JP4276047B2 - Thermoelectric element - Google Patents

Thermoelectric element Download PDF

Info

Publication number
JP4276047B2
JP4276047B2 JP2003371385A JP2003371385A JP4276047B2 JP 4276047 B2 JP4276047 B2 JP 4276047B2 JP 2003371385 A JP2003371385 A JP 2003371385A JP 2003371385 A JP2003371385 A JP 2003371385A JP 4276047 B2 JP4276047 B2 JP 4276047B2
Authority
JP
Japan
Prior art keywords
thermoelectric
type
semiconductor
semiconductors
wiring electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003371385A
Other languages
Japanese (ja)
Other versions
JP2005136240A (en
Inventor
滋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2003371385A priority Critical patent/JP4276047B2/en
Publication of JP2005136240A publication Critical patent/JP2005136240A/en
Application granted granted Critical
Publication of JP4276047B2 publication Critical patent/JP4276047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は温度差発電や冷却に用いる熱電素子に関するものであり、特に小型で高性能の素子を提供する素子構造に関する。   The present invention relates to a thermoelectric element used for temperature difference power generation and cooling, and particularly to an element structure that provides a small and high-performance element.

熱電対は極性の異なる2種類の熱電半導体を接続し、その両端に温度差を与えることにより電極間に電圧を発生し、反対に電極から電流を流すと温度差を生じる性質を持つ。この熱電対を複数直列化し、熱・電気変換特性を増幅利用しているのが熱電素子である。   A thermocouple has the property that two types of thermoelectric semiconductors having different polarities are connected, a temperature difference is given between both ends, a voltage is generated between the electrodes, and conversely a temperature difference is generated when a current is passed from the electrodes. A thermoelectric element uses a plurality of these thermocouples in series to amplify and utilize the thermal / electric conversion characteristics.

たとえば熱電素子は熱を電気エネルギーに変換できる特徴を生かして発電素子に、あるいは電気エネルギーで温度差を生じる特徴を生かして対象物を冷やしたりする冷却素子に応用される。   For example, a thermoelectric element is applied to a power generation element utilizing a feature that can convert heat into electric energy, or a cooling element that cools an object utilizing a feature that causes a temperature difference with electric energy.

ところで熱電素子は構造やその動作が簡単なため、他の熱/電気変換システムに比べて小型化に有利なところから発電素子としては腕時計などの携帯用電子機器内部での発電、また冷却素子としては半導体素子やセンサー素子などの局所的な冷却への応用が広がっている。   By the way, since the thermoelectric element is simple in structure and operation, it is advantageous for downsizing compared to other thermal / electrical conversion systems. Therefore, the power generation element is a power generation element inside a portable electronic device such as a wristwatch or a cooling element. Has expanded its application to local cooling of semiconductor elements and sensor elements.

熱電素子として発電あるいは冷却に使われている半導体材料の中でもっとも一般的なのはビスマス(Bi)とテルル(Te)を主成分にしたいわゆるBiTe合金である。この材料は室温近辺で現在もっとも性能が良いため各所で多用されている。BiTe合金は添加物により他の熱電半導体材料と同様にP型とN型の極性を有するものがあり、両者を電気的に接続して対にしたものが熱電対と呼ばれる。熱電素子は異種極性の熱電半導体を柱状に加工し、熱電対を構成しつつ、さらにそれを複数接続して構成されている。   The most common semiconductor material used for power generation or cooling as a thermoelectric element is a so-called BiTe alloy mainly composed of bismuth (Bi) and tellurium (Te). Since this material has the best performance at around room temperature, it is widely used in various places. Some BiTe alloys have P-type and N-type polarities, as with other thermoelectric semiconductor materials, depending on the additive, and those obtained by electrically connecting the two are called thermocouples. The thermoelectric element is formed by processing thermoelectric semiconductors of different polarities into a columnar shape to form a thermocouple and further connecting a plurality of them.

従来の熱電素子の構造と製造方法は、たとえば、まずセラミックスの二枚の平板状基板に所定のパターンにて金属膜電極を形成する。複数のP型とN型の熱電半導体は柱状に加工されその上下に置いて半田層を介して上下二枚の基板の金属膜電極に接合する。金属膜電極は隣り合ったP型とN型の熱電半導体を接続し熱電対を形成し、さらに複数の熱電対が直列化した構成となっている。P型とN型の熱電半導体は縦横とも極性の異なるのもが交互に、つまりは千鳥状に配列しており複雑な配列になっている。ただし千鳥状の配列のため、すべての熱電半導体を無駄なく配線することが可能である。   In a conventional thermoelectric element structure and manufacturing method, for example, first, metal film electrodes are formed in a predetermined pattern on two flat ceramic substrates. A plurality of P-type and N-type thermoelectric semiconductors are processed into a columnar shape, placed on the upper and lower sides thereof, and bonded to the metal film electrodes on the upper and lower two substrates via the solder layers. The metal film electrode has a configuration in which adjacent P-type and N-type thermoelectric semiconductors are connected to form a thermocouple, and a plurality of thermocouples are connected in series. P-type and N-type thermoelectric semiconductors have different polarities in both the vertical and horizontal directions, that is, are arranged in a staggered manner in a complicated arrangement. However, because of the staggered arrangement, all thermoelectric semiconductors can be wired without waste.

しかしながら、それは従来の熱電素子が1cm角以上ほどの比較的大きなものであり、利用する環境にも余裕があったからである。しかし、数mmほどの局所を冷却したり、込み入った電子機器のなかで用いる場合は、さらに小型の熱電素子が必要であり、必ずしも従来の構造が小型化に適しているとは考えられない。   However, this is because the conventional thermoelectric element is relatively large of about 1 cm square or more, and there is a margin in the environment in which it is used. However, when a local area of about several millimeters is cooled or used in a complicated electronic device, a smaller thermoelectric element is required, and the conventional structure is not necessarily considered suitable for downsizing.

また、この方法は一つの素子について柱を1本ずつ配列していく必要がある。BiTe合金は非常に脆い材料であることから、アスペクト比が非常に大きな柱を並べたり、さらには本数が多くなっていくと歩留まりも低下することから、大量な製造をするのにもこの方法は必ずしも適しているとは考えられない。   In addition, this method requires that one column be arranged for each element. Since BiTe alloy is a very brittle material, columns with very large aspect ratios are arranged, and the yield decreases as the number increases, so this method can also be used for mass production. It is not necessarily considered suitable.

そこでこの熱電素子製造を少しでも簡単にするために異なった熱電半導体の配列方法が考えられる(たとえば、特許文献1参照)。その構造を図12に示す。ここではP型熱電半導体のみあるいはN型熱電半導体のみの同極性の柱が一列に並び、その列が交互に配列している。これであれば熱電半導体の配列が非常に単純化されているので、新規な製造方
法を用いることもできる。
Therefore, in order to simplify the manufacture of the thermoelectric element as much as possible, a different arrangement method of thermoelectric semiconductors is conceivable (for example, see Patent Document 1). The structure is shown in FIG. Here, pillars of the same polarity made of only P-type thermoelectric semiconductors or only N-type thermoelectric semiconductors are arranged in a line, and the lines are alternately arranged. If this is the case, the arrangement of thermoelectric semiconductors is greatly simplified, and a new manufacturing method can be used.

上記文献の技術では、薄い板状に加工したP型熱電半導体材料とN型熱電半導体材料に断熱材を挟みながら交互に積層し、積層面に垂直な方向に一定間隔で溝を形成し、柱状P型熱電半導体及び柱状N型熱電半導体を形成する。さらに柱状P型熱電半導体と柱状N型熱電半導体は、それぞれの両端面で配線電極により直列に接続される。配線電極を形成する方法としては、蒸着等の真空技術を用いて金属膜を形成し、その金属膜をフォトリソグラフィーの手法を用いてパターン化することで実現する。
特開昭63−20880号公報(図1)
In the technique of the above document, a P-type thermoelectric semiconductor material and an N-type thermoelectric semiconductor material processed into a thin plate shape are alternately stacked while sandwiching a heat insulating material, and grooves are formed at regular intervals in a direction perpendicular to the stacked surface. A P-type thermoelectric semiconductor and a columnar N-type thermoelectric semiconductor are formed. Further, the columnar P-type thermoelectric semiconductor and the columnar N-type thermoelectric semiconductor are connected in series by wiring electrodes at both end faces. The wiring electrode is formed by forming a metal film using a vacuum technique such as vapor deposition and patterning the metal film using a photolithography technique.
JP 63-20880 A (FIG. 1)

前記の公報のように板状の材料を断熱材を介して積層することで、脆い熱電半導体を用いても小さな熱電素子構造を実現することが出来る。しかし、N型熱電半導体とP型熱電半導体がそれぞれ列を成した単純な構造では、配線の折返し部分にあたる最外列と接続する配線電極は縦横方向で隣り合った柱ではなく、対角方向に位置した柱を接続するようになる。   By laminating plate-like materials via a heat insulating material as described in the above publication, a small thermoelectric element structure can be realized even if a brittle thermoelectric semiconductor is used. However, in a simple structure in which an N-type thermoelectric semiconductor and a P-type thermoelectric semiconductor are each arranged in a row, the wiring electrodes connected to the outermost row corresponding to the folded portion of the wiring are not vertically adjacent columns but diagonally. Connect the pillars located.

図12から明らかなように従来の配線形態であると、最外列の柱を1本おきにしか使えない。配線に関与せず残った柱は、熱電素子の上下方向において単に熱を逃がすだけで、温度差を形成するあるいは発電するなどの基本的性能に関与せず、素子全体としての性能は低下してしまう。   As apparent from FIG. 12, in the conventional wiring configuration, only every other column in the outermost row can be used. The remaining pillars that are not involved in the wiring simply release heat in the vertical direction of the thermoelectric element, and do not participate in the basic performance such as forming a temperature difference or generating power, and the performance of the entire element is reduced. End up.

また、最外列と接続する配線電極自体も対角線方向に形成されているため、電気的なショートを回避するには配線幅が小さくなり、配線抵抗が上昇して性能低下が起こってしまう。さらにこの素子構造では、柱の間隔を狭くして高密度化しようと考えても、もはやこの配線方法形態ではすぐに限界が生じてしまう。   In addition, since the wiring electrodes themselves connected to the outermost rows are also formed in the diagonal direction, the wiring width is reduced to avoid electrical shorts, the wiring resistance is increased, and the performance is deteriorated. Further, in this element structure, even if it is intended to increase the density by narrowing the interval between the columns, this wiring method form is immediately limited.

そこで考えられるのが折返し部分の配線方法として図13に示した形態をとるものである。図13に示した素子もP型熱電半導体の列とN型熱電半導体の列が交互に並んだ構成であるが、最外列の熱電半導体に接する配線電極はL型の構造をしている。このL型配線電極は最外列の2本の熱電半導体とその内列の1本の熱電半導体を接続している。   Therefore, what can be considered is the method shown in FIG. The element shown in FIG. 13 also has a configuration in which rows of P-type thermoelectric semiconductors and rows of N-type thermoelectric semiconductors are alternately arranged, but the wiring electrode in contact with the outermost row of thermoelectric semiconductors has an L-type structure. The L-shaped wiring electrode connects two thermoelectric semiconductors in the outermost row and one thermoelectric semiconductor in the inner row.

このように図13の配線構成を用いれば、配線の折返し部分において柱の無駄がなくなり、また電極自体も幅を小さくする必要がないため、電気抵抗が上昇するような問題もない。ただし、L型電極は最外列の2本の熱電半導体を並列化して利用していることから、他の1本だけ使用している熱電対と比べこの部分だけの抵抗が1/2となる。   In this way, if the wiring configuration of FIG. 13 is used, there is no waste of pillars at the folded portion of the wiring, and the electrode itself does not need to be reduced in width, so there is no problem of increasing the electrical resistance. However, since the L-type electrode uses two thermoelectric semiconductors in the outermost row in parallel, the resistance of this part is halved compared to the thermocouple that uses only one other. .

たとえば熱電素子に電流を流して冷却素子として利用する場合、所定の温度差や吸熱量を得るためには、熱電半導体にはそれに対応した最適電流密度が存在する。しかし、図13の構成であると1本だけを利用しているところと、2本並列に利用しているところでは抵抗値が異なることから、温度差や吸熱量の分布が生じてしまい、熱電素子全体としては性能的に劣ることになる。   For example, when a current is passed through a thermoelectric element and used as a cooling element, there is an optimum current density corresponding to the thermoelectric semiconductor in order to obtain a predetermined temperature difference or endothermic amount. However, in the configuration of FIG. 13, the resistance value is different between the case where only one is used and the case where two are used in parallel, resulting in a temperature difference and an endothermic distribution, resulting in a thermoelectric The device as a whole is inferior in performance.

上記の目的を達成するために本発明の熱電素子の構造および製造方法においては下記に記載する手段を採用する。   In order to achieve the above object, the following means are employed in the structure and manufacturing method of the thermoelectric element of the present invention.

すなわち本発明の熱電素子は、複数の柱状P型熱電半導体からなるP型半導体列と複数の柱状N型熱電半導体からなるN型半導体列が交互に複数配列し、隣り合った極性の異な
る熱電半導体の柱端面を電気的に接続する配線電極を有する熱電素子であり、最外列となるN型半導体列あるいはP型半導体列に含まれる熱電半導体の少なくとも一部が、内列に位置する熱電半導体の約1/2の断面積になっていることを特徴とする。
That is, in the thermoelectric element of the present invention, a plurality of P-type semiconductor rows made of a plurality of columnar P-type thermoelectric semiconductors and a plurality of N-type semiconductor rows made of a plurality of columnar N-type thermoelectric semiconductors are alternately arranged, and adjacent thermoelectric semiconductors having different polarities. Thermoelectric element having a wiring electrode for electrically connecting the column end faces of each of which the at least part of the thermoelectric semiconductor included in the N-type semiconductor column or P-type semiconductor column which is the outermost column is located in the inner column It is characterized by having a cross-sectional area of about 1/2.

さらに配線電極は隣り合った極性の異なる1本ずつの熱電半導体を接続するI型配線電極と最外列の2本の熱電半導体とその内列にある極性の異なる1本の熱電半導体とを接続するL型配線電極を有することが好ましい。   Furthermore, the wiring electrode connects the I-type wiring electrode that connects one adjacent thermoelectric semiconductors with different polarities, the two outermost thermoelectric semiconductors, and one thermoelectric semiconductor with different polarities in the inner row. It is preferable to have an L-shaped wiring electrode.

あるいは複数の柱状P型熱電半導体からなるP型半導体列と複数の柱状N型熱電半導体からなるN型半導体列のそれぞれ2列ずつが交互に複数配列し、さらに最外列には隣り合う内列の熱電半導体とは極性の異なる1列のN型半導体列あるいは1列のP型半導体列を有し、隣り合った2本ずつのP型熱電半導体と2本ずつのN型熱電半導体とをその柱端面で電気的に接続するI型配線電極と、最外列に含まれる2本のN型熱電半導体(P型熱電半導体)と最外列のN型半導体列(P型半導体列)の内側2列に含まれる2本のP型熱電半導体(N型熱電半導体)とをその端面で電気的に接続するL型配線電極とを有することを特徴とする。   Alternatively, a plurality of P-type semiconductor rows made of a plurality of columnar P-type thermoelectric semiconductors and two N-type semiconductor rows made of a plurality of columnar N-type thermoelectric semiconductors are alternately arranged, and the innermost row is adjacent to the outermost row. The thermoelectric semiconductor has one column of N-type semiconductor columns or one column of P-type semiconductor columns having different polarities, and includes two adjacent P-type thermoelectric semiconductors and two N-type thermoelectric semiconductors. Inside of the I-type wiring electrode electrically connected at the column end face, the two N-type thermoelectric semiconductors (P-type thermoelectric semiconductors) included in the outermost row, and the N-type semiconductor row (P-type semiconductor row) in the outermost row It has an L-type wiring electrode that electrically connects two P-type thermoelectric semiconductors (N-type thermoelectric semiconductors) included in two rows at their end faces.

本発明の熱電素子は、柱状P型熱電半導体の列と柱状N型熱電半導体の列が交互に複数配列する単純な配列構造を利用しているため、簡単な製造方法が利用でき小型の熱電素子製造に適している。さらに最外列のN型半導体列あるいはP型半導体列を約1/2の断面積に成形して、折返し部分の配線電極をL型として最外列の熱電半導体2本とその内列の熱電半導体1本を接続することで次のような効果が得られる。   Since the thermoelectric element of the present invention uses a simple arrangement structure in which a plurality of columns of columnar P-type thermoelectric semiconductors and columns of columnar N-type thermoelectric semiconductors are alternately arranged, a simple manufacturing method can be used and a small-sized thermoelectric element Suitable for manufacturing. Further, the outermost N-type semiconductor row or P-type semiconductor row is formed to have a cross-sectional area of about ½, and the wiring electrode at the folded portion is L-shaped, and the two outermost row thermoelectric semiconductors and the thermoelectrics in the inner row. The following effects can be obtained by connecting one semiconductor.

まずは熱電半導体の柱をすべて利用でき無駄な柱が生じない。また、対角方向の配線電極がないために、電極幅減少による抵抗増大もなく、ショートの危険性も無いことから高密度化にも対応可能である。さらに1/2の断面積の柱を2本並列に利用することで、内列の1本ずつの熱電対と同じ抵抗値になり、抵抗値の違いが生じないことから、温度分布や吸熱量の分布が生じない。これらのことから本発明は、従来に比べ性能的に優れた小型の熱電素子を提供できる。   First, all the columns of the thermoelectric semiconductor can be used, and no unnecessary columns are generated. Further, since there are no diagonal wiring electrodes, there is no increase in resistance due to a reduction in electrode width, and there is no danger of short-circuiting, so it is possible to cope with higher density. Furthermore, by using two columns with half the cross-sectional area in parallel, the resistance value becomes the same as that of each thermocouple in the inner row, and there is no difference in resistance value. No distribution occurs. For these reasons, the present invention can provide a small thermoelectric element that is superior in performance as compared with the prior art.

さらに柱状P型熱電半導体の列と柱状N型熱電半導体の列のそれぞれ二列ずつが交互に複数配列し、最外列には一列のN型半導体列あるいはP型半導体列を有し、最外列の2本の熱電半導体と内列の2本の熱電半導体との接続にL型配線電極を導入したことで、こちらもすべての柱の利用できる。さらに配線抵抗増大もなく、高密度化にも対応できる。また温度分布や吸熱量分布がなく、性能的に非常にすぐれた小型の素子が実現可能である。   Further, two columns each of a columnar P-type thermoelectric semiconductor column and a columnar N-type thermoelectric semiconductor column are alternately arranged, and the outermost column has one N-type semiconductor column or P-type semiconductor column, Since the L-shaped wiring electrode is introduced to connect the two thermoelectric semiconductors in the row and the two thermoelectric semiconductors in the inner row, all the pillars can be used here. Furthermore, there is no increase in wiring resistance and it can cope with higher density. In addition, there is no temperature distribution or endothermic distribution, and a small element with excellent performance can be realized.

[第1の実施の形態]
以下、図面を用いて本発明の熱電素子の最適な実施形態を説明する。図1には本発明の熱電素子の配線電極部分から見た平面図を図2には柱の横方向から見た断面図を示している。また図3〜図6は本発明の熱電素子の製造工程を示している。
[First embodiment]
Hereinafter, the optimal embodiment of the thermoelectric element of this invention is described using drawing. FIG. 1 is a plan view seen from the wiring electrode portion of the thermoelectric element of the present invention, and FIG. 2 is a cross-sectional view seen from the lateral direction of the column. 3 to 6 show the manufacturing process of the thermoelectric element of the present invention.

図1に示すように本発明の熱電素子には、まずN型熱電半導体10が一列に並んだN型半導体列15とP型熱電半導体20が一列に並んだP型半導体列25が交互に複数並んで配置している。ここではN型熱電半導体10にBiSeTe合金を、P型熱電半導体20にはBiSbTe合金をそれぞれ用いている。また、図2から分かるようにそれぞれの熱電半導体は上面から下面へ長く伸びた形状をしており、すなわち柱状になっている。   As shown in FIG. 1, in the thermoelectric element of the present invention, first, a plurality of N-type semiconductor rows 15 in which N-type thermoelectric semiconductors 10 are arranged in a row and P-type semiconductor rows 25 in which P-type thermoelectric semiconductors 20 are arranged in a row are alternately arranged. They are arranged side by side. Here, a BiSeTe alloy is used for the N-type thermoelectric semiconductor 10, and a BiSbTe alloy is used for the P-type thermoelectric semiconductor 20. As can be seen from FIG. 2, each thermoelectric semiconductor has a shape extending from the upper surface to the lower surface, that is, a columnar shape.

ただし、本発明の熱電素子は、複数並んだN型半導体列15とP型半導体列25の最外
列に含まれるN型熱電半導体10あるいはP型熱電半導体20は、その内側の列に含まれる熱電半導体より細く加工され、その面積で約1/2になっているところが特徴的である。
However, in the thermoelectric element of the present invention, the N-type thermoelectric semiconductor 10 or the P-type thermoelectric semiconductor 20 included in the outermost row of the plurality of N-type semiconductor rows 15 and P-type semiconductor rows 25 is included in the inner row. It is characteristic that it is processed to be thinner than a thermoelectric semiconductor and its area is about ½.

そしてN型熱電半導体10とP型熱電半導体20の柱の側面を電気的に絶縁しさらに両者を固定するために、それぞれの素子の間隙にはエポキシ系接着剤からなる断熱材40を設けている。   In order to electrically insulate and fix the side surfaces of the pillars of the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20, a heat insulating material 40 made of an epoxy adhesive is provided in the gap between the elements. .

さらにN型熱電半導体10とP型熱電半導体20の両端面には金属膜からなる配線電極30を設けている。ここでは配線電極30の材料にニッケル/銅/ニッケルの多層膜を用いている。配線電極30は基本的には隣り合ったN型熱電半導体10とP型熱電半導体20の1本ずつを柱の端面において接続するI型配線電極30(a)からなるが、最外列の熱電半導体に接するものはL型配線電極30(b)となっている。L型配線電極30(b)は最外列の2本の熱電半導体とその内列にあり極性の異なる1本の熱電半導体の計3本を同時に接続している。   Further, wiring electrodes 30 made of a metal film are provided on both end faces of the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20. Here, a multilayer film of nickel / copper / nickel is used as the material of the wiring electrode 30. The wiring electrode 30 is basically composed of an I-type wiring electrode 30 (a) for connecting each of the adjacent N-type thermoelectric semiconductor 10 and P-type thermoelectric semiconductor 20 at the end face of the column. What contacts the semiconductor is an L-shaped wiring electrode 30 (b). The L-shaped wiring electrode 30 (b) simultaneously connects a total of three thermoelectric semiconductors in the outermost row and one thermoelectric semiconductor in the inner row and having a different polarity.

I型配線電極30(a)は図2から見ても明らかなように、柱の上下において接続するN型熱電半導体10とP型熱電半導体20の柱が1本ずつずれた配置をとっている。さらにL型配線電極30(b)は最外列部分で折り返す構造となっていることから、本発明の熱電素子では多数のN型熱電半導体10とP型熱電半導体20とが配線電極30によって交互に直列化する構造となっている。   As is apparent from FIG. 2, the I-type wiring electrode 30 (a) has an arrangement in which the columns of the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20 that are connected above and below the columns are shifted one by one. . Further, since the L-type wiring electrode 30 (b) has a structure that is folded at the outermost row portion, in the thermoelectric element of the present invention, a large number of N-type thermoelectric semiconductors 10 and P-type thermoelectric semiconductors 20 are alternately arranged by the wiring electrodes 30. It is structured to be serialized.

図示はしていないがL型配線電極30(b)は柱の上下の配線面において最外列のN型熱電半導体10あるいはP型熱電半導体20を2本接続している。つまり最外列の2本のN型熱電半導体10あるいはP型熱電半導体20は上下のL型配線電極30(b)によって並列化された状態となっている。つまり最外列の熱電半導体はその内列に含まれる他の熱電半導体の1/2の断面積になっていることから、2本並列化することで内列に含まれる多くの熱電半導体とおなじ抵抗値になる。   Although not shown, the L-type wiring electrode 30 (b) connects two outermost N-type thermoelectric semiconductors 10 or P-type thermoelectric semiconductors 20 on the upper and lower wiring surfaces of the column. That is, the two outermost N-type thermoelectric semiconductors 10 or P-type thermoelectric semiconductors 20 are arranged in parallel by the upper and lower L-type wiring electrodes 30 (b). In other words, the outermost thermoelectric semiconductors have a cross-sectional area that is ½ that of the other thermoelectric semiconductors included in the inner row, so that two thermoelectric semiconductors in parallel are the same as many thermoelectric semiconductors included in the inner row. It becomes resistance value.

続いて本発明の熱電素子の製造方法について説明する。はじめに、図3に示すようにN型半導体ブロックとP型半導体ブロックとに縦溝1を形成し、縦隔壁2を残してN型櫛歯素子3とP型櫛歯素子4を作製する。この時、N型櫛歯素子3とP型櫛歯素子4とで、縦溝1のピッチを同一にし、かつ一方のブロックの縦溝1幅が他方のブロックの縦隔壁2幅よりも大きくなるようにする。ここではN型熱電半導体としてBiSeTe合金の焼結体、P型熱電半導体としてBiSbTe合金の焼結体を用いた。加工は、ダイシングソーあるいはワイヤーソーなどを用いて行う。   Then, the manufacturing method of the thermoelectric element of this invention is demonstrated. First, as shown in FIG. 3, the vertical grooves 1 are formed in the N-type semiconductor block and the P-type semiconductor block, and the N-type comb-tooth element 3 and the P-type comb-tooth element 4 are manufactured leaving the vertical partition wall 2. At this time, the pitch of the vertical grooves 1 is the same in the N-type comb-tooth element 3 and the P-type comb-tooth element 4, and the vertical groove 1 width of one block is larger than the vertical partition wall 2 width of the other block. Like that. Here, a sintered body of BiSeTe alloy was used as the N-type thermoelectric semiconductor, and a sintered body of BiSbTe alloy was used as the P-type thermoelectric semiconductor. Processing is performed using a dicing saw or a wire saw.

つづいてN型櫛歯素子3とP型櫛歯素子4を、互いに縦溝1に相手の縦隔壁2を挿入し合って組み合わせて一体化する。両者を組み合わせた図を図4に示す。組み合わせた2つの櫛歯素子は嵌合部に断熱材40を設けて固着することで一体化櫛歯素子5とする。流動性の高い絶縁性接着剤中に組み合わせた櫛歯素子を部分的に浸漬し、毛管現象により接着剤を縦溝1と縦隔壁2との隙間に充填すれば絶縁を保ちつつ断熱材40で固着が行える。ここで断熱材40に用いる接着剤としては低粘度のエポキシ系の接着剤を用いることとする。   Subsequently, the N-type comb-teeth element 3 and the P-type comb-teeth element 4 are combined with each other by inserting the opposite vertical partition wall 2 into the longitudinal groove 1 and combining them. A combination of the two is shown in FIG. The combined two comb-tooth elements are formed as an integrated comb-tooth element 5 by fixing the fitting portion with a heat insulating material 40. If the comb-tooth element combined in a highly fluid insulating adhesive is partially immersed and the adhesive is filled in the gap between the longitudinal groove 1 and the longitudinal partition wall 2 by capillary action, the insulation 40 can be maintained while maintaining insulation. Can be fixed. Here, as the adhesive used for the heat insulating material 40, a low-viscosity epoxy adhesive is used.

このように組み合わせた一体化櫛歯素子5には、図5に示すように横溝6と横隔壁7を形成するように再度の加工を行う。横溝6は櫛歯を細く加工して柱状にするために行い、前述のような組合せは行わないことから、出来るだけ細いことが望ましい。そして横溝6にも初めの組合せを行ったときと同じように、エポキシ系接着剤を充填し固着させ、再度断熱材40を形成する。   The combined comb element 5 thus combined is processed again so as to form the lateral grooves 6 and the lateral partition walls 7 as shown in FIG. The lateral grooves 6 are formed in order to process comb teeth into a columnar shape, and are not combined as described above. Therefore, it is desirable that the lateral grooves 6 be as thin as possible. Then, as in the case of the first combination, the transverse groove 6 is filled and fixed with an epoxy adhesive, and the heat insulating material 40 is formed again.

横溝6はN型櫛歯素子3の面から形成しても、これとは逆にP型櫛歯素子4側の面から形成してもよい。この時切り込む側のN型櫛歯素子3あるいはP型櫛歯素子4の溝が形成されていない基台部分は除去した後に溝加工を行った方が良い。基台部を除去するのは、初めに加工した縦溝1が観察できることから、横溝6との直交性がとりやすいためである。また、基台部がない方が、加工深さが小さくなるため深さ方向での柱曲がりが低減できる効果もある。   The lateral groove 6 may be formed from the surface of the N-type comb-tooth element 3 or, conversely, from the surface on the P-type comb-tooth element 4 side. At this time, it is preferable to perform the groove processing after removing the base portion where the groove of the N-type comb element 3 or P-type comb element 4 on the side to be cut is not formed. The reason why the base portion is removed is that the vertical grooves 1 that have been processed first can be observed, so that the orthogonality with the horizontal grooves 6 can be easily obtained. Moreover, since the processing depth is smaller when the base portion is not provided, there is an effect that column bending in the depth direction can be reduced.

断熱材40を形成した一体化櫛歯素子5はその上下面を研削で除去し平坦化する。なお、先に除去したのと反対側の基台部分はこの研削に先立って除去しておくか、あるいはこの研削によって除去する。すると柱状のN型熱電半導体10の列とP型熱電半導体20の列が交互に並んだ状態になる。そしてさらに全体の列の最外列にあるN型熱電半導体10とP型半導体20はダイシングソーなどによる加工にて約半分の断面積に加工し、細く仕上げる。
The integrated comb element 5 having the heat insulating material 40 is flattened by removing the upper and lower surfaces thereof by grinding. In addition, the base part on the opposite side to that previously removed is removed prior to this grinding or removed by this grinding. Then, the columnar N-type thermoelectric semiconductors 10 and the P-type thermoelectric semiconductors 20 are alternately arranged. Further, the N-type thermoelectric semiconductor 10 and the P-type semiconductor 20 in the outermost row of the whole row are processed into a half cross-sectional area by processing with a dicing saw or the like and finished finely.

こののち、特に高い信頼性が必要な場合は、研削面の加工変質層を除去する意味で硝酸や塩酸などのエッチング液をもちいて、加工面を数ミクロンエッチングする。つづいてN型熱電半導体10とP型熱電半導体20との配線を行う。まずニッケルからなる金属板に所望の配線パターンの形状をした開口部を設け、開口部から隣り合ったN型熱電半導体10とP型熱電半導体20の端面が見えるように位置合わせを行い密着して固定する。真空蒸着装置に設置し、ニッケルあるいはパラジウムを100nm蒸着する。この方法は一般にマスク蒸着法と呼ばれるものである。ここで蒸着層は隣り合った2本の熱電半導体素子端面をすべて覆う必要はなく、2本が電気的に接続できる形状なら多少小さくても良い。   Thereafter, when particularly high reliability is required, an etching solution such as nitric acid or hydrochloric acid is used to remove the work-affected layer on the ground surface, and the processed surface is etched by several microns. Subsequently, wiring between the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20 is performed. First, an opening having the shape of a desired wiring pattern is provided on a metal plate made of nickel, and alignment is performed so that the end faces of the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20 adjacent to each other can be seen from the opening. Fix it. Installed in a vacuum evaporation system and deposits nickel or palladium to 100 nm. This method is generally called a mask vapor deposition method. Here, the vapor deposition layer does not need to cover all two adjacent end faces of the thermoelectric semiconductor elements, and may be slightly smaller as long as the two can be electrically connected.

蒸着工程で用いた金属マスクを外し、つづいて無電解ニッケルメッキ液に浸漬し、ニッケルの皮膜を形成する。ニッケル皮膜は蒸着によって形成したニッケルあるいはパラジウムを反応の核として成長することから、蒸着層の上にまず形成される。また、蒸着金属が接触しているN型熱電半導体10とP型熱電半導体20の露出端面にもニッケル皮膜は形成される。無電解メッキだけで十分なメッキ厚が確保できない場合は、さらに電解ニッケルメッキを行うが、総厚としてニッケルメッキの厚みは数μmである。
The metal mask used in the vapor deposition step is removed and subsequently immersed in an electroless nickel plating solution to form a nickel film. Since the nickel film grows by using nickel or palladium formed by vapor deposition as reaction nuclei, it is first formed on the vapor deposition layer. A nickel film is also formed on the exposed end surfaces of the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20 that are in contact with the deposited metal. When a sufficient plating thickness cannot be ensured only by electroless plating, electrolytic nickel plating is further performed. The total thickness of nickel plating is several μm.

ニッケル膜は熱電半導体との密着をとるためと不純物の拡散を防ぐために施すが、ニッケルメッキだけでは比抵抗がやや大きいため、さらに配線抵抗を下げるためにニッケルメッキにつづいて銅メッキを行う。銅メッキは電解メッキを利用する。銅メッキは必要に応じて数μmから数10μmの厚みで形成する。   The nickel film is applied to adhere to the thermoelectric semiconductor and to prevent the diffusion of impurities. However, since the specific resistance is somewhat large only by nickel plating, copper plating is performed following the nickel plating to further reduce the wiring resistance. Copper plating uses electrolytic plating. The copper plating is formed with a thickness of several μm to several tens of μm as required.

さらに銅メッキにつづいて再度ニッケルメッキと必要に応じて金メッキを行う。これらのニッケル、金のメッキは銅を腐食から守る意味と、実装時にリード線などを接続する時に使いやすいからである。以上の工程にから図1に見られる配線電極30が形成され、本発明の熱電素子が出来上がる。図1では便宜的に配線電極30は蒸着膜の形状で描いているが、工程で述べたように実際のメッキ膜は露出している熱電半導体の端面にも形成されている。   Further, after copper plating, nickel plating is performed again, and gold plating is performed as necessary. These nickel and gold platings protect copper from corrosion and are easy to use when connecting lead wires during mounting. The wiring electrode 30 shown in FIG. 1 is formed from the above steps, and the thermoelectric element of the present invention is completed. In FIG. 1, the wiring electrode 30 is drawn in the form of a vapor deposition film for the sake of convenience, but as described in the process, the actual plating film is also formed on the exposed end face of the thermoelectric semiconductor.

ここで述べた工程の説明では熱電素子は1個ずつ作製しているが、熱電素子の数倍の大きさの熱電半導体を出発材料とし、櫛歯素子の形成も熱電素子に含まれる熱電半導体素子よりも数倍多く加工することで、多数個の同時作製も可能である
In the description of the process described here, one thermoelectric element is produced, but a thermoelectric semiconductor element whose starting material is a thermoelectric semiconductor several times the size of the thermoelectric element, and the formation of comb-teeth elements is included in the thermoelectric element. By processing several times more than that, many pieces can be simultaneously produced .

〔第2の実施の形態〕
図7には第2の実施の形態における熱電素子の構造を示す。基本的にN型熱電半導体10で形成されているN型半導体列15、P型熱電半導体20で形成されているP型半導体列25、断熱材40、配線電極30から構成されることは第1の実施の形態と同じである。
[Second Embodiment]
FIG. 7 shows the structure of the thermoelectric element in the second embodiment. It is basically composed of an N-type semiconductor array 15 formed of the N-type thermoelectric semiconductor 10, a P-type semiconductor array 25 formed of the P-type thermoelectric semiconductor 20, a heat insulating material 40, and a wiring electrode 30. This is the same as the embodiment.

ここで第2の実施の形態においては、最外列を除いて2列のN型半導体列15が隣り合って配置し、また2列のP型半導体列25が隣り合って配置し、さらにその2列ずつの異種の半導体列が交互に配列している。そして最外列には1列のみのN型半導体列15あるいはP型半導体列25が配置している。   Here, in the second embodiment, except for the outermost column, two N-type semiconductor columns 15 are arranged adjacent to each other, and two P-type semiconductor columns 25 are arranged adjacent to each other. Two different types of semiconductor columns are alternately arranged. In the outermost row, only one N-type semiconductor row 15 or P-type semiconductor row 25 is arranged.

そして、熱電半導体の端面には第1の実施の形態と同様に2種類の配線電極30、I型配線電極30(a)とL型配線電極30(b)が配されている。I型配線電極30(a)は半導体列に対して直交するように長手方向が位置するが、隣り合った2本ずつのN型熱電半導体10とP型熱電半導体20の合計4本の熱電半導体の端面に接している。当然反対の端面にも同様な配線電極30があるが、ここでは2本おきにずれた構成をとっており、つまりは同種の熱電半導体2本を並列化しつつ、となりの異種の熱電半導体と電気的に接触することとなっている。   Then, two types of wiring electrodes 30, an I-type wiring electrode 30 (a) and an L-type wiring electrode 30 (b) are arranged on the end face of the thermoelectric semiconductor as in the first embodiment. Although the longitudinal direction of the I-type wiring electrode 30 (a) is positioned so as to be orthogonal to the semiconductor row, a total of four thermoelectric semiconductors, that is, two adjacent N-type thermoelectric semiconductors 10 and P-type thermoelectric semiconductors 20. It is in contact with the end face. Of course, there is a similar wiring electrode 30 on the opposite end face, but here it has a configuration shifted every two lines. In other words, two thermoelectric semiconductors of the same type are arranged in parallel, and the other different types of thermoelectric semiconductors are electrically connected. Will come into contact.

また、L型配線電極30(b)は最外列にある2本のN型熱電半導体10あるいはP型熱電半導体20とその内列2列に含まれる2本の異種の熱電半導体とを、つまりは4本の熱電半導体の端面を接続している。この2種類の配線電極30によって熱電素子に含まれる熱電半導体は直列化されている。そして、ここではI型配線電極30(a)とL型配線電極30(b)ともに2本のN型熱電半導体10と2本のP型熱電半導体20とを並列化して熱電対を形成していることから、熱電対の電気的性能はどこにおいても変わらなくなっている。   The L-type wiring electrode 30 (b) includes two N-type thermoelectric semiconductors 10 or P-type thermoelectric semiconductors 20 in the outermost row and two different types of thermoelectric semiconductors included in the two inner rows. Connects the end faces of the four thermoelectric semiconductors. Thermoelectric semiconductors included in the thermoelectric element are serialized by the two types of wiring electrodes 30. In this example, two N-type thermoelectric semiconductors 10 and two P-type thermoelectric semiconductors 20 are paralleled to form a thermocouple for both the I-type wiring electrode 30 (a) and the L-type wiring electrode 30 (b). As a result, the electrical performance of the thermocouple remains the same everywhere.

さらに第2の実施の形態について製造方法を説明する。はじめに、第1の実施の形態と同様に図8に示すようにN型半導体ブロックとP型半導体ブロックとに縦溝1を形成し縦隔壁2を残すが、さらに縦隔壁2の厚み方向のほぼ中央に分離溝8を形成する。これにより本実施の形態での縦隔壁2は2枚の板から成り立っている。分離溝8は縦溝1を形成する前に所望の位置にあらかじめ形成しておいてもよい。この工程によりN型櫛歯素子3とP型櫛歯素子4が作製される。   Furthermore, a manufacturing method will be described for the second embodiment. First, as in the first embodiment, as shown in FIG. 8, the vertical grooves 1 are formed in the N-type semiconductor block and the P-type semiconductor block to leave the vertical barrier ribs 2. A separation groove 8 is formed in the center. Thereby, the vertical partition 2 in this Embodiment consists of two plates. The separation groove 8 may be formed in advance at a desired position before the vertical groove 1 is formed. By this process, the N-type comb element 3 and the P-type comb element 4 are produced.

この時N型櫛歯素子3とP型櫛歯素子4とで、縦溝1のピッチを同一にし、かつ一方のブロックの縦溝1幅が他方のブロックの2枚の板からなる縦隔壁2幅よりも大きくなるようにする。ここでもN型熱電半導体としてBiSeTe合金の焼結体、P型熱電半導体としてBiSbTe合金の焼結体を用いた。加工は、ダイシングソーあるいはワイヤーソーなどを用いて行う。   At this time, in the N-type comb-teeth element 3 and the P-type comb-teeth element 4, the pitch of the longitudinal grooves 1 is the same, and the longitudinal groove 1 width of one block is composed of two plates of the other block. Make it larger than the width. Again, a BiSeTe alloy sintered body was used as the N-type thermoelectric semiconductor, and a BiSbTe alloy sintered body was used as the P-type thermoelectric semiconductor. Processing is performed using a dicing saw or a wire saw.

つづいてN型櫛歯素子3とP型櫛歯素子4を、互いに縦溝1に相手の縦隔壁2を挿入し合って組み合わせて一体化する。両者を組み合わせた図を図9に示す。組み合わせた2つの櫛歯素子は嵌合部および分離溝8に断熱材40を設けて固着することで一体化櫛歯素子5とする。流動性の高い絶縁性接着剤中に組み合わせた櫛歯素子を部分的に浸漬し、毛管現象により接着剤を縦溝1と縦隔壁2との隙間に充填すれば絶縁を保ちつつ断熱材40で固着が行える。ここで断熱材40に用いる接着剤としては低粘度のエポキシ系の接着剤を用いることとする。   Subsequently, the N-type comb-teeth element 3 and the P-type comb-teeth element 4 are combined with each other by inserting the opposite vertical partition wall 2 into the longitudinal groove 1 and combining them. FIG. 9 shows a combination of both. The two comb-tooth elements combined are provided with the heat insulating material 40 in the fitting portion and the separation groove 8 to be fixed to form the integrated comb-tooth element 5. If the comb-tooth element combined in a highly fluid insulating adhesive is partially immersed and the adhesive is filled in the gap between the longitudinal groove 1 and the longitudinal partition wall 2 by capillary action, the insulation 40 can be maintained while maintaining insulation. Can be fixed. Here, as the adhesive used for the heat insulating material 40, a low-viscosity epoxy adhesive is used.

このように組み合わせた一体化櫛歯素子5には、図10に示すように横溝6と横隔壁7を形成するように再度の加工を行う。横溝6は櫛歯を細く加工して柱状にするために行い、前述のような組合せは行わないことから、出来るだけ細いことが望ましい。そして横溝6にも初めの組合せを行ったときと同じように、エポキシ系接着剤を充填し固着させ、再度断熱材40を形成する。   The combined comb element 5 thus combined is processed again so as to form the lateral grooves 6 and the lateral partition walls 7 as shown in FIG. The lateral grooves 6 are formed in order to process comb teeth into a columnar shape, and are not combined as described above. Therefore, it is desirable that the lateral grooves 6 be as thin as possible. Then, as in the case of the first combination, the transverse groove 6 is filled and fixed with an epoxy adhesive, and the heat insulating material 40 is formed again.

横溝6はN型櫛歯素子3の面から形成しても、これとは逆にP型櫛歯素子4側の面から
形成してもよい。この時切り込む側のN型櫛歯素子3あるいはP型櫛歯素子4の溝が形成されていない基台部分は除去した後に溝加工を行った方が良い。基台部を除去するのは、初めに加工した縦溝1が観察できることから、横溝6との直交性がとりやすいためである。また、基台部がない方が、加工深さが小さくなるため深さ方向での柱曲がりが低減できる効果もある。
The lateral groove 6 may be formed from the surface of the N-type comb-tooth element 3 or, conversely, from the surface on the P-type comb-tooth element 4 side. At this time, it is preferable to perform the groove processing after removing the base portion where the groove of the N-type comb element 3 or the P-type comb element 4 on the side to be cut is not formed. The reason why the base portion is removed is that the vertical grooves 1 that have been processed first can be observed, so that the orthogonality with the horizontal grooves 6 can be easily obtained. Moreover, since the processing depth is smaller when the base portion is not provided, there is an effect that column bending in the depth direction can be reduced.

断熱材40を形成した一体化櫛歯素子5はその上下面を研削で除去し平坦化する。すると柱状のN型熱電半導体10の列とP型熱電半導体20の列が2列ずつ交互に並んだ状態になる。そしてさらに全体の列の最外列にあるN型熱電半導体10とP型熱電半導体20はダイシングソーなどによる加工にて除去する。このようにして図11に示すように配線前の熱電素子が完成する。   The integrated comb element 5 having the heat insulating material 40 is flattened by removing the upper and lower surfaces thereof by grinding. Then, two columns of columnar N-type thermoelectric semiconductors 10 and two columns of P-type thermoelectric semiconductors 20 are alternately arranged. Further, the N-type thermoelectric semiconductor 10 and the P-type thermoelectric semiconductor 20 in the outermost row of the entire row are removed by processing with a dicing saw or the like. In this way, the thermoelectric element before wiring is completed as shown in FIG.

この後、図7に示したようにI型配線電極30(a)とL型配線電極30(b)の形成を行う。ここではそれぞれ4本の熱電半導体に接触するような形状に加工を行うが、形成方法は第1の実施の形態と同じである。   Thereafter, as shown in FIG. 7, the I-type wiring electrode 30 (a) and the L-type wiring electrode 30 (b) are formed. Here, processing is performed so as to be in contact with four thermoelectric semiconductors, but the forming method is the same as in the first embodiment.

この第2の実施の形態においても、熱電素子の作製は一個ずつ行うこともできるが、数個分の大きさの熱電半導体から加工を始め、多数個同時に処理を行うことも可能である。   Also in this second embodiment, the thermoelectric elements can be manufactured one by one, but it is also possible to start processing from several thermoelectric semiconductors and to process a large number simultaneously.

このようにして製造された熱電素子は、最外列のN型半導体列15とP型半導体列25を形成する際も、柱を部分的に加工する工程が無いことから、外周部すべてに断熱材40を残すことが可能である。これにより、熱電半導体が露出する部分が無くなり、耐湿性などの信頼性を向上させることができる。   Since the thermoelectric element manufactured in this way does not have a step of partially processing the pillars when forming the outermost N-type semiconductor row 15 and P-type semiconductor row 25, the entire outer peripheral portion is insulated. It is possible to leave the material 40. Thereby, the part which a thermoelectric semiconductor exposes is lost, and reliability, such as moisture resistance, can be improved.

本発明の実施の形態における熱電素子の構造を示す平面図である。It is a top view which shows the structure of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の構造を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造工程を示す斜視図であるIt is a perspective view which shows the manufacturing process of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の構造を示す平面図である。It is a top view which shows the structure of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the thermoelectric element in embodiment of this invention. 本発明の実施の形態における熱電素子の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the thermoelectric element in embodiment of this invention. 従来の熱電素子の構造を示す平面図である。It is a top view which shows the structure of the conventional thermoelectric element. 従来の熱電素子の構造を示す平面図である。It is a top view which shows the structure of the conventional thermoelectric element.

符号の説明Explanation of symbols

1 縦溝
2 縦隔壁
3 N型櫛歯素子
4 P型櫛歯素子
5 一体化櫛歯素子
6 横溝
7 横隔壁
8 分離溝
10 N型熱電半導体
15 N型半導体列
20 P型熱電半導体
25 P型半導体列
30 配線電極
30(a) I型配線電極
30(b) L型配線電極
40 断熱材


DESCRIPTION OF SYMBOLS 1 Vertical groove 2 Vertical partition 3 N-type comb-tooth element 4 P-type comb-tooth element 5 Integrated comb-tooth element 6 Horizontal groove 7 Horizontal partition 8 Separation groove 10 N-type thermoelectric semiconductor 15 N-type semiconductor array 20 P-type thermoelectric semiconductor 25 P-type Semiconductor row 30 Wiring electrode 30 (a) I-type wiring electrode 30 (b) L-type wiring electrode 40


Claims (4)

複数の柱状P型熱電半導体からなるP型半導体列と複数の柱状N型熱電半導体からなるN型半導体列交互に複数配列し、隣り合った極性の異なる熱電半導体の柱の上下の端面をそれぞれ電気的に接続する配線電極を有する熱電素子であって
最外列となるN型半導体列またはP型半導体列に含まれる熱電半導体の少なくとも一部、内列に位置する熱電半導体の1/2の断面積にしてあり、
前記上下両端面の配線電極は隣り合った同断面積で極性の異なる1本ずつの熱電半導体を接続する配線電極と
最外列の1/2断面積の熱電半導体2本とそのすぐにある極性の異なる1本の熱電半導体とを接続することにより最外列の1/2断面積の熱電半導体を2本ずつ並列接続する配線電極を有することを特徴とする熱電素子。
A plurality of P-type semiconductor columns made of a plurality of columnar P-type thermoelectric semiconductors and a plurality of N-type semiconductor rows made of a plurality of columnar N-type thermoelectric semiconductors are alternately arranged, and upper and lower end faces of adjacent columns of thermoelectric semiconductors having different polarities are arranged. each I Oh thermoelectric device having a wiring electrode for electrically connecting,
At least a portion of thermoelectric semiconductor included in the N-type semiconductor column or P-type semiconductor string to be the outermost row, Yes in the cross-sectional area of 1/2 of the thermoelectric semiconductors positioned on the inner column,
And wiring electrodes that connect the thermoelectric semiconductor of one by one with different polarity ditto area wiring electrode is adjacent the upper and lower end faces,
Two thermoelectric semiconductor 1/2 the cross-sectional area of the outermost row by connecting the polarity one thermoelectric semiconductors different in thermoelectric semiconductors 2 and its immediate inner side of the half cross-sectional area of the outermost row thermoelectric elements further comprising a wiring electrode connected in parallel by.
請求項1に記載の熱電素子において、
前記上下両端面の配線電極にて、隣り合った同断面積で極性の異なる1本ずつの熱電半導体を接続する配線電極はI型配線電極であり、
最外列の1/2断面積の熱電半導体2本とそのすぐにある極性の異なる1本の熱電半導体とを接続することにより最外列の1/2断面積の熱電半導体を2本ずつ並列接続する配線電極はL型配線電極であることを特徴とする熱電素子。
The thermoelectric device according to claim 1, wherein
Wherein at the wiring electrodes of the upper and lower end surfaces, wiring electrodes for connecting the thermoelectric semiconductor of one by one with different polarity ditto area adjacent is type I wiring electrode,
Two thermoelectric semiconductor 1/2 the cross-sectional area of the outermost row by connecting the polarity one thermoelectric semiconductors different in thermoelectric semiconductors 2 and its immediate inner side of the half cross-sectional area of the outermost row thermoelectric elements connected in parallel to the wiring electrodes you wherein L-type wire electrodes der Rukoto by.
複数の柱状P型熱電半導体からなるP型半導体列と複数の柱状N型熱電半導体からなるN型半導体列であって、全て同じ断面積のものを、それぞれ2列ずつ交互に複数配列し、さらに最外列には隣り合う内列の熱電半導体と同じ断面積で極性の異なる1列のN型半導体列または1列のP型半導体列を有し、
隣り合った2本ずつのP型熱電半導体と2本ずつのN型熱電半導体とをれらの柱の上下の端面で電気的に接続することにより極性の同じ熱電半導体を2本ずつ並列接続する配線電極と、
最外列に含まれる2本のN型熱電半導体(P型熱電半導体)とそのすぐ内側2列に含まれる2本のP型熱電半導体(N型熱電半導体)を、それら上下の端面で電気的に接続することにより、最外列の熱電半導体とそのすぐ内側2列の熱電半導体を2本ずつ並列接続する配線電極を有することを特徴とする熱電素子。
A plurality of P-type semiconductor columns made of a plurality of columnar P-type thermoelectric semiconductors and N-type semiconductor columns made of a plurality of columnar N-type thermoelectric semiconductors , all having the same cross-sectional area, are alternately arranged in two columns, Further, the outermost row has one N-type semiconductor row having the same cross-sectional area and different polarity as the adjacent inner-row thermoelectric semiconductor , or one P-type semiconductor row,
The neighboring was two by P-type thermoelectric semiconductor and the N-type thermoelectric semiconductor of two by two, their parallel end faces of the upper and lower these pillars by electrically connecting the same thermoelectric semiconductor polarity by two A wiring electrode to be connected ;
The two N-type thermoelectric semiconductor (P-type thermoelectric semiconductor) and two P-type thermoelectric semiconductor that contained just inside two columns (N-type thermoelectric semiconductor) contained in the outermost row, their end faces of these upper and lower in by electrically connecting the thermoelectric device characterized by having the wiring electrodes connected in parallel two by two a thermoelectric semiconductor of the thermoelectric semiconductor and immediately inside the two rows of the outermost row.
請求項3に記載の熱電素子において、The thermoelectric device according to claim 3, wherein
隣り合った2本ずつのP型熱電半導体と2本ずつのN型熱電半導体とを、それらの柱の上下の端面で電気的に接続することにより極性の同じ熱電半導体を2本ずつ並列接続する配線電極はI型配線電極であり、By connecting two adjacent P-type thermoelectric semiconductors and two N-type thermoelectric semiconductors at the upper and lower end faces of the pillars, two thermoelectric semiconductors having the same polarity are connected in parallel. The wiring electrode is an I-type wiring electrode,
最外列に含まれる2本のN型熱電半導体(P型熱電半導体)とそのすぐ内側2列に含まれる2本のP型熱電半導体(N型熱電半導体)を、それらの上下の端面で電気的に接続することにより、最外列の熱電半導体とそのすぐ内側2列の熱電半導体を2本ずつ並列接続する配線電極はL型配線電極であることを特徴とする熱電素子。Two N-type thermoelectric semiconductors (P-type thermoelectric semiconductors) included in the outermost row and two P-type thermoelectric semiconductors (N-type thermoelectric semiconductors) included in the immediately inner two rows are electrically connected at their upper and lower end faces. The wiring electrode for connecting two outermost thermoelectric semiconductors in parallel and the two innermost thermoelectric semiconductors in parallel is an L-shaped wiring electrode.
JP2003371385A 2003-10-31 2003-10-31 Thermoelectric element Expired - Fee Related JP4276047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371385A JP4276047B2 (en) 2003-10-31 2003-10-31 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371385A JP4276047B2 (en) 2003-10-31 2003-10-31 Thermoelectric element

Publications (2)

Publication Number Publication Date
JP2005136240A JP2005136240A (en) 2005-05-26
JP4276047B2 true JP4276047B2 (en) 2009-06-10

Family

ID=34648060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371385A Expired - Fee Related JP4276047B2 (en) 2003-10-31 2003-10-31 Thermoelectric element

Country Status (1)

Country Link
JP (1) JP4276047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768518B2 (en) * 2011-06-13 2015-08-26 日産自動車株式会社 Fuel cell system
CN104917272B (en) 2015-05-15 2017-11-10 合肥京东方光电科技有限公司 Wearable electronics

Also Published As

Publication number Publication date
JP2005136240A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP5988302B2 (en) Thermoelectric conversion device using the Savebeck / Peltier effect, comprising parallel nanowires made of a conductive material or a semiconductor material arranged in rows and columns via an insulating material, and a method of manufacturing the same
US9257627B2 (en) Method and structure for thermoelectric unicouple assembly
WO2011065185A1 (en) Thermoelectric conversion module and method for manufacturing same
JP5149376B2 (en) Solar cell element and solar cell module
JP5598152B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2010040998A (en) Method for manufacturing thermoelectric conversion module
US20110259385A1 (en) Thermoelectric conversion module and thermoelectric conversion module block
JP2008205181A (en) Thermoelectric module
CN103311262A (en) Micro thermoelectric device, production method thereof and temperature difference generator with same
JP2007048916A (en) Thermoelectric module
AU2012230650B2 (en) Structure useful for producing a thermoelectric generator, thermoelectric generator comprising same and method for producing same
JP2009081286A (en) Thermoelectric conversion module
JP4276047B2 (en) Thermoelectric element
JP2004221504A (en) Thermoelectric conversion device and its manufacturing method
JP2008098197A (en) Thermoelectric conversion element and its fabrication process
JP7052200B2 (en) Thermoelectric conversion module
JP4362303B2 (en) Thermoelectric element and manufacturing method thereof
JP4523306B2 (en) Method for manufacturing thermoelectric element
TW201511371A (en) Thermoelectric module and method of making same
KR101047478B1 (en) Method for manufacturing thermoelectric module and thermoelectric module using the same
JP4824229B2 (en) Thermoelectric element and manufacturing method thereof
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JP2006080326A (en) Thermoelectric apparatus
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JP4124150B2 (en) Thermoelectric module manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees