JP4736315B2 - Piezoelectric element and manufacturing method thereof - Google Patents

Piezoelectric element and manufacturing method thereof Download PDF

Info

Publication number
JP4736315B2
JP4736315B2 JP2003349867A JP2003349867A JP4736315B2 JP 4736315 B2 JP4736315 B2 JP 4736315B2 JP 2003349867 A JP2003349867 A JP 2003349867A JP 2003349867 A JP2003349867 A JP 2003349867A JP 4736315 B2 JP4736315 B2 JP 4736315B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
plate
sintered body
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003349867A
Other languages
Japanese (ja)
Other versions
JP2005116825A (en
Inventor
俊夫 曽我
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003349867A priority Critical patent/JP4736315B2/en
Publication of JP2005116825A publication Critical patent/JP2005116825A/en
Application granted granted Critical
Publication of JP4736315B2 publication Critical patent/JP4736315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、各種電子機器に組み込まれる圧電素子及びその製造方法に関する。   The present invention relates to a piezoelectric element incorporated in various electronic devices and a method for manufacturing the same.

一般に、圧電素子とは誘電体よりなる圧電板を有し、圧電板に所定の電圧を印加、或いは所定の応力を加えることにより当該電圧或いは応力に比例した歪み或いは電圧を圧電板に発生させる素子である。   Generally, a piezoelectric element has a piezoelectric plate made of a dielectric, and applies a predetermined voltage to the piezoelectric plate or applies a predetermined stress to generate a distortion or voltage proportional to the voltage or the stress on the piezoelectric plate. It is.

現在、広く利用されている圧電素子にバイモルフ圧電素子がある。このバイモルフ圧電素子は、セラミックスよりなる2枚の圧電板により中間電極板を狭持した構造を有し、前記電極板に所定の電圧を印加することにより当該電圧に比例した歪みを前記圧電板に発生させる略々短冊形状の圧電素子である。このように、バイモルフ圧電素子は印加電圧を素子厚方向の応力(変位)に変換するいわゆる逆圧電効果を有する素子であり、低圧電で比較的大きな変位量を得ることができる。前記バイモルフ圧電素子は、主にマイクロホンやヘッドホン、スピーカー等に用いられている。   Currently, there is a bimorph piezoelectric element as a widely used piezoelectric element. This bimorph piezoelectric element has a structure in which an intermediate electrode plate is sandwiched between two piezoelectric plates made of ceramics. By applying a predetermined voltage to the electrode plate, a strain proportional to the voltage is applied to the piezoelectric plate. It is a substantially strip-shaped piezoelectric element to be generated. Thus, the bimorph piezoelectric element is an element having a so-called reverse piezoelectric effect that converts an applied voltage into a stress (displacement) in the element thickness direction, and can obtain a relatively large displacement with low piezoelectricity. The bimorph piezoelectric element is mainly used for microphones, headphones, speakers, and the like.

その他に、このバイモルフ圧電素子と同様の素子としては前記圧電板と電極板を多層積み重ねて素子厚方向の大きな変位を得ることが可能である積層型の圧電素子がある。   In addition, as an element similar to this bimorph piezoelectric element, there is a stacked piezoelectric element that can obtain a large displacement in the element thickness direction by stacking the piezoelectric plates and electrode plates in multiple layers.

特許文献1は、圧電素子の動作寿命を長くし、電極の剥がれ強度を高くするために圧電素子の面粗度を0.1〜2.3μmとした圧電素子が記載されている。
特許文献2は、圧電素子のクラック防止のため圧電素子に接触する側の押さえ板の面粗度を10μm以下とした圧電素子が記載されている。
特開平8−125245号公報 特開平8−111012号公報
Patent Document 1 describes a piezoelectric element in which the surface roughness of the piezoelectric element is 0.1 to 2.3 μm in order to increase the operating life of the piezoelectric element and increase the peeling strength of the electrode.
Patent Document 2 describes a piezoelectric element in which the pressing plate on the side in contact with the piezoelectric element has a surface roughness of 10 μm or less in order to prevent cracking of the piezoelectric element.
JP-A-8-125245 Japanese Patent Laid-Open No. 8-1111012

