JP4276696B1 - Microbial carrier and method for producing the same - Google Patents

Microbial carrier and method for producing the same Download PDF

Info

Publication number
JP4276696B1
JP4276696B1 JP2008278187A JP2008278187A JP4276696B1 JP 4276696 B1 JP4276696 B1 JP 4276696B1 JP 2008278187 A JP2008278187 A JP 2008278187A JP 2008278187 A JP2008278187 A JP 2008278187A JP 4276696 B1 JP4276696 B1 JP 4276696B1
Authority
JP
Japan
Prior art keywords
far
cedar wood
wood chips
ore
infrared radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008278187A
Other languages
Japanese (ja)
Other versions
JP2010104885A (en
Inventor
誠二 高松
Original Assignee
三信商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三信商事株式会社 filed Critical 三信商事株式会社
Priority to JP2008278187A priority Critical patent/JP4276696B1/en
Application granted granted Critical
Publication of JP4276696B1 publication Critical patent/JP4276696B1/en
Publication of JP2010104885A publication Critical patent/JP2010104885A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【課題】微生物の菌床として利用されずに遊んでいる杉木材の水管のキャップを開放し、杉木材の組織の多孔質化を更に促進することで、1日当りの浄化処理能力の向上を図れる微生物担体、あるいは、より一層少量の杉木材で多量の有機廃棄物を浄化処理することを可能とする微生物担体と、その製造方法を提供する。
【解決手段】微生物担体は、複数の杉木材チップ中に遠赤外線放射鉱石を混入し、この遠赤外線放射鉱石入りの複数の杉木材チップを加熱炉内に置き、該加熱炉の内壁面に貼り詰められている遠赤外線放射鉱石からの遠赤外線と、前記複数の杉木材チップ中に混入されている遠赤外線放射鉱石からの遠赤外線とによって、複数の杉木材チップをその内外から加熱した後、加熱後の複数の杉木材チップ中から遠赤外線放射鉱石を除去したものからなるものとする。
【選択図】図1
An object of the present invention is to improve the purification treatment capacity per day by opening a cap of a water pipe of cedar wood that is not used as a fungus bed of microorganisms and further promoting the porous structure of the cedar wood. A microbial carrier, or a microbial carrier capable of purifying a large amount of organic waste with a smaller amount of cedar wood and a method for producing the same.
SOLUTION: A microbial carrier includes far infrared radiation ore mixed in a plurality of cedar wood chips, and a plurality of cedar wood chips containing the far infrared radiation ore are placed in a heating furnace and adhered to an inner wall surface of the heating furnace. After heating a plurality of cedar wood chips from inside and outside by far infrared rays from far-infrared radiating ores packed and far infrared rays from far-infrared radiating ores mixed in the plurality of cedar wood chips, It shall consist of what removed the far-infrared radiation ore from the plurality of cedar wood chips after heating.
[Selection] Figure 1

Description

本発明は、汚水等の有機廃棄物の浄化処理において、好気性菌、嫌気性菌の菌床として利用される微生物担体とその製造方法に関する。   The present invention relates to a microorganism carrier used as a bed of aerobic bacteria and anaerobic bacteria in purification treatment of organic waste such as sewage and a method for producing the same.

杉の内部には、根から吸い上げられた水分を隅々まで行きわたらすために、水管が細い血管のように張りめぐらされており、その水管には至るところにキャップがあり、このキャップによって杉は水分調整を行っている。   Inside the cedar, in order to spread the water sucked up from the roots to every corner, the water pipe is stretched like a thin blood vessel, and there is a cap everywhere in the water pipe, and this cap makes the cedar Does moisture adjustment.

前記水管のキャップは杉の切断によって閉じてしまうという性質を持っている。その閉じる数は比較的多く、1平方センチメートル当たり160個程度である。かかるキャップが閉じてしまうと、水管の中の水分が杉木材の内部に閉じ込められる。杉木材以外の他の一般の木材も、水管の途中にキャップを持っていて、切断による当該キャップの閉鎖やこれによる水分の閉じ込めという現象は生じる。   The cap of the water pipe has the property of closing when the cedar is cut. The number of closing is relatively large, about 160 per square centimeter. When such a cap is closed, moisture in the water pipe is trapped inside the cedar wood. Other general timbers other than cedar wood also have a cap in the middle of the water pipe, and the phenomenon of closing the cap by cutting and confining moisture due to this occurs.

ところで、一般の木材では、自然乾燥あるいは乾燥炉での処理により、比較的容易に水管のキャップは開き、水管の中の水分は外部へ容易に抜け出ていく。それに対し、杉木材は、一般の木材と同様の自然乾燥時間ではキャップが開かず、一般の木材と同様の自然乾燥によって杉木材を乾燥させることはできない。乾燥炉を使用しても杉木材を十分に乾燥させることは困難である。   By the way, in general wood, the cap of the water pipe opens relatively easily by natural drying or treatment in a drying furnace, and the water in the water pipe easily escapes to the outside. On the other hand, cedar wood cannot be dried by natural drying similar to general wood because the cap does not open in the natural drying time similar to general wood. Even using a drying furnace, it is difficult to sufficiently dry cedar wood.

杉木材はその組織を調べると比較的に多孔質であるため、微生物の菌床として汚水等の有機廃棄物の浄化処理に利用することができる。もし、前述した杉木材の水管のキャップを何らかの方法で開くことができれば、杉木材の内部には水分の抜けた多数の水管からなる多孔質の組織が生成される。   Since cedar wood is relatively porous when its structure is examined, it can be used as a microorganism bed for purification of organic waste such as sewage. If the above-mentioned water pipe cap of cedar wood can be opened by some method, a porous structure composed of a large number of water pipes from which moisture has been removed is generated inside the cedar wood.

このため、キャップ開放後の杉木材は、キャップ開放前の杉木材に比べ、多孔質の割合が飛躍的に増加し、より優れた微生物の菌床になって、一日の有機廃棄物の浄化処理量を増やすことができる、あるいは、少量の杉木材で多量の有機廃棄物を浄化処理することができるようになる。   For this reason, cedar wood after opening the cap has a significant increase in the percentage of porosity compared to cedar wood before opening the cap, resulting in a better microbial bed and purification of organic waste for the day. The amount of treatment can be increased, or a large amount of organic waste can be purified with a small amount of cedar wood.

ところで、特許文献1では、前述した杉木材の水管のキャップを開く方法を開示している。この方法は、杉木材チップを遠赤外線(5−20μm)が発生する炉において、100−150℃で処理するというものである(同文献1の段落0006の記載を参照)。   By the way, in patent document 1, the method of opening the cap of the water pipe of the cedar wood mentioned above is disclosed. In this method, cedar wood chips are processed at 100 to 150 ° C. in a furnace in which far infrared rays (5 to 20 μm) are generated (see paragraph 0006 in the document 1).

しかしながら、前述した特許文献1の方法でも、全ての水管のキャップを開くことは困難であり、閉じているキャップも多数存在するという事実が判明している。キャップが閉じている水管は、多孔質の組織を構成しないため、微生物の菌床として利用されず、遊んでいるのが現状である。もし、その閉じているキャップも開かせることができれば、杉木材は、その多孔質の割合が更に増加し、より一層優れた微生物の菌床になり、1日当りの浄化処理能力の向上に寄与する、あるいは、より一層少量の杉木材で多量の有機廃棄物を浄化処理できるようになる。   However, even the method of Patent Document 1 described above reveals that it is difficult to open all the water pipe caps, and there are many closed caps. Since the water tube with the cap closed does not constitute a porous tissue, it is not used as a microbial bed, and is currently playing. If the closed cap can be opened, the percentage of the cedar wood will increase further, and it will become an even more excellent microbial bed, contributing to the improvement of the purification capacity per day. Alternatively, a larger amount of organic waste can be purified with a smaller amount of cedar wood.

特許文献2では、汚水浄化材の構成材料例として、杉木材チップと遠赤外線放射鉱石である雲母鉱石とを含む態様を開示している(同文献2の段落0014の記載を参照)。しかしながら、その雲母鉱石が後述する本発明のように杉木材チップの加熱段階で混入されることは開示しておらず、同文献2中の雲母鉱石は杉木材チップの水管のキャップを開くことに寄与したものではない。   Patent Document 2 discloses an embodiment that includes cedar wood chips and mica ore that is a far-infrared emitting ore as an example of a constituent material of the sewage purification material (see paragraph 0014 in the same document 2). However, it is not disclosed that the mica ore is mixed in the heating stage of the cedar wood chip as in the present invention described later, and the mica ore in the document 2 is to open the cap of the water pipe of the cedar wood chip. It has not contributed.

特開2003−053362号公報(段落0006の記載を参照)Japanese Unexamined Patent Publication No. 2003-053362 (see paragraph 0006)

特開2005−334877号公報(段落0014の記載を参照)Japanese Patent Laying-Open No. 2005-334877 (refer to paragraph 0014)

本発明の目的は、先に述べたように微生物の菌床として利用されずに遊んでいる杉木材の水管のキャップを開放し、杉木材の組織の多孔質化を更に促進することで、1日当りの浄化処理能力の向上を図れる微生物担体、あるいは、より一層少量の杉木材で多量の有機廃棄物を浄化処理することを可能とする微生物担体と、その製造方法を提供することにある。   The object of the present invention is to open the cap of the water pipe of cedar wood that is playing without being used as a microbial bed as described above, thereby further promoting the porous structure of the cedar wood structure. It is an object of the present invention to provide a microbial carrier capable of improving the daily purification treatment capacity, or a microbial carrier capable of purifying a large amount of organic waste with a smaller amount of cedar wood, and a method for producing the same.

前記目的を達成するために、本発明に係る微生物担体は、複数の杉木材チップからなる微生物担体であって、前記微生物担体は、複数の杉木材チップ中にその平均チップ径より大きい粒径の遠赤外線放射鉱石が均一に散らばって配置されるように当該複数の杉木材チップ中に遠赤外線放射鉱石を混入し、この遠赤外線放射鉱石入りの複数の杉木材チップを加熱炉内に置き、該加熱炉の内壁面に貼り詰められている遠赤外線放射鉱石からの遠赤外線と、前記複数の杉木材チップ中に混入されている遠赤外線放射鉱石からの遠赤外線とによって、複数の杉木材チップをその内外から加熱することで、杉木材チップの水管のキャップを開かせた後、加熱後の複数の杉木材チップ中から遠赤外線放射鉱石を除去したものであり、前記複数の杉木材チップ中に混入する遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、前記炉内壁面に貼り詰めた遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、前記加熱炉の炉内温度は80℃から140℃の範囲内であり、前記加熱炉での杉木材チップの加熱時間は24時間から48時間の範囲内であることを特徴とする。 In order to achieve the above object, the microbial carrier according to the present invention is a microbial carrier comprising a plurality of cedar wood chips, and the microbial carrier has a particle size larger than the average chip diameter in the plurality of cedar wood chips. The far-infrared radiation ore is mixed in the plurality of cedar wood chips so that the far-infrared radiation ore is uniformly dispersed, and the plurality of cedar wood chips containing the far-infrared radiation ore are placed in a heating furnace, A plurality of cedar wood chips are formed by far infrared rays from the far infrared radiation ore stuck on the inner wall surface of the heating furnace and far infrared rays from the far infrared radiation ore mixed in the plurality of cedar wood chips. by heating from the inside and outside, after opening the cap of the water tubes of cedar wood chips, is obtained by removing the far-infrared emitting ore from a plurality of cedar wood chips in after heating, said plurality of cedar wood chips The far-infrared radiation ore mixed in is a mica ore with a far-infrared radiation efficiency of 94%, and the far-infrared radiation ore stuck on the inner wall surface of the furnace is a mica ore with a far-infrared radiation efficiency of 94%. The furnace temperature of the heating furnace is in the range of 80 ° C. to 140 ° C., and the heating time of the cedar wood chips in the heating furnace is in the range of 24 hours to 48 hours .

前記微生物担体の本発明において、前記複数の杉木材チップは、その平均チップ径を3mmから10mmの範囲内とすることができる。   In the present invention of the microbial carrier, the plurality of cedar wood chips may have an average chip diameter in the range of 3 mm to 10 mm.

本発明に係る微生物担体の製造方法は、複数の杉木材チップからなる微生物担体の製造方法であって、複数の杉木材チップ中にその平均チップ径より大きい粒径の遠赤外線放射鉱石が均一に散らばって配置されるように当該複数の杉木材チップ中に遠赤外線放射鉱石を混入する混入工程と、炉内壁面に遠赤外線放射鉱石を貼り詰めた加熱炉を用意し、該加熱炉内に前記遠赤外線放射鉱石入りの複数の杉木材チップを置き、前記炉内壁面の遠赤外線放射鉱石からの遠赤外線と、前記複数の杉木材チップ中に混入されている遠赤外線放射鉱石からの遠赤外線とによって、複数の杉木材チップをその内外から加熱することで、杉木材チップの水管のキャップを開かせる加熱工程と、前記加熱後の複数の木材チップ中から遠赤外線放射鉱石を取り除くことによって、複数の杉木材チップのみからなる微生物担体を得る除去工程と、を含み、前記複数の杉木材チップ中に混入する遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、前記炉内壁面に貼り詰めた遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、前記加熱炉の炉内温度は80℃から140℃の範囲内であり、前記加熱炉での杉木材チップの加熱時間は24時間から48時間の範囲内であることを特徴とする。 The method for producing a microbial carrier according to the present invention is a method for producing a microbial carrier comprising a plurality of cedar wood chips, and far infrared radiation ore having a particle size larger than the average chip diameter is uniformly distributed in the plurality of cedar wood chips. A mixing step of mixing far-infrared radiation ore into the plurality of cedar wood chips so as to be scattered and preparing a heating furnace in which far-infrared radiation ore is stuck on the inner wall surface of the furnace, Place a plurality of cedar wood chips containing far infrared radiation ore, far infrared radiation from the far infrared radiation ore on the inner wall of the furnace, and far infrared radiation from the far infrared radiation ore mixed in the plurality of cedar wood chips by, by heating the plurality of cedar wood chips from the inside and outside, removing a heating step to open the cap of the water tubes of cedar wood chips, the far-infrared emitting ore from a plurality of wood chips in after said heating And by, seen including a removal step of obtaining a microorganism carrier composed of only a plurality of cedar wood chips, the far infrared radiation ore mixed in the plurality of cedar wood chips, with 94% of mica ore far-infrared radiation efficiency The far-infrared radiation ore stuck to the inner wall surface of the furnace is a mica ore having a far-infrared radiation efficiency of 94%, the furnace temperature of the heating furnace is in the range of 80 ° C. to 140 ° C., and the heating The heating time of the cedar wood chips in the furnace is characterized by being in the range of 24 to 48 hours .

前記微生物担体の製造方法に係る本発明において、前記複数の杉木材チップは、その平均チップ径を3mmから10mmの範囲内とすることができる。   In the present invention relating to the method for producing a microbial carrier, the plurality of cedar wood chips may have an average chip diameter in a range of 3 mm to 10 mm.

本発明にあっては、複数の杉木材チップ中に遠赤外線放射鉱石を混入し、この遠赤外線放射鉱石入りの複数の杉木材チップを加熱炉内に置き、該加熱炉の内壁面に貼り詰められている遠赤外線放射鉱石からの遠赤外線と、前記複数の杉木材チップ中に混入されている遠赤外線放射鉱石からの遠赤外線とによって、複数の杉木材チップをその内外から加熱する方式を採用した。このため、遠赤外線による杉木材チップの加熱効率が高まり、杉木材チップの水管のキャップを従来方式に比べ数多く開くことに成功した。これにより、従来のように微生物の菌床として利用されずに遊んでいた杉木材の水管、すなわちキャップが閉じている水管の数が大幅に減り、杉木材の組織の多孔質化が更に促進され、1日当りの浄化処理能力の向上を図ることができる微生物担体、あるいは、より一層少量の杉木材で多量の有機廃棄物を浄化処理することができ、浄化処理設備のコンパクト化を図れる微生物媒体と、その製造方法を提供しうる。   In the present invention, far-infrared radiation ore is mixed in a plurality of cedar wood chips, and a plurality of cedar wood chips containing the far-infrared radiation ore are placed in a heating furnace and stuck on the inner wall surface of the heating furnace. Adopting a system that heats multiple cedar wood chips from inside and outside by far infrared rays from far infrared radiation ore and far infrared rays from far infrared radiation ore mixed in the plurality of cedar wood chips did. For this reason, the heating efficiency of cedar wood chips by far-infrared rays increased, and it succeeded in opening many caps of water pipes of cedar wood chips compared to the conventional method. As a result, the number of water pipes of cedar wood that have been played without being used as microbial beds as in the past, that is, the number of water pipes with caps closed, is greatly reduced, and the porous structure of the cedar wood structure is further promoted. A microbial carrier capable of improving the purification treatment capacity per day, or a microbial medium capable of purifying a large amount of organic waste with a smaller amount of cedar wood and making the purification treatment equipment compact. And its manufacturing method can be provided.

以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

[微生物担体の製造方法の概要]
図1は本発明を適用した微生物担体の製造方法の説明図である。同図に示す本微生物担体の製造方法は、複数の杉木材チップからなる微生物担体の製造方法であって、(1)複数の杉木材チップを製造するチップ製造工程と、(2)遠赤外線放射鉱石の粒径を調整する鉱石粒径調整工程と、(3)前記複数の杉木材チップ中に粒径調整済み遠赤外線放射鉱石を混入する混入工程と、(4)遠赤外線放射鉱石入りの複数のチップを加熱炉に入れて加熱する加熱工程と、(5)加熱後の複数の杉木材チップ中から遠赤外線放射鉱石を取り除くことによって複数の杉木材チップのみからなる微生物担体を得る除去工程と、を含んでいる。
[Outline of production method of microbial carrier]
FIG. 1 is an explanatory view of a method for producing a microbial carrier to which the present invention is applied. The method for producing the present microbial carrier shown in the figure is a method for producing a microbial carrier comprising a plurality of cedar wood chips, (1) a chip production process for producing a plurality of cedar wood chips, and (2) far-infrared radiation. An ore particle size adjusting step for adjusting the particle size of the ore, (3) a mixing step for mixing far-infrared radiation ore with adjusted particle size into the plurality of cedar wood chips, and (4) a plurality of particles containing far-infrared radiation ore. A heating step of heating the chip in a heating furnace, and (5) a removal step of obtaining a microbial carrier consisting only of a plurality of cedar wood chips by removing far-infrared radiation ore from the plurality of cedar wood chips after heating. , Including.

[チップ製造工程の詳細]
チップ製造工程では、周知の粉砕機等を使用して、杉木材を小片に粉砕することによってチップ化し、複数の杉木材チップを製造する。チップ化する杉木材については、例えば家具資材等として有効に利用できない杉木材の枝部分を使用してもよい。杉木材チップの平均チップ径は、3mmから10mmの範囲内とするのが好ましい。その理由は次の通りである。
[Details of chip manufacturing process]
In the chip manufacturing process, using a well-known pulverizer or the like, cedar wood is crushed into small pieces to form chips, and a plurality of cedar wood chips are manufactured. As for cedar wood to be converted into chips, for example, branch portions of cedar wood that cannot be effectively used as furniture materials may be used. The average chip diameter of cedar wood chips is preferably in the range of 3 mm to 10 mm. The reason is as follows.

本発明に係る微生物担体は、前記杉木材チップを出発物質として製造され、最終的には浄化槽等に充填し、好気菌、嫌気菌の菌床として利用される。この利用時における微生物担体の平均粒径は、前記杉木材チップの平均チップ径と略同じである。そのため、杉木材チップの平均チップ径が3mmより小さいと、浄化槽等における目詰まりが生じやすくなる。一方、杉木材チップの平均チップ径が10mmより大きいと、浄化槽等への充填時に微生物担体どうしの隙間が広くなりすぎて、浄化対象の汚水等が微生物担体に接触し難くなることや、浄化槽等に充填した全微生物担体の総表面積を十分に確保できなくなることから、浄化能力の低下を招く等の不具合が生じる。   The microbial carrier according to the present invention is produced using the cedar wood chip as a starting material, and is finally filled in a septic tank or the like, and used as a bed of aerobic bacteria and anaerobic bacteria. The average particle diameter of the microbial carrier during this use is substantially the same as the average chip diameter of the cedar wood chips. Therefore, when the average chip diameter of the cedar wood chips is smaller than 3 mm, clogging in the septic tank or the like is likely to occur. On the other hand, if the average chip diameter of the cedar wood chips is larger than 10 mm, the gap between the microbial carriers becomes too wide when filling the septic tank or the like, and it becomes difficult for the sewage to be purified to come into contact with the microbial carrier, Since the total surface area of all the microbial carriers filled in the container cannot be sufficiently secured, problems such as a reduction in purification ability occur.

[鉱石粒径調整工程の詳細]
鉱石粒径調整工程では、遠赤外線放射鉱石の一例として、遠赤外線の放射率が最高値で94%の雲母鉱石を用意した。この雲母鉱石から放射される赤外線の波長は10μmから100μmである。そして、用意した雲母鉱石を砕くことにより、杉木材チップの平均チップ径より大きい粒径の雲母鉱石を作製した。これは雲母鉱石を後の除去工程で除去し易くするためである。
[Details of ore particle size adjustment process]
In the ore particle size adjustment step, a mica ore having a maximum far infrared emissivity of 94% was prepared as an example of the far infrared radiation ore. The wavelength of infrared rays emitted from the mica ore is 10 μm to 100 μm. And the mica ore of a particle size larger than the average chip diameter of a cedar wood chip was produced by crushing the prepared mica ore. This is to facilitate removal of the mica ore in a subsequent removal step.

なお、雲母鉱石を使用する代わりに、別の遠赤外線放射鉱石として例えば、石英、バクハン石、セラミック等を使用してもよいし、2種以上の遠赤外線放射鉱石を混ぜて使用することもできる。   In addition, instead of using mica ore, for example, quartz, bakuhanite, ceramic, etc. may be used as another far infrared radiation ore, or two or more kinds of far infrared radiation ore can be used in combination. .

[混入工程の詳細]
混入工程においては、複数の杉木材チップの中に粒径調整済み遠赤外線放射鉱石(本実施形態では雲母鉱石)を所定量混入させ、これらをよく混ぜあわせる。この際、複数の杉木材チップ中に粒径調整済み遠赤外線放射鉱石が均一に散らばるように配置するのが望ましい。均一な配置であれば、遠赤外線放射鉱石から放射される遠赤外線を複数の杉木材チップにムラなく照射できるからである。
[Details of mixing process]
In the mixing step, a predetermined amount of far-infrared radiation ore (grain mica ore in the present embodiment) whose particle size has been adjusted is mixed in a plurality of cedar wood chips, and these are mixed well. At this time, it is desirable that the far-infrared radiant ore whose particle size has been adjusted is uniformly dispersed in the plurality of cedar wood chips. This is because, with a uniform arrangement, it is possible to irradiate a plurality of cedar wood chips evenly with far infrared rays emitted from the far infrared radiation ore.

複数の杉木材チップと粒径調整済み遠赤外線放射鉱石との混ぜ合わせは、木箱K(図2参照)の中で行ってもよいし、木箱Kの外で行ってもよい。混ぜ合わせが終わったら、遠赤外線放射鉱石入りの複数の杉木材チップは、木箱Kに入れて次の加熱工程へ送られる。なお、ここで使用した木箱Kは400mm×400mm×400mmの寸法であったが、これより大きい寸法または小さい寸法の木箱を使用することもできる。   The mixing of the plurality of cedar wood chips and the far-infrared radiation ore whose particle size has been adjusted may be performed in the wooden box K (see FIG. 2) or outside the wooden box K. When the mixing is finished, a plurality of cedar wood chips containing far-infrared radiation ore are put in a wooden box K and sent to the next heating step. In addition, although the wooden box K used here was a dimension of 400 mm x 400 mm x 400 mm, a wooden box larger or smaller than this can also be used.

[加熱工程の詳細]
加熱工程では、炉内壁面に遠赤外線放射鉱石を貼り詰めた図2の加熱炉1を用意し、この加熱炉1内に前記遠赤外線放射鉱石4入りの複数の杉木材チップCHを置く。本実施形態においては、先に説明したように遠赤外線放射鉱石4入りの複数の杉木材チップCHを木箱Kに収容したので、遠赤外線放射鉱石4入りの複数の杉木材チップCHは木箱Kに入れられた状態で加熱炉1内の棚5に置かれる。このような遠赤外線放射鉱石4入りの複数の木材チップCHを木箱Kに入れずに直接加熱炉1内に置くことも可能である。
[Details of heating process]
In the heating process, the heating furnace 1 of FIG. 2 in which far-infrared radiant ore is stuck on the inner wall surface of the furnace is prepared, and a plurality of cedar wood chips CH containing the far-infrared radiant ore 4 are placed in the heating furnace 1. In the present embodiment, since the plurality of cedar wood chips CH containing the far-infrared radiating ore 4 are accommodated in the wooden box K as described above, the plurality of cedar wood chips CH containing the far-infrared radiating ore 4 are stored in the wooden box. It is placed on the shelf 5 in the heating furnace 1 while being put in K. A plurality of wood chips CH containing the far-infrared radiating ore 4 can be placed directly in the heating furnace 1 without being put in the wooden box K.

加熱炉1は、図2に示すように炉外壁材2の内面全体を耐火煉瓦3で覆い、さらにその耐火煉瓦3の内面に遠赤外線放射鉱石4を貼り詰めた電気炉であり、その炉内には木箱Kを置くための棚5を複数段設けてある。   The heating furnace 1 is an electric furnace in which the entire inner surface of the furnace outer wall material 2 is covered with a refractory brick 3 as shown in FIG. 2 and a far infrared radiation ore 4 is stuck on the inner surface of the refractory brick 3. Has a plurality of shelves 5 on which wooden boxes K are placed.

なお、この加熱炉1は木箱Kを棚5に置くために炉内に作業者が入ることを想定しているので、加熱炉1の床面には遠赤外線放射鉱石4を貼り付けていないが、遠隔操作で木箱Kを炉内の棚5に置く等の構成を採用するなら、加熱炉1の床面にも遠赤外線放射鉱石を貼り詰めてもよい。   In addition, since this heating furnace 1 assumes that an operator enters in a furnace in order to put the wooden box K on the shelf 5, the far-infrared radiation ore 4 is not stuck on the floor surface of the heating furnace 1. However, if a configuration such as placing the wooden box K on the shelf 5 in the furnace by remote control is adopted, the far-infrared radiation ore may be stuck on the floor surface of the heating furnace 1.

加熱炉1の炉内壁面に貼り付ける遠赤外線放射鉱石4については、遠赤外線の放射率が最高値で94%の雲母鉱石を使用したが、これ以外の他の遠赤外線放射鉱石、例えば、先に説明した石英、バクハン石、セラミック等を使用してもよい。   For the far-infrared radiant ore 4 to be attached to the inner wall surface of the heating furnace 1, mica ore having a maximum far-infrared emissivity of 94% was used. Quartz, bakuhanite, ceramic, etc. described in (1) may be used.

本加熱工程では、加熱炉1の炉内温度を80℃から140℃の範囲内とし、加熱時間を24時間から48時間の範囲内とした。これにより、炉内壁面の遠赤外線放射鉱石4と、複数の杉木材チップCH中に混入されている遠赤外線放射鉱石4との双方から、遠赤外線が放射され、これらの遠赤外線によって、木箱3内の複数の杉木材チップCHは、図2中の矢印A、Bで示すように木箱3の内外から加熱されることになる。   In this heating step, the furnace temperature of the heating furnace 1 was set in the range of 80 ° C. to 140 ° C., and the heating time was set in the range of 24 hours to 48 hours. Thereby, far-infrared radiation is emitted from both the far-infrared radiation ore 4 on the inner wall surface of the furnace and the far-infrared radiation ore 4 mixed in the plurality of cedar wood chips CH. The plurality of cedar wood chips CH in 3 are heated from inside and outside of the wooden box 3 as indicated by arrows A and B in FIG.

[除去工程の詳細]
除去工程においては、前記加熱後の複数の杉木材チップCH中から遠赤外線放射鉱石4を取り除くが、この除去作業は篩等を用いて容易に行うことができる。遠赤外線放射鉱石4の粒径は複数の杉木材チップCHの平均チップ径よりも大きくなるように調整されているからである。除去された遠赤外線放射鉱石については、先に説明した混入工程へ送って再利用してもよい。遠赤外線放射鉱石除去済みの複数の杉木材チップは、最終製品として袋詰めして出荷される。
[Details of removal process]
In the removal step, the far-infrared radiation ore 4 is removed from the plurality of cedar wood chips CH after the heating, and this removal operation can be easily performed using a sieve or the like. This is because the particle diameter of the far-infrared radiation ore 4 is adjusted to be larger than the average chip diameter of the plurality of cedar wood chips CH. About the removed far-infrared radiation ore, you may send it to the mixing process demonstrated previously, and may reuse it. A plurality of cedar wood chips from which far-infrared radiation ore has been removed are packaged and shipped as a final product.

以上説明した本実施形態の微生物担体の製造方法では、複数の杉木材チップCH中に遠赤外線放射鉱石4を混入し、この遠赤外線放射鉱石4入りの複数の杉木材チップCHを加熱炉1内に置き、その加熱炉1内壁面の遠赤外線放射鉱石4から放射される遠赤外線Aと、前記複数の杉木材チップCH中に混入されている遠赤外線放射鉱石4から放射される遠赤外線Bとの双方によって、複数の杉木材チップCHをその内外から加熱する方式を採用した。このため、加熱炉1内での遠赤外線A、Bによる杉木材チップCHの加熱効率が高まり、杉木材チップCHの水管PのキャップCAP(図3(c)参照)を図3(a)(b)のように従来方式に比べ数多く開くことに成功した。   In the method for producing a microorganism carrier according to the present embodiment described above, far infrared radiation ore 4 is mixed in a plurality of cedar wood chips CH, and a plurality of cedar wood chips CH containing the far infrared radiation ore 4 are mixed in the heating furnace 1. A far infrared ray A emitted from the far infrared radiation ore 4 on the inner wall surface of the heating furnace 1, and a far infrared ray B emitted from the far infrared radiation ore 4 mixed in the plurality of cedar wood chips CH, In both cases, a method of heating a plurality of cedar wood chips CH from inside and outside is adopted. For this reason, the heating efficiency of the cedar wood chip CH by the far infrared rays A and B in the heating furnace 1 is increased, and the cap CAP (see FIG. 3C) of the water pipe P of the cedar wood chip CH is shown in FIG. As shown in b), it succeeded in opening more than the conventional method.

これにより、本実施形態の製造方法で得られた複数の杉木材チップからなる微生物担体によると、従来のように微生物の菌床として利用されずに遊んでいた杉木材の水管、すなわち、キャップCAPが閉じている水管Pの数が大幅に減り(図3(a)(b)参照)、杉木材の組織の多孔質化が更に促進されるから、好気性、嫌気性の菌属が増え、1日当りの浄化処理能力の向上を図ることができる、あるいは、より一層少量の杉木材で多量の有機廃棄物を浄化処理することができ、浄化処理設備のコンパクト化を図れる。   Thus, according to the microorganism carrier comprising a plurality of cedar wood chips obtained by the manufacturing method of the present embodiment, the water pipe of cedar wood that has been played without being used as a microbial bed as in the past, that is, cap CAP Since the number of closed water pipes P is greatly reduced (see FIGS. 3 (a) and 3 (b)), and the porous structure of the cedar wood is further promoted, the number of aerobic and anaerobic fungi increases, The purification processing capacity per day can be improved, or a large amount of organic waste can be purified with a smaller amount of cedar wood, and the purification processing facility can be made compact.

杉木材チップからなる微生物担体を使った汚水の浄化処理能力を汚水の一日の処理量との関係において具体的な数値で示すと、特許文献1の方法でキャップを開いた杉木材チップからなる微生物担体を使用した場合は、汚水の一日の処理量の約400%に相当する量の微生物担体を浄化槽に充填する必要があった。それに対し、本実施形態の製造方法で得られた杉木材チップからなる微生物担体を使用した場合は、汚水の一日の処理量の約30%に相当する量の微生物担体を浄化槽に充填すれば足り、一日の汚水の処理に必要な微生物担体の容量を大幅に削減することができた。   When the purification capacity of sewage using a microbial carrier composed of cedar wood chips is shown by specific numerical values in relation to the daily treatment amount of sewage, it consists of cedar wood chips whose cap is opened by the method of Patent Document 1. When the microbial carrier was used, it was necessary to fill the septic tank with an amount of microbial carrier corresponding to about 400% of the daily treatment amount of sewage. On the other hand, when a microbial carrier made of cedar wood chips obtained by the production method of the present embodiment is used, the septic tank can be filled with an amount of microbial carrier equivalent to about 30% of the daily treatment amount of sewage. As a result, the capacity of the microbial carrier necessary for the treatment of sewage in one day could be greatly reduced.

図3(a)(b)において、杉木材チップCHを構成する多孔質の孔、すなわち、水分が抜けた水管Pの入口付近P1では空気と接触するので主に好気性菌が繁殖し、その孔の中間付近P2では空気が入り難いので主に嫌気性菌が繁殖し、その孔の出口付近P3では好気性・嫌気性の双方に属する菌属が発生するようになる。   In FIGS. 3 (a) and 3 (b), the aerobic bacteria mainly propagate because the porous holes constituting the cedar wood chip CH, that is, the vicinity of the inlet P1 of the water pipe P from which moisture has escaped, contact with air. In the vicinity of the hole P2, it is difficult for air to enter, so anaerobic bacteria mainly propagate, and in the vicinity of the hole outlet P3, both aerobic and anaerobic fungi are generated.

杉木材にはリグニン、ペントサンなどの化学成分が含まれており、これらは水に触れると化学反応によって赤色の色素を流出させるが、本実施形態の製造方法によると、その色素の流出も起こり難くなることが明らかになった。   Cedar wood contains chemical components such as lignin and pentosan, and when they come into contact with water, the red pigment flows out by a chemical reaction. However, according to the manufacturing method of this embodiment, the pigment does not easily flow out. It became clear that

図1は本発明を適用した微生物担体の製造方法の説明図である。FIG. 1 is an explanatory view of a method for producing a microbial carrier to which the present invention is applied. 図2は図1の製造方法で使用した加熱炉の断面図である。FIG. 2 is a sectional view of the heating furnace used in the manufacturing method of FIG. 図3は図1の製造方法によって得られた微生物担体としての杉木材チップの切断面の説明図であり、(a)は遠赤外線の放射による加熱後の状態(水管のキャップが開いた状態)の顕微鏡写真のスケッチ図、(b)はその模式図、(c)は遠赤外線の放射による加熱前の状態(水管のキャップが閉じた状態)の模式図である。FIG. 3 is an explanatory view of a cut surface of a cedar wood chip as a microorganism carrier obtained by the manufacturing method of FIG. 1, and (a) is a state after heating by radiation of far infrared rays (a state where a cap of a water tube is opened). (B) is a schematic diagram thereof, and (c) is a schematic diagram of a state before heating by radiation of far infrared rays (a state where the cap of the water tube is closed).

符号の説明Explanation of symbols

1 加熱炉
2 炉外壁材
3 耐火煉瓦
4 遠赤外線鉱石
5 棚
A 炉内壁面の遠赤外線放射鉱石から放射された遠赤外線
B 複数の杉木材チップ中に混入されている遠赤外線放射鉱石から放射された遠赤外線
CAP 水管のキャップ
CH 杉木材チップ
K 木箱
P 水管
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Outer wall material 3 Refractory brick 4 Far-infrared ore 5 Shelf A Far-infrared B radiated from the far-infrared radiating ore of the inner wall of the furnace Radiated from far-infrared radiating ore mixed in several cedar wood chips Far infrared CAP water pipe cap CH cedar wood chip K wooden box P water pipe

Claims (4)

複数の杉木材チップからなる微生物担体であって、
前記微生物担体は、
複数の杉木材チップ中にその平均チップ径より大きい粒径の遠赤外線放射鉱石が均一に散らばって配置されるように当該複数の杉木材チップ中に遠赤外線放射鉱石を混入し、この遠赤外線放射鉱石入りの複数の杉木材チップを加熱炉内に置き、該加熱炉の内壁面に貼り詰められている遠赤外線放射鉱石からの遠赤外線と、前記複数の杉木材チップ中に混入されている遠赤外線放射鉱石からの遠赤外線とによって、複数の杉木材チップをその内外から加熱することで、杉木材チップの水管のキャップを開かせた後、加熱後の複数の杉木材チップ中から遠赤外線放射鉱石を除去したものであり、
前記複数の杉木材チップ中に混入する遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、
前記炉内壁面に貼り詰めた遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、
前記加熱炉の炉内温度は80℃から140℃の範囲内であり、
前記加熱炉での杉木材チップの加熱時間は24時間から48時間の範囲内であること
を特徴とする微生物担体。
A microbial carrier comprising a plurality of cedar wood chips,
The microbial carrier is
The far-infrared radiation ore is mixed in the plurality of cedar wood chips so that the far-infrared radiation ores having a particle size larger than the average chip diameter are uniformly scattered in the plurality of cedar wood chips, and the far-infrared radiation ores are mixed. A plurality of cedar wood chips containing ore are placed in a heating furnace, far infrared rays from the far infrared radiation ore stuck on the inner wall surface of the heating furnace, and far cedar wood chips mixed in the plurality of cedar wood chips Far infrared rays from the cedar wood chips after heating after opening the cap of the water pipe of the cedar wood chips by heating the cedar wood chips from inside and outside by far infrared rays from the infrared radiation ore Ore removed ,
The far-infrared radiation ore mixed in the plurality of cedar wood chips is a mica ore having a far-infrared radiation efficiency of 94%,
The far-infrared radiation ore stuck on the inner wall surface of the furnace is a mica ore with a far-infrared radiation efficiency of 94%,
The furnace temperature of the heating furnace is in the range of 80 ° C to 140 ° C,
The microorganism carrier according to claim 1 , wherein the heating time of the cedar wood chips in the heating furnace is within a range of 24 hours to 48 hours .
前記複数の杉木材チップは、その平均チップ径を3mmから10mmの範囲内としたこと
を特徴とする請求項に記載の微生物担体。
The microbial carrier according to claim 2 , wherein the plurality of cedar wood chips have an average chip diameter within a range of 3 mm to 10 mm.
複数の杉木材チップからなる微生物担体の製造方法であって、
複数の杉木材チップ中にその平均チップ径より大きい粒径の遠赤外線放射鉱石が均一に散らばって配置されるように当該複数の杉木材チップ中に遠赤外線放射鉱石を混入する混入工程と、
炉内壁面に遠赤外線放射鉱石を貼り詰めた加熱炉を用意し、該加熱炉内に前記遠赤外線放射鉱石入りの複数の杉木材チップを置き、前記炉内壁面の遠赤外線放射鉱石からの遠赤外線と、前記複数の杉木材チップ中に混入されている遠赤外線放射鉱石からの遠赤外線とによって、複数の杉木材チップをその内外から加熱することで、杉木材チップの水管のキャップを開かせる加熱工程と、
前記加熱後の複数の木材チップ中から遠赤外線放射鉱石を取り除くことによって、複数の杉木材チップのみからなる微生物担体を得る除去工程と、を含み、
前記複数の杉木材チップ中に混入する遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、
前記炉内壁面に貼り詰めた遠赤外線放射鉱石は、遠赤外線放射効率が94%の雲母鉱石であり、
前記加熱炉の炉内温度は80℃から140℃の範囲内であり、
前記加熱炉での杉木材チップの加熱時間は24時間から48時間の範囲内であること
を特徴とする微生物担体の製造方法。
A method for producing a microbial carrier comprising a plurality of cedar wood chips,
A mixing step of mixing the far-infrared radiation ore into the plurality of cedar wood chips so that the far-infrared radiation ore having a particle size larger than the average chip diameter is uniformly dispersed in the plurality of cedar wood chips, and
Prepare a heating furnace in which far-infrared radiation ore is stuck on the inner wall surface of the furnace, place a plurality of cedar wood chips containing the far-infrared radiation ore in the heating furnace, and dispose the far-infrared radiation ore on the inner wall surface of the furnace. The water pipe cap of the cedar wood chip is opened by heating the cedar wood chips from inside and outside by infrared rays and far infrared rays from the far infrared radiation ore mixed in the plurality of cedar wood chips . Heating process;
By removing the far-infrared emitting ore from the plurality of wood chips after the heating, observed including a removal step of obtaining a microorganism carrier composed of only a plurality of cedar wood chips, a,
The far-infrared radiation ore mixed in the plurality of cedar wood chips is a mica ore having a far-infrared radiation efficiency of 94%,
The far-infrared radiation ore stuck on the inner wall surface of the furnace is a mica ore with a far-infrared radiation efficiency of 94%,
The furnace temperature of the heating furnace is in the range of 80 ° C to 140 ° C,
The method for producing a microbial carrier, wherein the heating time of the cedar wood chips in the heating furnace is within a range of 24 hours to 48 hours .
前記複数の杉木材チップは、その平均チップ径を3mmから10mmの範囲内としたこと
を特徴とする請求項に記載の微生物担体の製造方法。
The method for producing a microbial carrier according to claim 3 , wherein the plurality of cedar wood chips have an average chip diameter in a range of 3 mm to 10 mm.
JP2008278187A 2008-10-29 2008-10-29 Microbial carrier and method for producing the same Active JP4276696B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278187A JP4276696B1 (en) 2008-10-29 2008-10-29 Microbial carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278187A JP4276696B1 (en) 2008-10-29 2008-10-29 Microbial carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP4276696B1 true JP4276696B1 (en) 2009-06-10
JP2010104885A JP2010104885A (en) 2010-05-13

Family

ID=40821559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278187A Active JP4276696B1 (en) 2008-10-29 2008-10-29 Microbial carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP4276696B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713321B2 (en) * 2012-02-16 2015-05-07 日立建機株式会社 Wood chip unloading device and wood chip stuffing machine
JP5116888B1 (en) * 2012-04-17 2013-01-09 誠二 高松 Non-water-supplying circulating flush toilet system and container toilet containing this system

Also Published As

Publication number Publication date
JP2010104885A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
EA030078B1 (en) Method and system for irradiating material
JP4276696B1 (en) Microbial carrier and method for producing the same
CN105124024B (en) A method of improving Fu-brick tea alcoholization degree
KR101958951B1 (en) Fermented rice straw fertilizer solution and a method of manufacturing the same environmentally friendly
JP4125333B2 (en) Regeneration method of mushroom bed medium
JP2007308311A (en) Manufacturing method of activated carbon and activated carbon
KR102249232B1 (en) method for preparation of medium for baekhwago
JPH11302672A (en) Production of carbonization product, and carbonization product
JP2011182711A (en) Method for producing culture medium for mushroom cultivation
KR101909612B1 (en) Method of manufacturing environmentally friendly slope greening for culture soil composition using rice straw
JP6137327B2 (en) Biomass production method and biomass storage device
KR101828777B1 (en) Manufacturing method for ball shape of bamboo charcoal
KR20210014960A (en) Method for Cultivating Mushroom Using Vermiculite, Illite, Pegmatite as mediators that effectively leach harmful components of mushroom cultivation medium
Rakhimov et al. Investigation of the Efficiency of Using a Film-Ceramic Composite in a Solar Dryer
CN106001045B (en) Organic matter carbonizing processing unit and carbonizing treatment method
US6787743B2 (en) Apparatus for the production of ginkgo leaf tea
KR20010079291A (en) Sewage/waste water purging filtration material and the manufacturing method thereof
KR20180013291A (en) Processing method of health food byfar-infrared
CN107723220A (en) A kind of generating means of marsh gas raw materials
JP4209049B2 (en) Carbonaceous plant cultivation floor and method for producing the same
JP2003143946A (en) Regenerating treatment method for mushroom medium
KR20010035079A (en) Bio-board and box using the bio-board
JPH06172073A (en) Small-sized garbage-disposal apparatus for domestic use
JP4700917B2 (en) Organic waste composting apparatus and composting method using a hot stove
KR100475506B1 (en) Method to manufacture liquid-type far-infrared ray emitter and powder-type bio ceramic

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350