KPaで脱溶剤する。
【0082】
本発明で用いるアクリル系樹脂微粒子水性分散体の製法(1)やポリエステル系樹脂微粒子水性分散体の製法(2)では、製造条件を種々変更することによりアクリル系樹脂微粒子水性分散体やポリエステル系樹脂微粒子水性分散体中の樹脂微粒子の平均粒径を0.01〜50μm程度の範囲内で自由に制御することが可能である。
【0083】
前記アクリル系樹脂微粒子水性分散体の製法(1)やポリエステル系樹脂微粒子水性分散体の製法(2)において、得られる分散体中の自己水分散性アクリル系樹脂(P1)の樹脂微粒子や自己水分散性アクリル系樹脂(P1)の樹脂微粒子の平均粒径を小さく制御するためには、例えば、次に記す手段等をとれば良い。
▲1▼自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)中の酸基または中和された酸基の濃度等の親水性セグメント濃度を高くする。
▲2▼自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)として中和により水性媒体中への分散が可能となるアクリル系樹脂やポリエステル系樹脂を用いた場合、中和剤の量を大きくする。
▲3▼自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)に対する有機溶剤(S)の使用量を大きくする。
▲4▼分散体製造時の温度を高くする。
▲5▼分散体製造時の攪拌速度を大きくする。
【0084】
逆に、得られる分散体中の樹脂微粒子の平均粒径を大きくするためには、これらの条件を逆にしてやれば良い。なお、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂および有機溶剤(S)と共に、例えば着色剤(A)、磁性粉、ワックス、帯電制御剤等の添加剤を用いることによっても、分散体中の樹脂微粒子の平均粒径は大きくなる。
【0085】
本発明で用いるアクリル系樹脂微粒子水性分散体(I)に含まれるアクリル系樹脂微粒子やポリエステル系樹脂微粒子水性分散体(II)に含まれるポリエステル系樹脂微粒子は、該アクリル系樹脂微粒子の一部乃至全部および/またはポリエステル系樹脂微粒子の一部乃至全部が着色されていることが必要である。着色は電子写真用トナーとして用いることができる程度になされていれば良く、例えば、アクリル系樹脂微粒子の一部乃至全部が着色されておりポリエステル系樹脂微粒子が着色されていなくても良いし、アクリル系樹脂微粒子の全部が着色されておらずポリエステル系樹脂微粒子の一部乃至全部が着色されていても良いし、アクリル系樹脂微粒子の一部乃至全部およびポリエステル系樹脂微粒子の一部乃至全部が着色されていても良いが、アクリル系樹脂微粒子の一部乃至全部が着色された粒子を着色粒子としてもちいるのが好ましい。前記アクリル系樹脂微粒子やポリエステル系樹脂微粒子を着色粒子とするには、例えば、前記製法(1)や製法(2)においてアクリル系樹脂(P1)やポリエステル系樹脂(P2)中に着色剤(A)を分散した着色樹脂を用いれば良い。
【0086】
前記着色剤(A)としては、例えば、カーボンブラック、ベンガラ、紺青、酸化チタン、ニグロシン染料(C.I.No.50415B)、アニリンブルー(C.I.No.50405)、カルコオイルブルー(C.I.No.azoic Blue3)、クロムイエロー(C.I.No.14090)、ウルトラマリンブルー(C.I.No.77103)、デュポンオイルレッド(C.I.No.26105、キノリンイエロー(C.I.No.47005)、メチレンブルークロライド(C.I.No.52015)、フタロシアニンブルー(C.I.No.74160)、マラカイトグリーンオクサレート(C.I.No.74160)、マラカイトグリーンオクサレート(C.I.No.42000)、ランプブラック(C.I.No.77266)、ローズベンガル(C.I.No.45435)等が挙げられる。
【0087】
前記着色剤(A)の含有量は、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)100重量部に対して1〜20重量部の範囲内になるよう使用するのが好ましい。これらの着色剤は1種又は2種以上の組み合わせで使用することができる。
【0088】
前記着色された着色樹脂を調製するには、例えば、自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)と着色剤(A)とを加圧ニーダー等を用いて混練すれば良い。
【0089】
前記製法(1)や製法(2)以外の方法で得られるアクリル系樹脂微粒子水性分散体(1)やポリエステル系樹脂微粒子水性分散体(2)は、例えば、特開平9−311502号公報に記載されている、自己水分散性の樹脂を加熱して樹脂溶融体とした後、該樹脂溶融体を水性媒体中に分散させる製造方法等で得ることができる。
【0090】
本発明で用いるアクリル系樹脂微粒子水性分散体(I)としては、アクリル系樹脂微粒子水性分散体を調製した後、該水性分散体中のアクリル系樹脂微粒子を会合させて得られる会合微粒子を含有する水性分散体を用いるのが好ましい。前記会合させたアクリル系樹脂微粒子を含有する水性分散体は例えば、後述する会合を行うことにより調製することができる。会合させたアクリル系樹脂微粒子を含有する水性分散体としては、例えば、アクリル系樹脂微粒子水性分散体中でアクリル系樹脂微粒子のみを用いて会合させて得られるアクリル系樹脂微粒子でも良いし、アクリル系樹脂微粒子水性分散体と着色剤(A)の水性分散体や着色樹脂粒子の水性分散体とを混合して混合分散体とし、該分散体中のアクリル系樹脂微粒子と着色剤粒子および/または着色樹脂微粒子とを会合させて得られる会合微粒子を含有する水性分散体でも良い。
【0091】
前記会合微粒子を含有する水性分散体を製造する際には、後述する会合を行う際に自己水分散性アクリル系樹脂(P1)のガラス転移温度(Tg)〜ガラス転移温度+50℃が好ましく、0.1〜1.0MPa(ゲージ圧)の加圧下に加熱するのが更に好ましい
【0092】
前記着色剤(A)の水性分散体もしくは別途製造した着色樹脂微粒子の水性分散体としては、着色剤(A)もしくは着色樹脂微粒子が水性媒体中に微粒子状で分散されているものであればよく、特に限定されないが、例えば、界面活性剤などを用いて着色剤を乳化処理した水性分散体、着色剤(A)と樹脂を加熱溶融したのち、分散剤を含有する水中に分散した水性分散体等が挙げられる。これら水性分散体中における着色剤(A)の濃度は、目的とするトナーの着色剤濃度の5〜10倍であることが好ましい。
【0093】
前記アクリル系樹脂微粒子水性分散体(1)中のアクリル系樹脂微粒子の平均粒径は1〜10μmが好ましく、2〜8μmがより好ましい。アクリル系樹脂微粒子水性分散体(1)としてアクリル系樹脂微粒子水性分散体を調製した後、該水性分散体中のアクリル系樹脂微粒子を会合させて得られる会合微粒子を含有する水性分散体を用いる時は、平均粒径0.05〜0.8μmのアクリル系樹脂微粒子を含有する水性媒体を製造した後、該分散体中のアクリル樹脂微粒子を会合させて得られる水性分散体を用いるのが好ましく、平均粒径0.1〜0.4μmのアクリル系樹脂微粒子を含有する水性媒体を製造した後、該分散体中のアクリル樹脂微粒子を会合させて得られる水性分散体を用いるのがより好ましい。
【0094】
前記ポリエステル系樹脂微粒子水性分散体中のポリエステル樹脂微粒子の平均粒径は0.03〜1.0μmが好ましく、0.1〜0.4μmがより好ましい。また、シェル層は厚さが0.2〜4μmになる様にポリエステル系樹脂微粒子を会合させるのが好ましく、厚さ0.3〜3μmになる様に会合させるのがより好ましい。
【0095】
本発明の電子写真用トナーの製造方法の好ましい製法方法としては、例えば、
工程1.前記したアクリル系樹脂微粒子水性分散体の製法(1)とポリエステル系樹脂微粒子水性分散体の製法(2)によりそれぞれアクリル系樹脂微粒子水性分散体(I)およびポリエステル系樹脂微粒子水性分散体(II)を製造する工程、
工程2.前記工程1で得られたアクリル系樹脂微粒子水性分散体(II)とポリエステル系樹脂微粒子水性分散体(II)とを混合し、アクリル系樹脂微粒子をコア粒子としてこのコア粒子の表面にポリエステル樹脂微粒子を会合させてコア粒子の表面にシェル層を形成し、コア−シェル構造を有する電子写真用トナーを形成する工程、
工程3.前記工程2で得られた電子写真用トナーを含む分散体から電子写真用トナーを回収し、必要によりイオン交換水等で洗浄した後乾燥させる工程、
からなる製造方法等が挙げられる。
【0096】
ここで前記工程2の「会合」について述べる。一般に前記した製法により得られるような樹脂微粒子水性分散体中の樹脂微粒子は、その表面電荷に由来する静電反発力により凝集することなく水性媒体中に安定に存在するが、同時に、ファンデルワールス力によって樹脂粒子間には引力が働いている。そこで、何らかの作用で樹脂粒子表面電荷を適宜減少させてやると、静電反発力より引力が大きくなり、樹脂微粒子同志が凝集し始めて、より大きい粒子径に成長した樹脂粒子の分散体となる。これを本発明では会合という。この会合の温度は自己水分散性アクリル系樹脂(P1)のガラス転移温度と自己水分散性ポリエステル系樹脂(P2)のガラス転移温度のうち低い方のガラス転移温度〜ガラス転移温度+50℃の温度が好ましく、ガラス転移温度〜ガラス転移温度+30℃の温度がより好ましい。更に、0.1〜1.0MPa(ゲージ圧)の加圧下に加熱するのが好ましい。会合に要する時間は、通常2〜12時間であり、4〜10時間が好ましい。また、会合は、穏やかな攪拌下、例えば、アンカー翼で10〜100rpm程度の回転数による攪拌下で行うと良い。
【0097】
前記の樹脂粒子表面電荷を減少もしくは失わせる方法としては、例えば、希塩酸、希硫酸、酢酸、蟻酸、炭酸などの酸をいわゆる逆中和剤として添加する方法が挙げられる。この際、必要に応じて塩析剤と呼ばれる塩化ナトリウム、塩化カリウム、硫酸アルミニウム、硫酸第2鉄、塩化カルシウム等の金属塩類やカルシウム、アルミニウム、マグネシウム、鉄等の金属錯体を添加しても良い。又、会合工程におい着色剤などを分散処理したり、会合の進行を制御する目的で、必要に応じて界面活性剤を使用してもよい。
【0098】
前記界面活性剤としては、例えば、ドデシルベンゼンスルフォン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルジフェニルジスルフォン酸ナトリウム等のアニオン界面活性剤、トリメチルステアリルアンモニウムクロリド等のカチオン界面活性剤、アルキルフェノキシポリ(エチレンオキシ)エタノール等のノニオン界面活性剤等が挙げられ、適宜選択して使用することができる。
【0099】
前記工程2におけるアクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)との混合割合〔(I)/(II)〕は水性分散体中の固形分の重量比で1〜5が好ましく、1.5〜4がより好ましい。
【0100】
前記工程3で得られたコア−シェル構造を有する粒子を回収する方法としては、例えば、濾過等が挙げられる。乾燥は、室温で放置して自然乾燥させてもよいし、電子写真トナーの性能に影響を及ぼさない温度、例えば、50℃程度で乾燥機を用いて行っても良い。
【0101】
本発明の電子写真用トナーは、磁性粉、ワックス等の添加剤を必要に応じて用いても良い。これらは、前記した自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)と予め混練して混練物としておくのが良い。これらの添加剤は、それぞれ単独で使用しても良いし、2種以上を併用しても良い。
【0102】
磁性粉としては、例えば、マグネタイト、フェライト、コバルト、鉄、ニッケル等の金属単体やその合金等が挙げられる。
【0103】
ワックスは、電子写真用トナー用のオフセット防止剤として使用できる。ワックスとしては、例えば、例えばポリプロピレンワックス、ポリエチレンワックス、フィッシャートロフィシュワックス、ステアリルビスアミド、酸化ワックス等の合成ワックス類や、カルナバワックス、ライスワックス等の天然ワックス等が挙げられる。
【0104】
また、帯電制御剤を用いると帯電特性が良好なトナーが得られる。帯電制御剤としては、例えば、ニグロシン系の電子供与性染料、ナフテン酸、高級脂肪酸の金属塩、アルコキシル化アミン、4級アンモニウム塩、アルキルアミド、金属錯体、顔料、フッ素処理活性剤等のプラス帯電制御剤や、電子受容性の有機錯体、塩素化パラフィン、塩素化ポリエステル、銅フタロシアニンのスルホニルアミン等のマイナス帯電制御剤等が挙げられる。
【0105】
帯電制御剤を使用する際には、これらの帯電制御剤を有機溶剤(S)や有機溶剤(S)に予め溶解しておいてからこれらを自己水分散性アクリル系樹脂(P1)や自己水分散性ポリエステル系樹脂(P2)に加えると良い。
【0106】
本発明において、自己水分散性アクリル系樹脂微粒子水性分散体や自己水分散性ポリエステル系樹脂微粒子水性分散体中の不揮発分の割合は、前記水性分散体を真空乾燥器中に100℃、0.1KPa、3時間の条件で放置し、前記水性分散体の重量変化から求めた。また、微粒子の粒径は、0.001〜2μmの粒子径測定はLeeds+Northrup社製のMICROTRAC UPA150を用いて測定し、1〜40μmの粒子測定はベックマンコールター社製マルチサイザーTM3を用いて測定した。
【0107】
また、前記水性分散体中の残留溶剤の定量は、下記条件でガスクロマトグラフィ法で測定した。
測定機;島津GC−17A
カラム;ULBON HR−20M(PPG)
カラム温度;80〜150℃
昇温速度;10℃/分
【0108】
【実施例】
以下に本発明を、合成例、実施例および比較例を挙げて具体的に説明する。例中の部および%は、けん化度以外は特に断らない限り重量基準である。
【0109】
合成例1〔自己水分散性アクリル系樹脂(P1)の合成〕
板バルブ及びタービン翼を備えた5Lのステンレス製オートクレーブに、水 2,000容積部、けん化度が85%でかつ重合度が2,000であるポリビニルアルコールの1%水溶液 50容積部、スチレン 560部、メタクリル酸 28部、メタクリル酸メチル 350部、nブチルアクリレート 62部及びベンゾイルパーオキサイド 5部を仕込んで、700rpmの攪拌下に120℃に昇温させて2時間かけて重合を行った。次いで、90℃に降温してからオートクレーブに横型コンデンサーを取り付け、オートクレーブの気相を窒素ガスに置換した状態で3時間かけて常圧にて蒸留を行った。オートクレーブから内容物を取り出して、この内容物をナイロン網により水切りし、次いで流動乾燥機中で乾燥させて酸価が17.2mgKOH/g、環球法による軟化点が130℃、示差走査熱量計(DSC)によるガラス転移温度(Tg)が64℃、ゲルパーミエーションクロマトグラフィー(GPC)法による数平均分子量(Mn)が11,200、重量平均分子量(Mw)が131,000である重合体を得た。これをスチレン−アクリル樹脂1とする。
【0110】
合成例2〔自己水分散性ポリエステル系樹脂(P2)の合成〕
攪拌機、窒素ガス導入口、温度計および精留塔を備えた3Lステンレスフラスコに、エチレングリコール 326部およびネオペンチルグリコール 548部を仕込み、温度を140℃まで上げ、ジブチル錫オキサイド 1.0部を投入し、系内が均一に攪拌できることを確認後、テレフタル酸 1,628部を徐々に投入した。次いで、攪拌を継続しながら、3時間を要して温度を195℃まで上げ、その後10時間を要して温度を245℃まで上げた。さらに同温度で8時間反応させ、酸価が8以下になったのを確認した後、200℃まで降温した。ヘキサヒドロフタル酸無水物 56部を加えて1時間反応させ、酸価が17.6、環球法による軟化点が113℃、DSCによるTgが62℃、GPC法によるMnが4,700、Mwが10,700であるポリエステル樹脂を得た。これをポリエステル樹脂1とする。
【0111】
合成例3(同上)
攪拌機、窒素ガス導入口、温度計および精留塔を備えた3Lステンレスフラスコに、エチレングリコ−ル 324部、ネオペンチルグリコ−ル 545部およびトリメチロ−ルプロパン 112部を仕込み、温度を140℃まで上げ、ジブチル錫オキサイド 2.4部を投入し、系内が均一に攪拌できることを確認後、テレフタル酸 1,808部を徐々に投入した。次いで、攪拌を継続しながら、3時間を要して温度を195℃まで上げ、その後10時間を要して温度を240℃まで上げた。さらに同温度で5時間反応させ、酸価が10.0になった時に温度を220℃まで下げた後、ドデセニル無水コハク酸 100部を投入し、同温度で30分間ドデセニル無水コハク酸とポリエステル樹脂の水酸基末端との開環付加反応を行ない、酸価が16.0、環球法による軟化点が113℃、DSC法によるTgが58℃、GPC法によるMnが3,500、Mwが20,000であるポリエステル樹脂を得た。これをポリエステル樹脂2と略記する。
【0112】
合成例4(比較対照用ポリエステル樹脂の合成)
攪拌機、窒素ガス導入口、温度計、及び精留塔を備えた3Lステンレスフラスコに、エチレングリコ−ル 321部、ネオペンチルグリコ−ル 358部、トリメチロ−ルプロパン 84部を仕込み、140℃まで昇温し、ジブチル錫オキサイド 2.1部を投入し、系内が均一に攪拌できることを確認後、テレフタル酸 790部及びイソフタル酸 553部を徐々に投入した。次いで、攪拌を継続しながら温度を195℃まで上げ、その後10時間を要して240℃まで昇温した。さらに同温度で8時間縮合反応を続け、酸価が13.6、環球法による軟化点が114℃、DSC法によるTgが60℃、GPC法によるMwが18,800、Mnが3,800であるポリエステル樹脂を得た。これを比較対照用ポリエステル樹脂1′と略記する。
【0113】
参考例1〔自己水分散性アクリル系樹脂微粒子分散体(I)の調製〕
樹脂の濃度が10%となる条件でアセトンに対するスチレンアクリル樹脂1の溶解性の判定をASTM D3132−84(Reapproved 1996)の7.2.1.1〜7.2.1.3に記載された判定法を用いて行ったところ、前記判定法の判定区分で「境界線上の溶液」であった。
【0114】
スチレンアクリル樹脂1 49部、リ−ガル330(キャボット社製のカーボンブラック)30部、ビスコ−ル550P(株式会社三洋化成製のポリプロピレンワックス)9部及びボントロンE−80(オリエント化学工業株式会社製の帯電制御剤)12部を混合し、ヘンシェルミキサーにてミキシングを行い、加圧ニーダーで混練し混練物を調製した。この混練物の粗粉砕物100部およびアセトン100部をプロペラ翼付きの2Lガラスオ−トクレ−ブに仕込み、窒素ガスで0.2MPaに予備加圧し、100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.45MPaに増加していた。系内が90℃になった後、900rpmにプロペラ翼の回転数を上げて10分間攪拌しながら粗粉砕物にアセトンを吸収させることにより半透明なのり状の膨潤体を得た。その後、25%アンモニア水1.5部とイオン交換水398.5部からなる90℃に予備加熱した水性媒体400部を5分間かけて加圧注入し、水中に膨潤体を微粒子状に分散させた乳濁色の初期水性分散体を得た。この時の中和率〔水性媒体中のアンモニアのモル数(Ma)のスチレンアクリル樹脂1中のカルボキシル基のモル数(Mc)に対する比[(Ma)/(Mc)]を百分率で表したもの。以下同様。〕は150モル%であった。攪拌を続けながら得られた初期水性分散体を30℃まで水冷して取り出し、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去してアクリル樹脂微粒子水性分散体1を得た。この分散体の不揮発分は25%、体積平均粒子径は0.28μm、粒度分布は2.8、残留溶剤量は240ppmであった。
【0115】
参考例2(同上)
スチレンアクリル樹脂1の粗粉砕物100部およびアセトン100部をプロペラ翼付きの2Lガラスオ−トクレ−ブに仕込み、窒素ガスで0.2MPaに予備加圧し、100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.45MPaに増加していた。系内が90℃になった後、900rpmにプロペラ翼の回転数を上げて10分間攪拌しながら粗粉砕物にアセトンを吸収させることにより半透明なのり状の膨潤体を得た。その後、25%アンモニア水3.1部とイオン交換水396.9部からなる90℃に予備加熱した水性媒体400部を5分間かけて加圧注入し、水中に膨潤体を微粒子状に分散させた乳濁色の初期水性分散体を得た。この時の中和率は150モル%であった。攪拌を続けながら得られた初期水性分散体を30℃まで水冷して取り出し、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去してアクリル樹脂微粒子水性分散体2を得た。この分散体の不揮発分は25%、体積平均粒子径は0.25μm、粒度分布は2.3、残留溶剤量は290ppmであった。
【0116】
参考例3(同上)
スチレンアクリル樹脂1 25部、リ−ガル330 54部、ビスコ−ル550P 9部及びボントロンE−80 12部を混合し、ヘンシェルミキサーにてミキシングを行い、加圧ニーダーで混練し混練物を調製した。この混練物の粗粉砕物100部およびアセトン100部をプロペラ翼付きの2Lガラスオ−トクレ−ブに仕込み、窒素ガスで0.2MPaに予備加圧し、100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.45MPaに増加していた。系内が90℃になった後、900rpmにプロペラ翼の回転数を上げて10分間攪拌しながら粗粉砕物にアセトンを吸収させることにより半透明なのり状の膨潤体を得た。その後、25%アンモニア水0.8部とイオン交換水399.2部からなる90℃に予備加熱した水性媒体400部を5分間かけて加圧注入し、水中に膨潤体を微粒子状に分散させた乳濁色の初期水性分散体を得た。この時の中和率は150モル%であった。攪拌を続けながら得られた初期水性分散体を30℃まで水冷して取り出し、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去してスチレンアクリル樹脂微粒子水性分散体3を得た。この分散体の不揮発分は25%、体積平均粒子径は0.27μm、粒度分布は2.5、残留溶剤量は260ppmであった。
【0117】
参考例4〔ポリエステル系樹脂微粒子分散体(II)の調製〕
樹脂の濃度が10%となる条件でアセトンに対するポリエステル樹脂1の溶解性の判定をASTM D3132−84(Reapproved 1996)の7.2.1.1〜7.2.1.3に記載された判定法を用いて行ったところ、前記判定法の判定区分で「境界線上の溶液」であった。
【0118】
ポリエステル樹脂1の粗粉砕物100部およびアセトン100部をプロペラ翼付きの2Lガラスオ−トクレ−ブに仕込み、窒素ガスで0.2MPaに予備加圧し、100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.45MPaに増加していた。系内が90℃になった後、900rpmにプロペラ翼の回転数を上げて10分間攪拌しながら粗粉砕物にアセトンを吸収させることにより半透明なのり状の膨潤体を得た。その後、25%アンモニア水3.2部とイオン交換水396.8部からなる90℃に予備加熱した水性媒体400部を5分間かけて加圧注入し、水中に膨潤体を微粒子状に分散させた乳濁色の初期水性分散体を得た。この時の中和率は150モル%であった。攪拌を続けながら得られた初期水性分散体を30℃まで水冷して取り出し、ロータリーエバポレーターを使用して47℃、30分間の条件でアセトンを留去してポリエステル樹脂微粒子水性分散体1を得た。この分散体の不揮発分は25%、体積平均粒子径は0.14μm、粒度分布は2.4、残留溶剤量は270ppmであった。
【0119】
参考例5(同上)
樹脂の濃度が10%となる条件でアセトンに対するポリエステル樹脂2の溶解性の判定をASTM D3132−84(Reapproved 1996)の7.2.1.1〜7.2.1.3に記載された判定法を用いて行ったところ、前記判定法の判定区分で「境界線上の溶液」であった。
【0120】
ポリエステル樹脂1の粗粉砕物100部の代わりにポリエステル樹脂2の粗粉砕物100部を用い、25%アンモニア水2.9部とイオン交換水397.1部からなる90℃に予備加熱した水性媒体400部を用いた以外は参考例4と同様にしてポリエステル樹脂微粒子水性分散体2を得た。この分散体の不揮発分は25%、体積平均粒子径は0.23μm、粒度分布は1.7、残留溶剤量は260ppmであった。
【0121】
参考例6(比較対照用アクリル系樹脂微粒子水性分散体の調製)
スチレン 320部、nブチルアクリレート 80部、アクリル酸 8部、ドデカンチオール 12部および四臭化炭素 4部を混合し溶解したものを、ノニポール400(三洋化成株式会社製の非イオン性界面活性剤)6部及びネオゲンSC(第一工業製薬株式会社製のアニオン性界面活性剤)10部をイオン交換水550部に溶解したものにフラスコ中で分散乳化し、10分間攪拌しながら、過硫酸アンモニウム4部を溶解したイオン交換水50部を投入し窒素置換を行った。その後、フラスコ内を攪拌しながら内容物が70℃になるまでオイルバスで加熱し、5時間そのまま乳化重合を継続し比較対照用アクリル樹脂微粒子の分散体1′を調製した。この分散体の不揮発分は37%、体積平均粒子径は0.35μm、粒度分布は3.8であった。また、得られた樹脂のMwは22,000であった。
【0122】
参考例7(比較対象用例ポリエステル樹脂微粒子水性分散体の調製)
ポリエステル樹脂1′50部、および塩化メチレン 100部をボールミル(ヤマト科学株式会社製)を用いて混合溶解し、これを10%のポリエチレングリコールを10%及びネオゲンSCを0.7%含有するイオン交換水150部中に分散しホモジナイザーを用いて強く剪断力を印加して分散させ、60℃に加熱して1時間保持し比較対照用ポリエステル樹脂微粒子水性分散体1′を調製した。この分散体の不揮発分は31%、体積平均粒子径は0.85μm、粒度分布は4.1であった。
【0123】
参考例8(比較対照用着色分散液の調製)
リーガル330 100部、ノニポール400(三洋化成株式会社製非イオン性界面活性剤)5部およびイオン交換水 200部を混合し、溶解し、ローターステータータイプのホモジナイザー(IKA社製:ウルトラタラックス)を用いて10分間分散し、さらに超音波ホモジナイザーで5分間、分散し、平均粒径が0.15μm、粒度分布が2.4である着色剤を分散させてなる着色剤分散液1を調製した。
【0124】
実施例1
アンカ−翼、コンデンサ−、窒素ガス導入口、温度計を装備したガラス製2Lオ−トクレ−ブに、スチレンアクリル樹脂微粒子水性分散体1 100部及びアセトン 10部を仕込み室温で50rpmでアンカー翼を回転させながら1%希塩酸20部と1%塩化カルシウム水溶液20部と1%ドデシルベンゼンスルフォン酸ナトリウム水溶液20部との混合物を30分間を要して滴下した。その後、系内の温度を80℃まで1時間を要して上昇させ、同温度でさらに5時間会合を行い、着色樹脂微粒子を会合させた平均粒径4.0μmのスチレンアクリル樹脂微粒子を含有するスチレンアクリル樹脂微粒子水性分散体を得た。この分散体にポリエステル樹脂微粒子水性分散体1 52部を添加し、更に、1%希塩酸10部と1%塩化カルシウム水溶液10部と1%ドデシルベンゼンスルフォン酸ナトリウム水溶液10部との混合物を30分間を要して滴下した。その後、系内の温度を80℃まで1時間を要して上昇させ、同温度でさらに5時間会合を行い、会合されたスチレンアクリル系樹脂微粒子をコア粒子としてこのコア粒子の表面にポリエステル樹脂微粒子を会合させて得られたシェル層を有するコアシェル構造の樹脂微粒子を得た。ロータリーエバポレーターを使用して47℃、60分間の条件でアセトンを留去し、イオン交換水で分散体を3回洗浄し、水と分離後乾燥し、樹脂微粒子を得た。この樹脂粒子の残留溶剤量、体積平均粒子径および粒度分布を測定したところ、残留溶剤量は20ppm(検出限界)以下であり、体積平均粒子径は5.7μm、粒度分布は1.6、シェル層の厚みは0.85μmであった。この樹脂微粒子とこの樹脂微粒子の重量に対して0.3%のアエロジルR−974(日本アエロジル製シリカ)とをヘンシェルミキサ−で混合してトナー1を調製した。このトナーを用いて得られる画質の評価を下記に示す方法で行った。結果を第1表に示す。
【0125】
画質評価▲1▼:トナー1を市販のフルカラ−複写機に装填し、テストチャートとして電子写真学会発行のA4カラ−用(番号5−1)を用いて1200dpiの画像を形成したときの1dot lineの解像性を下記判定に従い評価した。
◎:完全な1dot lineを形成している。
○:ほぼ完全な1dot lineを形成している。
×:不完全な1dot lineを形成している。
××:1dot lineを形成していない。
【0126】
画質評価▲2▼:上記画質評価に使用した画像の色艶(光沢)を目視にて観察し、下記判定に従い評価した。
◎:明瞭な色艶(光沢)がある。
○:色艶(光沢)がある。
×:色艶(光沢)がない。
【0127】
実施例2
ポリエステル樹脂微粒子水性分散体1 52部の代わりにポリエステル樹脂微粒子水性分散体2 52部を使用した以外は実施例1と同様にして樹脂粒子を調製した。この樹脂粒子の残留溶剤量、体積平均粒子径および粒度分布を測定したところ、残留溶剤量は20ppm(検出限界)以下であり、体積平均粒子径は6.0μm、粒度分布は1.8、コア層の厚みは4.0μm、シェル層の厚みは1.0μmであった。この樹脂微粒子とこの樹脂微粒子の重量に対して0.3%のアエロジルR−974とをヘンシェルミキサ−で混合してトナー2を調製した。このトナーを用いて得られる画質の評価を実施例1と同様にして行い、結果を第1表に示す
【0128】
実施例3
アンカ−翼、コンデンサ−、窒素ガス導入口、温度計を装備したガラス製2Lオ−トクレ−ブに、スチレンアクリル樹脂微粒子水性分散体2 40部、スチレンアクリル樹脂微粒子水性分散体3 60部及びアセトン 10部を仕込み室温で50rpmでアンカー翼を回転させながら1%希塩酸20部と1%塩化カルシウム水溶液20部と1%ドデシルベンゼンスルフォン酸ナトリウム水溶液20部との混合物を30分間を要して滴下した。その後、系内の温度を80℃まで1時間を要して上昇させ、同温度でさらに5時間会合を行い、着色樹脂微粒子を会合させた平均粒径4.1μmのスチレンアクリル樹脂微粒子を含有するスチレンアクリル樹脂微粒子水性分散体を得た。この分散体にポリエステル樹脂微粒子水性分散体1 52部を添加し、更に、1%希塩酸 10部と1%塩化カルシウム水溶液 10部と1%ドデシルベンゼンスルフォン酸ナトリウム水溶液 10部との混合物を30分間を要して滴下した。その後、系内の温度を80℃まで1時間を要して上昇させ、同温度でさらに5時間会合を行い、スチレンアクリル樹脂微粒子のコア粒子の表面にポリエステル樹脂微粒子を会合させて得られたシェル層を有するコアシェル構造の樹脂微粒子を得た。ロータリーエバポレーターを使用して47℃、60分間の条件でアセトンを留去し、イオン交換水で分散体を3回洗浄し、水と分離後乾燥し、樹脂微粒子を得た。この樹脂粒子の残留溶剤量、体積平均粒子径および粒度分布を測定したところ、残留溶剤量は20ppm(検出限界)以下であり、体積平均粒子径は6.0μm、粒度分布は1.8、シェル層の厚みは0.95μmであった。この樹脂微粒子とこの樹脂微粒子の重量に対して0.3%のアエロジルR−974とをヘンシェルミキサ−で混合してトナー3を調製した。このトナーを用いて得られる画質の評価を実施例1と同様にして行い、結果を第1表に示す。
【0129】
比較例1
アンカ−翼、コンデンサ−、窒素ガス導入口、温度計を装備したガラス製2Lオ−トクレ−ブに、比較対照用アクリル樹脂微粒子の分散液1′を82部、着色分散液1 6部およびサニゾールB50(花王株式会社製のカチオン性界面活性剤)2部を仕込み室温で50rpmでアンカー翼を回転させながら1%希塩酸20部と1%塩化カルシウム水溶液20部と1%ドデシルベンゼンスルフォン酸ナトリウム水溶液20部との混合物を30分間を要して滴下した。その後、系内の温度を80℃まで1時間を要して上昇させ、同温度でさらに5時間会合を行い、着色剤粒子と樹脂微粒子とを会合させたスチレンアクリル樹脂微粒子を含有するスチレンアクリル樹脂微粒子水性分散体を得た。この分散体に比較対照用ポリエステル樹脂微粒子の分散液1′を48部添加し、更に、1%希塩酸10部と1%塩化カルシウム水溶液10部と1%ドデシルベンゼンスルフォン酸ナトリウム水溶液10部との混合物を30分間を要して滴下した。その後、系内の温度を80℃まで1時間を要して上昇させ、同温度でさらに5時間会合を行い、スチレンアクリル樹脂微粒子のコア粒子の表面にポリエステル樹脂微粒子を会合させて得られたシェル層を有するコアシェル構造の樹脂微粒子を得た。イオン交換水で分散体を3回洗浄し、水と分離後乾燥し、樹脂微粒子を得た。この樹脂粒子の残留溶剤量、体積平均粒子径および粒度分布を測定したところ、残留溶剤量は20ppm(検出限界)以下であり、体積平均粒子径は6.9μm、粒度分布は3.9であった。この樹脂微粒子とこの樹脂微粒子の重量に対して0.3%のアエロジルR−974とをヘンシェルミキサ−で混合して比較対照用トナー1′を調製した。このトナーを用いて得られる画像及び画質の評価を実施例1と同様にして行い、結果を第1表に示す。
【0130】
比較例2
樹脂の濃度を10%から15%に変更し、かつ、アセトンの代わりにテトラヒドロフラン(THF)を用いた以外は参考例4と同様にして、ポリエステル樹脂1の溶解性の判定を行ったところ、判定区分は「完全な溶液」であった。
【0131】
ポリエステル樹脂1 49部、リ−ガル330 30部、ビスコ−ル550P9部およびボントロンE−80 12部を混合し、ヘンシェルミキサーにてミキシングを行い、加圧ニーダーで混練し混練物を調製した。この混練物の粗粉砕物100部およびTHF100部をプロペラ翼付の2Lのオ−トクレ−ブに仕込み、窒素ガスで0.2MPaに予備加圧し100rpmでプロペラ翼を回転させながら系内が90℃になるまで加熱した。この時のオートクレーブ内の圧力は0.45MPaに増加していた。系内が90℃になった後、500rpmにプロペラ翼の回転数を上げて10分間攪拌して樹脂溶液を得た。その後、25%アンモニア水0.7部とイオン交換水399.3部からなる90℃に予備加熱した水性媒体400部を5分間かけて加圧注入し、水中に膨潤体を微粒子状に分散させた黒色の初期水性分散体を得た。この時の中和率は70モル%であった。得られた初期水性分散体を攪拌を続けながら30℃まで水冷して取り出し、ロータリーエバポレーターを使用して47℃、30分間の条件でTHFを留去して後、得られた分散体をイオン交換水で3回洗浄を繰り返した後、水と分離後乾燥し、ポリエステル樹脂微粒子を得た。このポリエステル樹脂粒子の残留溶剤量、体積平均粒子径および粒度分布を測定したところ、残留溶剤量は650ppmであり、体積平均粒子径は6.6μm、粒度分布は3.8であった。このポリエステル樹脂微粒子とこの樹脂微粒子の重量に対して0.3%のアエロジルR−974 とヘンシェルミキサ−で混合して比較対照用トナー2′を調製した。実施例1と同様に評価を行いその結果を第1表に示す。
【0132】
【表1】

Figure 2004295030
【0133】
【発明の効果】
本発明は、アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)とを混合し、アクリル系樹脂微粒子をコア粒子として、該コア粒子の表面にポリエステル系樹脂微粒子を会合させてシェル層を形成する電子写真用トナーの製造方法において、アクリル系樹脂微粒子の一部乃至全部および/またはポリエステル系樹脂微粒子の一部乃至全部が着色された樹脂粒子で、かつ、前記アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)の少なくとも一方が、前記製法(1)または製法(2)で得られた水性分散体を用いる電子写真用トナーの製造方法であり、良好な画質が得られ、かつ、残留する有機溶剤量も少ない電子写真用トナーが得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrophotographic toner in which a residual organic solvent is small and good image quality is obtained.
[0002]
[Prior art]
Examples of the electrophotographic toner include a toner using a polyester resin and a toner using an acrylic resin. These toners are manufactured by, for example, a dispersion granulation method. The phase inversion emulsification method is a kind of this dispersion granulation method.For example, inversion is performed by mixing an organic phase obtained by dispersing or dissolving a hydrophobic substance in a self-water dispersible resin dissolved in an organic solvent with water. After phase emulsification, a method for producing a microcapsule for removing an organic solvent (for example, see Patent Document 1), a method in which a colorant is dispersed in an organic solvent solution of an anionic self-water-dispersible resin and the resin is neutralized A method of producing a capsule-type toner in which phase inversion emulsification into an aqueous medium is carried out, followed by removal and drying of an organic solvent (see, for example, Patent Document 2), wherein the anionic self-water-dispersible resin has a neutralized salt structure. A method for producing a toner using a polyester resin (see, for example, Patent Document 3), after emulsifying an organic solvent solution containing a colorant and a self-water-dispersible resin with an aqueous medium using a continuous emulsifying and dispersing machine. , Organic solvent Removed by a method for producing a toner for electrophotography and drying (e.g., see Patent Document 4.), And the like are known. In these methods, since a self-water-dispersible thermoplastic resin is used, an aqueous dispersion of thermoplastic resin fine particles can be produced without using auxiliary materials such as an emulsifier and a suspension stabilizer.
Further, an aqueous dispersion obtained by mixing a neutralized acid group-containing polyester resin, a water-soluble organic compound having a boiling point of 60 to 200 ° C, and water at a specific mixing ratio is also known (for example, Patent Document 5 and See Patent Document 6.). Further, agglomerated particles are formed in a dispersion liquid obtained by dispersing resin particles, and a dispersion liquid of separately prepared fine particles is added to the dispersion liquid of the aggregated particles, and the fine particles are attached to the surface of the aggregated particles. There is also a toner manufacturing method (for example, see Patent Document 7).
[0003]
The phase inversion emulsification method is a useful means that can be applied to various thermoplastic resins.However, since it was conceived to prepare an organic solvent solution of a self-water-dispersible thermoplastic resin, the self-water-dispersion heat method was used. Only studies on combinations of a plastic resin and an organic solvent (good solvent) capable of dissolving the thermoplastic resin have been proposed. Therefore, it has not been applied to a combination of a self-water-dispersible thermoplastic resin and an organic solvent that does not dissolve the thermoplastic resin.
[0004]
Further, since the transfer emulsification method is a combination of a self-water-dispersible thermoplastic resin and an organic solvent (good solvent) capable of dissolving the thermoplastic resin, the self-water-dispersible thermoplastic resin is dispersed in an aqueous medium. The affinity between the self-water-dispersible thermoplastic resin and the organic solvent is high even after, and as a result, even after the step of removing the organic solvent, the organic solvent remains at a high concentration in the resin particles. .
[0005]
In Patent Document 5 and Patent Document 6, as the water-soluble organic compound having a boiling point of 60 to 200 ° C., an organic solvent having a boiling point of 100 ° C. or more that dissolves the polyester resin is also used. Although exemplified, removing the organic solvent from the obtained aqueous dispersion, and, there is no description or suggestion about using the polyester resin in combination with an organic solvent that does not dissolve the polyester resin, there is no example. After preparing an aqueous dispersion using any organic solvent including an organic solvent having a boiling point of 100 ° C. or higher (good solvent) that dissolves the polyester resin, the dispersion is used as a coating agent without removing the organic solvent. . In the aqueous dispersions obtained in these Examples, even when the organic solvent is removed, the organic solvent remains in the resin particles at a high concentration.
[0006]
The toner obtained by the manufacturing method of Patent Document 7 is a toner having a core-shell structure in which the agglomerated particles are used as core particles and fine particles separately manufactured are adhered to the surface of the core particles to form a shell layer. The aim is to improve the image quality that can be obtained. However, Patent Document 7 does not describe the use of a self-water-dispersible resin, and the examples use a dispersion liquid in which the resin is dispersed using an emulsifier. Since it is generally difficult to remove the emulsifier, the quality of the image obtained from the toner is not sufficient due to the influence of the residual emulsifier.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 03-22137 (claims, pages 3 to 6)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 05-066600 (Claims, pages 6 to 7)
[Patent Document 3]
Japanese Patent Application Laid-Open No. 08-21116 (Claims, pages 4 to 6)
[Patent Document 4]
JP-A-09-297431 (Claims, pp. 3-6)
[Patent Document 5]
JP-A-56-088454 (pages 2, 4 and 7)
[Patent Document 6]
JP-A-56-125432 (page 2, page 4, page 7)
[Patent Document 7]
JP-A-10-026842 (page 2, pages 10 to 11)
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an electrophotographic toner which has a small amount of residual solvent and has good image quality.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found the following findings (a) to (e), and have completed the present invention.
[0010]
(A) Swelling the self-water-dispersible thermoplastic resin (P) with an organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water-dispersible thermoplastic resin (P) but can swell. A first step of producing a swelled body by the method, a second step of dispersing the swelled body in fine particles in an aqueous medium to produce an initial aqueous dispersion, and removing the organic solvent (S) from the initial aqueous dispersion. By removing the fine particles of the self-water-dispersible thermoplastic resin (P), the aqueous dispersion is obtained by a production method having a third step of forming a dispersion dispersed in the aqueous medium. When a self-water-dispersible acrylic resin (P1) is used as the plastic resin (P), an aqueous dispersion of an acrylic resin fine particle aqueous dispersion can be easily obtained, and a self-water-dispersible thermoplastic resin (P) can be used. Water dispersible polyester The use of the polyester resin (P2) makes it easy to obtain an aqueous dispersion of the polyester resin fine particle aqueous dispersion.
That.
[0011]
(B) Since an organic solvent having a boiling point of less than 100 ° C. that does not dissolve the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) is used as the organic solvent (S) in the production method. An aqueous dispersion of fine particles of an acrylic resin and an aqueous dispersion of fine particles of a polyester resin are obtained, in which the organic solvent in the obtained water-dispersed resin is easily removed and the amount of the residual organic solvent is extremely small.
[0012]
(C) Acrylic resin colored by using a colored swelling when producing an aqueous dispersion of fine resin particles of the acrylic resin (P1) or an aqueous dispersion of fine resin particles of the polyester resin (P2). An aqueous dispersion of resin fine particles and an aqueous dispersion of resin fine particles of a polyester resin can be obtained.
[0013]
(D) The aqueous dispersion of acrylic resin fine particles (I) and the aqueous dispersion of polyester resin fine particles using the dispersion obtained by the above method for at least one of the aqueous dispersion of acrylic resin fine particles and the aqueous dispersion of polyester resin fine particles. An electrophotographic toner having a core-shell structure is obtained by a method of mixing the dispersion (II) with the acrylic resin fine particles as core particles and associating the polyester resin fine particles with the surface of the core particles to form a shell layer. To be obtained.
[0014]
(E) The electrophotographic toner obtained by the above-described production method has a small residual solvent amount, and the emulsifier remains even when a dispersion using an emulsifier as an aqueous dispersion of acrylic resin fine particles or an aqueous dispersion of polyester resin fine particles is used. Because the amount is small, the image quality obtained is also good.
[0015]
That is, the present invention provides a method of mixing an aqueous dispersion of acrylic resin fine particles (I) and an aqueous dispersion of polyester resin fine particles (II), and using the acrylic resin fine particles as core particles to form a polyester resin on the surface of the core particles. In the method for producing an electrophotographic toner in which fine particles are associated to form a shell layer, a part or all of acrylic resin fine particles and / or a part or whole of polyester resin fine particles are colored resin particles, and At least one of the acrylic resin fine particle aqueous dispersion (I) and the polyester resin fine particle aqueous dispersion (II) is an aqueous dispersion obtained by the following production method (1) or production method (2). To provide a method for producing an electrophotographic toner.
Production method (1): swelling a self-water-dispersible thermoplastic resin (P) with an organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water-dispersible thermoplastic resin (P) but can swell. A first step of producing a swelled body by dispersing the swelled body into fine particles in an aqueous medium to produce an initial aqueous dispersion, and a step of preparing the organic solvent (S) from the initial aqueous dispersion. ) Is obtained by a production method having a third step in which fine particles of the self-water-dispersible thermoplastic resin (P) are dispersed in the aqueous medium by removing the self-water-dispersible thermoplastic resin (P). A method for producing an aqueous dispersion of an acrylic resin fine particle aqueous dispersion using a self-water dispersible acrylic resin (P1) as the dispersible thermoplastic resin (P).
Production method (2): Polyester resin using self-water-dispersible polyester resin (P2) instead of self-water-dispersion acrylic resin (P1) as self-water-dispersion thermoplastic resin (P) in the above-mentioned production method (1) A method for producing an aqueous dispersion of resin fine particles.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The self-water-dispersible acrylic resin (P1) is an acrylic resin that can be dispersed in an aqueous medium without using an emulsifier, a suspension stabilizer, or the like, or an acrylic that can be dispersed in an aqueous medium by neutralization. The acrylic resin (P1) is dissolved in an organic solvent capable of dissolving the acrylic resin (P1) at room temperature, such as tetrahydrofuran or methyl ethyl ketone, and then the aqueous solution of the resulting resin solution is stirred. A medium (in the case of an acrylic resin which can be dispersed in an aqueous medium by neutralization, an aqueous medium containing a neutralizing agent) is added dropwise to cause phase inversion emulsification to be dispersed in the form of particles having an average particle diameter of 10 μm or less. Acrylic resins that can be dispersed are preferable, and acrylic resins that can be dispersed in a particle size of 0.1 μm or less are particularly preferable.
[0017]
Such self-water dispersible acrylic resins include, for example, neutralized acid group-containing acrylic resins such as metal sulfonates and metal carboxylate; neutralized basic group-containing acrylic resins; Acrylic resin containing a hydrophilic segment such as an acrylic resin having a so-called nonionic structure such as polyoxyethylene; having an acid group such as a carboxyl group, an organic base such as an alkanolamine, ammonia, and sodium hydroxide. Acrylic resin that can be anionized in the aqueous phase by adding a neutralizing agent such as an inorganic base; which has a basic group such as an amino group or a pyridine ring and is used in organic acids, inorganic acids, etc. Acrylic resins and the like that can be cationized in the aqueous phase by adding a wetting agent, among which, among others, neutralized acid group-containing acrylic resins and Is preferably a group containing acrylic resin, is particularly preferred acid group-containing acrylic resin from it easily save a low hygroscopic property.
[0018]
Examples of the neutralized acid group-containing acrylic resin include, for example, a neutralized acid group-containing (meth) acrylic resin and a neutralized acid group-containing styrene- (meth) acrylate copolymer resin Among them, a neutralized acid group-containing styrene- (meth) acrylate copolymer resin is preferred. Further, the acid value when the neutralized acrylic resin is removed from neutralization is preferably 1 to 100, more preferably 5 to 40.
[0019]
Examples of the neutralized acid group-containing acrylic resin include an acrylic resin (P1-1) obtained by using a compound having a neutralized acid group as an essential component, and an acid group such as a carboxyl group. An acrylic resin (P1-2) obtained by preparing an acrylic resin that becomes a self-water-dispersible acrylic resin (P1) by being neutralized and then neutralizing an acid group is included. Specific examples thereof include a neutralized carboxyl group-containing acrylic resin, a neutralized sulfone group-containing acrylic resin, a neutralized phosphate group-containing acrylic resin, and the like. The acrylic resin (P1-1) is preferably a neutralized sulfonic group-containing acrylic resin, and the acrylic resin (P1-2) is preferably a neutralized carboxyl group-containing acrylic resin.
[0020]
The neutralized acid group-containing acrylic resin (P1-1) contains, for example, a monomer having a neutralized group as essential and, if necessary, a dispersant or a surfactant together with other monomers. It can be prepared by a suspension polymerization method or the like in which a readily soluble polymerization initiator is further added in addition to water.
[0021]
Examples of the acid group-containing acrylic resin include an acid group-containing (meth) acrylic resin and an acid group-containing styrene- (meth) acrylate copolymer resin. -(Meth) acrylate copolymer resins are preferred. The acid value of the acid group-containing acrylic resin is preferably from 1 to 100, more preferably from 5 to 40.
[0022]
As the acid group-containing acrylic resin, for example, an acrylic resin obtained by using a compound having an acid group such as a carboxyl group as an essential component is preferable. Specific examples of the acrylic resin include a carboxyl group-containing acrylic resin, a sulfonic acid group-containing acrylic resin, a phosphate group-containing acrylic resin, and the like. Among them, a carboxyl group-containing acrylic resin is preferable.
[0023]
The carboxyl group-containing acrylic resin is essentially a monomer having a carboxyl group, and is added to water containing a dispersant, a surfactant, and the like together with other monomers as necessary. It can be prepared by a suspension polymerization method or the like performed by adding a polymerization initiator.
[0024]
Examples of the apparatus used for preparing the neutralized acid group-containing acrylic resin and the acid group-containing acrylic resin include batches such as a reaction vessel equipped with a nitrogen inlet, a thermometer, a stirrer, a rectification tower, and the like. In addition to the preferred use of a production apparatus of the type, an extruder provided with a deaeration port, a continuous reaction apparatus, a kneader and the like can also be used.
[0025]
Examples of the monomer having a neutralized group include a sodium salt of (meth) acrylic acid.
[0026]
Examples of the monomer having an acid group include (meth) acrylic acid.
[0027]
Along with the monomer having a neutralized group and the monomer having an acid group, a (meth) acrylic resin, a neutralized acid group-containing styrene- (meth) acrylate copolymer resin and the like Other monomers that can be used for preparing the acrylic resin include, for example, styrene; α-methylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, p-phenylstyrene, p-ethylstyrene, Styrene derivatives such as 1,4-dimethylstyrene and pt-butylstyrene; methacrylate derivatives such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate and 2-ethylhexyl methacrylate; methyl acrylate , Ethyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, (Meth) acrylic ester derivatives such as isobutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate; acrylonitrile, methacrylonitrile, acrylamide, N-butylacrylamide, N, N-dibutylacrylamide, methacrylamide, N- (Meth) acrylic acid derivatives such as butyl methacrylamide and N-octadecyl acrylamide. These may be used alone or in combination.
[0028]
The weight average molecular weight of the self-water dispersible acrylic resin (P1) by gel permeation chromatography (GPC) is preferably 5,000 to 300,000, more preferably 70,000 to 250,000, and 10,000 to 150,000 is particularly preferred. The softening point of the self-water dispersible acrylic resin (P1) by the ring and ball method is preferably from 80 to 170 ° C, more preferably from 85 to 160 ° C, and particularly preferably from 90 to 150 ° C. The glass transition temperature (Tg) of the self-water dispersible acrylic resin (P1) measured by a differential scanning calorimeter (DSC) is preferably from 45 to 80 ° C, more preferably from 50 to 75 ° C, and particularly preferably from 54 to 70 ° C.
[0029]
The self-water-dispersible polyester resin (P2) is a polyester resin that can be dispersed in an aqueous medium without using an emulsifier, a suspension stabilizer, or the like, or a polyester that can be dispersed in an aqueous medium by neutralization. The polyester resin (P2) is dissolved in an organic solvent capable of dissolving the polyester resin (P2) at room temperature, such as tetrahydrofuran or methyl ethyl ketone. A medium (in the case of a thermoplastic resin which can be dispersed in an aqueous medium by neutralization, an aqueous medium containing a neutralizing agent) is added dropwise to cause phase inversion emulsification and dispersion in particles having an average particle diameter of 10 μm or less. A polyester resin capable of dispersing in the form of particles having a particle size of 0.1 μm or less is particularly preferable.
[0030]
Examples of such a self-water dispersible polyester resin include a neutralized acid group-containing polyester resin such as a metal sulfonate and a metal carboxylate; a neutralized basic group-containing polyester resin; Polyester resin containing a hydrophilic segment such as polyester resin having a so-called nonionic structure such as polyoxyethylene; having an acid group such as a carboxyl group, an organic base such as an alkanolamine, ammonia, and sodium hydroxide. Polyester resin that can be anionized in the aqueous phase by adding a neutralizing agent such as an inorganic base; has a basic group such as an amino group or a pyridine ring, and is used in organic acids and inorganic acids. Polyester resins that can be cationized in the aqueous phase by adding a wetting agent, and the like. Preferably the acid group-containing polyester resin and acid group-containing polyester has, is particularly preferred acid group-containing polyester resin from it easily save a low hygroscopic property.
[0031]
Examples of the neutralized acid group-containing polyester resin include a polyester resin (P2-1) obtained by using a compound having a neutralized acid group as an essential component, and an acid group such as a carboxyl group. A polyester resin (P2-2) obtained by preparing a polyester resin that becomes a self-water dispersible polyester resin (P2) by being neutralized and then neutralizing an acid group is included. Specific examples thereof include a neutralized carboxyl group-containing polyester resin, a neutralized sulfone group-containing polyester resin, a neutralized phosphate group-containing polyester resin, and the like. The polyester resin (P2-1) is preferably a neutralized sulfone group-containing polyester resin, and the polyester resin (P2-2) is preferably a neutralized carboxyl group-containing polyester resin. The acid value when the neutralized acid group-containing polyester resin is removed from neutralization is preferably 1 to 100, more preferably 5 to 40.
[0032]
The neutralized acid group-containing polyester resin (P2-1) includes, for example, a dibasic acid or an anhydride thereof, a dihydric alcohol, and a dibasic acid having a neutralized acid group as essential components. If necessary, a trifunctional or higher polybasic acid, an anhydride thereof, a monobasic acid, a trifunctional or higher alcohol, a monohydric alcohol, or the like may be used in combination. It can be prepared by a method such as dehydration condensation at a reaction temperature of up to 260 ° C.
[0033]
Examples of the acid group-containing polyester resin include a carboxyl group-containing polyester resin, a sulfonic acid group-containing polyester resin, and a phosphate group-containing polyester resin. Among them, a carboxyl group-containing polyester resin is more preferable. The acid value of the acid group-containing polyester resin is preferably from 1 to 100, more preferably from 5 to 40.
[0034]
The carboxyl group-containing polyester resin includes, for example, a dibasic acid or an anhydride thereof and a dihydric alcohol as essential, and if necessary, a trifunctional or more polybasic acid, an anhydride thereof, a monobasic acid, and a trifunctional acid. The above alcohols, monohydric alcohols and the like are used in a composition ratio in which a carboxyl group remains, and are prepared by a method such as dehydration condensation at a reaction temperature of 180 to 260 ° C. while measuring an acid value while heating in a nitrogen atmosphere. Can be.
[0035]
Examples of the apparatus used for preparing the neutralized acid group-containing polyester resin and the acid group-containing polyester resin include batches such as a reaction vessel equipped with a nitrogen inlet, a thermometer, a stirrer, and a rectification column. In addition to the preferred use of a production apparatus of the type, an extruder provided with a deaeration port, a continuous reaction apparatus, a kneader and the like can also be used. In the above dehydration condensation, the esterification reaction can be promoted by reducing the pressure of the reaction system as necessary. Further, various catalysts can be added to promote the esterification reaction.
[0036]
Examples of the catalyst include antimony oxide, barium oxide, zinc acetate, manganese acetate, cobalt acetate, zinc succinate, zinc borate, cadmium formate, lead monoxide, calcium silicate, dibutyltin oxide, butylhydroxytin oxide, and tetrabutyl oxide. Isopropyl titanate, tetrabutyl titanate, magnesium methoxide, sodium methoxide and the like.
[0037]
Examples of the dibasic acid having a neutralized acid group include sulfoterephthalic acid, 3-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and sulfo-p Metal salts such as sodium salt, potassium salt, calcium salt, barium salt and zinc salt such as -xylylene glycol and 2-sulfo-1,4-bis (hydroxyethoxy) benzene.
[0038]
Examples of the dibasic acid and its anhydride include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, oxalic acid, malonic acid, succinic acid, succinic anhydride, dodecyl succinic acid, dodecyl anhydride Linear aliphatic dibasic acids such as succinic acid, dodecenylsuccinic acid, dodecenylsuccinic anhydride, adipic acid, azelaic acid, sebacic acid, decane-1,10-dicarboxylic acid; phthalic acid, tetrahydrophthalic acid and anhydrides thereof; Hexahydrophthalic acid and its anhydride, tetrabromophthalic acid and its anhydride, tetrachlorophthalic acid and its anhydride, hetic acid and its anhydride, hymic acid and its anhydride, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid And aliphatic dibasic acids such as 2,6-naphthalenedicarboxylic acid and aromatics And the like dibasic acids.
[0039]
Examples of the divalent alcohol include ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,5-pentaneddiol, 1,6-hexanediol, and diethylene glycol. Aliphatic diols such as phenol, dipropylene glycol, triethylene glycol and neopentyl glycol; bisphenols such as bisphenol A and bisphenol F; bisphenol A Bisphenol A alkylene oxide adducts such as ethylene oxide adducts and propylene oxide adducts of bisphenol A; aralkylene glycols such as xylylene diglycol; 1,4-cyclohexanedimethanol, water And alicyclic diols such as bisphenol A.
[0040]
Examples of the trifunctional or higher polybasic acid and its anhydride include trimellitic acid, trimellitic anhydride, methylcyclohexentricarboxylic acid, methylcyclohexentricarboxylic anhydride, pyromellitic acid, pyromellitic anhydride and the like.
[0041]
Examples of the monobasic acid include benzoic acid and p-tert-butylbenzoic acid.
[0042]
Examples of trifunctional or higher functional alcohols include glycerin, trimethylolethane, trimethylolpropane, sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, Pentaerythritol, 2-methylpropanetriol, 1,3,5-trihydroxybenzene, tris (2-hydroxyethyl) isocyanurate and the like can be mentioned.
[0043]
Examples of the monohydric alcohol include higher alcohols such as stearyl alcohol.
[0044]
The above-mentioned dibasic acids, their anhydrides, trifunctional or higher functional basic acids, their anhydrides, monobasic acids and the like may be used alone or in combination of two or more. Further, those in which a part or all of the carboxyl group is an alkyl ester, an alkenyl ester or an aryl ester can also be used.
[0045]
The above-mentioned dihydric alcohol, trifunctional or higher functional alcohol, monohydric alcohol and the like can be used alone or in combination of two or more.
[0046]
Further, for example, a compound having both a hydroxyl group and a carboxyl group in one molecule such as dimethylolpropionic acid, dimethylolbutanoic acid and 6-hydroxyhexanoic acid, or a reactive derivative thereof can be used.
[0047]
The weight average molecular weight of the self-water dispersible polyester resin (P2) by GPC is preferably from 3,000 to 50,000, more preferably from 4,000 to 40,000, and particularly preferably from 5,000 to 35,000. The softening point of the self-water dispersible polyester resin (P2) by the ring and ball method is preferably from 70 to 130C, more preferably from 75 to 120C, and particularly preferably from 80 to 115C. The glass transition temperature (Tg) of the self-water dispersible polyester resin (P2) measured by a differential scanning calorimeter (DSC) is preferably from 40 to 75 ° C, more preferably from 45 to 70 ° C, and particularly preferably from 50 to 65 ° C.
[0048]
The self-water-dispersible polyester-based resin (P2) is an electrophotographic toner capable of obtaining an aqueous dispersion of fine particles of a polyester-based resin having a strong affinity for core particles made of an acrylic resin (P1), and obtaining good image quality. Since it is obtained, a polyester resin prepared using a dibasic acid containing a hydrogenated aromatic dibasic acid or its anhydride is preferable, and a polyester resin prepared using a hydrogenated phthalic acid or its anhydride is preferable. Polyester resins are more preferred. Among the hydrogenated phthalic acids and anhydrides thereof, hexahydrophthalic acid and anhydrides thereof and / or tetrahydrophthalic acid and anhydrides thereof are preferred. The amount of the hydrogenated aromatic dibasic acid or anhydride used is preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight, and more preferably 1 to 10% by weight of the polyester resin. Is particularly preferred.
[0049]
In addition, as the polyester resin (P2), the particle size distribution of the fine particles of the self-water dispersible polyester resin (P2) is reduced, and an electrophotographic toner with good image quality can be obtained. Alternatively, a polyester resin containing an alkenyl group is more preferable. Among them, a terminal structure formed by ring-opening addition of an acid anhydride having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms to a terminal hydroxyl group of a polyester resin having a hydroxyl group at a terminal. Of a polyester resin having a carboxyl group at the terminal and an aliphatic monoepoxy compound having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms at the terminal carboxyl group of the polyester resin Particularly preferred is a polyester resin having a terminal structure.
[0050]
Examples of the acid anhydride having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms include, for example, n-octyl succinic anhydride, isooctyl succinic anhydride, n-dodecenyl succinic anhydride, isododecenyl Succinic anhydride and the like can be mentioned, and among them, isododecyl succinic anhydride and dodecenyl succinic anhydride are preferable.
[0051]
Examples of the aliphatic monoepoxy compound having an alkyl group having 4 to 20 carbon atoms or an alkenyl group having 4 to 20 carbon atoms include Kajura-E10, a glycidyl ester of a branched fatty acid manufactured by Shell Chemical Company; Monoglycidyl esters of fatty acids such as oil fatty acids, coconut oil fatty acids, soybean oil fatty acids, and tung oil fatty acids; and monoglycidyl esters of branched fatty acids such as isononanoic acid.
[0052]
At least one of the aqueous dispersion of acrylic resin fine particles (I) and the aqueous dispersion of polyester resin fine particles (II) used in the present invention can produce an electrophotographic toner having a small amount of residual solvent. It needs to be obtained in (1) or (2).
Production method (1): swelling a self-water-dispersible thermoplastic resin (P) with an organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water-dispersible thermoplastic resin (P) but can swell. A first step of producing a swelled body by dispersing the swelled body into fine particles in an aqueous medium to produce an initial aqueous dispersion, and a step of preparing the organic solvent (S) from the initial aqueous dispersion. ) To obtain a dispersion in which the fine particles of the self-water-dispersible thermoplastic resin (P) are dispersed in the aqueous medium. A method for producing an aqueous dispersion of acrylic resin fine particles using a self-water-dispersible acrylic resin (P1) as the self-water-dispersible thermoplastic resin (P).
Production method (2): Polyester resin using self-water-dispersible polyester resin (P2) instead of self-water-dispersion acrylic resin (P1) as self-water-dispersion thermoplastic resin (P) in the above-mentioned production method (1) A method for producing an aqueous dispersion of resin fine particles.
[0053]
In the present invention, at least one of the acrylic resin fine particle aqueous dispersion (I) and the polyester resin fine particle aqueous dispersion (II) needs to be obtained by the production method (1) or the production method (2). However, it is preferable to use the aqueous dispersion obtained by the above-mentioned production method (2) as the aqueous polyester resin particle dispersion (II), and the aqueous acrylic resin particle dispersion (I) and the aqueous polyester resin particle dispersion ( It is more preferable that both of I) obtained by the production method (1) or the production method (2) are used. In the production method (1) and the production method (2), for example, a step such as a meeting may be performed as necessary.
[0054]
The organic solvent (S) used in the production method (1) or the production method (2) does not dissolve the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) but can swell. Boiling point [refers to the boiling point at normal pressure (101.3 KPa). The same applies hereinafter. Any organic solvent having a temperature of less than 100 ° C. may be used. When an organic solvent dissolving the self-water dispersible acrylic resin (P1) or the self-water dispersible polyester resin (P2) and / or an organic solvent having a boiling point of 100 ° C. or more is used, the organic solvent in the third step is When an organic solvent that is difficult to remove and cannot swell the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) is used, the self-water dispersibility in the second step is reduced. Since it becomes difficult to disperse the acrylic resin (P1) and the self-water dispersible polyester resin (P2) in an aqueous medium, neither is preferable.
[0055]
When the organic solvent (S) is used in combination with an organic solvent and a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2), the self-water dispersion at 25 ° C. Means an organic solvent in which the solubility of the water-soluble acrylic resin (P1) or the self-water-dispersible polyester resin (P2) in the organic solvent is 15% by weight or less, and the self-water-dispersible acrylic resin (P1) It does not mean an organic solvent in which the solubility of the water-dispersible polyester resin (P2) in the organic solvent is 0% by weight.
[0056]
The determination as to whether or not the organic solvent (S) is applicable is made by, for example, 7.2.1.1 to 7.1 of Interpretation of Results: 7.2 of ASTM D3132-84 (Reapproved 1996). The determination can be performed using the determination method described in 2.1.3.
[0057]
The determination as to whether or not the organic solvent (S) is made is specifically made by determining 15 parts by weight of a particulate self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2) with an organic solvent. 85 parts by weight were sealed in a flask, shaken at 25 ° C. for 16 hours, and the dissolution state was observed. The results were described in ASTM D3132-84, 7.2.1.1 to 7.2.1.3. In the following judgment categories: "Perfect solution" or 2. "Boundary solution" or 3. The determination can be made by determining which category of “insoluble” belongs.
1. "Complete Solution"; a single transparent phase without distinct solids or gel particles (A single, clear liquid phase with solid or gel particles).
2. "Borderline Solution"; a transparent or turbid but with distinct phase separation without clear phase separation.
3. "Insoluble"; separated into two phases: a liquid containing a separated gel solid phase or a liquid separated into two phases (Two phases: ether a liquid with separate gel solid phase or two separate liquids).
In the present invention, the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) in the form of a particle is passed through a screen having a hole diameter of 3 mm. And the coarsely pulverized self-water dispersible polyester resin were used in the above judgment.
[0058]
In the present invention, the self-water-dispersible acrylic resin (P1) and the organic solvent (S), and the self-water-dispersible polyester resin (P2) and the organic solvent (S) are combined with the organic solvent (S). In the determination of whether or not 2. 2. "borderline solution", or Used in a combination that becomes "insoluble". In this combination, the self-water-dispersible acrylic resin (P1) and the organic solvent (S) and the self-water-dispersible polyester resin (P2) and the organic solvent (S) are used to remove the solvent in the third step. Can be easily performed.
[0059]
As the organic solvent (S) used in the present invention, the solvent removal in the third step of the above-mentioned method (1) for producing an aqueous dispersion of acrylic resin fine particles and method (2) for producing an aqueous dispersion of polyester resin fine particles can be used. Since the self-water-dispersible acrylic resin (P1) at 25 ° C. has a solubility in an organic solvent of 10% by weight or less at 25 ° C. or a self-water-dispersible polyester resin (P2) at 25 ° C. ) Is preferably an organic solvent having a solubility in an organic solvent of 10% by weight or less, more preferably an organic solvent having a solubility of 7% by weight or less. The determination of the solubility at this time is not made by determining whether the organic solvent corresponds to the organic solvent (S) at the resin concentration of 15% by weight, but by determining whether the resin concentration is 10% by weight or 7% by weight. It is possible by doing.
[0060]
Further, as the organic solvent (S), it is easy to remove from the particulate swollen body dispersed in the aqueous medium, and it is possible to easily, efficiently and economically produce resin particles having a very small amount of residual solvent. Organic solvents that are compatible with are preferred. However, as the organic solvent that is compatible with water, it is not necessary that water and the organic solvent form a uniform phase at all mixing ratios, and a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin can be used. It is sufficient that the swelled body obtained by swelling (P2) with the organic solvent (S) be compatible with each other at the temperature at which the swelled body is dispersed in the aqueous medium and the composition range of water and the organic solvent. The organic solvent (S) may be either a single solvent or a mixed solvent as long as it satisfies this condition, but is compatible with water at the temperature at which the organic solvent (S) is removed in the third step. Those which are compatible with water at 25 ° C. are more preferable. Among them, as the organic solvent (S), the solubility in water at 25 ° C is preferably 50% by weight or more, and it is particularly preferable that the organic solvent (S) is compatible with water at 25 ° C in all proportions. Furthermore, when the organic solvent (S) is a mixed solvent, it is preferable that the boiling point of each of the organic solvents used is less than 100 ° C. Further, the boiling point of the organic solvent (S) is more preferably 40 to 90 ° C. The temperature is more preferably from 40 to 85 ° C, and most preferably from 40 to 60 ° C.
[0061]
Examples of the organic solvent compatible with water include ketones such as acetone (solubility: compatible with water in all proportions; boiling point: 56.1 ° C.); methanol (solubility: water in all proportions) Compatible, boiling point: 64.7 ° C), ethanol (solubility: compatible with water in all proportions, boiling point: 78.3 ° C), isopropyl alcohol (solubility: compatible with water in all proportions, Alcohols such as boiling point: 82.26 ° C .; esters such as methyl acetate (solubility: 24% by weight, boiling point: 56.9 ° C.). These organic solvents may be used alone or as a mixture of two or more. Preferred as organic solvents are ketones and alcohols, more preferred are acetone and isopropyl alcohol, and most preferred is acetone.
[0062]
The amount of the organic solvent (S) used may be the particle size of the acrylic resin fine particles in the intended aqueous dispersion of acrylic resin particles or the particle size of the polyester resin fine particles in the aqueous polyester resin fine particle dispersion. As described above, in the first step, the self-water dispersible acrylic resin (P1) or polyester resin (P2) sufficiently absorbs the organic solvent (S) and swells to facilitate the dispersion in the form of fine particles. That the swelled body can be easily dispersed in the aqueous medium in the second step, the amount of the aqueous medium used to complete the dispersion can be suppressed, and the aqueous dispersion of acrylic resin fine particles and Since the content of the organic solvent (S) in the aqueous dispersion of the polyester resin fine particles is not increased and the production efficiency is improved, the self-water dispersible acrylic resin (P1) 5 to 300 parts by weight is preferable with respect dispersible polyester resin (P2) 100 parts by weight, more preferably 10 to 200 parts by weight, and most preferably 20 to 150 parts by weight.
[0063]
The amount of the aqueous medium used is 100 parts by weight of the total of the self-water-dispersible acrylic resin (P1) and the organic solvent (S1), or the total of the self-water-dispersible polyester resin (P2) and the organic solvent (S). 70 to 400 parts by weight, more preferably 100 to 250 parts by weight,
[0064]
As the aqueous medium used in the present invention, for example, a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2) can be used in an aqueous medium without using an emulsifier, a suspension stabilizer, or the like. In the case where a resin capable of being dispersed is used, water is preferable, and the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) can be used without using an emulsifier, a suspension stabilizer, or the like. When a resin capable of being dispersed in an aqueous medium by neutralization is used, water containing a neutralizing agent is preferable. In addition, these aqueous media may further contain an emulsifier, a suspension stabilizer, and the like, if necessary, but it is usually preferable not to contain them.
[0065]
When an acrylic resin or a polyester resin which can be dispersed in an aqueous medium by neutralization is used as the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2), In order to impart self-water dispersibility to the resin, in any step up to the second step of dispersing a swelled body obtained by swelling the acrylic resin or polyester resin with an organic solvent (S) in an aqueous medium, Neutralization with a neutralizing agent is performed. Among them, in the second step of dispersing the swelled body in an aqueous medium, it is preferable to neutralize using an aqueous medium containing a neutralizing agent.
[0066]
When the acrylic resin or polyester resin capable of being dispersed in an aqueous medium by the neutralization is an acid group-containing resin, examples of the neutralizing agent used for neutralizing the acid group include sodium hydroxide and water. Alkali compounds such as potassium oxide and lithium hydroxide; carbonates of alkali metals such as sodium, potassium and lithium; acetates of the alkali metals; aqueous ammonia; alkyls such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine Amines; alkanolamines such as diethanolamine; Among them, aqueous ammonia is preferable.
[0067]
Further, when the acrylic resin or polyester resin which can be dispersed in an aqueous medium by the neutralization is a basic group-containing resin, examples of the neutralizing agent used for neutralizing the basic group include formic acid. And organic acids such as acetic acid and propionic acid; and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.
[0068]
The amount of the neutralizing agent to be used is 0.9 to 5.0 times equivalent to the equivalent of the acid group in the acid group-containing resin or the equivalent of the basic group in the basic group-containing resin. The amount is preferably an amount, more preferably an amount equivalent to 1.0 to 3.0 times equivalent.
[0069]
The method for producing a swelled body in the first step of producing an aqueous dispersion of acrylic resin fine particles and the method for producing a swelling pair in the first step of producing an aqueous dispersion of polyester resin fine particles include, in particular, Although not limited, the swelled body can be obtained in a short time and the dispersion of the swelled body in the aqueous medium in the second step is also facilitated. Therefore, the particulate self-water-dispersible acrylic resin (P1 ) Or a particulate self-water dispersible polyester resin (P2), and is preferably produced by heating with the organic solvent (S), and further producing the swelled body under pressure. More preferred. At this time, the heating temperature of the self-water-dispersible acrylic resin (P1) and the organic solvent (S) and the heating temperature of the self-water-dispersible polyester-based resin (P2) and the organic solvent (S) are as follows. The boiling point of (S) or higher is preferred, the boiling point of the organic solvent (S) to 180 ° C is more preferred, and the boiling point of the organic solvent (S) + 10 ° C to 120 ° C is particularly preferred. The pressure in the system is preferably 0.1 to 2.0 MPa in terms of gauge pressure, more preferably 0.2 to 1.5 MPa in terms of gauge pressure, and still more preferably 0.3 to 1.0 in terms of gauge pressure. 0 MPa. As a method for pressurizing the inside of the system, for example, a method of evaporating the organic solvent (S) by heating to obtain the above-mentioned swollen body and pressurizing the inside of the system, or a method of introducing an inert gas into the system in advance and pre-pressurizing the system. After the pressure is applied, a method of heating and further pressurizing by evaporating the organic solvent (S) may be mentioned. The aqueous dispersion of acrylic resin fine particles having a narrow particle size distribution can be suppressed while the reflux and boiling of the organic solvent (S) can be suppressed. Preliminary pressurization is preferred, since an aqueous dispersion of the polymer or polyester resin fine particles can be obtained. The pre-pressurization is preferably 0.05 to 0.5 MPa.
[0070]
After the swelled body is obtained in the first step of producing an aqueous dispersion of acrylic resin fine particles or an aqueous dispersion of polyester resin fine particles, the initial aqueous dispersion is dispersed in the form of fine particles in the swelled body in the second step. The production method is not particularly limited. However, since the dispersion of the swelled body in an aqueous medium is facilitated, the first step is to heat the organic solvent (S) to a temperature equal to or higher than the boiling point of the organic solvent (S) under pressure. The swelled body obtained by the above is used to disperse the swelled body into fine particles in the aqueous medium by applying mechanical shearing force under pressure at a temperature not lower than the boiling point of the organic solvent (S) and not higher than 120 ° C. The body method is preferred. The temperature of the system at this time is preferably from the boiling point of the organic solvent (S) to 180 ° C., particularly preferably from the boiling point of the organic solvent (S) + 10 ° C. to 120 ° C. Further, the pressure of this system is preferably 0.1 to 2.0 MPa in gauge pressure, more preferably 0.2 to 1.5 MPa in gauge pressure, and still more preferably 0.3 to 1.0 MPa in gauge pressure. is there. When the preparation of the swelling body and the preparation of the dispersion are performed in the same container, the heating and pressurizing conditions of the system at the start of the preparation of the dispersion are the same as the temperature and pressure at the end of the preparation of the swelling body. Preferably, there is. The temperature of the aqueous medium used here is preferably not lower than the boiling point of the organic solvent (S) and not higher than 120 ° C., particularly preferably not lower than the boiling point of the organic solvent (S) and lower than 100 ° C. It is more preferable that the temperature be within the range of the temperature of the system at the start of the step -20 ° C to the temperature of the system at the start of the second step.
[0071]
Further, the temperature at the time of producing the swollen body in the first step and the temperature at the time of producing the initial aqueous dispersion in the second step are both the self-water-dispersible acrylic resin (P1) and the self-dispersible acrylic resin. The temperature is preferably lower than the melting point or softening point of the water-dispersible polyester resin (P2), and the glass transition temperature (Tg) of the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) is preferable. The temperature may be the following or lower, but is preferably a temperature higher than the boiling point of the organic solvent (S) and higher by 10 to 50 ° C. than the glass transition temperature (Tg). In addition, the temperature at the time of producing the swollen body in the first step and the temperature at the time of producing the initial aqueous dispersion in the second step may be the same or different.
[0072]
Examples of the method (1) for producing the aqueous dispersion of acrylic resin fine particles and the method for producing the aqueous dispersion (2) of polyester resin fine particles include, for example, the following methods (1) to (3). Can be
{Circle around (1)} In the first step, a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2) and an organic solvent (S) are charged into a closed container and heated, preferably under heat and pressure. After swelling the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) with an organic solvent (S) under stirring, a swelled body is produced. The obtained swollen body is dispersed in fine particles in an aqueous medium which may contain a neutralizing agent, preferably under heat and pressure, by mechanical shearing force such as stirring to form an initial aqueous dispersion. In three steps, the organic solvent (S) is removed from the obtained initial aqueous dispersion, whereby fine particles of the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) are dispersed in an aqueous medium. Minutes dispersed in A method of manufacturing the body.
[0073]
(2) After the swelled body is obtained in the same manner as in the first step of (1), as the second step, the obtained swelled body is continuously emulsified with an aqueous medium which may contain a neutralizing agent. The swelled body is dispersed in the form of fine particles in the aqueous medium by mechanical shearing force while being continuously supplied to a dispersing machine to form an initial aqueous dispersion, and then, as a third step, from the obtained initial aqueous dispersion, A method for producing a dispersion in which fine particles of the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) are dispersed in an aqueous medium by removing the organic solvent (S).
[0074]
(3) As the first step, self-water dispersible acrylic resin (P1) or self-water dispersible polyester resin (P2) melted by melt-kneading in an extruder or the like, or synthesized self-water dispersibility in a molten state. The organic solvent (S) is continuously supplied to the acrylic resin (P1) or the self-water-dispersible polyester resin (P2) by a method such as press-fitting, and the self-water-dispersible acrylic resin (P1) or A swelled body is produced by swelling the self-water-dispersible polyester resin (P2) with an organic solvent (S), and the obtained swelled body is used as the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester. After the temperature is lowered to a temperature lower than the melting point or softening point of the base resin (P2), as a second step, the obtained swelled body and an aqueous medium which may contain a neutralizing agent are continuously fed to a continuous emulsifying and dispersing machine. Machine while feeding By dispersing the swelling body into fine particles in the aqueous medium by a shearing force to form an initial aqueous dispersion, and then, as a third step, removing the organic solvent (S) from the obtained initial aqueous dispersion. A method for producing a dispersion in which fine particles of the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) are dispersed in an aqueous medium.
[0075]
Among these methods, the resin fine particle aqueous dispersion of the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) can be obtained relatively easily. The method of ▼ is preferred. The shape of the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2) used in the methods (1) and (2) can be made into a swollen body in a relatively short time. For example, a pellet having a particle diameter of 1 to 7 mm, a coarsely pulverized product passed through a screen having a pore diameter of 2 to 7 mm, a powder having an average particle diameter of 800 μm or less, and the like are mentioned.
[0076]
Hereinafter, more specific production examples of the method for producing the aqueous dispersion of acrylic resin fine particles and the aqueous dispersion of polyester resin fine particles by the methods (1) and (2) will be described.
First, a glass 2L autoclave with propeller blades was used, and particles obtained by pulverizing a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2) with the autoclave were mixed with an organic solvent. (S), and an inert gas is introduced to pre-pressurize the autoclave at 0.05 to 0.5 MPa. Then, the temperature is raised to the boiling point of the organic solvent (S) or higher under stirring at 10 to 300 rpm. After the inside of the autoclave is pressurized to 0.1 to 2.0 MPa (gauge pressure) by partially evaporating the solvent (S1), the autoclave is stirred at 50 to 700 rpm for 3 to 60 minutes, and the self-water dispersible acrylic resin ( P1) or a self-water dispersible polyester resin (P2) is swollen with an organic solvent to obtain a swollen body (first step).
[0077]
Examples of the inert gas used for the preliminary pressurization include a nitrogen gas, a helium gas, a neon gas, an argon gas and the like, and a nitrogen gas is preferable.
[0078]
The swelled body obtained in this step is composed of a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2) that has absorbed an organic solvent (S), and a self-water-dispersible acrylic resin (P2). P1) or a mixture with the organic solvent (S) remaining without being absorbed by the self-water dispersible polyester resin (P2). In addition, for example, in a system of a polyester resin and isopropyl alcohol, when the stirring speed is reduced to about 50 rpm, it is observed that isopropyl alcohol separates from the resin phase to form two phases, but this may be used.
[0079]
After the swelled body is obtained in this manner, in the method (1), an aqueous medium, for example, water or ammonia water, which has been heated in advance while stirring at 300 to 1500 rpm, is injected under pressure over 2 to 30 minutes. Then, phase inversion emulsification is performed to obtain an initial aqueous dispersion in which the swelled body is dispersed in fine particles (second step). At this time, the organic solvent (S1) in the swelled body has locally boiled and refluxed, and has an affinity for the self-water-dispersible acrylic resin (P1) and the self-water-dispersible polyester resin (P2). It is considered that molecules of the low organic solvent (S) easily separate from the self-water-dispersible acrylic resin (P1) and the self-water-dispersible polyester resin (P2) and form an environment that facilitates phase inversion emulsification. .
[0080]
In the method (2), after obtaining the swelled body, a continuous emulsifying and dispersing machine, for example, a ring-shaped stator having a slit and a ring-shaped rotating member having a slit disclosed in Japanese Patent Application Laid-Open No. 9-311502. The swelled body is continuously dispersed in the form of fine particles in an aqueous medium by using a high-speed rotation type continuous emulsifying / dispersing machine or the like in which the particles are coaxially provided (second step). In this case, the swollen body and the aqueous medium may be fed to a continuous emulsifying and dispersing machine under predetermined temperature and pressure conditions, and the rotor may be rotated at 300 to 10,000 rpm.
[0081]
After obtaining a dispersion in which the swelling body is dispersed in the form of fine particles, the organic solvent (S) is removed from the obtained dispersion to form the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester. A dispersion in which the fine particles of the system resin (P2) are dispersed in an aqueous medium is obtained (third step). Examples of the method of removing the organic solvent (S) include a method of spraying into a decompression chamber, a method of forming a thin film on the inner surface of a desolvation can wall, and a method of passing through a desolvation can containing a filler for solvent absorption. No. As an example of a method for removing the organic solvent (S), a removal method using a rotary evaporator will be described below.
Sample volume: 500ml
Container: 2L eggplant type flask
Rotation speed: 60 rpm
Bath temperature; 47 ° C
Decompression degree: Increase the decompression degree from 13.3 KPa to 1.33 KPa over 20 minutes, and then remove the solvent at 1.33 KPa for 10 minutes.
[0082]
In the method (1) for producing an aqueous dispersion of acrylic resin fine particles and the method (2) for producing an aqueous dispersion of polyester resin fine particles used in the present invention, by changing the production conditions in various ways, the aqueous dispersion of acrylic resin fine particles and the polyester resin can be obtained. The average particle size of the resin fine particles in the fine particle aqueous dispersion can be freely controlled within a range of about 0.01 to 50 μm.
[0083]
In the method (1) for producing the aqueous dispersion of acrylic resin fine particles and the method (2) for producing aqueous dispersion of polyester resin fine particles, the resin fine particles and self-water of the self-water-dispersible acrylic resin (P1) in the obtained dispersion are obtained. In order to control the average particle size of the resin fine particles of the dispersible acrylic resin (P1) to be small, for example, the following means may be employed.
{Circle around (1)} Increase the hydrophilic segment concentration such as the concentration of acid groups or neutralized acid groups in the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2).
{Circle around (2)} When an acrylic resin or a polyester resin which can be dispersed in an aqueous medium by neutralization is used as the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2), Increase the amount of neutralizer.
{Circle around (3)} The amount of the organic solvent (S) used is increased relative to the self-water dispersible acrylic resin (P1) and the self-water dispersible polyester resin (P2).
{Circle around (4)} Increase the temperature during dispersion production.
{Circle around (5)} Increase the stirring speed during dispersion production.
[0084]
Conversely, in order to increase the average particle size of the resin fine particles in the obtained dispersion, these conditions may be reversed. In addition, together with the self-water-dispersible acrylic resin (P1), the self-water-dispersible polyester resin, and the organic solvent (S), for example, an additive such as a colorant (A), a magnetic powder, a wax, and a charge control agent is used. Also, the average particle size of the resin fine particles in the dispersion increases.
[0085]
The acrylic resin fine particles contained in the aqueous acrylic resin fine particle dispersion (I) and the polyester resin fine particles contained in the aqueous polyester resin fine particle dispersion (II) used in the present invention are a part of the acrylic resin fine particles. It is necessary that all and / or part or all of the polyester resin fine particles be colored. It is sufficient that the coloring is performed to such an extent that it can be used as an electrophotographic toner.For example, a part or all of the acrylic resin fine particles are colored, and the polyester resin fine particles need not be colored. All or part of the polyester resin fine particles may not be colored, and some or all of the polyester resin fine particles may be colored, or some or all of the acrylic resin fine particles and some or all of the polyester resin fine particles may be colored. However, it is preferable to use particles obtained by partially or entirely coloring the acrylic resin fine particles as the colored particles. In order to make the acrylic resin fine particles or the polyester resin fine particles into colored particles, for example, in the production method (1) or the production method (2), the colorant (A) is contained in the acrylic resin (P1) or the polyester resin (P2). ) May be used.
[0086]
Examples of the coloring agent (A) include carbon black, red iron oxide, navy blue, titanium oxide, nigrosine dye (CI No. 50415B), aniline blue (CI No. 50405), and calco oil blue (C). No. azoic Blue 3), chrome yellow (CI No. 14090), ultramarine blue (CI. No. 77103), Dupont oil red (CI. No. 26105, quinoline yellow (C. No. 47005), methylene blue chloride (CI No. 52015), phthalocyanine blue (CI No. 74160), malachite green oxalate (CI No. 74160), malachite green oxalate (C.I. No. 42000), lamp black (C.I.N. o. 77266) and Rose Bengal (CI No. 45435).
[0087]
The content of the coloring agent (A) is in the range of 1 to 20 parts by weight based on 100 parts by weight of the self-water dispersible acrylic resin (P1) and the self-water dispersible polyester resin (P2). Is preferred. These colorants can be used alone or in combination of two or more.
[0088]
In order to prepare the colored resin, for example, a self-water-dispersible acrylic resin (P1) or a self-water-dispersible polyester resin (P2) and a colorant (A) are mixed using a pressure kneader or the like. Just knead it.
[0089]
The aqueous dispersion of acrylic resin fine particles (1) and the aqueous dispersion of polyester resin fine particles (2) obtained by a method other than the production method (1) and the production method (2) are described in, for example, JP-A-9-311502. After the self-water dispersible resin is heated to form a resin melt, the resin melt can be dispersed in an aqueous medium.
[0090]
The aqueous dispersion of acrylic resin fine particles (I) used in the present invention contains associated fine particles obtained by preparing an aqueous dispersion of acrylic resin fine particles and then associating the acrylic resin fine particles in the aqueous dispersion. Preferably, an aqueous dispersion is used. The aqueous dispersion containing the associated acrylic resin fine particles can be prepared, for example, by performing association described below. The aqueous dispersion containing the associated acrylic resin fine particles may be, for example, an acrylic resin fine particle obtained by associating only the acrylic resin fine particles in the aqueous acrylic resin fine particle dispersion, or an acrylic resin fine particle. An aqueous dispersion of resin fine particles and an aqueous dispersion of colorant (A) or an aqueous dispersion of colored resin particles are mixed to form a mixed dispersion, and the acrylic resin fine particles and colorant particles and / or colored in the dispersion are mixed. An aqueous dispersion containing associated fine particles obtained by associating with resin fine particles may be used.
[0091]
When producing the aqueous dispersion containing the associative fine particles, the self-water dispersible acrylic resin (P1) preferably has a glass transition temperature (Tg) to a glass transition temperature + 50 ° C. at the time of performing the association described below. It is more preferable to heat under a pressure of 0.1 to 1.0 MPa (gauge pressure).
[0092]
The aqueous dispersion of the colorant (A) or the aqueous dispersion of the separately prepared colored resin fine particles may be any as long as the colorant (A) or the colored resin fine particles are dispersed in the form of fine particles in an aqueous medium. Although not particularly limited, for example, an aqueous dispersion in which a colorant is emulsified using a surfactant or the like, an aqueous dispersion in which a colorant (A) and a resin are heated and melted, and then dispersed in water containing a dispersant. And the like. The concentration of the colorant (A) in these aqueous dispersions is preferably 5 to 10 times the colorant concentration of the target toner.
[0093]
The average particle size of the acrylic resin particles in the aqueous acrylic resin particle dispersion (1) is preferably from 1 to 10 μm, more preferably from 2 to 8 μm. After preparing an aqueous dispersion of acrylic resin fine particles as the aqueous dispersion of acrylic resin fine particles (1), use an aqueous dispersion containing associated fine particles obtained by associating the acrylic resin fine particles in the aqueous dispersion. It is preferable to use an aqueous dispersion obtained by producing an aqueous medium containing acrylic resin fine particles having an average particle diameter of 0.05 to 0.8 μm and then associating the acrylic resin fine particles in the dispersion, It is more preferable to use an aqueous dispersion obtained by producing an aqueous medium containing acrylic resin fine particles having an average particle diameter of 0.1 to 0.4 μm and then associating the acrylic resin fine particles in the dispersion.
[0094]
The average particle size of the polyester resin particles in the aqueous dispersion of polyester resin particles is preferably from 0.03 to 1.0 μm, more preferably from 0.1 to 0.4 μm. Further, it is preferable that the polyester layer is associated with the shell layer so that the shell layer has a thickness of 0.2 to 4 μm, and it is more preferable that the shell layer is associated with a thickness of 0.3 to 3 μm.
[0095]
As a preferable production method of the production method of the electrophotographic toner of the present invention, for example,
Step 1. The aqueous dispersion of acrylic resin fine particles (I) and the aqueous dispersion of polyester resin fine particles (I) were obtained by the above-described method (1) for producing an aqueous dispersion of acrylic resin fine particles and method (2) for producing an aqueous dispersion of polyester resin fine particles, respectively. The process of manufacturing the
Step 2. The acrylic resin fine particle aqueous dispersion (II) obtained in the above step 1 and the polyester resin fine particle aqueous dispersion (II) are mixed, and the acrylic resin fine particles are used as core particles to form polyester resin fine particles on the surface of the core particles. Forming a shell layer on the surface of the core particles to form an electrophotographic toner having a core-shell structure,
Step 3. Recovering the electrophotographic toner from the dispersion containing the electrophotographic toner obtained in the step 2, washing with ion-exchanged water or the like as necessary, and then drying;
And the like.
[0096]
Here, the “meeting” of the step 2 will be described. In general, resin fine particles in an aqueous dispersion of resin fine particles as obtained by the above-described production method are stably present in an aqueous medium without aggregating due to electrostatic repulsion derived from the surface charge, but at the same time, van der Waals An attractive force acts between the resin particles due to the force. Therefore, if the surface charge of the resin particles is appropriately reduced by some action, the attractive force becomes larger than the electrostatic repulsion, and the resin fine particles start to aggregate to form a dispersion of the resin particles grown to a larger particle diameter. This is called a meeting in the present invention. The temperature of this association is the lower of the glass transition temperature of the self-water-dispersible acrylic resin (P1) and the glass transition temperature of the self-water-dispersible polyester resin (P2)-the temperature of the glass transition temperature + 50 ° C. Is preferable, and a temperature of glass transition temperature to glass transition temperature + 30 ° C. is more preferable. Further, it is preferable to heat under a pressure of 0.1 to 1.0 MPa (gauge pressure). The time required for the association is usually 2 to 12 hours, preferably 4 to 10 hours. The association is preferably performed under gentle stirring, for example, under stirring at a rotation speed of about 10 to 100 rpm with the anchor blade.
[0097]
Examples of a method for reducing or losing the surface charge of the resin particles include a method of adding an acid such as dilute hydrochloric acid, dilute sulfuric acid, acetic acid, formic acid, or carbonic acid as a so-called reverse neutralizer. At this time, metal salts such as sodium chloride, potassium chloride, aluminum sulfate, ferric sulfate, and calcium chloride, and metal complexes such as calcium, aluminum, magnesium, and iron may be added as needed. . In addition, a surfactant may be used as necessary for the purpose of dispersing a colorant or the like in the association step or controlling the progress of the association.
[0098]
Examples of the surfactant include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, and sodium alkyldiphenyldisulfonate; cationic surfactants such as trimethylstearylammonium chloride; and alkylphenoxypoly (ethyleneoxy). Examples include nonionic surfactants such as ethanol, which can be appropriately selected and used.
[0099]
The mixing ratio [(I) / (II)] of the aqueous dispersion of acrylic resin fine particles (I) and the aqueous dispersion of polyester resin fine particles (II) in the above step 2 is represented by the weight ratio of solids in the aqueous dispersion. 1-5 are preferable, and 1.5-4 are more preferable.
[0100]
Examples of a method for collecting the particles having a core-shell structure obtained in the step 3 include filtration and the like. The drying may be left at room temperature for natural drying, or may be performed using a dryer at a temperature that does not affect the performance of the electrophotographic toner, for example, about 50 ° C.
[0101]
In the electrophotographic toner of the present invention, additives such as magnetic powder and wax may be used as needed. These are preferably kneaded in advance with the self-water-dispersible acrylic resin (P1) or the self-water-dispersible polyester resin (P2). These additives may be used alone or in combination of two or more.
[0102]
Examples of the magnetic powder include simple metals such as magnetite, ferrite, cobalt, iron and nickel, and alloys thereof.
[0103]
Waxes can be used as offset inhibitors for electrophotographic toners. Examples of the wax include, for example, synthetic waxes such as polypropylene wax, polyethylene wax, Fischer-Tropsch wax, stearylbisamide, and oxidized wax, and natural waxes such as carnauba wax and rice wax.
[0104]
When a charge control agent is used, a toner having good charge characteristics can be obtained. As the charge control agent, for example, positive charge of nigrosine-based electron donating dye, naphthenic acid, metal salt of higher fatty acid, alkoxylated amine, quaternary ammonium salt, alkylamide, metal complex, pigment, fluorinated activator, etc. Control agents, electron-accepting organic complexes, chlorinated paraffins, chlorinated polyesters, and negative charge control agents such as sulfonylamine of copper phthalocyanine, and the like.
[0105]
When using charge control agents, these charge control agents are dissolved in an organic solvent (S) or an organic solvent (S) in advance, and then these are added to a self-water dispersible acrylic resin (P1) or a self-water dispersing agent. It is good to add to the dispersible polyester resin (P2).
[0106]
In the present invention, the ratio of nonvolatile components in the aqueous dispersion of self-water-dispersible acrylic resin fine particles or the aqueous dispersion of self-water-dispersible polyester resin fine particles is determined by placing the aqueous dispersion in a vacuum dryer at 100 ° C. The dispersion was allowed to stand at 1 KPa for 3 hours, and was determined from the change in weight of the aqueous dispersion. The particle size of the fine particles is 0.001-2 μm, the particle size is measured using MICROTRAC UPA150 manufactured by Leeds + Northrup, and the particle size of 1-40 μm is measured by Beckman Coulter Multisizer. TM 3 was used.
[0107]
The amount of the residual solvent in the aqueous dispersion was determined by gas chromatography under the following conditions.
Measuring machine: Shimadzu GC-17A
Column; ULBON HR-20M (PPG)
Column temperature: 80 to 150 ° C
Heating rate: 10 ° C / min
[0108]
【Example】
Hereinafter, the present invention will be specifically described with reference to Synthesis Examples, Examples, and Comparative Examples. Parts and percentages in the examples are on a weight basis unless otherwise specified, except for the degree of saponification.
[0109]
Synthesis Example 1 [Synthesis of self-water dispersible acrylic resin (P1)]
In a 5 L stainless steel autoclave equipped with a plate valve and a turbine blade, 2,000 parts by volume of water, 50 parts by volume of a 1% aqueous solution of polyvinyl alcohol having a degree of saponification of 85% and a degree of polymerization of 2,000, and 560 parts of styrene , 28 parts of methacrylic acid, 350 parts of methyl methacrylate, 62 parts of n-butyl acrylate and 5 parts of benzoyl peroxide, and the mixture was heated to 120 ° C. with stirring at 700 rpm and polymerized for 2 hours. Next, after the temperature was lowered to 90 ° C., a horizontal condenser was attached to the autoclave, and distillation was performed at normal pressure for 3 hours in a state where the gas phase of the autoclave was replaced with nitrogen gas. The content was taken out of the autoclave, the content was drained with a nylon net, and then dried in a fluidized drier to obtain an acid value of 17.2 mgKOH / g, a softening point by the ring and ball method of 130 ° C., and a differential scanning calorimeter ( A polymer having a glass transition temperature (Tg) of 64 ° C. by DSC, a number average molecular weight (Mn) of 11,200, and a weight average molecular weight (Mw) of 131,000 by gel permeation chromatography (GPC) is obtained. Was. This is designated as styrene-acrylic resin 1.
[0110]
Synthesis Example 2 [Synthesis of self-water-dispersible polyester resin (P2)]
In a 3L stainless steel flask equipped with a stirrer, a nitrogen gas inlet, a thermometer and a rectification tower, 326 parts of ethylene glycol and 548 parts of neopentyl glycol were charged, the temperature was raised to 140 ° C, and 1.0 part of dibutyltin oxide was charged. Then, after confirming that the inside of the system could be uniformly stirred, 1,628 parts of terephthalic acid was gradually added. Next, the temperature was increased to 195 ° C. over 3 hours while stirring was continued, and then increased to 245 ° C. over 10 hours. Further, the reaction was carried out at the same temperature for 8 hours, and after confirming that the acid value became 8 or less, the temperature was lowered to 200 ° C. After adding 56 parts of hexahydrophthalic anhydride and reacting for 1 hour, the acid value was 17.6, the softening point was 113 ° C. by the ring and ball method, the Tg was 62 ° C. by the DSC, the Mn was 4,700, and the Mw was the GPC method. A polyester resin of 10,700 was obtained. This is designated as polyester resin 1.
[0111]
Synthesis Example 3 (same as above)
In a 3L stainless steel flask equipped with a stirrer, a nitrogen gas inlet, a thermometer and a rectification tower, 324 parts of ethylene glycol, 545 parts of neopentyl glycol and 112 parts of trimethylolpropane were charged, and the temperature was raised to 140 ° C. Then, 2.4 parts of dibutyltin oxide were added, and after confirming that the inside of the system could be uniformly stirred, 1,808 parts of terephthalic acid was gradually added. Next, the temperature was raised to 195 ° C. over 3 hours while continuing the stirring, and then raised to 240 ° C. over 10 hours. The mixture was further reacted at the same temperature for 5 hours. When the acid value reached 10.0, the temperature was lowered to 220 ° C., and then 100 parts of dodecenyl succinic anhydride was added, and dodecenyl succinic anhydride and polyester resin were added at the same temperature for 30 minutes. Was subjected to a ring-opening addition reaction with a hydroxyl group terminal, an acid value of 16.0, a softening point of 113 ° C. by a ring and ball method, a Tg of 58 ° C. by a DSC method, a Mn of 3,500 by a GPC method, and a Mw of 20,000. Was obtained. This is abbreviated as polyester resin 2.
[0112]
Synthesis Example 4 (Synthesis of polyester resin for comparison)
In a 3 L stainless steel flask equipped with a stirrer, a nitrogen gas inlet, a thermometer, and a rectification tower, 321 parts of ethylene glycol, 358 parts of neopentyl glycol, and 84 parts of trimethylolpropane were charged, and the temperature was raised to 140 ° C. Then, 2.1 parts of dibutyltin oxide was added, and after confirming that the inside of the system could be uniformly stirred, 790 parts of terephthalic acid and 553 parts of isophthalic acid were gradually added. Next, the temperature was raised to 195 ° C. while stirring was continued, and then the temperature was raised to 240 ° C. over 10 hours. Further, the condensation reaction was continued at the same temperature for 8 hours. The acid value was 13.6, the softening point by the ring and ball method was 114 ° C., the Tg by the DSC method was 60 ° C., the Mw by the GPC method was 18,800, and the Mn was 3,800. A certain polyester resin was obtained. This is abbreviated as comparative polyester resin 1 '.
[0113]
Reference Example 1 [Preparation of Self-Water-Dispersible Acrylic Resin Fine Particle Dispersion (I)]
The determination of the solubility of the styrene acrylic resin 1 in acetone under the condition that the concentration of the resin is 10% is described in 7.2.1-1.7.2.1.3 of ASTM D3132-84 (Reapproved 1996). When the determination was performed using the determination method, it was “solution on the boundary line” in the determination category of the determination method.
[0114]
149 parts of styrene acrylic resin, 30 parts of legal 330 (carbon black manufactured by Cabot Corporation), 9 parts of Biscol 550P (polypropylene wax manufactured by Sanyo Chemical Co., Ltd.) and Bontron E-80 (manufactured by Orient Chemical Industry Co., Ltd.) Was mixed with a Henschel mixer, and kneaded with a pressure kneader to prepare a kneaded product. 100 parts of the coarsely pulverized product of this kneaded material and 100 parts of acetone are charged into a 2 L glass autoclave with a propeller blade, pre-pressurized to 0.2 MPa with nitrogen gas, and the inside of the system is rotated at 90 rpm while rotating the propeller blade at 100 rpm. Heated to ° C. At this time, the pressure in the autoclave had increased to 0.45 MPa. After the temperature in the system reached 90 ° C., the rotational speed of the propeller blade was increased to 900 rpm, and acetone was absorbed into the coarsely pulverized product while stirring for 10 minutes to obtain a translucent paste-like swollen body. Thereafter, 400 parts of an aqueous medium preheated to 90 ° C., consisting of 1.5 parts of 25% ammonia water and 398.5 parts of ion-exchanged water, are injected under pressure over 5 minutes to disperse the swelled body in water into fine particles. A milky initial aqueous dispersion was obtained. The neutralization ratio [the ratio of the number of moles of ammonia in the aqueous medium (Ma) to the number of moles of carboxyl groups in the styrene acrylic resin 1 (Mc) [(Ma) / (Mc)] expressed as a percentage. . The same applies hereinafter. ] Was 150 mol%. The obtained initial aqueous dispersion was cooled with water to 30 ° C. while stirring was taken out, and acetone was distilled off at 47 ° C. for 30 minutes using a rotary evaporator to obtain an aqueous acrylic resin particle dispersion 1. . This dispersion had a nonvolatile content of 25%, a volume average particle size of 0.28 μm, a particle size distribution of 2.8, and a residual solvent amount of 240 ppm.
[0115]
Reference Example 2 (same as above)
100 parts of coarsely pulverized styrene acrylic resin 1 and 100 parts of acetone are charged into a 2 L glass autoclave with a propeller blade, pre-pressurized to 0.2 MPa with nitrogen gas, and the system is rotated while rotating the propeller blade at 100 rpm. Heated to 90 ° C. At this time, the pressure in the autoclave had increased to 0.45 MPa. After the temperature in the system reached 90 ° C., the rotational speed of the propeller blade was increased to 900 rpm, and acetone was absorbed into the coarsely pulverized product while stirring for 10 minutes to obtain a translucent paste-like swollen body. Thereafter, 400 parts of an aqueous medium preheated to 90 ° C., consisting of 3.1 parts of 25% ammonia water and 396.9 parts of ion-exchanged water, are injected under pressure over 5 minutes, and the swelled body is dispersed in water into fine particles. A milky initial aqueous dispersion was obtained. The neutralization ratio at this time was 150 mol%. The obtained initial aqueous dispersion was cooled with water to 30 ° C. while stirring was taken out, and acetone was distilled off at 47 ° C. for 30 minutes using a rotary evaporator to obtain an aqueous acrylic resin particle dispersion 2. . This dispersion had a nonvolatile content of 25%, a volume average particle size of 0.25 μm, a particle size distribution of 2.3, and a residual solvent amount of 290 ppm.
[0116]
Reference Example 3 (same as above)
125 parts of styrene acrylic resin, 54 parts of legal 330, 9 parts of Biscol 550P and 12 parts of Bontron E-80 were mixed, mixed with a Henschel mixer, and kneaded with a pressure kneader to prepare a kneaded material. . 100 parts of the coarsely pulverized product of this kneaded material and 100 parts of acetone are charged into a 2 L glass autoclave with a propeller blade, pre-pressurized to 0.2 MPa with nitrogen gas, and the inside of the system is rotated at 90 rpm while rotating the propeller blade at 100 rpm. Heated to ° C. At this time, the pressure in the autoclave had increased to 0.45 MPa. After the temperature in the system reached 90 ° C., the rotational speed of the propeller blade was increased to 900 rpm, and acetone was absorbed into the coarsely pulverized product while stirring for 10 minutes to obtain a translucent paste-like swollen body. Thereafter, 400 parts of an aqueous medium preheated to 90 ° C., consisting of 0.8 parts of 25% aqueous ammonia and 399.2 parts of ion-exchanged water, is injected under pressure over 5 minutes to disperse the swelled material in water into fine particles. A milky initial aqueous dispersion was obtained. The neutralization ratio at this time was 150 mol%. The obtained initial aqueous dispersion was cooled with water to 30 ° C. while stirring was taken out, and acetone was distilled off at 47 ° C. for 30 minutes using a rotary evaporator to obtain a styrene acrylic resin fine particle aqueous dispersion 3. Was. This dispersion had a nonvolatile content of 25%, a volume average particle size of 0.27 μm, a particle size distribution of 2.5, and a residual solvent amount of 260 ppm.
[0117]
Reference Example 4 [Preparation of polyester resin fine particle dispersion (II)]
The determination of the solubility of the polyester resin 1 in acetone under the condition that the concentration of the resin is 10% is determined in accordance with 7.2.1.1 to 7.2.1.3 of ASTM D3132-84 (Reapproved 1996). As a result of using the method, it was "solution on the boundary line" in the judgment category of the judgment method.
[0118]
100 parts of the coarsely crushed polyester resin 1 and 100 parts of acetone are charged into a 2 L glass autoclave equipped with a propeller blade, pre-pressurized to 0.2 MPa with nitrogen gas, and the inside of the system is rotated at 90 rpm while rotating the propeller blade at 100 rpm. Heated to ° C. At this time, the pressure in the autoclave had increased to 0.45 MPa. After the temperature in the system reached 90 ° C., the rotational speed of the propeller blade was increased to 900 rpm, and acetone was absorbed into the coarsely pulverized product while stirring for 10 minutes to obtain a translucent paste-like swollen body. Thereafter, 400 parts of an aqueous medium preheated to 90 ° C., consisting of 3.2 parts of 25% aqueous ammonia and 396.8 parts of ion-exchanged water, are injected under pressure over 5 minutes to disperse the swollen body in water into fine particles. A milky initial aqueous dispersion was obtained. The neutralization ratio at this time was 150 mol%. The obtained initial aqueous dispersion was cooled with water to 30 ° C. while stirring was taken out, and acetone was distilled off at 47 ° C. for 30 minutes using a rotary evaporator to obtain an aqueous dispersion 1 of polyester resin fine particles. . This dispersion had a nonvolatile content of 25%, a volume average particle size of 0.14 μm, a particle size distribution of 2.4, and a residual solvent amount of 270 ppm.
[0119]
Reference Example 5 (same as above)
The determination of the solubility of the polyester resin 2 in acetone under the condition that the concentration of the resin is 10% was determined according to ASTM D3132-84 (Reapproved 1996) in 7.2.1.1 to 7.2.1.3. As a result of using the method, it was "solution on the boundary line" in the judgment category of the judgment method.
[0120]
Aqueous medium preliminarily heated to 90 ° C. consisting of 2.9 parts of 25% ammonia water and 397.1 parts of ion-exchanged water using 100 parts of coarsely ground polyester resin 2 instead of 100 parts of coarsely ground polyester resin 1 A polyester resin fine particle aqueous dispersion 2 was obtained in the same manner as in Reference Example 4, except that 400 parts were used. This dispersion had a nonvolatile content of 25%, a volume average particle size of 0.23 μm, a particle size distribution of 1.7, and a residual solvent amount of 260 ppm.
[0121]
Reference Example 6 (Preparation of Acrylic Resin Fine Particle Aqueous Dispersion for Comparative Control)
A mixture of 320 parts of styrene, 80 parts of n-butyl acrylate, 8 parts of acrylic acid, 12 parts of dodecanethiol and 4 parts of carbon tetrabromide was dissolved and mixed with Nonipol 400 (a nonionic surfactant manufactured by Sanyo Chemical Co., Ltd.). 6 parts and 10 parts of Neogen SC (an anionic surfactant manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were dissolved and dispersed in 550 parts of ion-exchanged water in a flask and emulsified in a flask. 50 parts of ion-exchanged water in which was dissolved was added, and the atmosphere was replaced with nitrogen. Then, while stirring the inside of the flask, the content was heated in an oil bath until the temperature reached 70 ° C., and emulsion polymerization was continued for 5 hours to prepare a dispersion 1 ′ of acrylic resin fine particles for comparison. This dispersion had a nonvolatile content of 37%, a volume average particle size of 0.35 μm, and a particle size distribution of 3.8. Further, Mw of the obtained resin was 22,000.
[0122]
Reference Example 7 (Comparative Example Preparation of Polyester Resin Fine Particle Aqueous Dispersion)
1′50 parts of a polyester resin and 100 parts of methylene chloride were mixed and dissolved using a ball mill (manufactured by Yamato Scientific Co., Ltd.), and the mixture was ion-exchanged containing 10% of 10% polyethylene glycol and 0.7% of Neogen SC. The resultant was dispersed in 150 parts of water and dispersed by applying a strong shearing force using a homogenizer, heated to 60 ° C. and maintained for 1 hour to prepare an aqueous dispersion 1 ′ of comparative polyester resin fine particles. This dispersion had a nonvolatile content of 31%, a volume average particle size of 0.85 μm, and a particle size distribution of 4.1.
[0123]
Reference Example 8 (Preparation of Comparative Control Colored Dispersion)
100 parts of Regal 330, 5 parts of Nonipol 400 (a nonionic surfactant manufactured by Sanyo Chemical Co., Ltd.) and 200 parts of ion-exchanged water are mixed and dissolved, and a rotor-stator type homogenizer (Ultra Turrax manufactured by IKA) is mixed. For 10 minutes, and further dispersed for 5 minutes with an ultrasonic homogenizer to prepare a colorant dispersion 1 in which a colorant having an average particle size of 0.15 μm and a particle size distribution of 2.4 is dispersed.
[0124]
Example 1
Into a glass 2L autoclave equipped with anchor wings, condenser, nitrogen gas inlet and thermometer, 100 parts of styrene acrylic resin fine particle aqueous dispersion 1 and 10 parts of acetone were charged, and anchor wings were formed at room temperature at 50 rpm. While rotating, a mixture of 20 parts of 1% diluted hydrochloric acid, 20 parts of 1% aqueous solution of calcium chloride, and 20 parts of 1% aqueous solution of sodium dodecylbenzenesulfonate was added dropwise over 30 minutes. Thereafter, the temperature in the system is raised to 80 ° C. in 1 hour, and the mixture is further associated at the same temperature for 5 hours, and contains styrene acrylic resin fine particles having an average particle diameter of 4.0 μm in which colored resin fine particles are associated. An aqueous dispersion of styrene acrylic resin fine particles was obtained. To this dispersion was added 152 parts of an aqueous dispersion of polyester resin fine particles, and a mixture of 10 parts of 1% diluted hydrochloric acid, 10 parts of 1% calcium chloride aqueous solution and 10 parts of 1% aqueous sodium dodecylbenzenesulfonate was further added for 30 minutes. It was dropped when necessary. Thereafter, the temperature in the system was raised to 80 ° C. in one hour, and the assembly was further performed at the same temperature for 5 hours. The associated styrene acrylic resin fine particles were used as core particles to form polyester resin fine particles on the surface of the core particles. Were obtained to obtain fine resin particles having a core-shell structure having a shell layer obtained. Acetone was distilled off at 47 ° C. for 60 minutes using a rotary evaporator, and the dispersion was washed three times with ion-exchanged water, separated from water and dried to obtain fine resin particles. When the residual solvent amount, volume average particle size and particle size distribution of the resin particles were measured, the residual solvent amount was 20 ppm (detection limit) or less, the volume average particle size was 5.7 μm, the particle size distribution was 1.6, and the shell The thickness of the layer was 0.85 μm. Toner 1 was prepared by mixing these resin fine particles and 0.3% of Aerosil R-974 (silica manufactured by Nippon Aerosil) with respect to the weight of the resin fine particles using a Henschel mixer. The image quality obtained using this toner was evaluated by the method described below. The results are shown in Table 1.
[0125]
Image quality evaluation {circle around (1)}: 1 dot line when toner 1 was loaded into a commercially available full-color copying machine and an image of 1200 dpi was formed using an A4 color (No. 5-1) issued by the Electrophotographic Society of Japan as a test chart. Was evaluated according to the following judgment.
A: A complete 1 dot line is formed.
:: An almost complete 1 dot line is formed.
×: Incomplete 1 dot line is formed.
XX: 1 dot line is not formed.
[0126]
Image quality evaluation {circle around (2)}: The color gloss (gloss) of the image used for the above image quality evaluation was visually observed and evaluated according to the following judgment.
A: There is a clear color and gloss (gloss).
:: There is color luster (gloss).
X: No color luster (gloss).
[0127]
Example 2
Resin particles were prepared in the same manner as in Example 1, except that 52 parts of the aqueous polyester resin particle dispersion was used instead of 52 parts of the aqueous polyester resin particle dispersion. When the residual solvent amount, volume average particle size and particle size distribution of the resin particles were measured, the residual solvent amount was 20 ppm (detection limit) or less, the volume average particle size was 6.0 μm, the particle size distribution was 1.8, The thickness of the layer was 4.0 μm, and the thickness of the shell layer was 1.0 μm. Toner 2 was prepared by mixing the resin fine particles and 0.3% of Aerosil R-974 based on the weight of the resin fine particles with a Henschel mixer. Evaluation of the image quality obtained using this toner was performed in the same manner as in Example 1, and the results are shown in Table 1.
[0128]
Example 3
A 2 L autoclave made of glass equipped with anchor wings, a condenser, a nitrogen gas inlet, and a thermometer was equipped with 240 parts of an aqueous dispersion of styrene acrylic resin fine particles, 360 parts of an aqueous dispersion of styrene acrylic resin fine particles, and acetone. 10 parts were charged and a mixture of 20 parts of 1% diluted hydrochloric acid, 20 parts of 1% aqueous solution of calcium chloride and 20 parts of 1% aqueous solution of sodium dodecylbenzenesulfonate was dropped over 30 minutes while rotating the anchor blade at 50 rpm at room temperature. . Thereafter, the temperature in the system is raised to 80 ° C. in 1 hour, and the mixture is further associated at the same temperature for 5 hours, and contains styrene acrylic resin fine particles having an average particle diameter of 4.1 μm in which colored resin fine particles are associated. An aqueous dispersion of styrene acrylic resin fine particles was obtained. To this dispersion was added 52 parts of an aqueous dispersion of polyester resin fine particles, and a mixture of 10 parts of 1% diluted hydrochloric acid, 10 parts of 1% aqueous calcium chloride, and 10 parts of 1% aqueous sodium dodecylbenzenesulfonate was further added for 30 minutes. It was dropped when necessary. Thereafter, the temperature in the system was raised to 80 ° C. in one hour, and the association was carried out at the same temperature for another 5 hours. The shell obtained by associating the polyester resin fine particles with the surface of the core particles of the styrene acrylic resin fine particles was obtained. Resin fine particles having a core-shell structure having a layer were obtained. Acetone was distilled off at 47 ° C. for 60 minutes using a rotary evaporator, and the dispersion was washed three times with ion-exchanged water, separated from water and dried to obtain fine resin particles. When the residual solvent amount, volume average particle size and particle size distribution of the resin particles were measured, the residual solvent amount was 20 ppm (detection limit) or less, the volume average particle size was 6.0 μm, the particle size distribution was 1.8, and the shell The thickness of the layer was 0.95 μm. Toner 3 was prepared by mixing the resin fine particles and 0.3% of Aerosil R-974 based on the weight of the resin fine particles with a Henschel mixer. The image quality obtained using this toner was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0129]
Comparative Example 1
In a glass 2L autoclave equipped with anchor blades, a condenser, a nitrogen gas inlet, and a thermometer, 82 parts of a dispersion 1 'of acrylic resin fine particles for comparison and 16 parts of a colored dispersion 16 and sanizole were added. B50 (2 parts of a cationic surfactant manufactured by Kao Corporation) was charged, and 20 parts of a 1% diluted hydrochloric acid, 20 parts of a 1% aqueous solution of calcium chloride, and 20 parts of a 1% aqueous solution of sodium dodecylbenzenesulfonate were added while rotating the anchor blade at 50 rpm at room temperature. And the mixture was added dropwise over 30 minutes. Thereafter, the temperature in the system is raised to 80 ° C. over 1 hour, and the association is further performed at the same temperature for 5 hours, and the styrene acrylic resin containing the styrene acrylic resin fine particles in which the colorant particles and the resin fine particles are associated with each other. A fine particle aqueous dispersion was obtained. To this dispersion, 48 parts of a dispersion 1 ′ of polyester resin fine particles for comparison and control were added, and a mixture of 10 parts of 1% diluted hydrochloric acid, 10 parts of 1% aqueous calcium chloride solution, and 10 parts of 1% aqueous sodium dodecylbenzenesulfonate was further added. Was added dropwise over 30 minutes. Thereafter, the temperature in the system was raised to 80 ° C. in one hour, and the association was carried out at the same temperature for another 5 hours. The shell obtained by associating the polyester resin fine particles with the surface of the core particles of the styrene acrylic resin fine particles was obtained. Resin fine particles having a core-shell structure having a layer were obtained. The dispersion was washed three times with ion-exchanged water, separated from water, and dried to obtain fine resin particles. When the residual solvent amount, volume average particle size and particle size distribution of the resin particles were measured, the residual solvent amount was 20 ppm (detection limit) or less, the volume average particle size was 6.9 μm, and the particle size distribution was 3.9. Was. The resin fine particles and 0.3% of Aerosil R-974 based on the weight of the resin fine particles were mixed with a Henschel mixer to prepare a comparative control toner 1 '. The image and image quality obtained using this toner were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0130]
Comparative Example 2
The solubility of the polyester resin 1 was determined in the same manner as in Reference Example 4 except that the concentration of the resin was changed from 10% to 15% and tetrahydrofuran (THF) was used instead of acetone. The classification was "complete solution".
[0131]
149 parts of polyester resin, 30 parts of Legal 330, 9 parts of Biscol 550P and 12 parts of Bontron E-80 were mixed, mixed with a Henschel mixer, and kneaded with a pressure kneader to prepare a kneaded material. 100 parts of the coarsely pulverized product of this kneaded material and 100 parts of THF are charged into a 2 L autoclave equipped with a propeller blade, pre-pressurized to 0.2 MPa with nitrogen gas, and the inside of the system is heated to 90 ° C. while rotating the propeller blade at 100 rpm. Until heated. At this time, the pressure in the autoclave had increased to 0.45 MPa. After the temperature in the system reached 90 ° C., the rotation speed of the propeller blade was increased to 500 rpm, and the mixture was stirred for 10 minutes to obtain a resin solution. Thereafter, 400 parts of an aqueous medium preheated to 90 ° C., consisting of 0.7 part of 25% aqueous ammonia and 399.3 parts of ion-exchanged water, is injected under pressure over 5 minutes to disperse the swollen body in water into fine particles. A black initial aqueous dispersion was obtained. The neutralization ratio at this time was 70 mol%. The obtained initial aqueous dispersion was cooled with water to 30 ° C. while stirring, taken out, and THF was distilled off at 47 ° C. for 30 minutes using a rotary evaporator, and the obtained dispersion was subjected to ion exchange. After repeating washing with water three times, the resultant was separated from water and dried to obtain polyester resin fine particles. When the residual solvent amount, volume average particle size and particle size distribution of the polyester resin particles were measured, the residual solvent amount was 650 ppm, the volume average particle size was 6.6 μm, and the particle size distribution was 3.8. This polyester resin fine particle, 0.3% by weight of the resin fine particle of Aerosil R-974 and Henschel mixer were mixed to prepare a comparative toner 2 '. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.
[0132]
[Table 1]
Figure 2004295030
[0133]
【The invention's effect】
In the present invention, an aqueous dispersion of acrylic resin fine particles (I) and an aqueous dispersion of polyester resin fine particles (II) are mixed, and the acrylic resin fine particles are used as core particles, and the polyester resin fine particles are coated on the surface of the core particles. In the method for producing an electrophotographic toner in which a shell layer is formed by associating, a part or all of acrylic resin fine particles and / or a part or all of polyester resin fine particles are colored resin particles, and Of an electrophotographic toner using at least one of the aqueous dispersion of resin-based fine particles (I) and the aqueous dispersion of polyester-based resin fine particles (II) obtained by the production method (1) or (2). This is a method for obtaining a good image quality and obtaining an electrophotographic toner having a small amount of the remaining organic solvent.

Claims (10)

アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)とを混合し、アクリル系樹脂微粒子をコア粒子として、該コア粒子の表面にポリエステル系樹脂微粒子を会合させてシェル層を形成する電子写真用トナーの製造方法において、アクリル系樹脂微粒子の一部乃至全部および/またはポリエステル系樹脂微粒子の一部乃至全部が着色された樹脂粒子で、かつ、前記アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)の少なくとも一方が、下記製法(1)または製法(2)で得られた水性分散体であることを特徴とする電子写真用トナーの製造方法。
製法(1):自己水分散性熱可塑性樹脂(P)を、前記自己水分散性熱可塑性樹脂(P)を溶解しないが膨潤させることが可能な沸点100℃未満の有機溶剤(S)で膨潤させることにより膨潤体を製造する第1工程と、前記膨潤体を水性媒体中に微粒子状に分散させて初期水性分散体を製造する第2工程と、前記初期水性分散体から前記有機溶剤(S)を除去することにより前記自己水分散性熱可塑性樹脂(P)の微粒子が前記水性媒体中に分散した分散体とする第3工程を有する製造方法により得られ水性分散体であって、自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いるアクリル系樹脂微粒子水性分散体の水性分散体の製法。
製法(2):前記製法(1)において自己水分散性熱可塑性樹脂(P)として自己水分散性アクリル系樹脂(P1)を用いる代わりに自己水分散性ポリエステル系樹脂(P2)を用いるポリエステル系樹脂微粒子水性分散体の製法。
The aqueous dispersion of acrylic resin fine particles (I) and the aqueous dispersion of polyester resin fine particles (II) are mixed, and the acrylic resin fine particles are used as core particles, and the polyester resin fine particles are associated with the surface of the core particles to form a shell. In the method for producing an electrophotographic toner for forming a layer, a part or all of the acrylic resin fine particles and / or a part or all of the polyester resin fine particles are colored resin particles, and the aqueous acrylic resin fine particles are used. At least one of the dispersion (I) and the aqueous dispersion of polyester resin fine particles (II) is an aqueous dispersion obtained by the following production method (1) or production method (2). Production method.
Production method (1): swelling a self-water-dispersible thermoplastic resin (P) with an organic solvent (S) having a boiling point of less than 100 ° C. that does not dissolve the self-water-dispersible thermoplastic resin (P) but can swell. A first step of producing a swelled body by dispersing the swelled body into fine particles in an aqueous medium to produce an initial aqueous dispersion, and a step of preparing the organic solvent (S) from the initial aqueous dispersion. ) Is obtained by a production method having a third step in which fine particles of the self-water-dispersible thermoplastic resin (P) are dispersed in the aqueous medium by removing the self-water-dispersible thermoplastic resin (P). A method for producing an aqueous dispersion of an acrylic resin fine particle aqueous dispersion using a self-water dispersible acrylic resin (P1) as the dispersible thermoplastic resin (P).
Production method (2): Polyester resin using self-water-dispersible polyester resin (P2) instead of self-water-dispersion acrylic resin (P1) as self-water-dispersion thermoplastic resin (P) in the above-mentioned production method (1) A method for producing an aqueous dispersion of resin fine particles.
前記ポリエステル系樹脂微粒子水性分散体(II)として前記製法(2)で得られる水性分散体を用いる請求項1記載の電子写真用トナーの製造方法。The method for producing an electrophotographic toner according to claim 1, wherein the aqueous dispersion obtained by the production method (2) is used as the aqueous dispersion (II) of the polyester resin fine particles. 前記アクリル系樹脂微粒子水性分散体(I)として前記製法(1)で得られる水性分散体を用い、かつ、前記ポリエステル系樹脂微粒子水性分散体(II)として前記製法(2)で得られる水性分散体を用いる請求項1記載の電子写真用トナーの製造方法。The aqueous dispersion obtained by the production method (1) is used as the aqueous dispersion of acrylic resin fine particles (I), and the aqueous dispersion obtained by the production method (2) is used as the aqueous dispersion of polyester resin fine particles (II). The method for producing an electrophotographic toner according to claim 1, wherein a toner is used. 前記自己水分散性アクリル系樹脂(P1)が軟化点80〜170℃のアクリル系樹脂で、自己水分散性ポリエステル系樹脂(P2)が軟化点70〜130℃で、かつ、自己水分散性アクリル系樹脂(P1)よりも軟化点の低いポリエステル系樹脂である請求項3記載の電子写真用トナーの製造方法。The self-water-dispersible acrylic resin (P1) is an acrylic resin having a softening point of 80 to 170 ° C, the self-water-dispersible polyester resin (P2) has a softening point of 70 to 130 ° C, and a self-water-dispersible acrylic resin. 4. The method for producing an electrophotographic toner according to claim 3, wherein the polyester resin is a polyester resin having a softening point lower than that of the resin (P1). 前記自己水分散性アクリル系樹脂(P1)がゲルパーミエーションクロマトグラフィー(GPC)法による重量平均分子量が5,000〜300,000であるカルボキシル基含有スチレン−アクリル系樹脂で、前記製法(1)で用いる水性媒体が塩基性化合物を含有する水であり、かつ、前記自己水分散性ポリエステル系樹脂(P2)が、GPC法による重量平均分子量が3,000〜50,000であるカルボキシル基含有ポリエステル系樹脂で、前記製法(2)で用いる水性媒体が塩基性化合物を含有する水である請求項3記載の電子写真用トナーの製造方法。The self-water dispersible acrylic resin (P1) is a carboxyl group-containing styrene-acrylic resin having a weight average molecular weight of 5,000 to 300,000 as determined by gel permeation chromatography (GPC), and the method (1). The aqueous medium used in the above is water containing a basic compound, and the self-water-dispersible polyester resin (P2) is a carboxyl group-containing polyester having a weight average molecular weight of 3,000 to 50,000 by GPC. 4. The method for producing an electrophotographic toner according to claim 3, wherein the aqueous medium used in the production method (2) is water containing a basic compound. 前記自己水分散性アクリル系樹脂(P1)が、原料として芳香族二塩基酸の水素添加物および/またはその無水物を用いて得られるポリエステル樹脂である請求項3記載の電子写真用トナーの製造方法。4. The production of an electrophotographic toner according to claim 3, wherein the self-water dispersible acrylic resin (P1) is a polyester resin obtained by using a hydrogenated aromatic dibasic acid and / or an anhydride thereof as a raw material. Method. 前記アクリル系樹脂微粒子水性分散体(I)とポリエステル系樹脂微粒子水性分散体(II)とを混合し、攪拌下、自己水分散性アクリル系樹脂(P1)のガラス転移温度と自己水分散性ポリエステル系樹脂(P2)のガラス転移温度のうち低い方のガラス転移温度〜ガラス転移温度+50℃の温度で、アクリル系樹脂微粒子をコア粒子として、該コア粒子の表面にポリエステル系樹脂微粒子を会合させてシェル層を形成する請求項3記載の電子写真用トナーの製造方法。The aqueous dispersion of acrylic resin fine particles (I) and the aqueous dispersion of polyester resin fine particles (II) are mixed, and while stirring, the glass transition temperature of the self-water-dispersible acrylic resin (P1) and the self-water-dispersible polyester At a temperature of the lower glass transition temperature of the glass transition temperature of the resin (P2) to the glass transition temperature + 50 ° C., the acrylic resin fine particles are used as the core particles, and the polyester resin fine particles are associated with the surface of the core particles. 4. The method for producing an electrophotographic toner according to claim 3, wherein a shell layer is formed. 前記アクリル系樹脂微粒子水性分散体(I)が、アクリル系樹脂微粒子水性分散体を調製した後、該水性分散体中のアクリル系樹脂微粒子を会合させて得られる水性分散体である請求項1〜7のいずれか1項記載の電子写真用トナーの製造方法。The aqueous dispersion of acrylic resin fine particles (I) is an aqueous dispersion obtained by preparing an aqueous dispersion of acrylic resin fine particles and then associating the acrylic resin fine particles in the aqueous dispersion. 8. The method for producing an electrophotographic toner according to any one of items 7 to 7. 前記アクリル系樹脂微粒子水性分散体(I)が、アクリル系樹脂微粒子水性分散体を調製した後、該水性分散体と着色剤粒子の水性分散体および/または着色樹脂微粒子の水性分散体とを混合して混合分散体とし、該混合分散体中のアクリル系樹脂微粒子と着色剤粒子および/または着色樹脂微粒子とを会合させて得られる水性分散体である請求項8記載の電子写真用トナーの製造方法。The aqueous dispersion of acrylic resin fine particles (I) is prepared by preparing an aqueous dispersion of acrylic resin fine particles, and then mixing the aqueous dispersion with an aqueous dispersion of colorant particles and / or an aqueous dispersion of colored resin fine particles. 9. An aqueous dispersion obtained by associating fine particles of an acrylic resin with fine particles of a colorant and / or fine particles of a colored resin in the mixed dispersion to form a mixed dispersion. Method. 前記アクリル系樹脂微粒子水性分散体(I)として、平均粒径0.05〜0.8μmのアクリル系樹脂微粒子を含有する水性媒体を製造した後該水性分散体中のアクリル系樹脂微粒子を会合させて得られる平均粒径1〜10μmの会合微粒子を含有する水性分散体(I−1)を用い、ポリエステル系樹脂微粒子水性分散体(II)として平均粒径0.03〜1.0μmのポリエステル系樹脂微粒子を含有する水性媒体(II−1)を用い、前記水性分散体(I−1)と水性媒体(II−1)とを混合して、水性分散体(I−1)中の平均粒径1〜10μmの会合微粒子をコア粒子として該コア粒子の表面にシェル層の厚さが0.2〜4.0μmになるように水性媒体(II−1)中のポリエステル系樹脂微粒子を会合させる請求項5記載の電子写真用トナーの製造方法。An aqueous medium containing acrylic resin fine particles having an average particle diameter of 0.05 to 0.8 μm is produced as the acrylic resin fine particle aqueous dispersion (I), and then the acrylic resin fine particles in the aqueous dispersion are associated with each other. Aqueous dispersion (I-1) containing associative fine particles having an average particle diameter of 1 to 10 μm obtained by the above method, and a polyester resin having an average particle diameter of 0.03 to 1.0 μm as an aqueous dispersion of polyester resin fine particles (II). The aqueous dispersion (I-1) and the aqueous medium (II-1) are mixed using an aqueous medium (II-1) containing resin fine particles, and the average particle size in the aqueous dispersion (I-1) is mixed. The polyester-based resin fine particles in the aqueous medium (II-1) are associated with the surface of the core particles such that the thickness of the shell layer becomes 0.2 to 4.0 μm, using the associated fine particles having a diameter of 1 to 10 μm as core particles. An electronic photograph according to claim 5. Manufacturing method of true toner.
JP2003090853A 2003-03-28 2003-03-28 Method for manufacturing electrophotographic toner Pending JP2004295030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090853A JP2004295030A (en) 2003-03-28 2003-03-28 Method for manufacturing electrophotographic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090853A JP2004295030A (en) 2003-03-28 2003-03-28 Method for manufacturing electrophotographic toner

Publications (1)

Publication Number Publication Date
JP2004295030A true JP2004295030A (en) 2004-10-21

Family

ID=33404368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090853A Pending JP2004295030A (en) 2003-03-28 2003-03-28 Method for manufacturing electrophotographic toner

Country Status (1)

Country Link
JP (1) JP2004295030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241160A (en) * 2006-03-13 2007-09-20 Seiko Epson Corp Method for manufacturing negative charging toner
JP2011170184A (en) * 2010-02-19 2011-09-01 Brother Industries Ltd Positively chargeable toner and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241160A (en) * 2006-03-13 2007-09-20 Seiko Epson Corp Method for manufacturing negative charging toner
JP4662058B2 (en) * 2006-03-13 2011-03-30 セイコーエプソン株式会社 Method for producing negatively chargeable toner
JP2011170184A (en) * 2010-02-19 2011-09-01 Brother Industries Ltd Positively chargeable toner and method for producing the same

Similar Documents

Publication Publication Date Title
JP4269655B2 (en) Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
US6894090B2 (en) Method for producing aqueous dispersion of thermoplastic resin microparticles and toner for electrophotography
CA2700696C (en) Solvent-free emulsion process
CN102449555B (en) Toner production process and toner
JP5714392B2 (en) Toner and toner production method
CA2562956C (en) Emulsion containing epoxy resin
JP6716837B2 (en) Binder resin composition for electrostatic image developing toner
JP5721646B2 (en) Colorant-Toner Particles Containing Polyester
JP4106613B2 (en) Method for producing polyester resin fine particle aqueous dispersion and toner for electrophotography
WO2019035435A1 (en) Positively charged toner for electrostatic-image development
CN101619130A (en) Polyester synthesis
JP5814735B2 (en) Toner production method
JP2004354706A (en) Method for manufacturing electrophotographic toner
JP4241029B2 (en) Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
JP4277254B2 (en) Method for producing thermoplastic resin fine particle aqueous dispersion and toner for electrophotography
JP2004326001A (en) Method for manufacturing electrophotographic toner
JP6565050B2 (en) Method for producing toner for electrophotography
JP2004295030A (en) Method for manufacturing electrophotographic toner
JP2005077603A (en) Electrophotographic toner and method for manufacturing same
JP2004263027A (en) Method for producing thermoplastic resin particulate aqueous dispersion and electrophotographic toner
JP4689477B2 (en) Method for producing resin emulsified particles
JP2005077602A (en) Electrophotographic toner and method for manufacturing same
JP6935324B2 (en) Toner manufacturing method
JP2004354707A (en) Method for manufacturing electrophotographic toner
JP6672566B2 (en) Binder resin composition for electrostatic image developing toner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050824