上述した通り、バイモルフ圧電素子の特徴は、低電圧で素子厚方向の比較的大きな変位量を得ることができる反面、変位に伴って圧電板に応力が集中する。このため圧電素子としては、駆動させると同時にクラックが発生するものがある。圧電素子は、クラックが発生すると正常な動作を継続させることが非常に困難となる。一般に圧電板の材料として広く用いられているPbZrO−PbTiO系のセラミックスは、その機械的性質が脆性であるために前記の現象が特に顕著に見られ、クラック発生や動作安定性等の低下を問題しされている。 As described above, the bimorph piezoelectric element is characterized by a relatively large amount of displacement in the element thickness direction at a low voltage, but stress concentrates on the piezoelectric plate with the displacement. For this reason, some piezoelectric elements are cracked as soon as they are driven. When a crack occurs in the piezoelectric element, it is very difficult to continue normal operation. In general, PbZrO 3 -PbTiO 3 ceramics, which are widely used as piezoelectric plate materials, exhibit the above-mentioned phenomenon particularly markedly because of their brittle mechanical properties, resulting in reduced cracking and operational stability. Has been a problem.

本発明は、上述の点に鑑み、圧電素子特にバイモルフ圧電素子の振れ幅を大幅に向上させ且つクラックの発生しない圧電素子及びその製造方法を提供するものである。   In view of the above points, the present invention provides a piezoelectric element that greatly improves the deflection width of a piezoelectric element, particularly a bimorph piezoelectric element, and does not generate cracks, and a method for manufacturing the same.

本発明に係る圧電素子は、誘電体よりなる圧電板を有し、圧電板に所定の圧電を印加する或いは所定の応力を加えることにより、この圧電或いは応力に比例した歪み或いは電圧を圧電板に発生させる圧電素子である。すなわち、本発明は、誘電体よりなる2枚の圧電板と、2枚の圧電板で挟持された中間電極板と、圧電板のそれぞれの外表面に形成された対向電極とを有してバイモルフ構造に構成され、圧電板の表面の算術平均粗さRaが2.5μm〜3.5μmであることを特徴とする。ここで、上記圧電板のRaが3.5μmより大となると表面粗度が大きいために抗折強度が低下し品質に悪影響を及ぼす。また、Raが2.5μmより小となると当該圧電板にクラックが発生し易くなり、かつ圧電板の表面に形成される電極の被着強度が低下、すなわち形成された電極が圧電板の表面から剥離し易くなってしまうために不都合となる。 The piezoelectric element according to the present invention has a piezoelectric plate made of a dielectric, and applies a predetermined piezoelectric force or applies a predetermined stress to the piezoelectric plate, thereby applying a strain or a voltage proportional to the stress to the piezoelectric plate. This is a piezoelectric element to be generated . That is, the present invention includes two piezoelectric plates made of a dielectric, an intermediate electrode plate sandwiched between the two piezoelectric plates, and a counter electrode formed on each outer surface of the piezoelectric plate. The structure is structured, and the arithmetic average roughness Ra of the surface of the piezoelectric plate is 2.5 μm to 3.5 μm. Here, when the Ra of the piezoelectric plate is larger than 3.5 μm, the surface roughness is large, so that the bending strength is lowered and the quality is adversely affected. Further, when Ra is smaller than 2.5 μm, cracks are likely to occur in the piezoelectric plate, and the adhesion strength of the electrode formed on the surface of the piezoelectric plate is reduced, that is, the formed electrode is removed from the surface of the piezoelectric plate. Since it becomes easy to peel, it becomes inconvenient.

なお、本発明においては、上記圧電板の材料としては主にセラミックス、例えば圧電定数の大きなPbZrO−PbTiO系のセラミックスの焼結体を用い、また、中間電極板の材料としては主にシム材を用いることが好ましい。 In the present invention, as the material of the upper Symbol piezoelectric plate mainly used ceramics, for example, a sintered body of large PbZrO 3 -PbTiO 3 system ceramics of the piezoelectric constant, also primarily as the material of the intermediate electrode plate It is preferable to use a shim material.

本発明に係る圧電素子の製造方法は、PbZrO−PbTiO系の材料である焼結体を形成する工程と、焼結体を所要の形にスライスして板状に形成する工程と、板状の焼結体を所定の厚さに研磨して圧電板を形成する工程と、圧電板の表面の算術平均粗さRaが2.5μm〜3.5μmと成るまでエッチングする工程と、圧電板の一主面にメッキによる対向電流を形成する工程と、2枚の圧電板により対向電極が外側となるように中間電極板を挟持して接着固定する工程とを有し、バイモルフ構造に形成したことを特徴とする。 The method for manufacturing a piezoelectric element according to the present invention includes a step of forming a sintered body that is a PbZrO 3 —PbTiO 3 based material, a step of slicing the sintered body into a required shape, and forming a plate shape, A step of polishing the shaped sintered body to a predetermined thickness to form a piezoelectric plate, a step of etching until the arithmetic average roughness Ra of the surface of the piezoelectric plate is 2.5 μm to 3.5 μm, and a piezoelectric plate Forming a counter current by plating on one main surface of the substrate, and sandwiching and fixing the intermediate electrode plate so that the counter electrode is on the outside by two piezoelectric plates , and formed into a bimorph structure It is characterized by that.

本発明に係る圧電素子では、誘電体よりなる圧電板の表面の算術平均粗さ(Ra)が、2.5μm以上3.5μm以下とすることで、圧電素子動作中に圧電板に応力がかかって大きな変位を示しても、圧電板の算術平均粗さが向上されているために疲労が少なく、多数回の使用に対しても優れた耐久性を示す。   In the piezoelectric element according to the present invention, when the arithmetic average roughness (Ra) of the surface of the piezoelectric plate made of a dielectric is 2.5 μm or more and 3.5 μm or less, stress is applied to the piezoelectric plate during operation of the piezoelectric element. Even if a large displacement is exhibited, the arithmetic average roughness of the piezoelectric plate is improved, so there is little fatigue, and excellent durability is exhibited even after many uses.

本発明に係る圧電素子においては、特にバイモルフ圧電素子を想定しており、低電圧により比較的大きな応力が圧電板にかかって大きな変位量を示しても、前記の如く圧電板の表面性が改善されているために圧電板の疲労は極めて少ないものとなる。 In the piezoelectric element according to the present invention, especially it assumes the server Imorufu piezoelectric element, even if a relatively large stress by low voltage indicates a large amount of displacement depends on the piezoelectric plate, the surface of the as piezoelectric plate Is improved, the fatigue of the piezoelectric plate is extremely small.

本発明に係る圧電素子の製造方法では、圧電材料による焼結体をスライスして所定の厚さに研磨した後、表面をエッチング処理することにより、圧電板表面の研磨歪みを除去すると共に、圧電板の表面粗さ、即ち算術平均粗さの最適化を図ることができ、振れ幅を向上してクラック発生のない圧電素子を製造することができる。   In the method for manufacturing a piezoelectric element according to the present invention, a sintered body made of a piezoelectric material is sliced and polished to a predetermined thickness, and then the surface is etched to remove polishing distortion on the surface of the piezoelectric plate, and at the same time The surface roughness of the plate, that is, the arithmetic average roughness can be optimized, and the deflection width can be improved to produce a piezoelectric element free from cracks.

本発明に係る圧電素子によれば、圧電素子構成部品である圧電材の表面粗さの適正化を図ることにより、製品の振れ幅を向上させクラックの発生のない圧電素子を提供することができる。   According to the piezoelectric element according to the present invention, by optimizing the surface roughness of the piezoelectric material, which is a component of the piezoelectric element, it is possible to provide a piezoelectric element free from cracks by improving the deflection width of the product. .

本発明に係る圧電素子の製造方法によれば、圧電素子構成部品である圧電材の表面粗さを適正化し、製品の振れ幅を向上させ、且つ、クラック発生のない圧電素子を製造することができる。   According to the method for manufacturing a piezoelectric element according to the present invention, it is possible to optimize the surface roughness of a piezoelectric material that is a component of a piezoelectric element, to improve the deflection width of the product, and to manufacture a piezoelectric element that does not generate cracks. it can.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明に係る圧電素子をバイモルフ圧電素子(以下、単に圧電素子と示す)に適用した場合の一実施の形態を示す。ここで、バイモルフ圧電素子とは、前述したように2枚の圧電板により中間電極を狭持した構造を有し、圧電板に所定の電圧を印加することにより当該電圧に比例した歪みを圧電板に発生させる素子である。本実施の形態に係る圧電素子1は、PbZrO−PbTiO系のセラミックスを材料とする2枚の圧電板2,3によって狭持されたシム材を材料とする中間電極板4とから構成されている。圧電素子1の上面及び下面、すなわち、圧電板2の上面2a上及び圧電板3の下面3b上にはそれぞれ電極5,6が形成されて対向電極とされている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment in which a piezoelectric element according to the present invention is applied to a bimorph piezoelectric element (hereinafter simply referred to as a piezoelectric element). Here, the bimorph piezoelectric element has a structure in which an intermediate electrode is sandwiched between two piezoelectric plates as described above, and a strain proportional to the voltage is applied to the piezoelectric plate by applying a predetermined voltage to the piezoelectric plate. It is an element to be generated. A piezoelectric element 1 according to the present embodiment includes an intermediate electrode plate 4 made of a shim material sandwiched between two piezoelectric plates 2 and 3 made of PbZrO 3 -PbTiO 3 based ceramics. ing. Electrodes 5 and 6 are formed on the upper and lower surfaces of the piezoelectric element 1, that is, on the upper surface 2 a of the piezoelectric plate 2 and the lower surface 3 b of the piezoelectric plate 3, respectively.

そして本実施の形態では、特に、各圧電板2,3の表面、即ち各圧電板2,3の表面のそれぞれの上面2a,3a及び下面2b及び3bの算術平均粗さRaが、2.5μm以上3.5μm以下で形成されている。ここで、圧電板2,3のそれぞれの上面2a,3a及び下面2b,3bの算術平均粗さRaが3.5μmより大きくなると、表面粗度が大きいために圧電板の抗折強度が著しく低下してしまう、また、算術平均粗さRaが2.5μmより小さくなると当該電圧板2,3の上面2a及び下面3bに形成される電極5,6が圧電板にクラックが発生し易くなり、且つ、圧電板2,3の上面2a及び下面3bから剥離し易くなってしてしまうために不都合となる。   In the present embodiment, the arithmetic average roughness Ra of the upper surfaces 2a, 3a and the lower surfaces 2b, 3b of the surfaces of the piezoelectric plates 2, 3, that is, the surfaces of the piezoelectric plates 2, 3, is 2.5 μm. It is formed with a thickness of 3.5 μm or less. Here, when the arithmetic average roughness Ra of the upper surfaces 2a and 3a and the lower surfaces 2b and 3b of the piezoelectric plates 2 and 3 is larger than 3.5 μm, the bending strength of the piezoelectric plates is remarkably lowered due to the large surface roughness. In addition, when the arithmetic average roughness Ra is smaller than 2.5 μm, the electrodes 5 and 6 formed on the upper surface 2a and the lower surface 3b of the voltage plates 2 and 3 are likely to be cracked in the piezoelectric plate, and This is inconvenient because the piezoelectric plates 2 and 3 are easily separated from the upper surface 2a and the lower surface 3b.

図2は、バイモルフ圧電素子の製造工程を示す。先ず、具体的に圧電素子を作製するに際しては、低電圧でも比較的大きな変位量を得るために圧電定数の大きなPbZrO−PbTiO系のセラミックスの焼結体(以下、単にPZT焼結体と示す)を用いる。次に、このPZT焼結体を厚さ約220μmにスライス加工する。 FIG. 2 shows a manufacturing process of the bimorph piezoelectric element. First, when a piezoelectric element is specifically manufactured, in order to obtain a relatively large displacement even at a low voltage, a sintered body of a PbZrO 3 —PbTiO 3 based ceramic having a large piezoelectric constant (hereinafter simply referred to as a PZT sintered body). Is used). Next, this PZT sintered body is sliced to a thickness of about 220 μm.

次いで、ラップ工程においては、#1000砥粒を用いて小判型のPZT焼結体を厚さ約190μmに調整する。このラップ処理によりスライス状のPZT焼結体の表面は最も平坦化される。次に、エッチング工程においては、フッ硝酸水溶液を用いて研磨したPZT焼結体を3分間エッチング処理する。このエッチング工程では、後に各圧電板2,3の上面2a,3a及び下面2b及び3bとなる前記PZT焼結体の表面粗さ、即ち算術平均粗さRaが2.5μm以上3.5μm以下となるように調整する。   Next, in the lapping step, the oval PZT sintered body is adjusted to a thickness of about 190 μm using # 1000 abrasive grains. By this lapping treatment, the surface of the sliced PZT sintered body is most flattened. Next, in the etching step, the PZT sintered body polished using a hydrofluoric acid aqueous solution is etched for 3 minutes. In this etching step, the surface roughness of the PZT sintered body that will be the upper surfaces 2a and 3a and the lower surfaces 2b and 3b of the piezoelectric plates 2 and 3 later, that is, the arithmetic average roughness Ra is 2.5 μm or more and 3.5 μm or less. Adjust so that

その後、無電解めっき法により、各PZT焼結体の一主面にメッキを施して対向電極となる各電極5,6を形成する。次に、150〜170μm厚の中間電極板4となるシム材の両面にエポキシ系接着剤を塗布して、各電極5,6がメッキ形成された各PZT焼結体により各電極5,6が外側となるように中間電極板4を狭持して接着固定する。   Thereafter, by plating the one main surface of each PZT sintered body by an electroless plating method, the electrodes 5 and 6 serving as counter electrodes are formed. Next, an epoxy adhesive is applied to both sides of the shim material to be the intermediate electrode plate 4 having a thickness of 150 to 170 μm, and the electrodes 5 and 6 are formed by the PZT sintered bodies in which the electrodes 5 and 6 are plated. The intermediate electrode plate 4 is nipped and fixed so as to be on the outside.

そして、中間電極板4を介した各PZT焼結体に対して、シリコンオイル中にて温度80℃に加熱しながら分極処理を施した後、所定の短冊形状に加工することにより圧電素子が完成する。   Each PZT sintered body via the intermediate electrode plate 4 is subjected to polarization treatment while being heated in silicon oil at a temperature of 80 ° C., and then processed into a predetermined strip shape to complete a piezoelectric element. To do.

本実施の形態に係る圧電素子の製造方法によれば、最適な算術平均粗さの圧電素子を形成することができる。   According to the method for manufacturing a piezoelectric element according to the present embodiment, a piezoelectric element having an optimal arithmetic mean roughness can be formed.

ここで、いくつかの実験例について説明する。これらの実験は、前記一実施の形態の圧電素子について、その表面性の改善効果について調べたものであり実験1においては前記圧電素子を振動させた時の振れ幅の値と100枚振動させた時のクラックの発生率を調査した。実験2においては圧電板2及び3の抗折強度を調べた。   Here, some experimental examples will be described. In these experiments, the surface property improvement effect of the piezoelectric element of the embodiment was examined. In Experiment 1, the piezoelectric element was vibrated with 100 values of vibration width. The occurrence rate of cracks at the time was investigated. In Experiment 2, the bending strength of the piezoelectric plates 2 and 3 was examined.

先ず、図3は、圧電素子を振動させて測定する説明図である。即ち、この実験1は、圧電素子を冶具Aに固定し電圧380Vp−p、周波数60Hzの電流を圧電素子1に流し圧電素子1の先端部Bを振動させる。変位Cをレーザー変位計Dで求めこの値を振れ幅とした。
図4に示すように、振動作業を圧電素子100枚に行いクラックの発生枚数を調べ、圧電素子100枚中のクラックFの発生枚数の割合をクラック発生率とする。
First, FIG. 3 is an explanatory diagram for measuring by vibrating a piezoelectric element. That is, in this experiment 1, the piezoelectric element is fixed to the jig A, a voltage of 380 Vp-p and a frequency of 60 Hz is passed through the piezoelectric element 1 to vibrate the tip B of the piezoelectric element 1. The displacement C was obtained with a laser displacement meter D, and this value was taken as the runout width.
As shown in FIG. 4, the vibration work is performed on 100 piezoelectric elements, the number of cracks generated is examined, and the ratio of the number of cracks F generated in 100 piezoelectric elements is defined as the crack generation rate.

次いて、実験2においては、先ず圧電板2及び3のサンプルを用いて長さ20mm、幅7mm、厚み0.19mmの形状に加工を行なった。図5は、このサンプルを用いたとき抗折強度の測定を示す。図5では、加重測定装置11の裁量部12にサンプルの圧電板2,3が水平に裁量され、この圧電板2,3に対して上方から加圧子13によって垂直方向の加重が掛けられ、圧電板2,3が折れたときの加重で抗折強度が測定される。   Next, in Experiment 2, first, samples of the piezoelectric plates 2 and 3 were processed into a shape having a length of 20 mm, a width of 7 mm, and a thickness of 0.19 mm. FIG. 5 shows the measurement of the bending strength when this sample is used. In FIG. 5, sample piezoelectric plates 2 and 3 are horizontally determined at a discretion portion 12 of the weight measuring device 11, and a vertical load is applied to the piezoelectric plates 2 and 3 from above by a pressurizer 13. The bending strength is measured by the load when the plates 2 and 3 are broken.

上述した実験で使用した算術平均粗さが違うサンプルは、PZT焼結体に対するメッキ工程前のエッチング時間が異なる。すなわち、表1に示すサンプル1〜9はエッチング時間を0〜8分までを1分毎にエッチング時間を変化させたサンプルであり、エッチング時間の増減により算術平均粗さが変化する。   The samples having different arithmetic average roughness used in the above-described experiment have different etching times before the plating process for the PZT sintered body. That is, Samples 1 to 9 shown in Table 1 are samples in which the etching time is changed from 0 to 8 minutes every minute, and the arithmetic average roughness is changed by increasing or decreasing the etching time.

これらの処理の結果、サンプル1(エッチング時間0分)で算術平均粗さが1.5μmとなりエッチング時間の増加と共に算術平均粗さが大きくなる。最大のエッチング時間は8分で算術平均粗さが4.3μmとなる。   As a result of these treatments, the arithmetic average roughness becomes 1.5 μm in sample 1 (etching time 0 minutes), and the arithmetic average roughness increases with an increase in etching time. The maximum etching time is 8 minutes, and the arithmetic average roughness is 4.3 μm.

なお、実験1及び実験2において、各サンプルは実験1では前記圧電素子、実験2では圧電板1又は2であるが、ここでは便宜上どちらについてもサンプル1〜9として示した。
実験1及び実験2の結果を以下の表1に併せて示す。
In Experiment 1 and Experiment 2, each sample is the piezoelectric element in Experiment 1, and the piezoelectric plate 1 or 2 in Experiment 2. Here, both samples are shown as Samples 1 to 9 for convenience.
The results of Experiment 1 and Experiment 2 are also shown in Table 1 below.

Figure 0004736315
Figure 0004736315

図6は、表1のサンプルデータをもとにプロットしたグラフである。横軸は、算術平均粗さ、縦軸は、抗折強度(N/mm)、クラック発生率(%)及び振れ幅(μm)である。
このように、サンプル1〜4については、図3の実験1においてクラックが発生した。算術平均粗さ(Ra)が1.5μm〜2.3μmの範囲では圧電素子振動によるクラックが発生する。サンプル1〜4では、ラップ工程で発生する歪みが残っており、クラックが発生し易くなるものと考えられる。サンプル5〜9についてはクラックの発生は見られなかった。サンプル5〜9では、エッチング工程で発生する歪みが除去されるためにクラックが発生しにくくなるものと考えられる。実験2において抗折強度はサンプル1〜サンプル7までは算術平均粗さ(Ra)が大きくなるにつれて抗折強度も劣化する傾向が見られた。サンプル8の表面粗さが3.9μmになると急激に劣化し表面にエッチングされた粉状の破片が付着するのが確認された。
FIG. 6 is a graph plotted based on the sample data in Table 1. The horizontal axis represents the arithmetic average roughness, and the vertical axis represents the bending strength (N / mm 2 ), the crack occurrence rate (%), and the deflection width (μm).
Thus, cracks occurred in samples 1 to 4 in Experiment 1 of FIG. When the arithmetic average roughness (Ra) is in the range of 1.5 μm to 2.3 μm, cracks due to piezoelectric element vibration occur. In Samples 1 to 4, it is considered that the strain generated in the lapping process remains and cracks are likely to occur. In Samples 5 to 9, no crack was observed. In Samples 5 to 9, it is considered that cracks are less likely to occur because the distortion generated in the etching process is removed. In Experiment 2, the bending strength of Sample 1 to Sample 7 tended to deteriorate as the arithmetic average roughness (Ra) increased. When the surface roughness of the sample 8 became 3.9 μm, it was confirmed that the powder was rapidly deteriorated and powdered fragments etched on the surface adhered.

本実施の形態に係る圧電素子によれば、圧電板2又は3の算術平均粗さ(Ra)を2.5μm〜3.5μmの範囲で加工することにより、圧電素子の動作中に圧電板2、3に大きな変位を示しても圧電板2、3の算術平均粗さ(Ra)の範囲内であれば振動に対する表面の応力の緩和が効果的に起こりクラックの発生が低減される。したがって、圧電素子を振動させた時の品質が向上し振れ幅940μm以上が得られて性能も向上する。   According to the piezoelectric element according to the present embodiment, the arithmetic average roughness (Ra) of the piezoelectric plate 2 or 3 is processed in the range of 2.5 μm to 3.5 μm, so that the piezoelectric plate 2 is in operation during the operation of the piezoelectric element. Even if a large displacement is shown in FIG. 3, the stress on the surface with respect to vibration is effectively relieved and the generation of cracks is reduced if it is within the range of the arithmetic average roughness (Ra) of the piezoelectric plates 2 and 3. Therefore, the quality when the piezoelectric element is vibrated is improved, and a swing width of 940 μm or more is obtained, thereby improving the performance.

本発明を適用した一実施の形態について説明したが、本発明はこれらの一実施の形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲で形状、材質、寸法及び作製方法等、任意に変更することが可能である。   Although one embodiment to which the present invention is applied has been described, the present invention is not limited to these one embodiment, and the shape, material, dimensions, manufacturing method, etc., without departing from the scope of the present invention, It is possible to change arbitrarily.

本発明に係る圧電素子は、マイクロホン、ヘッドホン、スピーカーに適用されるほか磁気記録再生装置、例えば、ダイナミックトラッキング方式のVTRに適用し好適である。このVTRでは、バイモルフ圧電素子の先端にビデオヘッドを取り付けてヘッドをトラックに追従させるようにしている。   The piezoelectric element according to the present invention is suitable not only for a microphone, a headphone, and a speaker but also for a magnetic recording / reproducing apparatus such as a dynamic tracking type VTR. In this VTR, a video head is attached to the tip of a bimorph piezoelectric element so that the head follows the track.

本発明に係る圧電素子の一実施の形態を示す斜視図である。1 is a perspective view showing an embodiment of a piezoelectric element according to the present invention. 本発明に係る圧電素子の一実施の形態を示す製造工程である。It is a manufacturing process which shows one Embodiment of the piezoelectric element which concerns on this invention. 本発明に係る圧電素子の振れ幅を測定する模式図である。It is a schematic diagram which measures the deflection width of the piezoelectric element which concerns on this invention. 本発明に係る圧電素子を振動させた時のクラックの発生位置を示す説明図である。It is explanatory drawing which shows the generation | occurrence | production position of the crack when vibrating the piezoelectric element which concerns on this invention. 本発明に係る圧電素子の抗折強度を測定する模式図である。It is a schematic diagram which measures the bending strength of the piezoelectric element which concerns on this invention. 本発明に係る圧電素子の一実施の形態を示す算術平均粗さ、クラック発生率、抗折強度及び振れ幅のグラフである。It is a graph of arithmetic mean roughness, crack occurrence rate, bending strength, and deflection width showing one embodiment of a piezoelectric element according to the present invention.

符号の説明Explanation of symbols

1・・圧電素子、2、3・・圧電板、4・・中間電極板、5、6・・電極、11・・加重測定装置、12・・裁量部、13・・加圧子   1 .... Piezoelectric element 2,3 ... Piezoelectric plate 4 .... Intermediate electrode plate 5,6 .... Electrode 11 .... Weight measuring device 12 .... Determining part 13 .... Pressurizer

Claims (5)

誘電体よりなる2枚の圧電板と、
前記2枚の圧電板で挟持された中間電極板と、
前記圧電板のそれぞれの外表面に形成された対向電極と
を有してバイモルフ構造に構成され、
前記圧電板の表面の算術平均粗さRaが2.5μm〜3.5μmである
ことを特徴とする圧電素子。
Two piezoelectric plates made of a dielectric;
An intermediate electrode plate sandwiched between the two piezoelectric plates;
A counter electrode formed on each outer surface of the piezoelectric plate;
Having a bimorph structure,
An arithmetic average roughness Ra of the surface of the piezoelectric plate is 2.5 μm to 3.5 μm.
前記圧電板がPbZrO−PbTiO系の材料で形成される
ことを特徴とする請求項1記載の圧電素子。
The piezoelectric element according to claim 1, wherein said piezoelectric plate is formed of a material PbZrO 3 -PbTiO 3 system.
前記中間電極板がシム材である
ことを特徴とする請求項1又は2記載の圧電素子。
The piezoelectric element according to claim 1 or 2, wherein said intermediate electrode plate is a shim.
PbZrO−PbTiO系の材料である焼結体を形成する工程と、
前記焼結体を所要の形にスライスして板状に形成する工程と、
前記板状の焼結体を所定の厚さに研磨して圧電板を形成する工程と、
前記圧電板の表面の算術平均粗さRaが2.5μm〜3.5μmと成るまでエッチングする工程と、
前記圧電板の一主面にメッキによる対向電流を形成する工程と、
2枚の前記圧電板により前記対向電極が外側となるように中間電極板を挟持して接着固定する工程と
を有し、バイモルフ構造に形成した
ことを特徴とする圧電素子の製造方法。
Forming a sintered body that is a PbZrO 3 —PbTiO 3 based material;
Slicing the sintered body into a required shape to form a plate,
Polishing the plate-like sintered body to a predetermined thickness to form a piezoelectric plate;
Etching until the arithmetic average roughness Ra of the surface of the piezoelectric plate is 2.5 μm to 3.5 μm;
Forming a counter current by plating on one principal surface of the piezoelectric plate;
Sandwiching and fixing the intermediate electrode plate with the two piezoelectric plates so that the counter electrode is on the outside; and
A method for manufacturing a piezoelectric element, characterized by comprising a bimorph structure .
前記中間電極板をシム板で形成するThe intermediate electrode plate is formed of a shim plate
ことを特徴とする請求項4記載の圧電素子の製造方法。The method for manufacturing a piezoelectric element according to claim 4.
JP2003349867A 2003-10-08 2003-10-08 Piezoelectric element and manufacturing method thereof Expired - Fee Related JP4736315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349867A JP4736315B2 (en) 2003-10-08 2003-10-08 Piezoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349867A JP4736315B2 (en) 2003-10-08 2003-10-08 Piezoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005116825A JP2005116825A (en) 2005-04-28
JP4736315B2 true JP4736315B2 (en) 2011-07-27

Family

ID=34541616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349867A Expired - Fee Related JP4736315B2 (en) 2003-10-08 2003-10-08 Piezoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4736315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU175586U1 (en) * 2017-07-06 2017-12-11 Общество с ограниченной ответственностью НПП "МЕТЕОР-КУРС" PIEZOELEMENT

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125486A (en) * 1994-10-28 1996-05-17 Kyocera Corp Piezoelectric vibrator
JPH08125245A (en) * 1994-10-28 1996-05-17 Sony Corp Piezo-electric element
JP2000298138A (en) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd Bimorph type piezoelectric element and manufacture thereof

Also Published As

Publication number Publication date
JP2005116825A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4758998B2 (en) Piezoelectric vibrator with multi-action vibrator
JP5409198B2 (en) Vibrator
CN102138338A (en) Piezoelectric MEMS microphone
TWI637540B (en) Method for manufacturing piezoelectric device, piezoelectric device and piezoelectric independent substrate
EP2862846B1 (en) Processing of a piezoelectric material
WO2011034136A1 (en) Substrate, manufacturing method of substrate, saw device, and device
JPH06216422A (en) Flexible laminated piezoelectric element
JPWO2006046494A1 (en) Piezoelectric / electrostrictive device
JP4511407B2 (en) Piezoelectric sound generator
US20230188911A1 (en) Bone conduction sound transmission devices
JPH11211748A (en) Machine-electricity conversion element and its manufacture and acceleration sensor
KR100380517B1 (en) Bimorph piezoelectric device for acceleration sensor and method of its manufacture
JP4736315B2 (en) Piezoelectric element and manufacturing method thereof
JP7340514B2 (en) MEMS resonators and MEMS oscillators
JP4222467B2 (en) Composite piezoelectric material and manufacturing method thereof
JPH08125245A (en) Piezo-electric element
JP2005072113A (en) Piezoelectric/electrostrictive device
JP5476213B2 (en) Method for manufacturing piezoelectric element
JP2013026682A (en) Medical composite single-crystal piezoelectric vibrator, medical ultrasonic probe, method of manufacturing medical composite single-crystal piezoelectric vibrator, and method of manufacturing medical ultrasonic probe
JP2005020411A (en) Manufacturing method of silicon microphone
JP2006319156A (en) Piezoelectric/electrostrictive device
JP2003282993A (en) Polarizing method of laminated piezoelectric member and laminated piezoelectric member polarized by the polarizing method
JP4741377B2 (en) Method for manufacturing sensor element for measuring minute mass, and element
JP4931302B2 (en) Piezoelectric element
JPH08293631A (en) Piezoelectric bimorph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees