JP4270620B2 - Control method for parallel operation start and release of water supply equipment - Google Patents

Control method for parallel operation start and release of water supply equipment Download PDF

Info

Publication number
JP4270620B2
JP4270620B2 JP34880998A JP34880998A JP4270620B2 JP 4270620 B2 JP4270620 B2 JP 4270620B2 JP 34880998 A JP34880998 A JP 34880998A JP 34880998 A JP34880998 A JP 34880998A JP 4270620 B2 JP4270620 B2 JP 4270620B2
Authority
JP
Japan
Prior art keywords
pump
pressure
rotation speed
starting
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34880998A
Other languages
Japanese (ja)
Other versions
JP2000170687A (en
Inventor
徹也 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teral Inc
Original Assignee
Teral Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teral Inc filed Critical Teral Inc
Priority to JP34880998A priority Critical patent/JP4270620B2/en
Publication of JP2000170687A publication Critical patent/JP2000170687A/en
Application granted granted Critical
Publication of JP4270620B2 publication Critical patent/JP4270620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、集合住宅や事務所ビル、工場等多数の需要端末を有する建造物に上水を供給するための給水施設として、複数台のポンプを具え、需要の増減に応じて運転ポンプ台数、各ポンプの回転数を制御し、吐出圧一定制御又は推定末端圧力一定制御を行う給水装置の、並列運転開始及び解除時の制御に関する。
【0002】
【従来の技術】
従来、複数台のポンプを並列運転する場合に、ポンプの並列運転開始時、及び並列運転を解除する時のチャタリングを防止するために、数秒間の確認時間を設けることが行われている。すなわち、図6に示すように、最大で3台のポンプが並列運転する給水装置の吐出量と吐出圧力を示すグラフによってこれを説明すると、曲線aは需要先の最大実揚程に、需要先の最高地点で使用する給水器具に必要な給水圧力と配管抵抗を加えた圧力と水量の関係を示す曲線で、bmax,max ,dmax は夫々ポンプを1台、2台及び3台運転した時の給水ユニットの、ポンプを最高回転数で運転した時の、吐出圧力と吐出水量の関係を示す曲線である。ポンプの並列運転の開始及び解除のために、2番目に始動するポンプに対して、bmax とaの交点の圧力を若干下回る始動圧力pON2 と若干上回る停止圧力pOF2 を、3番目に始動するポンプに対して同様に始動圧力pON3 と停止圧力pOF3 をそれぞれ定めてある。
【0003】
このように設定してある給水装置の使用量がQ0 からQ1 に変化した時の制御方法を説明する。水量Q0 では最初に始動したポンプは最高周波数で、2番目に始動したポンプはこのポンプの最高回転数以下の周波数で運転している。Q1 まで水量を増やすように蛇口を操作すると、F点の水量までは2番目に始動したポンプの回転数を増加して対応する。F点に至った後は、配管経路は蛇口の操作により水量Q1 を送水できるようになっているが、ポンプ2台の最高回転数での水量しか流せないので、運転点は曲線cmax 上をG点の方向に移動する。G点の圧力は3番目に始動するポンプの始動圧力pON3 で、給水装置の吐出圧力が、この圧力以下を1〜2秒間保持したことを確認して、3番目に始動するポンプをこのポンプの最低回転数dmin で始動する。その後吐出圧力がH点の圧力に一致するように、そのポンプの回転数を制御し、Q1 の水量を供給するまでの過程を終了する。
【0004】
逆に使用水量がQ1 からQ0 に変化した時の制御方法は次のようになる。水量Q1 では最初と2番目に始動したポンプは最高周波数で、3番目に始動したポンプはこのポンプの最高回転数以下の周波数で運転している。Q0 まで水量を減らすように蛇口を操作すると、F点の水量までは3番目に始動したポンプの回転数を減少して対応する。F点に至った後は、ポンプ2台分の吐出水量では管路抵抗は想定した管路抵抗より大きいので、給水装置の運転点は曲線cmax 上をJ点の方向に移動する。J点の圧力は3番目に始動したポンプの停止圧力pON3 で、給水装置の吐出圧力が、この圧力以上を1〜2秒間保持したことを確認して、3番目に始動したポンプを停止する。上記G点及びJ点における確認時間は、圧力が3番目に始動するポンプの始動時及び停止時のチャタリングを防止するための対策である。
【0005】
【発明が解決しようとする課題】
上記の説明のように、従来の複数台のポンプを並列運転する給水装置においては、水量が増加する時にはG点で、減少する時にはJ点で夫々確認時間を設けていたために、確認時間中は使用水量が増加する場合は給水圧力が下がり続け、使用水量が減少する場合には上がり続けるので、需要先における給水圧力が大きく変動し、蛇口等の開閉に対して給水量が正しく応答しないという不都合があった。この発明は、ポンプの並列運転開始時及び並列運転解除時に、需要先で発生する圧力変動を軽減するとともに、変速に要する時間を短縮することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、この発明は、ポンプの回転数を制御し、吐出圧力一定制御を行う複数台のポンプを具えた給水装置において、2番目以降に始動するポンプの始動圧力と停止圧力と共に、同時に運転するポンプ数量に対し、最後に始動するポンプを除いて、ポンプの始動順序に対応して、最高回転数未満の第1の回転数と、最初と最後に始動するポンプを除いて、最低回転数と第1の回転数の間に、最後に始動するポンプにおいては最低回転数と最高回転数の間に第2の回転数をそれぞれ設定しておき、前記第1の回転数以下で運転していたポンプが、途中で減速することなく該ポンプの最高回転数に至った場合には、即座に次の始動順序のポンプをその始動順序に対応した予め定めてある最低回転数で始動し、第2の回転数以上で運転していたポンプが途中で増速することなく該ポンプの最低回転数に至った場合には即座に該ポンプを停止し、当初運転していた回転数を問わず、上記以外の経過を経た後に、あるポンプが該ポンプの最高回転数に至り吐出圧力が次のポンプの始動圧力以下になった場合には、予め定められた時間その吐出圧力が前記始動圧力以下の値で持続することを確認した後に次の始動順序のポンプを始動し、当初運転していた回転数を問わず、上記以外の経過を経た後に、あるポンプが該ポンプの最低回転数に至り吐出圧力が該ポンプの停止圧力以上になった場合には、予め定められた時間その吐出圧力以上の値で持続することを確認した後に該ポンプを停止させることを特徴とする。
【0008】
さらにこの発明は、推定末端圧力一定制御を行う複数台のポンプを具えた給水装置においても前項の制御方法と同様の方法を用いることを特徴とする。
【0009】
【発明の実施の形態】
図1、2によってこの発明の実施の形態を説明する。図1は3台のポンプが並列運転する給水装置の吐出量と, 吐出圧力との関係を示すグラフで, 横軸に給水装置の吐出量を、縦軸に吐出圧力を示す。図中の符号は図6のものと共通である。図2にはこの発明の制御方法を実施する給水装置の構成を模式的に示す。
【0010】
制御装置12内の演算部には, ポンプの並列運転の開始及び解除の制御に使用する数値として、従来方法と同じPON2 とPOF2 、PON3 とPOF3 の2組の始動、停止圧力の他に、最初に始動するポンプの最高回転数bmax 未満で最低回転数bmin を上回る任意の回転数b1 と、2番目に始動するポンプの最高回転数cmax 未満で最低回転数cmin を上回る任意の回転数c1 (第1の回転数)、並びに、2番目に始動するポンプの最低回転数cmin を上回り、c1 未満の任意の回転数c2 (第2の回転数)と3番目に始動するポンプの最低回転数dmin を上回り最高回転数dmax 未満の任意の回転数d2 (第2の回転数)を記憶させておく。ポンプが4台以上装備された給水装置の場合も同様に、並列を開始及び解除する圧力と共に, 最後に始動するポンプを除き、それぞれのポンプの最高回転数未満、且つ最低回転数を超えた範囲に任意の第1の回転数を、最初に始動するポンプを除き、最後に始動するポンプ以外はそれぞれのポンプの最低回転数と前記第1の回転数の間に、最後に始動するポンプは最低回転数と最高回転数の間に第2の回転数を設定し記憶させておく。
【0011】
上記のように並列を開始及び解除する圧力と、第1の回転数及び第2の回転数を使用したポンプの制御方法を説明する。最初に始動すべきポンプが始動した後、或いは最後に始動するポンプを除き、第1の回転数以下で回転数が安定して運転していたポンプが、使用水量の増加によりポンプの回転数がこのポンプの最高回転数まで単調増加した場合は、圧力検出器9の検出圧力が次に始動するポンプの始動圧力まで低下しなくても、即座に次の始動順序のポンプを始動する。また最初に始動するポンプを除き、第2の回転数以上で回転数が安定して運転していたポンプが,使用水量の減少によりポンプの回転数がこのポンプの最低回転数まで単調減少した場合は、圧力検出器9の検出圧力がこのポンプの停止圧力まで上昇しなくても、即座にそのポンプを停止する。このように始動、停止する時にはタイマーによる確認時間は設けない。
【0012】
使用水量が変化する前のポンプの運転点が上記に示す範囲であっても、最高回転数或いは最低回転数まで至る経過が単調増加又は単調減少でない場合、及び最初の運転点が第1の回転数を超えて最高回転数以下、及び第2の回転数未満で最低回転数以上の場合には、従来の並列運転開始及び解除の方法により、圧力検出器の検出圧力が次のポンプの始動圧力まで低下、あるいは最後に始動したポンプの停止圧力まで上昇した後に、タイマーによる確認時間を経て次順のポンプを始動、又は運転中のポンプを停止する。
【0013】
上記のような方法で制御する給水装置の制御機構を、図3〜5により説明する。
図3〜5は給水装置の制御装置内の、演算部に記憶させておく制御プログラムの内, 回転数の制御と並列の開始及び解除の制御に関する部分を、その流れを簡略化して記載したフローチャートである。
【0014】
図3はポンプの回転数が変化しない時、及び最後に始動したポンプの回転数を変速して, 使用水量に対応する時のフローチャートである。ポンプの並列運転を開始する制御フローは図4のようになっており、図3の201ステップにおいて, ポンプが最高回転数(Nmax )で運転中で、且つ目標圧力(SV)より圧力検出器の検出圧力(PV)が低い場合に、図4の211ステップに進む。
【0015】
一方、並列運転を解除する制御フローは図5のようになっており、図3の301ステップにおいて、ポンプが最低回転数(Nmin )で運転中で、且つSVよりPVが高い場合に図5の311ステップに進む。SVとPVが等しい時には、ポンプの吐出量は需要先の水使用量とバランスしている。そのためこの時の回転数(N0 )を基準にして、以降の回転数の変化がNmax 及びNmin に至った時の制御方法を決定するために、使用するフラグの値を103ステップで初期値に設定する。図3に示す例では、SVとPVが等しくなった時の回転数が、Nmin 以上で第1の回転数(N1 )以下の場合には、変数FLG1を1に、FLG2を0に, 第2の回転数(N2 )以上でNmax 以下の場合は、変数FLG1を0に、FLG2を1に設定する。
【0016】
並列運転開始の制御フローを、図4を使用して説明する。211ステップで最後に始動したポンプがNmin とN1 の間の回転数から単調増加して、そのポンプのNmax まで至ったかどうかを判断する。判断は前記吐出量と使用水量とがバランスした回転数(No )の時に設定したFLG1の値で行う。FLG1の値は図3の305ステップで示すように、ポンプの減速処理を行った時には、その値を0に設定する。従ってFLG1の値が1の時には、N0 からNmax まで単調増加したものと判断できる。Nmax とN1 の間で運転していたポンプがNmax まで至った時や、Nmin とN1 の間の回転数で運転していたポンプが増減を繰り返しながらNmax に至った時には212ステップに進み、PVと次に始動するポンプの始動圧力(PON)を比較する。PV>PONの時には並列運転を開始する圧力になっていないものと判断し、図3の101ステップに帰りPVを読み込む。
【0017】
PV≦PONの時には次に始動するポンプの始動時のチャタリングを防ぐために、一定時間、この実施例では2秒間、PON以下の圧力が継続することを確認の上、次の始動順序のポンプを始動する。尚、212ステップから216ステップの制御フローは従来の推定末端圧力一定制御及び吐出圧力一定制御方式の給水装置と同様である。一方、211ステップでNmax まで単調増加したことが確認できた時には、216ステップに進むように制御フローを構成する。
【0018】
次に、並列運転解除の制御フローを、図5を用いて説明する。311ステップでポンプがN2 とNmax の間の回転数から単調減少して、そのポンプのNmin まで至ったかどうかを判断する。判断はN0 の値により103ステップで設定したFLG2の値で行う。FLG2の値は図3の205ステップに示すように、ポンプを増速処理した時には、その値を0に設定する。従ってFLG2の値が1の時には、N0 からNmin まで単調減少したものと判断できる。Nmin とN2 の間で運転していたポンプがNmin まで至った時や、N2 以上で運転していても、増減を繰り返しながらNmin に至った時には、312ステップに進み、PVとこのポンプの停止圧力(POF)を比較する。PV<POFの時には、並列運転を解除する圧力になっていないものと判断し、図3の101ステップに帰りPVを読込む。PV≧POFの時には、ポンプのチャタリングを防ぐために、一定時間、この実施例では2秒間、POF以上の圧力が継続することを確認の上、ポンプを停止する。なお、312ステップから316ステップの制御フローは、従来の推定末端圧力及び吐出圧力一定制御方式の給水装置と同様である。一方、311ステップで、Nmin まで単調減少したことが確認できたときには, 316ステップに進むように制御フローを構成する。
【0019】
【発明の効果】
この発明による給水装置の、並列運転の開始及び解除時の制御によると、ある量から単純増加、又は単純減少して使用水量が変化し、ポンプの運転台数を変えてその水量に対応する場合には、並列運転開始時と解除時に時間をとらないでポンプの運転台数を変えるので、水の使用先において圧力変動が少なく、使用量の増減に対して応答性の良い給水を行う給水装置を提供することが出来る。
【図面の簡単な説明】
【図1】この発明による並列運転を行う給水ユニットの、吐出量と吐出圧力の関係を、ポンプ運転台数とポンプ回転数をパラメータにした曲線と, 給水配管系の抵抗曲線を記載したグラフである。
【図2】この発明による給水装置の機器構成を、模式的に示す図である。
【図3】この発明による制御フローチャートを示す図である。
【図4】この発明による制御フローチャートを示す図である。
【図5】この発明による制御フローチャートを示す図である。
【図6】従来の並列運転を行う給水ユニットの、吐出量と吐出圧力の関係を, ポンプ運転台数とポンプ回転数をパラメータにした曲線と, 給水配管系の抵抗曲線を記載したグラフである。
【符号の説明】
1 受水槽
4 ポンプ
5 吐出配管
6 吐出側仕切弁
7 逆止弁
8 送水管
9 圧力検出器
10 圧力タンク
11 需要先
12 制御装置
13 電源
[0001]
BACKGROUND OF THE INVENTION
This invention comprises a plurality of pumps as a water supply facility for supplying clean water to buildings having a large number of demand terminals such as apartment houses, office buildings, factories, etc., and the number of operating pumps according to increase or decrease in demand, The present invention relates to control at the start and release of parallel operation of a water supply device that controls the number of revolutions of each pump and performs constant discharge pressure control or constant estimated terminal pressure control.
[0002]
[Prior art]
Conventionally, when a plurality of pumps are operated in parallel, a confirmation time of several seconds has been provided in order to prevent chattering at the start of parallel operation of the pumps and when canceling the parallel operation. That is, as shown in FIG. 6, when this is explained by a graph showing the discharge amount and discharge pressure of a water supply device in which up to three pumps are operated in parallel, the curve a shows the maximum actual head of the customer, Curves showing the relationship between the water supply pressure required for the water supply equipment used at the highest point, the pressure plus the pipe resistance, and the amount of water. B max, c max , d max were operated by one, two and three pumps, respectively. It is a curve which shows the relationship between discharge pressure and the amount of discharged water when the pump of the water supply unit at the time is operated at the maximum rotation speed. For the start and release of the parallel operation of the pumps, the start pressure p ON2 slightly lower than the pressure at the intersection of b max and a and the stop pressure p OF2 slightly higher than the pressure at the intersection of b max and a are started third. Similarly, the starting pressure p ON3 and the stop pressure p OF3 are respectively determined for the pump to be operated .
[0003]
A control method when the usage amount of the water supply device set in this way changes from Q 0 to Q 1 will be described. At the water quantity Q 0 , the pump that was started first is operating at the highest frequency, and the pump that was started second is operating at a frequency below the maximum rotational speed of this pump. When operating the faucet so as to increase the amount of water to Q 1, to the amount of water F point corresponding to increase the rotational speed of the pump was started in the second. After reaching point F, the piping route can feed water Q 1 by operating the faucet, but only the amount of water at the maximum number of revolutions of the two pumps can flow, so the operating point is on the curve c max Is moved in the direction of point G. Check that the pressure at point G is the starting pressure p ON3 of the pump that starts third, and that the discharge pressure of the water supply device has kept below this pressure for 1-2 seconds. Start at the minimum rotation speed d min . Thereafter, the number of revolutions of the pump is controlled so that the discharge pressure matches the pressure at the point H, and the process until the amount of water Q 1 is supplied is terminated.
[0004]
Conversely, the control method when the amount of water used changes from Q 1 to Q 0 is as follows. In the first the water Q 1, pump the highest frequency to start the second, pump started third are operated at a frequency below the maximum rotational speed of the pump. If the faucet is operated so as to reduce the amount of water to Q 0, the number of rotations of the pump started third is reduced to the amount of water at point F. After reaching point F, the pipe resistance is larger than the assumed pipe resistance in the discharge water amount for the two pumps, so the operating point of the water supply apparatus moves on the curve c max in the direction of point J. Check that the pressure at point J is the stop pressure p ON3 of the pump that was started third, and that the discharge pressure of the water supply device has maintained this pressure or more for 1 to 2 seconds, and stop the pump that started third. . The confirmation time at the G point and the J point is a measure for preventing chattering at the start and stop of the pump whose pressure starts third.
[0005]
[Problems to be solved by the invention]
As described above, in the conventional water supply apparatus that operates a plurality of pumps in parallel, the confirmation time is provided at the point G when the amount of water increases, and at the point J when the amount of water decreases. When the amount of water used increases, the water supply pressure continues to decrease, and when the amount of water used decreases, the water supply pressure continues to increase, so the water supply pressure at the customer's site fluctuates greatly and the water supply amount does not respond correctly to opening and closing of faucets etc. was there. An object of the present invention is to reduce pressure fluctuation generated at a demand destination at the time of starting parallel operation of pumps and at the time of releasing parallel operation, and to shorten the time required for shifting.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention controls the pump start pressure and the stop pressure for the second and subsequent pumps in a water supply apparatus including a plurality of pumps that control the rotation speed of the pump and perform constant discharge pressure control. In addition, for the number of pumps operating simultaneously, except for the pump that starts last, except for the first rotation speed less than the maximum rotation speed and the pump that starts first and last, corresponding to the pump start sequence The second rotation speed is set between the minimum rotation speed and the first rotation speed, and the second rotation speed is set between the minimum rotation speed and the maximum rotation speed in the pump that starts last, and is equal to or less than the first rotation speed. If the pump that was operating at the maximum speed of the pump reaches its maximum speed without decelerating on the way, the pump in the next start sequence is immediately set to the minimum speed that is set in advance corresponding to the start sequence. Start and over 2nd speed When the pump that was being operated reached the minimum number of rotations without any increase in speed, the pump was immediately stopped. Later, when a pump reaches the maximum rotation speed of the pump and the discharge pressure becomes lower than the starting pressure of the next pump, the discharge pressure is maintained at a value lower than the starting pressure for a predetermined time. After confirming, start the pump of the next starting sequence, and after passing through other than the above, regardless of the number of rotations initially operated, a certain pump reaches the minimum number of rotations of the pump, and the discharge pressure stops the pump When the pressure becomes higher than the pressure, the pump is stopped after confirming that the pressure is maintained at a value equal to or higher than the discharge pressure for a predetermined time .
[0008]
Furthermore, the present invention is characterized in that a method similar to the control method of the preceding paragraph is used even in a water supply apparatus including a plurality of pumps that perform constant control of estimated terminal pressure.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a graph showing the relationship between the discharge amount and discharge pressure of a water supply device in which three pumps are operated in parallel. The horizontal axis shows the discharge amount of the water supply device, and the vertical axis shows the discharge pressure. The reference numerals in the figure are the same as those in FIG. FIG. 2 schematically shows the configuration of a water supply apparatus that implements the control method of the present invention.
[0010]
The arithmetic unit of the control unit 12, as a number to be used to control the initiation and release of parallel operation of the pump, two sets of start-up of the same P ON2 and P OF2, P ON3 and P OF3 the conventional method, the stopping pressure In addition, an arbitrary rotation speed b 1 that is less than the maximum rotation speed b max of the pump that starts first and exceeds the minimum rotation speed b min , and a minimum rotation speed c min that is less than the maximum rotation speed c max of the second start pump , Any rotational speed c 1 (first rotational speed) exceeding, and any rotational speed c 2 (second rotational speed) that exceeds the minimum rotational speed c min of the second starting pump and is less than c 1 And an arbitrary rotational speed d 2 (second rotational speed) that exceeds the minimum rotational speed d min of the pump to be started third and is less than the maximum rotational speed d max is stored. Similarly, in the case of a water supply system equipped with four or more pumps, the range that is less than the maximum number of revolutions of each pump and exceeds the minimum number of revolutions, except for the pump that starts last, with the pressure to start and release the parallel operation. The first starting speed is between the minimum speed of each pump and the first speed except for the pump that starts last, except for the pump that starts first. A second rotational speed is set and stored between the rotational speed and the maximum rotational speed.
[0011]
A control method of the pump using the pressure for starting and canceling the paralleling as described above, and the first rotation speed and the second rotation speed will be described. After the pump to be started first or after the pump to be started last, the pump that was operating stably at the rotation speed lower than the first rotation speed is increased due to the increase in the amount of water used. When the pump speed increases monotonously to the maximum rotation speed of the pump, the pumps in the next starting sequence are started immediately even if the detected pressure of the pressure detector 9 does not decrease to the starting pressure of the pump to be started next. In addition, when the pump that has been operating stably at the second rotation speed or higher, except for the pump that starts first, the pump rotation speed decreases monotonously to the minimum rotation speed of this pump due to a decrease in the amount of water used. Even if the detected pressure of the pressure detector 9 does not increase to the stop pressure of the pump, the pump is immediately stopped. Thus, when starting and stopping, no confirmation time is provided by a timer.
[0012]
Even if the operating point of the pump before the amount of water used is within the range shown above, if the progress up to the maximum or minimum rotational speed is not monotonically increasing or decreasing, and the first operating point is the first rotation In the case of exceeding the maximum number and below the maximum number of rotations and below the second number of rotations and exceeding the minimum number of rotations, the detection pressure of the pressure detector is changed to the start pressure of the next pump by the conventional parallel operation start and release method. Then, the pump is started or the pump in operation is stopped after a confirmation time by a timer.
[0013]
The control mechanism of the water supply apparatus controlled by the above method will be described with reference to FIGS.
FIGS. 3 to 5 are simplified flowcharts of the control program stored in the calculation unit of the water supply device, and the flow related to the control of the rotational speed and the parallel start and release control. It is.
[0014]
FIG. 3 is a flowchart when the rotational speed of the pump does not change and when the rotational speed of the pump started last is changed to correspond to the amount of water used. The control flow for starting the parallel operation of the pump is as shown in FIG. 4. In step 201 of FIG. 3, the pump is operating at the maximum rotation speed (N max ), and the pressure detector from the target pressure (SV). When the detected pressure (PV) is low, the process proceeds to step 211 in FIG.
[0015]
On the other hand, the control flow for canceling the parallel operation is as shown in FIG. 5. In step 301 of FIG. 3, when the pump is operating at the minimum rotation speed (N min ) and PV is higher than SV, FIG. Go to step 311. When SV and PV are equal, the discharge amount of the pump is balanced with the amount of water used by the customer. Therefore, based on the rotation speed (N 0 ) at this time, in order to determine the control method when the subsequent change in the rotation speed reaches N max and N min , the flag value used is initially set in 103 steps. Set to value. In the example shown in FIG. 3, when the rotation speed when SV and PV are equal is equal to or greater than N min and equal to or less than the first rotation speed (N 1 ), the variable FLG1 is set to 1, FLG2 is set to 0, When the rotation speed is greater than or equal to the second rotation speed (N 2 ) and less than or equal to N max , the variable FLG1 is set to 0 and FLG2 is set to 1.
[0016]
A control flow for starting parallel operation will be described with reference to FIG. It is determined whether or not the pump last started in step 211 has monotonically increased from the number of revolutions between N min and N 1 and has reached N max of the pump. The determination is made with the value of FLG1 set when the number of revolutions (N o ) is a balance between the discharge amount and the amount of water used. As shown by step 305 in FIG. 3, the value of FLG1 is set to 0 when pump deceleration processing is performed. Therefore, when the value of FLG1 is 1, it can be determined that the value monotonically increases from N 0 to N max . When the pump operating between N max and N 1 reaches N max, or when the pump operating at the rotational speed between N min and N 1 reaches N max while repeatedly increasing and decreasing, 212. Proceed to step and compare the starting pressure (P ON ) of the pump to be started next with PV. When PV> P ON , it is determined that the pressure is not set to start parallel operation, and the process returns to step 101 in FIG. 3 to read PV.
[0017]
In order to prevent chattering at the start of the pump to be started next when PV ≦ P ON , it is confirmed that the pressure of P ON or less continues for a certain time, in this embodiment, for 2 seconds, and then the pump of the next starting sequence Start. The control flow from step 212 to step 216 is the same as that of the conventional water supply device of the estimated terminal pressure constant control and the discharge pressure constant control method. On the other hand, when it is confirmed that the value monotonously increases to N max in step 211, the control flow is configured to proceed to step 216.
[0018]
Next, the control flow of parallel operation cancellation will be described with reference to FIG. In step 311, it is determined whether the pump has monotonously decreased from the rotational speed between N 2 and N max to reach the pump's N min . The determination is made based on the value of FLG2 set in step 103 based on the value of N 0 . The value of FLG2 is set to 0 when the pump is accelerated as shown at step 205 in FIG. Therefore, when the value of FLG2 is 1, it can be determined that the value has decreased monotonically from N 0 to N min . And when the pump was driving between N min and N 2 are led to N min, also be operated with N 2 or more, when reached N min while repeating increase and decrease, the process proceeds to 312 steps, and PV The pump stop pressure (P OF ) is compared. When PV <P OF , it is determined that the pressure is not sufficient to cancel the parallel operation, and the process returns to step 101 in FIG. 3 to read PV. When PV ≧ P OF , in order to prevent pump chattering, the pump is stopped after confirming that the pressure of P OF or more continues for a certain time, in this embodiment, for 2 seconds. The control flow from step 312 to step 316 is the same as that of a conventional water supply device of the estimated terminal pressure and discharge pressure constant control method. On the other hand, if it is confirmed in step 311 that the monotonic decrease has reached N min , the control flow is configured to proceed to step 316.
[0019]
【The invention's effect】
According to the control of the water supply device according to the present invention at the start and release of parallel operation, when the amount of water used changes simply from a certain amount or simply decreases, and the number of pumps operated changes to correspond to the amount of water Provides a water supply device that changes the number of operating pumps without taking time at the time of parallel operation start and release, so that there is little pressure fluctuation at the place where water is used and water supply with good responsiveness to increase or decrease in usage I can do it.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a discharge amount and a discharge pressure of a water supply unit performing parallel operation according to the present invention, a curve using the number of pumps operated and pump rotation speed as parameters, and a resistance curve of a water supply piping system. .
FIG. 2 is a diagram schematically showing a device configuration of a water supply apparatus according to the present invention.
FIG. 3 is a diagram showing a control flowchart according to the present invention.
FIG. 4 is a diagram showing a control flowchart according to the present invention.
FIG. 5 is a diagram showing a control flowchart according to the present invention.
FIG. 6 is a graph showing the relationship between the discharge amount and the discharge pressure of a conventional water supply unit performing parallel operation, a curve using the number of pumps operated and the number of pump rotations as parameters, and a resistance curve of the water supply piping system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water receiving tank 4 Pump 5 Discharge piping 6 Discharge side gate valve 7 Check valve 8 Water supply pipe 9 Pressure detector 10 Pressure tank 11 Customer 12 Controller 13 Power supply

Claims (2)

ポンプの回転数を制御し、吐出圧力一定制御を行う複数台のポンプを具えた給水装置において、2番目以降に始動するポンプの始動圧力と停止圧力と共に、同時に運転するポンプ数量に対し、最後に始動するポンプを除いて、ポンプの始動順序に対応して、最高回転数未満の第1の回転数と、最初と最後に始動するポンプを除いて、最低回転数と第1の回転数の間に、最後に始動するポンプにおいては最低回転数と最高回転数の間に第2の回転数をそれぞれ設定しておき、前記第1の回転数以下で運転していたポンプが、途中で減速することなく該ポンプの最高回転数に至った場合には、即座に次の始動順序のポンプをその始動順序に対応した予め定めてある最低回転数で始動し、第2の回転数以上で運転していたポンプが途中で増速することなく該ポンプの最低回転数に至った場合には即座に該ポンプを停止し、当初運転していた回転数を問わず、上記以外の経過を経た後に、あるポンプが該ポンプの最高回転数に至り吐出圧力が次のポンプの始動圧力以下になった場合には、予め定められた時間その吐出圧力が前記始動圧力以下の値で持続することを確認した後に次の始動順序のポンプを始動し、当初運転していた回転数を問わず、上記以外の経過を経た後に、あるポンプが該ポンプの最低回転数に至り吐出圧力が該ポンプの停止圧力以上になった場合には、予め定められた時間その吐出圧力以上の値で持続することを確認した後に該ポンプを停止させることを特徴とする、給水装置の並列運転開始及び解除時の制御方法。  In the water supply system with multiple pumps that control the pump rotation speed and perform constant discharge pressure control, the pump start pressure and the stop pressure that start the second and subsequent pumps together with the number of pumps operating simultaneously Except for the pump that starts, the first rotation speed that is less than the maximum rotation speed and the minimum rotation speed and the first rotation speed except for the pump that starts first and last, according to the pump start sequence In addition, in the pump to be started last, the second rotation speed is set between the minimum rotation speed and the maximum rotation speed, and the pump operating at the first rotation speed or less decelerates halfway. If the maximum number of revolutions of the pump is reached, the pumps in the next starting sequence are immediately started at the predetermined minimum number of revolutions corresponding to the starting sequence, and the pumps are operated at the second or higher number of revolutions. The pump that had been If the minimum speed of the pump is reached, the pump is immediately stopped, and a pump reaches the maximum speed of the pump after the passage of other than the above, regardless of the initial rotational speed. If the discharge pressure falls below the starting pressure of the next pump, the pump of the next starting sequence is started after confirming that the discharging pressure is maintained at a value below the starting pressure for a predetermined time. Regardless of the rotational speed at which the pump was initially operated, if a pump reaches the minimum rotational speed of the pump after the passage of other than the above, and the discharge pressure becomes equal to or higher than the stop pressure of the pump, it is determined in advance. A control method at the time of starting and releasing the parallel operation of the water supply device, wherein the pump is stopped after confirming that the discharge pressure is maintained at a value equal to or higher than the discharge pressure for a predetermined time. ポンプの回転数を制御し、推定末端圧力一定制御を行う複数台のポンプを具えた給水装置において、2番目以降に始動するポンプの始動圧力と停止圧力と共に、同時に運転するポンプ数量に対し、最後に始動するポンプを除いて、ポンプの始動順序に対応して、最高回転数未満の第1の回転数と、最初と最後に始動するポンプを除いて、最低回転数と第1の回転数の間に、最後に始動するポンプにおいては最低回転数と最高回転数の間に第2の回転数をそれぞれ設定しておき、前記第1の回転数以下で運転していたポンプが、途中で減速することなく該ポンプの最高回転数に至った場合には、即座に次の始動順序のポンプをその始動順序に対応した予め定めてある最低回転数で始動し、第2の回転数以上で運転していたポンプが途中で増速することなく該ポンプの最低回転数に至った場合には即座に該ポンプを停止し、当初運転していた回転数を問わず、上記以外の経過を経た後に、あるポンプが該ポンプの最高回転数に至り吐出圧力が次のポンプの始動圧力以下になった場合には、予め定められた時間その吐出圧力が前記始動圧力以下の値で持続することを確認した後に次の始動順序のポンプを始動し、当初運転していた回転数を問わず、上記以外の経過を経た後に、あるポンプが該ポンプの最低回転数に至り吐出圧力が該ポンプの停止圧力以上になった場合には、予め定められた時間その吐出圧力以上の値で持続することを確認した後に該ポンプを停止させることを特徴とする、給水装置の並列運転開始及び解除時の制御方法。  In the water supply system with multiple pumps that control the number of rotations of the pump and perform constant control of the estimated end pressure, together with the starting pressure and stopping pressure of the pump that starts the second and later, Corresponding to the starting sequence of the pumps, except for the first starting number of rotations less than the maximum number of rotations and the minimum number of rotations and the first number of rotations except for the first and last starting pumps. In the meantime, in the last pump to be started, the second rotation speed is set between the minimum rotation speed and the maximum rotation speed, and the pump operating at or below the first rotation speed is decelerated halfway. If the maximum rotation speed of the pump is reached without starting, the pump in the next starting sequence is immediately started at the predetermined minimum rotation speed corresponding to the starting sequence, and the pump is operated at the second rotation speed or higher. The pump I was using increased speed If the minimum speed of the pump is reached without stopping, the pump is immediately stopped. Regardless of the speed at which the pump was originally operated, after the passage of other than the above, a pump reaches the maximum speed of the pump. When the discharge pressure falls below the starting pressure of the next pump, the pump in the next starting sequence is started after confirming that the discharging pressure is maintained at a value below the starting pressure for a predetermined time. Regardless of the rotational speed at which the pump was originally operated, if a pump reaches the minimum rotational speed of the pump and the discharge pressure becomes equal to or higher than the stop pressure of the pump after a passage other than the above, it is determined in advance. A control method at the time of starting and canceling parallel operation of the water supply device, wherein the pump is stopped after confirming that the pump pressure is maintained at a value equal to or higher than the discharge pressure for a given time.
JP34880998A 1998-12-08 1998-12-08 Control method for parallel operation start and release of water supply equipment Expired - Fee Related JP4270620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34880998A JP4270620B2 (en) 1998-12-08 1998-12-08 Control method for parallel operation start and release of water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34880998A JP4270620B2 (en) 1998-12-08 1998-12-08 Control method for parallel operation start and release of water supply equipment

Publications (2)

Publication Number Publication Date
JP2000170687A JP2000170687A (en) 2000-06-20
JP4270620B2 true JP4270620B2 (en) 2009-06-03

Family

ID=18399522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34880998A Expired - Fee Related JP4270620B2 (en) 1998-12-08 1998-12-08 Control method for parallel operation start and release of water supply equipment

Country Status (1)

Country Link
JP (1) JP4270620B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110056192A1 (en) * 2009-09-10 2011-03-10 Robert Weber Technique for controlling pumps in a hydraulic system
US8718845B2 (en) 2010-10-06 2014-05-06 Caterpillar Global Mining Llc Energy management system for heavy equipment
KR101045791B1 (en) 2011-02-28 2011-07-04 한국그런포스펌프(주) Method for controlling pump system including multiple pumps
US9190852B2 (en) 2012-09-21 2015-11-17 Caterpillar Global Mining Llc Systems and methods for stabilizing power rate of change within generator based applications
JP2018091213A (en) * 2016-12-02 2018-06-14 株式会社鶴見製作所 Submerged motor-driven pump system

Also Published As

Publication number Publication date
JP2000170687A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP4270620B2 (en) Control method for parallel operation start and release of water supply equipment
US6186743B1 (en) Multiple pump sequencing controller
KR920003111B1 (en) Automatic water suppying device
JP2003021069A (en) Water supply system and its control method
JPH08159079A (en) Revolution control water supply system with pressure fluctuation restraining function
JP2000018167A (en) Pump starter controller of water supply system
JP2000045982A (en) Control method and device for making pump operation time of variable speed water supply device uniform
JPH08159078A (en) Revolution control water supply system with small water quantity stop function
JP2933249B2 (en) Water supply device and its pump control method
JP4662120B2 (en) Pump parallel operation control device and control method
JPH10259622A (en) Water supply system direct-connected to city water
JPH1182362A (en) Controller of water supply system comprising plural pumps
JP5211890B2 (en) Pump number control method and apparatus
JP2021098964A (en) Hot-water/water mixing device
JP2923250B2 (en) Water supply device and its pump control method
JPH06257572A (en) Controller for operation of direct coupled feed water supply system
JP4641594B2 (en) Control method of variable speed water supply device
JP2020041477A (en) Control unit for pump device and pump device
JP2516193B2 (en) Pressure tank type water supply device
JPH07324375A (en) Control device of storm sewage pump
JP2637185B2 (en) Number of operating units control method
JP3610190B2 (en) Operation control method of drainage pump
JPS59131784A (en) Control of operating number of pumps
JP2000080985A (en) Control device for feed water device
CA2993685C (en) Self-regulating open circuit pump unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees