JP4272783B2 - Objective optical system and endoscope objective optical system - Google Patents

Objective optical system and endoscope objective optical system Download PDF

Info

Publication number
JP4272783B2
JP4272783B2 JP36347299A JP36347299A JP4272783B2 JP 4272783 B2 JP4272783 B2 JP 4272783B2 JP 36347299 A JP36347299 A JP 36347299A JP 36347299 A JP36347299 A JP 36347299A JP 4272783 B2 JP4272783 B2 JP 4272783B2
Authority
JP
Japan
Prior art keywords
reflecting surface
optical system
objective optical
light beam
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36347299A
Other languages
Japanese (ja)
Other versions
JP2001174713A (en
Inventor
勝 江口
哲也 中村
一郎 二ノ宮
雅章 中島
正寛 伏見
太一 中西
健一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP36347299A priority Critical patent/JP4272783B2/en
Publication of JP2001174713A publication Critical patent/JP2001174713A/en
Application granted granted Critical
Publication of JP4272783B2 publication Critical patent/JP4272783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

【0001】
【技術分野】
本発明は、反射を利用した対物光学系および内視鏡の対物光学系に関する。
【0002】
【従来技術およびその問題点】
長い可撓管で外部機器と接続された従来の内視鏡に対し、被験者の苦痛の軽減等を目的に、外部機器と接続せずに利用できるカプセル内視鏡が提案されている。カプセル内視鏡はカプセル型の体内導入部を被験者が嚥下して用い、食道や小腸等の消化管内壁を観察対象としている。体腔内では、カプセル側面が管腔内壁面に接するから、側視型の観察光学系のほうが観察には有利であるが、従来提案されているカプセル内視鏡はほとんどが直視型である。そこで側視型のカプセル内視鏡も提案されている。
【0003】
通常の側視型内視鏡は体腔内での姿勢を体外から操作できるが、カプセル内視鏡は小型化を追求しているため体腔内での姿勢制御手段を持たないのが通常である。姿勢制御手段を有していれば、光学系の視野は1方向でも十分であるが、そのような光学系を、姿勢制御手段を持たないカプセル内視鏡に用いても盲点となる部分が広く、実用的ではない。
【0004】
また姿勢を制御できる通常の内視鏡においても、光学系の視野が狭ければ内視鏡を細かく移動させなければならないので、視野が広いほうが詳細で正確な検査が可能であり、検査時間を短縮することができる。
【0005】
【発明の目的】
このような問題意識に基づき、本発明は広角な観察が可能で盲点の少ない対物光学系を、小型の対物光学系によって実現することを目的とする。また本発明は、内視鏡の対物光学系を、小型で視野の広い対物光学系によって実現することを目的とする。
【0012】
【発明の概要】
本発明の内視鏡の対物光学系は、イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;を体内挿入部に収納した内視鏡であって、上記対物光学系は、上記内視鏡の体内挿入部の先端部を構成する半球状の透明部材と;この透明部材を透過した光束を内部後方へ屈折する屈折面と;該屈折面で屈折した屈折光束を前方へ反射する第1の反射面と;該第1の反射面で反射した反射光束を後方へ反射する第2の反射面と;該第2の反射面で反射した反射光束を結像させるレンズ群と;を備え、上記透明部材の内外面、屈折面、第1の反射面および第2の反射面は、上記結像レンズ群の光軸を回転中心軸とする回転面からなることを特徴としている。
【0013】
また本発明の内視鏡の対物光学系は、イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;イメージセンサによる像を無線送信する電気回路と;を密閉カプセル内に収納した内視鏡であって、上記対物光学系は、上記密閉カプセルの先端部を構成する半球状の透明部材と;この透明部材を透過した光束を内部後方へ屈折する屈折面と;該屈折面で屈折した屈折光束を前方へ反射する第1の反射面と;該第1の反射面で反射した反射光束を後方へ反射する第2の反射面と;該第2の反射面で反射した反射光束をイメージセンサ上に結像させるレンズ群と;を備え、上記透明部材の内外面、屈折面、第1の反射面および第2の反射面は、上記結像レンズ群の光軸を回転中心軸とする回転面からなることを特徴としている。
【0014】
上記の対物光学系において、上記透明部材の外面が上記結像レンズ群の被写界深度内になるように、上記透明部材の内外面、上記屈折面、第1の反射面および第2の反射面の形状が設定されていると、内視鏡の対物光学系に適用した場合に管腔を観察しやすいので好ましい。
【0015】
また上記の対物光学系において、上記屈折面は上記透明部材の内面であると実際的である。上記透明部材が、屈折面と第2の反射面を一体に備えていると、さらに部品点数の削減ができ好ましい。
【0016】
以上の対物光学系において、第1の反射面および第2の反射面は凸面であると、光学系の全長を短くすることができ好ましい。特に第1の反射面が凸面であることにより視野が広角となり側視観察に有利である。あるいは、第1の反射面は凹面であり、第2の反射面は凸面であると、視野をやや前方に向けることができる。
【0017】
さらに以上の対物光学系において、上記透明部材の内部に設けられ、照明光を前方へ投光する光源と;この光源よりも前方に設けられて、照明光を上記結像レンズ群の軸方向に直交する周囲方向へ反射する照明光反射面と;を有していると実際的である。
【0019】
また本発明の内視鏡の対物光学系は、イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;を体内挿入部に収納した内視鏡であって、上記対物光学系は、上記内視鏡の体内挿入部の先端から順に、遮光部材からなる先端部材と;環状レンズ部材と;結像レンズ群と;を備え、上記先端部材に、環状レンズ部材を通して照明光を内視鏡の軸方向に直交する周囲方向に投光する複数の光源を設け、上記環状レンズ部材に、該環状レンズ部材を透過し該環状レンズ部材の内部前方へ向かう光束を後方へ反射させる第1の反射面と;該第1の反射面で反射した反射光束を前方へ反射する第2の反射面と;該第2の反射面で反射した反射光束を後方へ反射する第3の反射面と;が形成され、上記結像レンズ群は第3の反射面で反射した光束をイメージセンサ上に結像させ、該環状レンズ部材は光軸を回転中心軸とする回転体からなることを特徴としている。
【0020】
また本発明の内視鏡の対物光学系は、イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;イメージセンサによる像を無線送信する電気回路と;を密閉カプセル内に収納した内視鏡であって、上記密閉カプセルは、先端から順に、遮光部材からなる先端部材と;環状レンズ部材と;筒状ケースと;からなり、上記先端部材に、環状レンズ部材を通して照明光を密閉カプセルの軸方向に直交する周囲方向に投光する複数の光源を設け、上記対物光学系は、上記環状レンズ部材に、該環状レンズ部材を透過し該環状レンズ部材の内部前方へ向かう光束を後方へ反射させる第1の反射面と;該第1の反射面で反射した反射光束を前方へ反射する第2の反射面と;該第2の反射面で反射した反射光束を後方へ反射する第3の反射面と;が形成され、上記第3の反射面で反射した光束をイメージセンサ上に結像させる結像レンズ群を備え、該環状レンズ部材は光軸を回転中心軸とする回転体からなることを特徴としている。
【0021】
【発明の実施の形態】
以下、図示実施形態に基づいて本発明を説明する。図1から図18は、本発明の対物光学系を適用したカプセル内視鏡の断面を示している。カプセル内視鏡は、前方(図1の左方)の半球状の透明カバー部材30と後方の筒状ケース20とで密閉カプセル10が形成され、この密閉カプセル10の内部に、前方から順に、照明光学系40、対物光学系50、回路部(電気回路)23を備えている。
【0022】
回路部23は、観察像を外部へ送信するための電気部品(イメージセンサ24、バッテリー25、送信アンプ26、送信アンテナ27、電源スイッチ28)を備え、円筒状に形成されて筒状ケース20内の回路支持枠29に固定されている。後方が半球状に閉塞した筒状ケース20はその後端に、水密保持可能なOリング21を保持した貫通孔22が設けてあり、回路部23の後部に備えられた電源スイッチ28が、この貫通孔22を介して密閉カプセル10の外部から操作可能に配置されている。カプセル内視鏡の使用時にはこの電源スイッチ28によって電源がオンオフされる。回路部23は各実施形態に共通である。
【0023】
本カプセル内視鏡は、被験者が嚥下して体内管腔に導入される。管腔は通常つぶれた状態であるから、カプセル内視鏡はその長手方向が管腔の軸方向と一致した姿勢となり、管腔壁がカプセル表面、特に側面に密着する。つまり、透明カバー部材30の表面に密着した管腔壁が本カプセル内視鏡における観察対象となる。透明カバー部材30の外面を観察するため、対物光学系50は、透明カバー部材30の外面がレンズ群Lの被写界深度内になるように設定されている。以下に、各実施形態の詳細について説明する。
【0024】
第1の実施形態を図1から図3に示す。図1は、第1の実施形態を示すカプセル内視鏡の断面図である。本実施形態の対物光学系50は、半球状の透明カバー部材30と、この透明カバー部材30を透過した光束を前方へ反射する第1反射面51と、第1反射面51で反射した反射光束を後方へ反射する第2反射面53と、第2反射面53で反射した反射光束をイメージセンサ24上に結像させるレンズ群Lと、で構成される。
【0025】
透明カバー部材30は、筒状ケース20と接着されて密閉カプセル10をなし、カプセル全体の水密が保持されている。透明カバー部材30の内面中央部は後方へ向かって凸形状に形成されている。この凸形状は、透明な部材からなる光源保持部材43の前面凹形状に対応し、この光源保持部材43を接着固定するための形状である。透明カバー部材30に接着固定された光源保持部材43の前面凹面上には、照明光反射面42が設けられている。この照明光反射面42は、例えば金属膜を蒸着して形成することができる。光源保持部材43の後部は平面に形成され、内部中央には前方へ向かって投光する光源41が保持されている(図2)。回路部23を固定した回路支持枠29の前面は、中央にレンズ群保持枠12が設けられている。レンズ群保持枠12には、正のパワーを持つレンズ群Lが保持されている。回路支持枠29の前面にはまた、このレンズ群保持枠12を囲んで、第1反射面51を前面に備えた環状の第1ミラー52が固定されている。第1ミラー52に対向して設けられた第2ミラー54は、凸状に形成された第2反射面53を備え、光源保持部材43の後面に、第2反射面53を後方へ向けて固定されている。光源41に電力を供給するリード線44は、第2ミラー54を貫通して延出され、回路部23に接続している(図3)。リード線44は対物光学系50の光路を横切るので、反射防止手段が施されている。
【0026】
光源41から前方へ投光された照明光は光源保持部材43を透過して、照明光反射面42で反射されて、透明カバー部材30の側面全周にわたって観察部位を照明する。照明された観察部位の像の光束は透明カバー部材30を透過してまず第1反射面51で反射し、第2反射面53で2度目の反射をした後、レンズ群Lに入射してイメージセンサ24上に結像する。回路部23で行われる像の処理や信号の送受信については、本発明の要旨に関係がないのでここでは説明を省略する。
【0027】
本実施形態によれば、第1反射面51が凸面であるので、観察範囲の広角化に有利である。また、第2反射面53が凸面であるので、2つの反射面の配置スペースを小さくすることができる。また、照明光を凸面で反射させることにより、光源41が1つでも軸方向に直交する周囲方向360°の照明が可能になっている。
【0028】
第2の実施形態を図4から図6に示す。本実施形態は、第1の実施形態と同様の作用効果を得ることができる対物光学系50を、第1反射面51および第2反射面53を一体に形成した透明カバー部材30により構成したものである。
【0029】
図4に示すように、本実施形態における透明カバー部材30は、前面にレンズ群Lの光軸と同軸の、前方に開口した円筒状の光源保持孔31が形成されている。透明カバー部材30の後面には、前方へ凸状の第1反射面51が形成されている。光源保持孔31には、透明な部材からなる光源保持部材43が嵌め込まれている。この光源保持部材43は、第1の実施形態と同様に前面凹面上に照明光反射面42が設けられ、内部中央に光源41を保持し、透明な接着剤で光源保持孔31に隙間なく接着固定されている。光源保持孔31の底面(後面)には、後方へ凸状になっている第2反射面53が形成されている。また透明カバー部材30の後部には、レンズ群Lの光軸と同軸の、後方に開口した円筒状のレンズ群保持孔32が形成されていて、レンズ群Lが保持されている。光源保持部材43に保持され前方へ発光する光源41には、リード線44が接続されている。リード線44は透明カバー部材30を貫通して延出され、回路部23に接続して光源41に電力を供給する(図6)。リード線44は対物光学系50の光路を横切るので、反射防止手段が施されている。光源保持部材43の前方(光源保持孔31の開口部)には、透明カバー部材30先端の外形を滑らかな半球状にするために、先端部材45が嵌めこまれ接着固定されている。
【0030】
以上のように本実施形態では、照明光学系40と対物光学系50が、透明カバー部材30の内面に形成され、1つの部品となっているので、部品点数を削減することができ、製造や組み立て作業が容易になる。
【0031】
第3の実施形態を図7から図9に示す。本実施形態は、光源41の照明光を観察方向に反射する、第1の実施形態と同様の照明光学系40を備えている。図8および図9に示すように、光源41の保持およびリード線44に関しても、第1の実施形態と同様である。対物光学系50は図7に示すように、第1の実施形態と同様の2回反射の後レンズ群Lに入射する光学系であるが、第1反射面51が凹面であり、第1の実施形態と比較して視野がやや前方に向いている。すなわち本実施形態は、第1の実施形態における対物光学系50の第1反射面51が、凸面と凹面のいずれによっても可能であることを示している。
【0032】
第4の実施形態を図10から図12に示す。本実施形態は、光源41の照明光を観察方向に反射する、第2の実施形態と同様の照明光学系40を備えている。図11および図12に示すように、光源41の保持およびリード線44に関しても、第2の実施形態と同様である。対物光学系50は、第2の実施形態と同様、透明カバー部材30に照明光学系40と一体に形成されていて、2回反射の後レンズ群Lに入射する光学系であるが、図10に示すように、第1反射面51が凹面である点で第2の実施形態と異なっている。すなわち本実施形態は、部品削減、製造作業の容易化が可能である第2の実施形態における対物光学系50の第1反射面51が、凸面と凹面いずれによっても可能であることを示している。
【0033】
第5の実施形態を図13から図15に示す。図13は本実施形態を示すカプセル内視鏡の断面図である。本実施形態の対物光学系50は、透明カバー部材30と、透明カバー部材30を透過した光束を内部後方へ屈折する屈折面55と、屈折面55で屈折した屈折光束を前方へ反射する第1反射面51と、第1反射面51で反射した反射光束を後方へ反射する第2反射面53と、第2反射面53で反射した反射光束をイメージセンサ24上に結像させるレンズ群Lと、で構成される。照明光学系40の構成は、前方に投光する光源41の照明光を観察方向に反射するもので、第2および第4の実施形態と同様である。
【0034】
本実施形態の透明カバー部材30は、前面に、レンズ群Lの光軸と同軸で前方に開口した円筒状の光源保持孔31が形成されている。この光源保持孔31の底面(後面)には、後方へ凸状になっている第2反射面53が形成されている。また、図14に示すように光源保持孔31内には前方へ投光する光源41が固定されている。光源41に電力を供給するリード線44は、透明カバー部材30の光源保持孔31の底部を貫通して延出され、回路部23に接続している(図15)。リード線44は、対物光学系50の光路を横切るので、反射防止手段が施されている。透明カバー部材30の内部はレンズ枠Lの光軸を中心軸として形成される略円錐台状にくりぬかれていて、この円錐面が対物光学系50の屈折面55となっている。回路部23を固定した回路支持枠29前面は、中央にレンズ群保持枠12が設けられている。レンズ群保持枠12には、正のパワーを持つレンズ群Lが保持されている。このレンズ群保持枠12を囲んで、第1反射面51を備えた環状の第1ミラー52が固定されている。
【0035】
以上の構成による本実施形態では、透明カバー部材30を透過し屈折面55で屈折した被写体光線は第1反射面51で反射し、第2反射面53で2回目の反射をして、レンズ群Lに入射してイメージセンサ24上に結像する。本実施形態によれば、対物光学系50に凹面の屈折面55を有することにより観察範囲をより広角にすることができる。また第1反射面51および第2反射面53が凸面であるので、小さな反射スペースで観察範囲を広角にすることができる。
【0036】
第6の実施形態を図16から図18に示す。本実施形態は、光源41の照明光を観察方向に反射する、第5の実施形態と同様の照明光学系40を備えている。図17および図18に示すように、光源41の保持およびリード線44に関しても、第5の実施形態と同様である。対物光学系50は、第5の実施形態と同様、透明カバー部材30に照明光学系40と一体に形成されていて、1回屈折2回反射の後レンズ群Lに入射する光学系であるが、図16に示すように、第1反射面51が凹面である点で第5の実施形態と異なっている。透明カバー部材30を透過した光線は、まず透明カバー部材30の屈折面55で屈折して第1反射面51で反射し、第2反射面53で反射した後、レンズ群Lに入射してイメージセンサ24上に結像する。すなわち本実施形態は、屈折面55における屈折によって広角化が図られ、第1反射面51と第2反射面53の反射によって、小さなスペースで広い範囲を観察することができる第5の実施形態における対物光学系50の第1反射面51が、凸面と凹面いずれによっても可能であることを示している。
【0037】
なお、以上に説明した第1から第6の実施形態では、第1反射面51は凸面と凹面のいずれかによって構成したが、どの実施形態においても第1反射面51は凸面と凹面のいずれによっても可能であり、平面とすることもできる。凸面または凹面とすれば、対物光学系の光学性能改善に反射面の形状を寄与させることができる一方、平面は製造が容易であるという利点がある。
【0038】
第7の実施形態を図19から図21に示す。図19は、第7の実施形態を示すカプセル内視鏡の断面図である。本実施形態の密閉カプセル10は、先端から順に、遮光部材からなる先端部材60と、透明な部材からなる環状レンズ部材70と、筒状ケース20とから形成される。対物光学系50は、環状レンズ部材70を透過し内部前方へ向かう光束を後方へ反射させる第1反射面72と、第1反射面72で反射した反射光束を前方へ反射する第2反射面73と、第2反射面73で反射した反射光束を後方へ反射する第3反射面74と、第3反射面74で反射した光束をイメージセンサ上に結像させるレンズ群Lと、で構成される。
【0039】
先端部材60と環状レンズ部材70を一体に接着すると、外形は半球状をなしている。環状レンズ部材70の後部には、後方へ開口してレンズ枠Lを保持するレンズ群保持孔71が形成されている。先端部材60と環状レンズ部材70の中央部には、図20に示すようにレンズ群Lの軸方向に直交する周囲方向へ投光する光源46が同一円周上に等角度間隔で4箇所埋め込まれている。図21に示すように、光源46からは、光源46に電力を供給するリード線44が、環状レンズ部材70を貫通して延出され、回路部23に接続している(図21)。リード線44は対物光学系50の光路を横切るので、反射防止手段が施されている。第1反射面72は、環状レンズ部材70前面の、光源46を設けた円周より外周部分に形成され、第2反射面73は、環状レンズ部材70後面に形成されている。第3反射面74は、光源46を備えた円周より内周部分に、後方に向かい凸面状に形成されている。
【0040】
照明光は、光源46から環状レンズ部材70を透過して観察部位へ直接照射される。この例では光源46は4箇所設けてあるが、光源46の照射角度αが広ければ光源46の数は少なくてもよく、逆に照射角度αが狭ければさらに多くの光源46を設ければよい。環状レンズ部材70を透過した被写体光線は、第1反射面72(凹面)で反射した後に環状レンズ部材70後面の第2反射面73(凹面)で2回目の反射をする。この光線はさらに、光源46の直後に位置する環状レンズ部材70前面中央の第3反射面74(凸面)で3回目の反射をしてレンズ群Lに入射し、イメージセンサ24上に結像する。本実施形態によれば、この2回の凹面反射と1回の凸面反射によって、広角の観察が小さな光学系で可能となる。
【0041】
以上の実施形態は、本発明による対物光学系を、カプセル内視鏡の対物光学系に適用したが、内視鏡一般、すなわち体内挿入部と体外に位置させる操作部とを可撓管で接続された内視鏡にも適用できることはもちろんである。さらには、対物光学系一般に適用することも可能である。またカプセルの外形は、前後端とも半球状としたが、後端はもちろん、前端も体腔内でカプセル内視鏡の進行を妨げない形状であれば、例えば円錐台状でも可能である。
【0042】
【発明の効果】
以上のように、本発明の対物光学系によれば、反射面の組み合わせあるいは反射面と屈折面の組み合わせにより、光学系の全長を短くすることができるので、小さな反射スペースで広角な観察が可能な小型の対物光学系が実現する。また本発明の対物光学系を内視鏡に適用すれば、内視鏡の軸方向に直交する周囲方向の全周にわたる観察が可能な小型の内視鏡を得ることができる。
【図面の簡単な説明】
【図1】本発明による第1の実施形態を示すカプセル内視鏡全体の断面図である。
【図2】図1におけるII−II断面図である。
【図3】図1におけるIII−III断面図である。
【図4】本発明による第2の実施形態を示すカプセル内視鏡全体の断面図である。
【図5】図4におけるV−V断面図である。
【図6】図4におけるVI−VI断面図である。
【図7】本発明による第3の実施形態を示すカプセル内視鏡全体の断面図である。
【図8】図7におけるVIII−VIII断面図である。
【図9】図7におけるIX−IX断面図である。
【図10】本発明による第4の実施形態を示すカプセル内視鏡全体の断面図である。
【図11】図10におけるXI−XI断面図である。
【図12】図10におけるXII−XII断面図である。
【図13】本発明による第5の実施形態を示すカプセル内視鏡全体の断面図である。
【図14】図13におけるXIV−XIV断面図である。
【図15】図13におけるXV−XV断面図である。
【図16】本発明による第6の実施形態を示すカプセル内視鏡全体の断面図である。
【図17】図16におけるXVII−XVII断面図である。
【図18】図16におけるXVIII−XVIII断面図である。
【図19】本発明による第7の実施形態を示すカプセル内視鏡全体の断面図である。
【図20】図19におけるXX−XX断面図である。
【図21】図19におけるXXI−XXI断面図である。
【符号の説明】
10 密閉カプセル
12 レンズ群保持枠
20 筒状ケース
21 Oリング
22 貫通孔
23 回路部(電気回路)
24 イメージセンサ
25 バッテリー
26 送信アンプ
27 送信アンテナ
28 電源スイッチ
29 回路支持枠
30 透明カバー部材
31 光源保持孔
32 レンズ群保持孔
40 照明光学系
41 46 光源
42 照明光反射面
43 光源保持部材
44 リード線
45 先端部材
50 対物光学系
51 第1反射面
52 第1ミラー
53 第2反射面
54 第2ミラー
55 屈折面
60 先端部材
70 環状レンズ部材
71 レンズ群保持孔
72 第1反射面
73 第2反射面
74 第3反射面
L レンズ群
α 照射角度
[0001]
【Technical field】
The present invention relates to an objective optical system using reflection and an objective optical system of an endoscope.
[0002]
[Prior art and its problems]
A capsule endoscope that can be used without being connected to an external device has been proposed for the purpose of reducing the pain of a subject, etc., compared to a conventional endoscope connected to an external device with a long flexible tube. The capsule endoscope uses a capsule-type in-vivo introduction part by swallowing a subject, and the inner wall of the digestive tract such as the esophagus or the small intestine is an observation target. In the body cavity, since the side surface of the capsule is in contact with the inner wall surface of the lumen, the side-view type observation optical system is more advantageous for observation, but most of the conventionally proposed capsule endoscopes are of direct view type. Therefore, a side-view type capsule endoscope has also been proposed.
[0003]
A normal side-view type endoscope can be operated from outside the body posture in the body cavity, but since a capsule endoscope is pursuing miniaturization, it usually does not have a posture control means in the body cavity. If the posture control means is provided, the field of view of the optical system is sufficient even in one direction. However, even if such an optical system is used in a capsule endoscope having no posture control means, a portion that becomes a blind spot is wide. Not practical.
[0004]
Even in a normal endoscope that can control the posture, if the field of view of the optical system is narrow, the endoscope must be moved finely, so a wider field of view allows more detailed and accurate inspection, and inspection time is reduced. It can be shortened.
[0005]
OBJECT OF THE INVENTION
Based on this awareness of the problem, an object of the present invention is to realize an objective optical system capable of wide-angle observation and less blind spots by a small objective optical system. Another object of the present invention is to realize an objective optical system of an endoscope with a small objective optical system having a wide field of view.
[0012]
SUMMARY OF THE INVENTION
The objective optical system of the endoscope of the present invention is an endoscope that houses an image sensor; and an objective optical system that forms an image of a test portion in a body cavity on the image sensor; The objective optical system includes a hemispherical transparent member that forms a distal end portion of the endoscope insertion portion of the endoscope; a refracting surface that refracts a light beam that has passed through the transparent member; A first reflecting surface that reflects the refracted light beam forward; a second reflecting surface that reflects the reflected light beam reflected by the first reflecting surface backward; and a reflected light beam that is reflected by the second reflecting surface. A lens group that forms an image; and the inner and outer surfaces, the refracting surface, the first reflecting surface, and the second reflecting surface of the transparent member are from a rotation surface that has an optical axis of the imaging lens group as a rotation center axis. It is characterized by becoming.
[0013]
The objective optical system of the endoscope of the present invention includes: an image sensor; an objective optical system that forms an image of a test portion in a body cavity on the image sensor; and an electric circuit that wirelessly transmits an image from the image sensor; The objective optical system includes a hemispherical transparent member that forms the tip of the sealed capsule; and a refraction that refracts the light beam that has passed through the transparent member toward the interior rear. A first reflecting surface that reflects the refracted light beam refracted by the refracting surface forward; a second reflecting surface that reflects the reflected light beam reflected by the first reflecting surface backward; and the second reflecting surface; A lens group that forms an image of the reflected light beam reflected by the reflecting surface on the image sensor, and the inner and outer surfaces, the refracting surface, the first reflecting surface, and the second reflecting surface of the transparent member are formed by the imaging lens group. It consists of a rotating surface with the optical axis of To have.
[0014]
In the objective optical system, the inner and outer surfaces of the transparent member, the refractive surface, the first reflecting surface, and the second reflecting surface are arranged so that the outer surface of the transparent member is within the depth of field of the imaging lens group. It is preferable that the shape of the surface is set because it is easy to observe the lumen when applied to the objective optical system of the endoscope.
[0015]
In the objective optical system, it is practical that the refractive surface is an inner surface of the transparent member. If the transparent member is integrally provided with a refracting surface and a second reflecting surface, it is preferable because the number of parts can be further reduced.
[0016]
In the objective optical system described above, it is preferable that the first reflecting surface and the second reflecting surface are convex surfaces because the entire length of the optical system can be shortened. In particular, since the first reflecting surface is a convex surface, the field of view becomes wide, which is advantageous for side-view observation. Alternatively, when the first reflecting surface is a concave surface and the second reflecting surface is a convex surface, the field of view can be slightly directed forward.
[0017]
Furthermore, in the above objective optical system, a light source provided inside the transparent member for projecting illumination light forward; and provided in front of the light source, the illumination light is directed in the axial direction of the imaging lens group. It is practical to have an illumination light reflecting surface that reflects in an orthogonal surrounding direction.
[0019]
The objective optical system of the endoscope of the present invention is an endoscope in which an image sensor; and an objective optical system that forms an image of a test portion in a body cavity on the image sensor; The objective optical system includes, in order from the distal end of the endoscope insertion portion of the endoscope, a distal end member made of a light shielding member; an annular lens member; and an imaging lens group. A plurality of light sources for projecting illumination light through the member in a peripheral direction orthogonal to the axial direction of the endoscope is provided, and a light flux that passes through the annular lens member and travels forward inside the annular lens member is provided in the annular lens member. A first reflecting surface that reflects backward; a second reflecting surface that reflects forward the reflected light beam reflected by the first reflecting surface; and a reflected light beam reflected by the second reflecting surface that reflects backward A third reflecting surface; and the imaging lens group includes a third reflecting surface; The light beam reflected by the morphism surface is imaged on the image sensor, the annular lens member is characterized by comprising a rotary member and the rotation center axis coincides with the optical axis.
[0020]
The objective optical system of the endoscope of the present invention includes: an image sensor; an objective optical system that forms an image of a test portion in a body cavity on the image sensor; and an electric circuit that wirelessly transmits an image from the image sensor; In a sealed capsule, the sealed capsule comprising, in order from the tip, a tip member made of a light shielding member; an annular lens member; and a cylindrical case; A plurality of light sources for projecting illumination light through a lens member in a circumferential direction orthogonal to the axial direction of the sealed capsule is provided, and the objective optical system transmits the annular lens member to the annular lens member and transmits the annular lens member. A first reflecting surface that reflects the light beam traveling forward in the interior to the rear; a second reflecting surface that reflects the reflected light beam reflected by the first reflecting surface forward; and a reflection that is reflected by the second reflecting surface Reflect the light beam backward And an image forming lens group for forming an image of the light beam reflected by the third reflecting surface on the image sensor, and the annular lens member is rotated about the optical axis as a rotation center axis. It is characterized by the body.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on illustrated embodiments. 1 to 18 show cross sections of a capsule endoscope to which the objective optical system of the present invention is applied. In the capsule endoscope, a sealed capsule 10 is formed by a hemispherical transparent cover member 30 on the front (left side in FIG. 1) and a cylindrical case 20 on the rear, and the inside of the sealed capsule 10 in order from the front, An illumination optical system 40, an objective optical system 50, and a circuit unit (electric circuit) 23 are provided.
[0022]
The circuit unit 23 includes electrical components (image sensor 24, battery 25, transmission amplifier 26, transmission antenna 27, and power switch 28) for transmitting an observation image to the outside. The circuit support frame 29 is fixed. A cylindrical case 20 whose rear side is closed in a hemispherical shape is provided with a through hole 22 holding an O-ring 21 that can be kept watertight at the rear end thereof, and a power switch 28 provided at the rear part of the circuit portion 23 is inserted into the through hole 22. It arrange | positions through the hole 22 so that it can operate from the exterior of the sealing capsule 10. FIG. When the capsule endoscope is used, the power is turned on / off by the power switch 28. The circuit unit 23 is common to each embodiment.
[0023]
The capsule endoscope is introduced into a body lumen by swallowing by a subject. Since the lumen is normally collapsed, the capsule endoscope has a posture in which the longitudinal direction thereof coincides with the axial direction of the lumen, and the lumen wall is in close contact with the capsule surface, particularly the side surface. That is, the lumen wall that is in close contact with the surface of the transparent cover member 30 is an observation target in the capsule endoscope. In order to observe the outer surface of the transparent cover member 30, the objective optical system 50 is set so that the outer surface of the transparent cover member 30 is within the depth of field of the lens group L. Details of each embodiment will be described below.
[0024]
A first embodiment is shown in FIGS. FIG. 1 is a cross-sectional view of a capsule endoscope showing a first embodiment. The objective optical system 50 according to the present embodiment includes a hemispherical transparent cover member 30, a first reflecting surface 51 that reflects the light beam transmitted through the transparent cover member 30 forward, and a reflected light beam that is reflected by the first reflecting surface 51. The second reflecting surface 53 that reflects the light from the rear and the lens group L that forms an image on the image sensor 24 of the reflected light beam reflected by the second reflecting surface 53.
[0025]
The transparent cover member 30 is bonded to the cylindrical case 20 to form the sealed capsule 10, and the watertightness of the entire capsule is maintained. The central portion of the inner surface of the transparent cover member 30 is formed in a convex shape toward the rear. This convex shape corresponds to the concave shape on the front surface of the light source holding member 43 made of a transparent member, and is a shape for bonding and fixing the light source holding member 43. An illumination light reflecting surface 42 is provided on the front concave surface of the light source holding member 43 that is bonded and fixed to the transparent cover member 30. The illumination light reflecting surface 42 can be formed, for example, by depositing a metal film. The rear portion of the light source holding member 43 is formed in a flat surface, and a light source 41 that projects forward is held in the center of the inside (FIG. 2). The lens group holding frame 12 is provided at the center of the front surface of the circuit support frame 29 to which the circuit unit 23 is fixed. The lens group holding frame 12 holds a lens group L having positive power. An annular first mirror 52 having a first reflecting surface 51 on the front surface is fixed to the front surface of the circuit support frame 29 so as to surround the lens group holding frame 12. The second mirror 54 provided to face the first mirror 52 includes a second reflecting surface 53 formed in a convex shape, and is fixed to the rear surface of the light source holding member 43 with the second reflecting surface 53 facing rearward. Has been. The lead wire 44 that supplies power to the light source 41 extends through the second mirror 54 and is connected to the circuit unit 23 (FIG. 3). Since the lead wire 44 crosses the optical path of the objective optical system 50, antireflection means is applied.
[0026]
The illumination light projected forward from the light source 41 passes through the light source holding member 43 and is reflected by the illumination light reflecting surface 42 to illuminate the observation site over the entire side surface of the transparent cover member 30. The light beam of the image of the illuminated observation region is transmitted through the transparent cover member 30, first reflected by the first reflecting surface 51, reflected by the second reflecting surface 53 for the second time, and then incident on the lens group L to be imaged. An image is formed on the sensor 24. Since the image processing and signal transmission / reception performed in the circuit unit 23 are not related to the gist of the present invention, the description thereof is omitted here.
[0027]
According to the present embodiment, the first reflecting surface 51 is a convex surface, which is advantageous for widening the observation range. Moreover, since the 2nd reflective surface 53 is a convex surface, the arrangement space of two reflective surfaces can be made small. In addition, by reflecting the illumination light on the convex surface, it is possible to illuminate in the circumferential direction 360 ° perpendicular to the axial direction even with one light source 41.
[0028]
A second embodiment is shown in FIGS. In the present embodiment, an objective optical system 50 that can obtain the same operational effects as the first embodiment is configured by a transparent cover member 30 in which a first reflecting surface 51 and a second reflecting surface 53 are integrally formed. It is.
[0029]
As shown in FIG. 4, the transparent cover member 30 in the present embodiment has a cylindrical light source holding hole 31 that is coaxial with the optical axis of the lens group L and is opened forward. A first reflective surface 51 convex forward is formed on the rear surface of the transparent cover member 30. A light source holding member 43 made of a transparent member is fitted in the light source holding hole 31. As in the first embodiment, the light source holding member 43 is provided with the illumination light reflecting surface 42 on the front concave surface, holds the light source 41 in the center of the inside, and adheres to the light source holding hole 31 with a transparent adhesive without a gap. It is fixed. On the bottom surface (rear surface) of the light source holding hole 31, a second reflecting surface 53 that is convex backward is formed. Further, at the rear part of the transparent cover member 30, a cylindrical lens group holding hole 32 which is coaxial with the optical axis of the lens group L and is opened rearward is formed, and the lens group L is held. A lead wire 44 is connected to the light source 41 that is held by the light source holding member 43 and emits light forward. The lead wire 44 extends through the transparent cover member 30 and is connected to the circuit unit 23 to supply power to the light source 41 (FIG. 6). Since the lead wire 44 crosses the optical path of the objective optical system 50, antireflection means is applied. In front of the light source holding member 43 (opening of the light source holding hole 31), a tip member 45 is fitted and fixed in order to make the outer shape of the tip of the transparent cover member 30 a smooth hemisphere.
[0030]
As described above, in the present embodiment, since the illumination optical system 40 and the objective optical system 50 are formed on the inner surface of the transparent cover member 30 and become one component, the number of components can be reduced, Assembly work becomes easy.
[0031]
A third embodiment is shown in FIGS. The present embodiment includes an illumination optical system 40 similar to the first embodiment that reflects illumination light from the light source 41 in the observation direction. As shown in FIGS. 8 and 9, the holding of the light source 41 and the lead wire 44 are the same as in the first embodiment. As shown in FIG. 7, the objective optical system 50 is an optical system that enters the lens group L after two-time reflection similar to the first embodiment. However, the first reflecting surface 51 is a concave surface, and the first reflecting surface 51 is a first reflecting surface. The field of view is slightly forward compared to the embodiment. That is, the present embodiment shows that the first reflecting surface 51 of the objective optical system 50 in the first embodiment can be formed by either a convex surface or a concave surface.
[0032]
A fourth embodiment is shown in FIGS. The present embodiment includes an illumination optical system 40 similar to the second embodiment that reflects the illumination light of the light source 41 in the observation direction. As shown in FIG. 11 and FIG. 12, the holding of the light source 41 and the lead wire 44 are the same as in the second embodiment. As in the second embodiment, the objective optical system 50 is an optical system that is formed integrally with the illumination optical system 40 on the transparent cover member 30 and is incident on the lens group L after being reflected twice. As shown in FIG. 4, the first reflecting surface 51 is a concave surface, which is different from the second embodiment. That is, this embodiment shows that the first reflecting surface 51 of the objective optical system 50 in the second embodiment, which can reduce parts and facilitate the manufacturing work, can be either a convex surface or a concave surface. .
[0033]
A fifth embodiment is shown in FIGS. FIG. 13 is a cross-sectional view of the capsule endoscope showing the present embodiment. The objective optical system 50 of the present embodiment includes a transparent cover member 30, a refractive surface 55 that refracts the light beam that has passed through the transparent cover member 30, and a first light beam that reflects the refractive light beam refracted by the refractive surface 55 forward. A reflecting surface 51; a second reflecting surface 53 that reflects the reflected light beam reflected by the first reflecting surface 51 backward; and a lens group L that forms an image on the image sensor 24 by the reflected light beam reflected by the second reflecting surface 53. , Composed of. The configuration of the illumination optical system 40 reflects the illumination light of the light source 41 that projects forward, in the observation direction, and is the same as in the second and fourth embodiments.
[0034]
In the transparent cover member 30 of the present embodiment, a cylindrical light source holding hole 31 is formed on the front surface so as to be coaxial with the optical axis of the lens group L and open forward. On the bottom surface (rear surface) of the light source holding hole 31, a second reflecting surface 53 that is convex backward is formed. Further, as shown in FIG. 14, a light source 41 that projects forward is fixed in the light source holding hole 31. The lead wire 44 that supplies power to the light source 41 extends through the bottom of the light source holding hole 31 of the transparent cover member 30 and is connected to the circuit unit 23 (FIG. 15). Since the lead wire 44 crosses the optical path of the objective optical system 50, antireflection means is applied. The inside of the transparent cover member 30 is hollowed out in a substantially truncated cone shape having the optical axis of the lens frame L as the central axis, and this conical surface serves as a refractive surface 55 of the objective optical system 50. The lens group holding frame 12 is provided at the center of the front surface of the circuit support frame 29 to which the circuit unit 23 is fixed. The lens group holding frame 12 holds a lens group L having positive power. An annular first mirror 52 having a first reflecting surface 51 is fixed so as to surround the lens group holding frame 12.
[0035]
In the present embodiment having the above configuration, the subject light beam that has been transmitted through the transparent cover member 30 and refracted by the refracting surface 55 is reflected by the first reflecting surface 51, and is reflected by the second reflecting surface 53 for the second time. The light enters L and forms an image on the image sensor 24. According to this embodiment, the observation range can be made wider by having the concave refractive surface 55 in the objective optical system 50. Further, since the first reflecting surface 51 and the second reflecting surface 53 are convex surfaces, the observation range can be widened with a small reflecting space.
[0036]
A sixth embodiment is shown in FIGS. The present embodiment includes an illumination optical system 40 similar to the fifth embodiment that reflects the illumination light of the light source 41 in the observation direction. As shown in FIGS. 17 and 18, the holding of the light source 41 and the lead wire 44 are the same as those in the fifth embodiment. As in the fifth embodiment, the objective optical system 50 is an optical system that is formed integrally with the illumination optical system 40 on the transparent cover member 30 and is incident on the lens group L after being reflected once and twice. As shown in FIG. 16, the first embodiment differs from the fifth embodiment in that the first reflecting surface 51 is a concave surface. The light beam that has passed through the transparent cover member 30 is first refracted by the refracting surface 55 of the transparent cover member 30, reflected by the first reflecting surface 51, reflected by the second reflecting surface 53, and then incident on the lens group L and imaged. An image is formed on the sensor 24. That is, the present embodiment has a wide angle by refraction at the refracting surface 55, and the fifth embodiment can observe a wide range in a small space by reflection of the first reflecting surface 51 and the second reflecting surface 53. It shows that the first reflecting surface 51 of the objective optical system 50 can be formed by either a convex surface or a concave surface.
[0037]
In the first to sixth embodiments described above, the first reflecting surface 51 is configured by either a convex surface or a concave surface. However, in any embodiment, the first reflecting surface 51 is formed by either a convex surface or a concave surface. It can also be a flat surface. If a convex surface or a concave surface is used, the shape of the reflecting surface can be contributed to the improvement of the optical performance of the objective optical system, while the flat surface has an advantage that it is easy to manufacture.
[0038]
A seventh embodiment is shown in FIGS. FIG. 19 is a cross-sectional view of a capsule endoscope showing a seventh embodiment. The sealed capsule 10 of this embodiment is formed of a tip member 60 made of a light shielding member, an annular lens member 70 made of a transparent member, and a cylindrical case 20 in order from the tip. The objective optical system 50 includes a first reflecting surface 72 that reflects the light beam traveling through the annular lens member 70 and traveling forward in the interior thereof, and a second reflecting surface 73 that reflects the reflected light beam reflected by the first reflecting surface 72 forward. And a third reflecting surface 74 that reflects the reflected light beam reflected by the second reflecting surface 73 backward, and a lens group L that forms an image of the light beam reflected by the third reflecting surface 74 on the image sensor. .
[0039]
When the tip member 60 and the annular lens member 70 are bonded together, the outer shape is hemispherical. A lens group holding hole 71 that opens rearward and holds the lens frame L is formed in the rear portion of the annular lens member 70. At the center of the tip member 60 and the annular lens member 70, as shown in FIG. 20, four light sources 46 that project in a circumferential direction orthogonal to the axial direction of the lens group L are embedded at equal angular intervals on the same circumference. It is. As shown in FIG. 21, a lead wire 44 that supplies power to the light source 46 extends from the light source 46 through the annular lens member 70 and is connected to the circuit unit 23 (FIG. 21). Since the lead wire 44 crosses the optical path of the objective optical system 50, antireflection means is applied. The first reflecting surface 72 is formed on the outer peripheral portion of the front surface of the annular lens member 70 from the circumference where the light source 46 is provided, and the second reflecting surface 73 is formed on the rear surface of the annular lens member 70. The third reflecting surface 74 is formed in a convex shape toward the rear from the circumference provided with the light source 46 to the inner circumferential portion.
[0040]
The illumination light passes through the annular lens member 70 from the light source 46 and is directly irradiated to the observation site. In this example, four light sources 46 are provided. However, the number of the light sources 46 may be small if the irradiation angle α of the light source 46 is wide, and conversely if the irradiation angle α is narrow, more light sources 46 may be provided. Good. The subject light beam that has passed through the annular lens member 70 is reflected by the first reflecting surface 72 (concave surface) and then is reflected by the second reflecting surface 73 (concave surface) on the rear surface of the annular lens member 70 for the second time. This light beam is further reflected at the third reflecting surface 74 (convex surface) at the center of the front surface of the annular lens member 70 positioned immediately after the light source 46 and is incident on the lens group L to form an image on the image sensor 24. . According to this embodiment, the two concave reflections and the one convex reflection enable wide-angle observation with a small optical system.
[0041]
In the above embodiments, the objective optical system according to the present invention is applied to the objective optical system of the capsule endoscope. However, the endoscope in general, that is, the internal insertion portion and the operation portion positioned outside the body are connected by a flexible tube. Needless to say, the present invention can also be applied to an endoscope. Furthermore, the present invention can be applied to general objective optical systems. Further, the outer shape of the capsule is hemispherical at both the front and rear ends, but the front end as well as the rear end can be, for example, a truncated cone as long as it does not hinder the progress of the capsule endoscope in the body cavity.
[0042]
【The invention's effect】
As described above, according to the objective optical system of the present invention, the total length of the optical system can be shortened by a combination of reflecting surfaces or a combination of a reflecting surface and a refracting surface, so that wide-angle observation can be performed in a small reflecting space. A small objective optical system is realized. Further, when the objective optical system of the present invention is applied to an endoscope, a small-sized endoscope capable of observation over the entire circumference in the peripheral direction orthogonal to the axial direction of the endoscope can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an entire capsule endoscope showing a first embodiment according to the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
3 is a sectional view taken along line III-III in FIG.
FIG. 4 is a cross-sectional view of the entire capsule endoscope showing a second embodiment according to the present invention.
5 is a cross-sectional view taken along line VV in FIG.
6 is a sectional view taken along line VI-VI in FIG.
FIG. 7 is a cross-sectional view of the entire capsule endoscope showing a third embodiment according to the present invention.
8 is a cross-sectional view taken along the line VIII-VIII in FIG.
9 is a cross-sectional view taken along the line IX-IX in FIG.
FIG. 10 is a cross-sectional view of the entire capsule endoscope showing a fourth embodiment according to the present invention.
11 is a cross-sectional view taken along the line XI-XI in FIG.
12 is a cross-sectional view taken along the line XII-XII in FIG.
FIG. 13 is a cross-sectional view of the entire capsule endoscope showing a fifth embodiment according to the present invention.
14 is a cross-sectional view taken along the line XIV-XIV in FIG.
15 is a cross-sectional view taken along the line XV-XV in FIG.
FIG. 16 is a cross-sectional view of the entire capsule endoscope showing a sixth embodiment according to the present invention.
17 is a cross-sectional view taken along the line XVII-XVII in FIG.
18 is a cross-sectional view taken along the line XVIII-XVIII in FIG.
FIG. 19 is a cross-sectional view of the entire capsule endoscope showing a seventh embodiment according to the present invention.
20 is a cross-sectional view taken along the line XX-XX in FIG.
21 is a cross-sectional view taken along the line XXI-XXI in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sealing capsule 12 Lens group holding frame 20 Cylindrical case 21 O-ring 22 Through-hole 23 Circuit part (electric circuit)
24 Image sensor 25 Battery 26 Transmitting amplifier 27 Transmitting antenna 28 Power switch 29 Circuit support frame 30 Transparent cover member 31 Light source holding hole 32 Lens group holding hole 40 Illumination optical system 41 46 Light source 42 Illumination light reflecting surface 43 Light source holding member 44 Lead wire 45 Tip member 50 Objective optical system 51 First reflecting surface 52 First mirror 53 Second reflecting surface 54 Second mirror 55 Refractive surface 60 Tip member 70 Annular lens member 71 Lens group holding hole 72 First reflecting surface 73 Second reflecting surface 74 Third reflecting surface L Lens group α Irradiation angle

Claims (10)

イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;を体内挿入部に収納した内視鏡であって、
上記対物光学系は、
上記内視鏡の体内挿入部の先端部を構成する半球状の透明部材と;この透明部材を透過した光束を内部後方へ屈折する屈折面と;該屈折面で屈折した屈折光束を前方へ反射する第1の反射面と;該第1の反射面で反射した反射光束を後方へ反射する第2の反射面と;該第2の反射面で反射した反射光束を結像させるレンズ群と;を備え、
上記透明部材の内外面、屈折面、第1の反射面および第2の反射面は、上記結像レンズ群の光軸を回転中心軸とする回転面からなることを特徴とする内視鏡の対物光学系。
An endoscope that houses an image sensor; and an objective optical system that forms an image of a test portion in a body cavity on the image sensor;
The objective optical system is
A hemispherical transparent member constituting the distal end portion of the endoscope insertion portion of the endoscope; a refracting surface that refracts a light beam transmitted through the transparent member; and a refracted light beam refracted by the refracting surface; A second reflecting surface that reflects backward the reflected light beam reflected by the first reflecting surface; a lens group that forms an image of the reflected light beam reflected by the second reflecting surface; With
In the endoscope, the inner and outer surfaces, the refracting surface, the first reflecting surface, and the second reflecting surface of the transparent member are composed of a rotating surface having the optical axis of the imaging lens group as a rotation center axis. Objective optical system.
イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;イメージセンサによる像を無線送信する電気回路と;を密閉カプセル内に収納した内視鏡であって、
上記対物光学系は、
上記密閉カプセルの先端部を構成する半球状の透明部材と;この透明部材を透過した光束を内部後方へ屈折する屈折面と;該屈折面で屈折した屈折光束を前方へ反射する第1の反射面と;該第1の反射面で反射した反射光束を後方へ反射する第2の反射面と;該第2の反射面で反射した反射光束をイメージセンサ上に結像させるレンズ群と;を備え、
上記透明部材の内外面、屈折面、第1の反射面および第2の反射面は、上記結像レンズ群の光軸を回転中心軸とする回転面からなることを特徴とする内視鏡の対物光学系。
An endoscope that houses an image sensor; an objective optical system that forms an image of a test portion in a body cavity on the image sensor; and an electric circuit that wirelessly transmits an image from the image sensor; ,
The objective optical system is
A hemispherical transparent member constituting the tip of the sealed capsule; a refracting surface that refracts the light beam that has passed through the transparent member; and a first reflection that reflects the refracted light beam refracted by the refracting surface forward A second reflecting surface that reflects backward the reflected light beam reflected by the first reflecting surface; and a lens group that forms an image on the image sensor of the reflected light beam reflected by the second reflecting surface. Prepared,
In the endoscope, the inner and outer surfaces, the refracting surface, the first reflecting surface, and the second reflecting surface of the transparent member are composed of a rotating surface having the optical axis of the imaging lens group as a rotation center axis. Objective optical system.
請求項1または請求項2記載の対物光学系において、
上記透明部材の外面が上記結像レンズ群の被写界深度内になるように、上記透明部材の内外面、上記屈折面、第1の反射面および第2の反射面の形状が設定されている対物光学系。
The objective optical system according to claim 1 or 2 ,
The shapes of the inner and outer surfaces, the refractive surface, the first reflecting surface, and the second reflecting surface of the transparent member are set so that the outer surface of the transparent member is within the depth of field of the imaging lens group. Objective optical system.
請求項1から3のいずれか1項記載の対物光学系において、
上記屈折面は上記透明部材の内面である対物光学系。
The objective optical system according to any one of claims 1 to 3 ,
The objective optical system, wherein the refractive surface is an inner surface of the transparent member.
請求項1から4のいずれか1項記載の対物光学系において、
上記透明部材は、屈折面と第2の反射面を一体に備えている対物光学系。
The objective optical system according to any one of claims 1 to 4 ,
The transparent member is an objective optical system that integrally includes a refractive surface and a second reflecting surface.
請求項1から5のいずれか1項記載の対物光学系において、
第1の反射面および第2の反射面は凸面である対物光学系。
The objective optical system according to any one of claims 1 to 5 ,
An objective optical system in which the first reflecting surface and the second reflecting surface are convex surfaces.
請求項1から5のいずれか1項記載の対物光学系において、
第1の反射面は凹面であり、第2の反射面は凸面である対物光学系。
The objective optical system according to any one of claims 1 to 5 ,
An objective optical system in which the first reflecting surface is a concave surface and the second reflecting surface is a convex surface.
請求項1から7のいずれか1項記載の対物光学系において、さらに、
上記透明部材の内部に設けられ、照明光を前方へ投光する光源と;この光源よりも前方に設けられて、照明光を上記結像レンズ群の軸方向に直交する周囲方向へ反射する照明光反射面と;を有する対物光学系。
The objective optical system according to any one of claims 1 to 7 , further comprising:
A light source provided inside the transparent member for projecting illumination light forward; and provided in front of the light source for reflecting the illumination light in a peripheral direction orthogonal to the axial direction of the imaging lens group An objective optical system comprising: a light reflecting surface;
イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;を体内挿入部に収納した内視鏡であって、
上記対物光学系は、
上記内視鏡の体内挿入部の先端から順に、遮光部材からなる先端部材と;環状レンズ部材と;結像レンズ群と;を備え、
上記先端部材に、環状レンズ部材を通して照明光を内視鏡の軸方向に直交する周囲方向に投光する複数の光源を設け、
上記環状レンズ部材に、該環状レンズ部材を透過し該環状レンズ部材の内部前方へ向かう光束を後方へ反射させる第1の反射面と;該第1の反射面で反射した反射光束を前方へ反射する第2の反射面と;該第2の反射面で反射した反射光束を後方へ反射する第3の反射面と;が形成され、
上記結像レンズ群は第3の反射面で反射した光束をイメージセンサ上に結像させ、
該環状レンズ部材は光軸を回転中心軸とする回転体からなることを特徴とする内視鏡の対物光学系。
An endoscope that houses an image sensor; and an objective optical system that forms an image of a test portion in a body cavity on the image sensor;
The objective optical system is
In order from the distal end of the internal insertion portion of the endoscope, a tip member made of a light shielding member; an annular lens member; and an imaging lens group;
The tip member is provided with a plurality of light sources that project illumination light in a peripheral direction orthogonal to the axial direction of the endoscope through an annular lens member,
A first reflecting surface that reflects the light beam transmitted through the annular lens member and traveling forward inside the annular lens member to the annular lens member; reflecting the reflected light beam reflected by the first reflecting surface forward A second reflecting surface; and a third reflecting surface that reflects backward the reflected light beam reflected by the second reflecting surface;
The imaging lens group forms an image of the light beam reflected by the third reflecting surface on the image sensor,
The objective optical system of an endoscope, wherein the annular lens member is a rotating body having an optical axis as a rotation center axis.
イメージセンサと;体腔内の被検部の像をイメージセンサ上に結像させる対物光学系と;イメージセンサによる像を無線送信する電気回路と;を密閉カプセル内に収納した内視鏡であって、
上記密閉カプセルは、先端から順に、遮光部材からなる先端部材と;環状レンズ部材と;筒状ケースと;からなり、
上記先端部材に、環状レンズ部材を通して照明光を密閉カプセルの軸方向に直交する周囲方向に投光する複数の光源を設け、
上記対物光学系は、
上記環状レンズ部材に、該環状レンズ部材を透過し該環状レンズ部材の内部前方へ向かう光束を後方へ反射させる第1の反射面と;該第1の反射面で反射した反射光束を前方へ反射する第2の反射面と;該第2の反射面で反射した反射光束を後方へ反射する第3の反射面と;が形成され、
上記第3の反射面で反射した光束をイメージセンサ上に結像させる結像レンズ群を備え、
該環状レンズ部材は光軸を回転中心軸とする回転体からなることを特徴とする内視鏡の対物光学系。
An endoscope that houses an image sensor; an objective optical system that forms an image of a test portion in a body cavity on the image sensor; and an electric circuit that wirelessly transmits an image from the image sensor; ,
The sealed capsule, in order from the tip, comprises a tip member made of a light shielding member; an annular lens member; and a cylindrical case;
The tip member is provided with a plurality of light sources that project illumination light in a peripheral direction orthogonal to the axial direction of the sealed capsule through the annular lens member,
The objective optical system is
A first reflecting surface that reflects the light beam transmitted through the annular lens member and traveling forward inside the annular lens member to the annular lens member; reflecting the reflected light beam reflected by the first reflecting surface forward A second reflecting surface; and a third reflecting surface that reflects backward the reflected light beam reflected by the second reflecting surface;
An imaging lens group that forms an image on the image sensor with the light beam reflected by the third reflecting surface;
The objective optical system of an endoscope, wherein the annular lens member is a rotating body having an optical axis as a rotation center axis.
JP36347299A 1999-12-21 1999-12-21 Objective optical system and endoscope objective optical system Expired - Fee Related JP4272783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36347299A JP4272783B2 (en) 1999-12-21 1999-12-21 Objective optical system and endoscope objective optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36347299A JP4272783B2 (en) 1999-12-21 1999-12-21 Objective optical system and endoscope objective optical system

Publications (2)

Publication Number Publication Date
JP2001174713A JP2001174713A (en) 2001-06-29
JP4272783B2 true JP4272783B2 (en) 2009-06-03

Family

ID=18479405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36347299A Expired - Fee Related JP4272783B2 (en) 1999-12-21 1999-12-21 Objective optical system and endoscope objective optical system

Country Status (1)

Country Link
JP (1) JP4272783B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813789B2 (en) 1999-06-15 2010-10-12 Given Imaging Ltd. In-vivo imaging device, optical system and method
US7996067B2 (en) 1999-06-15 2011-08-09 Given Imaging Ltd. In-vivo imaging device, optical system and method
CN100341459C (en) * 2002-08-05 2007-10-10 中国人民解放军总医院 Medical radio capsule
JP4270968B2 (en) * 2003-07-10 2009-06-03 オリンパス株式会社 Optical apparatus having an optical system having an optical element with an antireflection surface
JP2005074031A (en) * 2003-09-01 2005-03-24 Pentax Corp Capsule endoscope
JP4611115B2 (en) 2005-05-26 2011-01-12 オリンパス株式会社 Optical system
JP5003486B2 (en) 2005-06-03 2012-08-15 コニカミノルタエムジー株式会社 Capsule endoscope
JP4674906B2 (en) * 2006-07-03 2011-04-20 オリンパス株式会社 Optical system
JP5214161B2 (en) * 2006-07-10 2013-06-19 オリンパス株式会社 Transmission optical element and optical system using the same
JP5006596B2 (en) * 2006-08-21 2012-08-22 オリンパスメディカルシステムズ株式会社 Capsule endoscope
WO2008153114A1 (en) 2007-06-12 2008-12-18 Olympus Corp. Optical element, optical system, and endoscope using same
JP5074114B2 (en) 2007-07-09 2012-11-14 オリンパス株式会社 Optical element, optical system including the same, and endoscope using the same
CN101688970B (en) 2007-07-09 2013-07-03 奥林巴斯株式会社 Optical system and endoscope equipped with same
US9759670B2 (en) * 2014-12-23 2017-09-12 Mitutoyo Corporation Bore imaging system

Also Published As

Publication number Publication date
JP2001174713A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP4272783B2 (en) Objective optical system and endoscope objective optical system
JP4363843B2 (en) Capsule endoscope
US6939295B2 (en) Capsule endoscope
JP4128504B2 (en) Capsule endoscope
JP5523713B2 (en) In vivo imaging system
US20080143822A1 (en) In vivo sensor with panoramic camera
US20030171653A1 (en) Capsule endoscope
EP1371321A1 (en) Electronic endoscope for stereoscopic endoscopy
US10517468B2 (en) Capsule medical device having positioning member with abutment surfaces
JP5138125B2 (en) Endoscope imaging unit assembly method and endoscope
JP2007181700A (en) In-vivo imaging optical device
JP3692670B2 (en) Endoscope lens device
JP4373586B2 (en) Side-view objective optical system for capsule endoscope
JP2016202192A (en) Rigid endoscope
JPH09101465A (en) Optical adapter for endoscope
EP0075415A2 (en) Endoscopes provided with perspective illumination attachments
JP2005205072A (en) Capsule type medical device
KR101630849B1 (en) endoscope
JP2005204924A (en) Capsule type endoscope
JP4253369B2 (en) Electronic endoscope
JP4441030B2 (en) The tip of a side-viewing endoscope
JPS60178422A (en) Endoscope containing solid-state image pickup element
JP2010194041A (en) Optical system for capsule type endoscope, and capsule type endoscope
JPS63304220A (en) Hard electronic endoscope device
KR20230112332A (en) Capsule endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4272783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees