JP4269689B2 - Method for manufacturing piezoelectric element - Google Patents

Method for manufacturing piezoelectric element Download PDF

Info

Publication number
JP4269689B2
JP4269689B2 JP2003003972A JP2003003972A JP4269689B2 JP 4269689 B2 JP4269689 B2 JP 4269689B2 JP 2003003972 A JP2003003972 A JP 2003003972A JP 2003003972 A JP2003003972 A JP 2003003972A JP 4269689 B2 JP4269689 B2 JP 4269689B2
Authority
JP
Japan
Prior art keywords
polarization
piezoelectric body
electric field
piezoelectric
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003972A
Other languages
Japanese (ja)
Other versions
JP2004221156A (en
Inventor
直樹 藤井
清司 井山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003003972A priority Critical patent/JP4269689B2/en
Publication of JP2004221156A publication Critical patent/JP2004221156A/en
Application granted granted Critical
Publication of JP4269689B2 publication Critical patent/JP4269689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子の製造方法、そのうち圧電セラミックスよりなる圧電体を厚み方向に分極する方法、特にブロック状圧電体の分極方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特公平8−34650号公報
【特許文献2】
特開2002−232032号公報
従来、圧電セラミックスを用いた圧電フィルタや発振子などの製造工程では、一辺が数cm程度のブロック状の圧電体に成形、焼成した後、この圧電体の表裏面に分極用の電極を形成し、これら電極間に高電圧を印加して分極処理を行った後、このブロック状圧電体を数十〜数千個の素子にカットして製品へと加工している。ここで問題となるのが、1つの圧電体から切り出された素子間の分極度ばらつきによる特性ばらつきである。
【0003】
分極後の圧電体の分極度分布には、図1に示すように、中央部で分極度が低く、周辺部で分極度が高くなる場合と、図2に示すように、中央部で分極度が高く、周辺部で分極度が低くなる場合とがある。図1のような分極度分布は、分極によってソリが発生するような薄肉(例えば厚みが1mm程度)な圧電体の場合に発生しやすく、図2のような分布は、分極によってソリが発生しないような分厚いブロック状圧電体において発生しやすい。
このような分極度ばらつきのある圧電体から素子を切り出すと、両端部付近から切り出された素子は必要な圧電特性が得られず、特性を満足しない素子が多数発生するという事態を招いていた。
【0004】
【発明が解決しようとする課題】
特許文献1では、円盤状の圧電体の分極において、円盤中央部の分極度を高くし、周辺部の分極度を低くするために、中央部の電気抵抗を低く、周辺部の電気抵抗を高くする方法が提案されている。
この場合には、圧電体の電極内に均一な電圧を印加した場合、中央部と周辺部の抵抗値の差によって圧電体に加わる電圧は中央部で高く、周辺部で低くなる。この電圧分布により、中央部で大きく、周辺部で小さい分極度分布を得るものである。
しかし、分厚い圧電体の分極処理に際して特許文献1の手法を用いると、かえって中央部と周辺部の分極度の差が大きくなり、1つの圧電体から切り出された素子間の分極度ばらつきが拡大するという欠点がある。また、分極用電極の抵抗値を中央部と周辺部とで連続的に変化させることは極めて困難であり、最適な抵抗値分布を実現することが難しく、得られる分極度分布も望ましいものではない。
【0005】
特許文献2では、積層圧電体の分極において、ブロック内の分極度を均一にするために、1回目の分極処理を行った後で、1回目とは逆方向に二次分極を行うとともに、この二次分極の電圧を最適化することで、ブロック内の分極度ばらつきを低減するものである。
対象とする積層圧電体の場合には、薄肉な圧電体と同様に周辺部が分極されやすい性質がある。この性質は、正分極の時はブロック中央部の分極度を低く、周辺部の分極度を高くするように働き、逆分極の時はブロック中央部の分極度を高く、周辺部の分極度を低くするように働く。この正,逆分極で相反する性質に着目して、正,逆分極でブロック内の分極度傾向を相殺させ、分極度を均一化するものである。
しかし、積層圧電体の場合には、分厚い圧電体の分極とは逆の分極度分布を持つので、そのまま分厚い圧電体の分極には適用できない。しかも、逆分極を行った後の分極度は、その材料の飽和分極度より低くなってしまうため、飽和分極度が必要となる場合には、上記方法は適用できない。
【0006】
そこで、本発明の目的は、圧電体内の分極度分布を均一化することで、圧電体から切り出された素子間の特性ばらつきを小さくできる圧電素子の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に係る発明は、圧電セラミックスよりなる一定厚みの圧電体に対して一様な電界を印加して厚み方向に分極した時の分極度分布が中央部で高く、周辺部で低くなるような性質を持つ圧電体から素子を製造する方法において、一定厚みの圧電体に対して一様な電界を印加した時の分極度分布から加工すべき圧電体の厚み分布を求め、上記圧電体の表裏面の少なくとも1面の周辺部を、上記厚み分布に基づいて中央部から周辺部に向かって圧電体の厚みが漸次薄くなるよう加工する工程と、上記加工された圧電体の表裏面に中央部から周辺部に亘って連続した分極用の電極を形成する工程と、上記分極用の電極間に直流電界を印加して圧電体の厚み方向に分極処理を行う工程と、上記分極処理済の圧電体から複数の素子を切り出す工程と、を有することを特徴とする圧電素子の製造方法を提供する。
【0008】
一定厚みのブロック状圧電体の表裏面に分極用の電極を形成し、その電極間に高電圧を印加すると、分極度分布が中央部で高く、周辺部で低くなるような分極度分布になる。本発明では、このような分極度分布を予め考慮して、表裏の少なくとも1面の周辺部を、中央部から周辺部に向かって圧電体の厚みが漸次薄くなるよう加工したものである。つまり、圧電体の分極度が低くなりやすい周辺部の厚みを薄くすることで、電界分布を最適化したものである。
そのため、厚みの薄い周辺部の電界強度が中央部に比べて高くなり、分極度が低くなる性質のある圧電体の周辺部における分極度を高くすることができる。その結果、中央部と周辺部との分極度の不均一が是正され、圧電体全体としてほぼ均等な分極度を得ることができる。
また、一定厚みの圧電体の分極度分布に応じて圧電体の厚みを連続的に変化させることで、圧電体の途中で分極度が不連続に変化する箇所が発生せず、分極度の均一化を精度よく実現できる。
さらに、本発明では逆分極などの追加的分極を必要としないので、飽和分極度が必要となる場合でも適用できる。
【0009】
本発明では、加工すべき圧電体の形状を、一定厚みの圧電体に対して一様な電界を印加した時の分極度分布から求めるのがよい。
一定厚みの圧電体に対して一様な電界を印加した時の分極度分布は、中央部で高く、周辺部で低くなる。この分布から圧電体の厚み分布を推定し、この厚み分布にしたがって加工すれば、ほぼ均一な分極度分布を得ることができる。
【0010】
加工部の形状を決定する手法として、請求項のように、一定厚みの圧電体に対して一様な電界を印加した時の分極度分布を求める工程と、上記分極度分布から実際値と理想値との乖離量を計算する工程と、電界強度と分極度の関係曲線から、使用する分極電界強度付近の傾きを求める工程と、上記乖離量と上記傾きとの積により、必要な追加電界強度を計算する工程と、上記追加電界強度から加工すべき上記圧電体の厚み分布を求める工程と、を用いることができる。
この場合には、加工部の形状を定量的に求めることができる。
【0011】
【発明の実施の形態】
図3は本発明にかかる圧電体の製造工程の一例を示す。
図3の(a)は、圧電セラミックスを成形、焼成した直方体ブロック状の圧電体1を示す。圧電セラミックスとしては、例えばPZT系など公知の圧電材料を使用できる。圧電体1の厚みT、幅W、長さLは例えば次の通りである。
T=10mm,W=30mm,L=20mm
図3の(b)は、上記圧電体1の表面の両側部を研磨機などによって斜め方向に切削加工し、加工部3を形成した圧電体2を示す。加工部3の幅をS、厚みをDとすると、各寸法は例えば次のように設定されている。
S=6.0mm,D=1.05mm
図3の(c)は、加工部3を形成した圧電体2の表裏面全面にスパッタ等で分極用のAg電極4,5を形成し、これら電極4,5間に直流高圧電源6(例えば25kV)を接続し、直流電界を印加した状態を示す。圧電体2は矢印Pで示すように厚み方向に分極される。なお、図3(c)では、表面の電極4を直流高圧電源6に接続し、裏側の電極5をアースに接続し、100℃のシリコンオイル中で10分間電界を印加した。
【0012】
図4は圧電体の分極後の分極度分布を示す。
図4の(a)は直方体形状の圧電体1に図3の(c)と同様な条件で分極を行ったときの分極度分布、図4の(b)は加工部3を形成した圧電体2に対して同様な分極を行ったときの分極度分布である。
【0013】
上記分極度分布を求めるために、図5の(a)に示すように分極後の圧電体1(矢印Pは分極方向を示す)を長さL方向に平行なライン7に沿って一定幅(例えば0.3mm)でカットして複数の短冊8を作成した後、図5の(b)のように短冊8をさらに縦横のライン9に沿ってカットすることにより素子10を作成し、図5の(c)のように素子10の表裏面に電極を形成してそのΔf(=fa−fr)を測定した。上記素子10は例えば共振周波数frが4.0MHzの厚みすべり振動モード素子である。
上記のように作成した素子10のうち、それぞれの短冊7から得られる複数の素子10のΔfの平均値を棒グラフに表したのが図4である。ここでは、分極度にほぼ比例する特性としてΔfを用いたが、Δfに代えて電気機械結合係数を用いてもよい。
【0014】
図4から明らかなように、加工部3を形成していない直方体形状の圧電体1の場合、(a)のように両端部で分極度(Δf)が低下しており、両端から6mmの範囲から切り出された素子10のΔfは330kHz以下となっている。特に、両端部近傍の素子では325kHz以下であり、目標とする圧電特性が得られていない。これに対し、加工部3を形成した圧電体2の場合には、(b)のように両端部での分極度の低下が抑えられ、圧電体2の幅方向のほぼ全域でΔfは330kHz以上となっている。そのため、圧電体2のほぼ全域から切り出された素子10が所望の圧電特性を満足している。
なお、図4のデータのうち、両端から2mmの範囲で欠落しているのは、データを得ていないことによる。
【0015】
次に、加工部3の形状を決定するための具体的手法を図6を参照して説明する。まず、一定厚みのブロック状圧電体に対して一様な電界を印加した時の分極度分布を求める(ステップS1)。この分極度分布は図7に示すようなΔf分布であり、図4の(a)と同様の方法で求めたものである。実線は実際値、破線は理想値を示す。
次に、上記分極度分布から実際値と理想値との乖離量を計算する(ステップS2)。乖離量つまりΔfの不足分を、圧電体の幅方向(W)の分布として表したのが図8である。
次に、図9に示すような電界強度−Δfの関係曲線を事前に求めておき、使用する分極電界強度付近の傾きを読み取る(ステップS3)。ここでは、厚み10mmのブロックに対して電圧30kVを印加する場合、つまり電界強度が3000V/mm付近を対象として傾きを求めると、約0.05kHz/V/mmとなる。なお、図9の関係曲線はセラミック材料、分極温度、分極時間によって異なる。
次に、ステップS2で求めた乖離量(Δf不足分)とステップS3で求めた傾きとの積から、必要な追加電界強度を計算する(ステップS4)。図10はこの追加電界強度の分布を表したものである。
最後に、ステップS4で求めた追加電界強度から、ブロック状圧電体の厚みを計算する(ステップS5)。理想的には、図11に示すような形状になるが、実際にはこの形状にできるだけ近づけるように圧電体を加工すればよい。
上記のようにして圧電体の理想的な厚みを定量的に計算で求めることができる。
【0016】
図12は加工部を設けた圧電体の種々の形態を表したものである。
(a)は直方体形状の圧電体の表面の4辺に沿って傾斜状の加工部3を設けたものである。圧電体の端部の分極度が低くなる傾向は、W方向およびL方向の両方で発生するので、4辺に沿って加工部3を設けることで、分極度分布の均一性がさらに向上する。
(b)は直方体形状の圧電体の表面の周辺部に円錐テーパ状の加工部3を設けたものである。したがって、圧電体2の中央部には円形の頂部2aが残される。
(c)は円盤形状の圧電体の表面の周辺部に同心円テーパ状の加工部3を設けたものである。
(d)は圧電体2の断面を示し、圧電体2の表面の中央部から周辺部に至るに従い曲面状に傾斜した加工部3を設けたものである。この加工部3の断面形状は、図11に示すブロック厚み分布曲線に近似したものである。
(e)は同じく圧電体2の断面を示し、圧電体2の表裏両面に中央部から周辺部に至るに従い曲面状に傾斜した加工部3を設けたものである。表裏それぞれの加工部3の曲率は、(d)における加工部3の曲率の約半分となっている。
【0017】
本発明は上記実施例に限るものではない。
上記実施例では、一定厚みに成形、焼成した圧電体に対して、端部を削ることにより加工部3を形成したが、予め端部を薄肉に加工した形状に圧電体を成形し、焼成してもよい。つまり、成形の段階で加工部3を設けておいてもよい。
【0018】
【発明の効果】
以上の説明で明らかなように、請求項1に係る発明によれば、ブロック状圧電体の周辺部の厚みを薄くし、圧電体の周辺部の電界強度を故意に高くしたので、分極度が低くなる性質のある圧電体周辺部の分極度低下を防止でき、圧電体の面内における分極度の不均一が是正される。そのため、圧電体から切り出された素子間の特性ばらつきを小さくすることができ、従来のような特性を満足しない素子が多数発生するという事態を解消できる。
【図面の簡単な説明】
【図1】薄肉な板状圧電体の分極度分布を示す図である。
【図2】厚肉なブロック状圧電体の分極度分布を示す図である。
【図3】本発明にかかる圧電体の製造工程図である。
【図4】従来品および本発明品における実際の分極度(Δf)分布図である。
【図5】圧電体から素子を切り出す方法を示す図である。
【図6】本発明にかかる圧電体の厚みを決定する方法を示すフローチャート図である。
【図7】圧電体内の分極度(Δf)分布図である。
【図8】圧電体内のΔf不足分の分布図である。
【図9】電界強度−Δfの関係曲線図である。
【図10】追加電界強度の分布図である。
【図11】圧電体の理想的な厚み分布図である。
【図12】加工部を設けた圧電体の種々の形態を表す図である。
【符号の説明】
1 圧電体(加工前)
2 圧電体(加工後)
3 加工部
4,5 分極用電極
6 直流高圧電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a piezoelectric element, of which a piezoelectric body made of piezoelectric ceramics is polarized in the thickness direction, and more particularly to a block-shaped piezoelectric body polarization method.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Publication No. 8-34650 [Patent Document 2]
JP, 2002-232032, A Conventionally, in a manufacturing process of a piezoelectric filter or an oscillator using piezoelectric ceramics, a block-like piezoelectric body having a side of about several centimeters is formed and fired, and then the front and back surfaces of the piezoelectric body are formed. After forming electrodes for polarization and applying a high voltage between these electrodes for polarization treatment, this block-shaped piezoelectric body is cut into tens to thousands of elements and processed into products. . The problem here is characteristic variation due to polarization degree variation between elements cut out from one piezoelectric body.
[0003]
As shown in FIG. 1, the polarization degree distribution of the piezoelectric body after polarization is low in the central part and high in the peripheral part, and in the central part as shown in FIG. May be high, and the degree of polarization may be low at the periphery. The polarization degree distribution as shown in FIG. 1 is likely to occur in the case of a thin piezoelectric body (for example, having a thickness of about 1 mm) that warps due to polarization, and the distribution as shown in FIG. 2 does not generate warp due to polarization. It is likely to occur in such a thick block piezoelectric body.
When an element is cut out from such a piezoelectric body having a variation in polarization degree, the element cut out from the vicinity of both ends cannot obtain the necessary piezoelectric characteristics, resulting in the occurrence of many elements that do not satisfy the characteristics.
[0004]
[Problems to be solved by the invention]
In Patent Document 1, in order to increase the degree of polarization at the central part of the disk and lower the degree of polarization at the peripheral part in the polarization of the disk-shaped piezoelectric body, the electrical resistance at the central part is lowered and the electrical resistance at the peripheral part is increased. A method has been proposed.
In this case, when a uniform voltage is applied to the electrodes of the piezoelectric body, the voltage applied to the piezoelectric body is high in the central portion and low in the peripheral portion due to the difference in resistance between the central portion and the peripheral portion. By this voltage distribution, a polarization degree distribution that is large in the central portion and small in the peripheral portion is obtained.
However, when the method of Patent Document 1 is used for polarization processing of a thick piezoelectric body, the difference in the degree of polarization between the central portion and the peripheral portion increases, and the variation in polarization degree between elements cut out from one piezoelectric body increases. There is a drawback. In addition, it is extremely difficult to continuously change the resistance value of the electrode for polarization between the central portion and the peripheral portion, it is difficult to realize an optimum resistance value distribution, and the obtained polarization degree distribution is not desirable. .
[0005]
In Patent Document 2, in order to make the polarization degree in the block uniform in the polarization of the laminated piezoelectric body, after performing the first polarization process, the secondary polarization is performed in the opposite direction to the first, By optimizing the voltage of the secondary polarization, the polarization degree variation in the block is reduced.
In the case of the target laminated piezoelectric material, the peripheral portion is likely to be polarized as in the case of a thin piezoelectric material. This property works to lower the degree of polarization at the center of the block during positive polarization and to increase the degree of polarization at the periphery, and to increase the degree of polarization at the center of the block during reverse polarization. Work to lower. By paying attention to the contradictory properties of the normal and reverse polarization, the polarization degree tendency in the block is canceled by the normal and reverse polarization to make the degree of polarization uniform.
However, in the case of a laminated piezoelectric material, since it has a polarization degree distribution opposite to that of a thick piezoelectric material, it cannot be directly applied to the polarization of a thick piezoelectric material. In addition, since the polarization degree after reverse polarization is lower than the saturation polarization degree of the material, the above method cannot be applied when the saturation polarization degree is required.
[0006]
Accordingly, an object of the present invention is to provide a method for manufacturing a piezoelectric element that can reduce variation in characteristics between elements cut out from a piezoelectric body by making the polarization degree distribution in the piezoelectric body uniform.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 has a high degree of polarization distribution at the center when a uniform electric field is applied to a piezoelectric body of a certain thickness made of piezoelectric ceramics and polarized in the thickness direction. In a method of manufacturing an element from a piezoelectric material having a property of being lowered at the periphery, the thickness distribution of the piezoelectric material to be processed from the polarization degree distribution when a uniform electric field is applied to the piezoelectric material of a constant thickness And processing the peripheral portion of at least one of the front and back surfaces of the piezoelectric body so that the thickness of the piezoelectric body gradually decreases from the central portion toward the peripheral portion based on the thickness distribution ; A step of forming a continuous electrode for polarization on the front and back surfaces of the piezoelectric body from the central portion to the peripheral portion, and a step of applying a direct current electric field between the polarization electrodes to perform a polarization treatment in the thickness direction of the piezoelectric material. If, double the piezoelectric body already above polarization treatment To provide a manufacturing method of a piezoelectric element and a step of cutting out the elements of the.
[0008]
When polarization electrodes are formed on the front and back surfaces of a block-shaped piezoelectric body having a constant thickness and a high voltage is applied between the electrodes, the polarization degree distribution is such that the polarization degree distribution is high in the central part and low in the peripheral part. . In the present invention, in consideration of such a polarization degree distribution in advance, the peripheral portion of at least one surface of the front and back is processed so that the thickness of the piezoelectric body gradually decreases from the central portion toward the peripheral portion. That is, the electric field distribution is optimized by reducing the thickness of the peripheral portion where the degree of polarization of the piezoelectric body tends to be low.
Therefore, the electric field strength in the peripheral portion having a small thickness is higher than that in the central portion, and the degree of polarization in the peripheral portion of the piezoelectric body having the property of lowering the degree of polarization can be increased. As a result, the non-uniformity of the degree of polarization between the central part and the peripheral part is corrected, and a substantially uniform degree of polarization can be obtained for the entire piezoelectric body.
Also, by continuously changing the thickness of the piezoelectric body according to the polarization degree distribution of the piezoelectric body having a constant thickness, there is no occurrence of a location where the polarization degree changes discontinuously in the middle of the piezoelectric body, and the degree of polarization is uniform. Can be realized accurately.
Further, since the present invention does not require additional polarization such as reverse polarization, it can be applied even when a saturation polarization degree is required.
[0009]
In the present invention, the shape of the piezoelectric body to be processed is preferably obtained from the degree of polarization distribution when a uniform electric field is applied to the piezoelectric body having a constant thickness.
When a uniform electric field is applied to a piezoelectric body having a constant thickness, the degree of polarization distribution is high at the center and low at the periphery. If the thickness distribution of the piezoelectric body is estimated from this distribution and processed according to this thickness distribution, a substantially uniform polarization degree distribution can be obtained.
[0010]
As a method of determining the shape of the processed portion, as in claim 2 , a step of obtaining a polarization degree distribution when a uniform electric field is applied to a piezoelectric body having a constant thickness, and an actual value from the polarization degree distribution The step of calculating the amount of deviation from the ideal value, the step of obtaining the slope near the polarization electric field strength to be used from the relationship curve between the electric field strength and the degree of polarization, and the product of the amount of deviation and the slope described above, The step of calculating the strength and the step of obtaining the thickness distribution of the piezoelectric body to be processed from the additional electric field strength can be used.
In this case, the shape of the processed part can be obtained quantitatively.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows an example of the manufacturing process of the piezoelectric body according to the present invention.
FIG. 3 (a) shows a rectangular parallelepiped block-like piezoelectric body 1 formed and fired from piezoelectric ceramics. As the piezoelectric ceramic, for example, a known piezoelectric material such as a PZT system can be used. The thickness T, width W, and length L of the piezoelectric body 1 are as follows, for example.
T = 10mm, W = 30mm, L = 20mm
FIG. 3B shows a piezoelectric body 2 in which a processed portion 3 is formed by cutting both sides of the surface of the piezoelectric body 1 in an oblique direction with a polishing machine or the like. If the width of the processed portion 3 is S and the thickness is D, the dimensions are set as follows, for example.
S = 6.0mm, D = 1.05mm
In FIG. 3C, polarization Ag electrodes 4, 5 are formed by sputtering or the like on the entire front and back surfaces of the piezoelectric body 2 on which the processed portion 3 is formed, and a DC high-voltage power source 6 (for example, between the electrodes 4, 5). 25 kV) is connected and a DC electric field is applied. The piezoelectric body 2 is polarized in the thickness direction as indicated by an arrow P. In FIG. 3C, the electrode 4 on the front surface was connected to the DC high voltage power source 6, the electrode 5 on the back side was connected to the ground, and an electric field was applied in 100 ° C. silicon oil for 10 minutes.
[0012]
FIG. 4 shows the polarization degree distribution after polarization of the piezoelectric body.
4A shows a polarization degree distribution when the rectangular parallelepiped piezoelectric body 1 is polarized under the same conditions as FIG. 3C, and FIG. 4B shows the piezoelectric body in which the processed portion 3 is formed. 2 is a degree of polarization distribution when the same polarization is performed on 2.
[0013]
In order to obtain the polarization degree distribution, as shown in FIG. 5A, the piezoelectric body 1 after polarization (the arrow P indicates the polarization direction) is fixed along a line 7 parallel to the length L direction ( For example, after forming a plurality of strips 8 by cutting at 0.3 mm, the strip 8 is further cut along vertical and horizontal lines 9 as shown in FIG. As shown in (c), electrodes were formed on the front and back surfaces of the element 10 and Δf (= fa−fr) was measured. The element 10 is, for example, a thickness shear vibration mode element having a resonance frequency fr of 4.0 MHz.
FIG. 4 shows an average value of Δf of a plurality of elements 10 obtained from each strip 7 among the elements 10 created as described above, in a bar graph. Here, Δf is used as a characteristic that is substantially proportional to the degree of polarization, but an electromechanical coupling coefficient may be used instead of Δf.
[0014]
As is clear from FIG. 4, in the case of the rectangular parallelepiped piezoelectric body 1 in which the processed portion 3 is not formed, the degree of polarization (Δf) decreases at both ends as shown in (a), and the range is 6 mm from both ends. Δf of the element 10 cut out from the above is 330 kHz or less. In particular, the element near both ends is 325 kHz or less, and the target piezoelectric characteristics are not obtained. On the other hand, in the case of the piezoelectric body 2 in which the processed portion 3 is formed, a decrease in the degree of polarization at both ends is suppressed as shown in (b), and Δf is 330 kHz or more in almost the entire width direction of the piezoelectric body 2. It has become. Therefore, the element 10 cut out from almost the entire area of the piezoelectric body 2 satisfies desired piezoelectric characteristics.
In addition, in the data of FIG. 4, it is missing in the range of 2 mm from both ends because the data is not obtained.
[0015]
Next, a specific method for determining the shape of the processed portion 3 will be described with reference to FIG. First, a polarization degree distribution when a uniform electric field is applied to a block-shaped piezoelectric body having a constant thickness is obtained (step S1). This polarization degree distribution is a Δf distribution as shown in FIG. 7, and is obtained by the same method as in FIG. A solid line indicates an actual value, and a broken line indicates an ideal value.
Next, a deviation amount between the actual value and the ideal value is calculated from the polarization degree distribution (step S2). FIG. 8 shows the amount of deviation, that is, the shortage of Δf, as a distribution in the width direction (W) of the piezoelectric body.
Next, a relational curve of electric field strength−Δf as shown in FIG. 9 is obtained in advance, and the inclination near the polarization electric field strength to be used is read (step S3). In this case, when a voltage of 30 kV is applied to a block having a thickness of 10 mm, that is, when the inclination is calculated for an electric field strength around 3000 V / mm, it is about 0.05 kHz / V / mm. In addition, the relational curve of FIG. 9 changes with ceramic materials, polarization temperature, and polarization time.
Next, the necessary additional electric field strength is calculated from the product of the deviation amount (Δf deficiency) obtained in step S2 and the slope obtained in step S3 (step S4). FIG. 10 shows this additional electric field strength distribution.
Finally, the thickness of the block piezoelectric body is calculated from the additional electric field strength obtained in step S4 (step S5). Ideally, the shape is as shown in FIG. 11, but in practice, the piezoelectric body may be processed so as to be as close as possible to this shape.
As described above, the ideal thickness of the piezoelectric body can be quantitatively calculated.
[0016]
FIG. 12 shows various forms of a piezoelectric body provided with a processed portion.
(A) is provided with inclined processed portions 3 along four sides of the surface of a rectangular parallelepiped piezoelectric body. The tendency for the degree of polarization at the end of the piezoelectric body to decrease occurs in both the W direction and the L direction. Therefore, by providing the processed portions 3 along the four sides, the uniformity of the polarization degree distribution is further improved.
(B) is one in which a conical taper-shaped processed portion 3 is provided at the periphery of the surface of a rectangular parallelepiped piezoelectric body. Accordingly, a circular top 2 a is left at the center of the piezoelectric body 2.
(C) is one in which a concentric taper-shaped processed portion 3 is provided at the periphery of the surface of a disk-shaped piezoelectric body.
(D) shows a cross section of the piezoelectric body 2, and is provided with a processed portion 3 that is inclined in a curved shape from the central portion to the peripheral portion of the surface of the piezoelectric body 2. The cross-sectional shape of the processed portion 3 approximates the block thickness distribution curve shown in FIG.
(E) also shows a cross section of the piezoelectric body 2, in which processed portions 3 inclined in a curved shape from the central portion to the peripheral portion are provided on both front and back surfaces of the piezoelectric body 2. The curvature of the processing part 3 on each of the front and back sides is about half of the curvature of the processing part 3 in (d).
[0017]
The present invention is not limited to the above embodiments.
In the above embodiment, the processed portion 3 is formed by cutting the end portion of the piezoelectric body that has been molded and fired to a constant thickness. However, the piezoelectric body is formed into a shape in which the end portion has been processed into a thin wall in advance and fired. May be. That is, you may provide the process part 3 in the stage of shaping | molding.
[0018]
【The invention's effect】
As apparent from the above description, according to the invention of claim 1, the thickness of the peripheral portion of the block-shaped piezoelectric body is thinned, and the electric field strength of the peripheral portion of the piezoelectric body is intentionally increased. It is possible to prevent a decrease in the degree of polarization at the periphery of the piezoelectric body, which has a low property, and to correct the nonuniformity of the degree of polarization in the plane of the piezoelectric body. Therefore, the characteristic variation between the elements cut out from the piezoelectric body can be reduced, and the situation that many elements that do not satisfy the characteristics as in the conventional case occur can be solved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a polarization degree distribution of a thin plate-like piezoelectric body.
FIG. 2 is a diagram showing a polarization degree distribution of a thick block piezoelectric body.
FIG. 3 is a manufacturing process diagram of a piezoelectric body according to the present invention.
FIG. 4 is an actual polarization degree (Δf) distribution diagram of a conventional product and a product of the present invention.
FIG. 5 is a diagram illustrating a method of cutting out an element from a piezoelectric body.
FIG. 6 is a flowchart showing a method for determining the thickness of a piezoelectric body according to the present invention.
FIG. 7 is a distribution diagram of the degree of polarization (Δf) in the piezoelectric body.
FIG. 8 is a distribution diagram of Δf deficiency in the piezoelectric body.
FIG. 9 is a relationship curve diagram of electric field strength−Δf.
FIG. 10 is a distribution diagram of additional electric field strength.
FIG. 11 is an ideal thickness distribution diagram of a piezoelectric body.
FIG. 12 is a diagram illustrating various forms of a piezoelectric body provided with a processing portion.
[Explanation of symbols]
1 Piezoelectric body (before processing)
2 Piezoelectric (after processing)
3 Processing parts 4 and 5 Polarizing electrode 6 DC high voltage power supply

Claims (2)

圧電セラミックスよりなる一定厚みの圧電体に対して一様な電界を印加して厚み方向に分極した時の分極度分布が中央部で高く、周辺部で低くなるような性質を持つ圧電体から素子を製造する方法において、
一定厚みの圧電体に対して一様な電界を印加した時の分極度分布から加工すべき圧電体の厚み分布を求め、上記圧電体の表裏面の少なくとも1面の周辺部を、上記厚み分布に基づいて中央部から周辺部に向かって圧電体の厚みが漸次薄くなるよう加工する工程と、
上記加工された圧電体の表裏面に中央部から周辺部に亘って連続した分極用の電極を形成する工程と、
上記分極用の電極間に直流電界を印加して圧電体の厚み方向に分極処理を行う工程と、
上記分極処理済の圧電体から複数の素子を切り出す工程と、を有することを特徴とする圧電素子の製造方法。
High polarization degree distribution when polarized in the thickness direction by applying a uniform electric field to the piezoelectric constant thickness made of piezoelectric ceramics in the central portion, the element of a piezoelectric material having a property such that lower at the peripheral portion In the method of manufacturing
The thickness distribution of the piezoelectric body to be processed is obtained from the polarization degree distribution when a uniform electric field is applied to the piezoelectric body having a constant thickness, and the peripheral portion of at least one of the front and back surfaces of the piezoelectric body is the thickness distribution. A step of processing so that the thickness of the piezoelectric body gradually decreases from the central part toward the peripheral part based on
A step of forming electrodes for polarization continuous from the center to the periphery on the front and back surfaces of the processed piezoelectric body;
Applying a direct current electric field between the electrodes for polarization to perform polarization treatment in the thickness direction of the piezoelectric body;
And a step of cutting out a plurality of elements from the polarization-treated piezoelectric body .
一定厚みの圧電体に対して一様な電界を印加した時の分極度分布を求める工程と、
上記分極度分布から実際値と理想値との乖離量を計算する工程と、
電界強度と分極度の関係曲線から、使用する分極電界強度付近の傾きを求める工程と、
上記乖離量と上記傾きとの積により、必要な追加電界強度を計算する工程と、
上記追加電界強度から加工すべき上記圧電体の厚み分布を求める工程と、を有する請求項に記載の圧電素子の製造方法
Obtaining a polarization degree distribution when a uniform electric field is applied to a piezoelectric material having a constant thickness;
Calculating a deviation amount between the actual value and the ideal value from the polarization degree distribution;
From the curve of the relationship between the electric field strength and the degree of polarization, a step of obtaining a slope near the polarization electric field strength to be used
Calculating a required additional electric field strength by a product of the deviation amount and the slope;
The method for producing a piezoelectric element according to claim 1 , further comprising: obtaining a thickness distribution of the piezoelectric body to be processed from the additional electric field strength.
JP2003003972A 2003-01-10 2003-01-10 Method for manufacturing piezoelectric element Expired - Fee Related JP4269689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003972A JP4269689B2 (en) 2003-01-10 2003-01-10 Method for manufacturing piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003972A JP4269689B2 (en) 2003-01-10 2003-01-10 Method for manufacturing piezoelectric element

Publications (2)

Publication Number Publication Date
JP2004221156A JP2004221156A (en) 2004-08-05
JP4269689B2 true JP4269689B2 (en) 2009-05-27

Family

ID=32895078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003972A Expired - Fee Related JP4269689B2 (en) 2003-01-10 2003-01-10 Method for manufacturing piezoelectric element

Country Status (1)

Country Link
JP (1) JP4269689B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518772B2 (en) * 2003-09-25 2010-08-04 京セラ株式会社 Piezoelectric element manufacturing method and piezoelectric ceramic manufacturing method
JP4845365B2 (en) * 2004-10-18 2011-12-28 トヨタ自動車株式会社 Method for manufacturing piezoelectric body having piezoelectric characteristic inclined structure, damping structure and vibration control method
JP5183138B2 (en) * 2007-09-26 2013-04-17 富士フイルム株式会社 Piezoelectric actuator and liquid discharge head
JP2016042566A (en) * 2014-08-18 2016-03-31 株式会社リコー Manufacturing method of electromechanical conversion film, manufacturing method of electromechanical conversion element, liquid discharge head, and image forming apparatus
CN106291142B (en) * 2016-09-19 2022-04-29 河南感联智能科技有限公司 Piezoelectric ceramic and piezoelectric semiconductor test piece diversity polarization experimental system

Also Published As

Publication number Publication date
JP2004221156A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US2870521A (en) Method of adjusting the resonant frequency of a vibrating system
US10361357B2 (en) Piezoelectric oxide single crystal substrate
JP4269689B2 (en) Method for manufacturing piezoelectric element
JPH06252688A (en) Piezoelectric resonator
US11121696B2 (en) Electrode defined resonator
JP3478227B2 (en) Polarization method of piezoelectric body
JPS59155115A (en) Method of polarizing polarizable material piece
KR20190029492A (en) Saw device and method of manufacture
JP2962231B2 (en) Piezoelectric transformer
US20030062912A1 (en) Polarization method of a multi-layered piezoelectric body
JPH09181372A (en) Piezoelectric transformer and manufacture thereof
JP2010021812A (en) Method of manufacturing piezoelectric vibrator
JP3387601B2 (en) Polarization method for piezoelectric components
JP4504540B2 (en) Ultrasonic vibrator and manufacturing method thereof
WO1991013524A1 (en) Ultrasonic probe and production method thereof
JPS60150310A (en) Piezoelectric vibrator
JPS63182904A (en) Energy confinement type piezoelectric vibrator component
JPH11260771A (en) Method of semiconductor wafer and semiconductor wafer using the method
JPH04285025A (en) Method for rendering single domain to piezoelectric single crystal
JPH0254610A (en) Piezoelectric resonator and its manufacture
JP2915714B2 (en) Manufacturing method of piezoelectric ceramic
JPH0889893A (en) Bolted langevin transducer
JP4736315B2 (en) Piezoelectric element and manufacturing method thereof
JPS6148299A (en) Manufacture of ultrasonic probe
JPS63100807A (en) Manufacture of piezoelectric ceramic resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees