JP5409198B2 - Vibrator - Google Patents

Vibrator Download PDF

Info

Publication number
JP5409198B2
JP5409198B2 JP2009196328A JP2009196328A JP5409198B2 JP 5409198 B2 JP5409198 B2 JP 5409198B2 JP 2009196328 A JP2009196328 A JP 2009196328A JP 2009196328 A JP2009196328 A JP 2009196328A JP 5409198 B2 JP5409198 B2 JP 5409198B2
Authority
JP
Japan
Prior art keywords
support plate
adhesive layer
laminate
laminated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009196328A
Other languages
Japanese (ja)
Other versions
JP2010103977A (en
Inventor
昭彦 西本
知宣 江口
周平 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009196328A priority Critical patent/JP5409198B2/en
Publication of JP2010103977A publication Critical patent/JP2010103977A/en
Application granted granted Critical
Publication of JP5409198B2 publication Critical patent/JP5409198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動体に関し、特に、コンピュータ、携帯電話機または小型端末機器用の平面スピーカ装置に用いられるバイモルフ型またはユニモルフ型の積層型圧電素子を用いた振動体に関するものである。   The present invention relates to a vibrating body, and more particularly to a vibrating body using a bimorph type or unimorph type laminated piezoelectric element used in a flat speaker device for a computer, a mobile phone or a small terminal device.

従来の積層型圧電素子は、圧電体層と内部電極層とを交互に積層してなり、圧電体層の積層方向に形成された長方形状の一対の主面と内部電極層が長さ方向に交互に引き出された一対の側面とを有する板状の積層体と、この積層体の側面に設けられた外部電極とを具備している。   A conventional multilayer piezoelectric element is formed by alternately laminating piezoelectric layers and internal electrode layers, and a pair of rectangular main surfaces formed in the direction of stacking the piezoelectric layers and the internal electrode layers in the length direction. It has a plate-like laminate having a pair of side surfaces drawn alternately, and an external electrode provided on the side of the laminate.

従来の振動体は、図6に示すように、上記のような積層型圧電素子の一方の主面を支持板に接着剤を用いて接合することにより、バイモルフ型およびユニモルフ型の振動体を作製していた(例えば、特許文献1参照)。   As shown in FIG. 6, the conventional vibrating body is manufactured as a bimorph type or unimorph type vibrating body by bonding one main surface of the multilayer piezoelectric element as described above to a support plate using an adhesive. (For example, refer to Patent Document 1).

従来の振動体は、図6(a)に示すように、積層型圧電素子30、36を支持板34の上下面に底面側接着剤層35だけで接合して構成されている。   As shown in FIG. 6A, the conventional vibrating body is configured by joining laminated piezoelectric elements 30 and 36 to the upper and lower surfaces of the support plate 34 using only the bottom surface side adhesive layer 35.

すなわち、積層型圧電素子30、36は、7層の圧電体31と6層の内部電極層32とを交互に積層してなり、上下面に表面電極層33aを有する積層体と、この積層体の長さ方向の両端部にそれぞれ設けられた一対の外部電極33bとを具備している。積層型圧電素子30、36は板状であり、上下の主面が長方形状とされ、積層体の長さ方向には、内部電極層32が交互に引き出された一対の側面が形成され、この一対の側面には、それぞれ外部電極33bが形成されている。   That is, the stacked piezoelectric elements 30 and 36 are configured by stacking seven layers of piezoelectric bodies 31 and six layers of internal electrode layers 32 alternately, and having a surface electrode layer 33a on the upper and lower surfaces, and the stacked body. And a pair of external electrodes 33b respectively provided at both ends in the longitudinal direction. The stacked piezoelectric elements 30 and 36 are plate-shaped, and the upper and lower main surfaces are rectangular, and a pair of side surfaces in which the internal electrode layers 32 are alternately drawn are formed in the length direction of the stacked body. External electrodes 33b are respectively formed on the pair of side surfaces.

6層の内部電極層32および2層の表面電極層33aは交互に電極層とされており、一対の外部電極33bには、積層体の側面において3層ずつの内部電極層32及び1層ずつの表面電極層33aが電気的に接続されている。   The six internal electrode layers 32 and the two surface electrode layers 33a are alternately formed as electrode layers, and each of the pair of external electrodes 33b has three layers of internal electrode layers 32 and one layer on the side surface of the laminate. The surface electrode layer 33a is electrically connected.

通常、支持板34に接着剤を塗布し、この接着剤層に積層型圧電素子30、36を押し当て、接合されるが、図6(b)に示すように、接着剤層を広く形成し、この接着剤層に積層型圧電素子30、36を押し当てて、底面側接着剤層35と側面側接着剤層39とで接合したとしても、積層体よりも外側に位置する側面側接着剤層39の支持板34からの高さhは、積層体の支持板34側の主面よりも低い。なお、図6(b)では、便宜上底面側接着剤層35と側面側接着剤層39とを別体として表したが、同一材料の場合は、一体物となる。   Usually, an adhesive is applied to the support plate 34, and the laminated piezoelectric elements 30 and 36 are pressed against the adhesive layer to join them. As shown in FIG. 6B, a wide adhesive layer is formed. Even if the laminated piezoelectric elements 30 and 36 are pressed against the adhesive layer and joined by the bottom side adhesive layer 35 and the side side adhesive layer 39, the side side adhesive located outside the laminated body. The height h of the layer 39 from the support plate 34 is lower than the main surface on the support plate 34 side of the laminate. In FIG. 6B, the bottom surface side adhesive layer 35 and the side surface side adhesive layer 39 are shown as separate bodies for convenience. However, in the case of the same material, they are integrated.

また、従来、支持板に凹凸を形成し、積層型圧電素子と支持板との接着剤による接合面積を増加させた振動体や、支持板に貫通孔を形成し、接着剤を貫通孔内にも充填し、積層型圧電素子と支持板との接合強度を向上させた振動体が知られている(特許文献2参照)。   Also, conventionally, a vibrating body in which unevenness is formed on the support plate and the bonding area between the laminated piezoelectric element and the support plate is increased by an adhesive, or a through hole is formed in the support plate, and the adhesive is placed in the through hole. In addition, a vibrating body is known in which the bonding strength between the laminated piezoelectric element and the support plate is improved (see Patent Document 2).

特開2007−329431号公報JP 2007-329431 A 特開平8−293631号公報JP-A-8-293631

特許文献1の振動体では、積層体の一方の主面が支持板34に底面側接着剤層35だけで接合されており、このような振動体では、積層型圧電素子30、36の支持板34からの剥離が発生し易いという問題があった。   In the vibrating body of Patent Document 1, one main surface of the laminated body is bonded to the support plate 34 only by the bottom adhesive layer 35. In such a vibrating body, the supporting plate of the laminated piezoelectric elements 30 and 36 is used. There was a problem that peeling from 34 tends to occur.

すなわち、振動体が床等に落下した場合には、振動体が着地した瞬間に、支持板34の下面側に位置する積層型圧電素子36に、積層型圧電素子36の重量に応じた重力方向の強い力が作用し、この力が底面側接着剤層35による接合力を超えると、積層型圧電素子36の支持板34からの剥離が発生しやすいという問題があった。   That is, when the vibrating body falls on the floor or the like, the moment of arrival of the vibrating body causes the laminated piezoelectric element 36 located on the lower surface side of the support plate 34 to move in the direction of gravity corresponding to the weight of the laminated piezoelectric element 36. When a strong force is exerted and this force exceeds the bonding force by the bottom surface side adhesive layer 35, there is a problem that the laminated piezoelectric element 36 is easily peeled off from the support plate 34.

また、特許文献2では、支持板に凹凸または貫通孔を形成し、積層体の一方の主面だけ、接着剤で凹凸や貫通孔を介して支持板に接合しており、引張試験による接合強度は向上するものの、振動体の落下等の衝撃により、支持板から積層型圧電素子が未だ剥離しやすいという問題があった。   Moreover, in patent document 2, an unevenness | corrugation or a through-hole is formed in a support plate, and only one main surface of a laminated body is joined to a support plate with an adhesive via an unevenness | corrugation and a through-hole, and the joining strength by a tension test However, there is a problem that the laminated piezoelectric element is still easily peeled off from the support plate due to an impact such as dropping of the vibrating body.

本発明は、落下時において積層型圧電素子の支持板からの剥離を抑制することができる振動体を提供することを目的とする。   An object of this invention is to provide the vibrating body which can suppress peeling from the support plate of a lamination type piezoelectric element at the time of fall.

本発明の振動体は、圧電体層と内部電極層と交互に積層されり、一対の面と該主面の長手方向の両端側に設けられた一対の第1側面と前記主面の幅方向の両端側に設けられた一対の第2側面とを有する層体と、該積層体の前記一対の第1側面にそれぞれ設けられて前記内部電極層と交互に電気的に接続された一対の外部電極とを備える積層型圧電素子と、該積層型圧電素子の前記主面側が接合された支持板とを具備する振動体であって、前記積層体の前記支持板側の主面と前記支持板と底面側接着剤層で接合されており、前記外部電極の露出面と前記支持板と側面側接着剤層で接合されており前記積層体の前記第2側面と前記支持板とが幅方向側面側接着剤層で接合されており、前記側面側接着剤層の前記支持板からの高さは、前記支持板から前記積層体の前記支持板側の主面までの高さ以上で、前記積層体の厚みの1/2以下であり、前記幅方向側面側接着剤層の前記支持板からの高さは、前記支持板から前記積層体の前記支持板側の主面までの高さ以上で、前記積層体の厚みの1/2以下である


Vibrator of the present invention, Ri Contact and piezoelectric layers and internal electrode layers are alternately stacked, said main pair of first side surface provided in the longitudinal direction both end sides of the pair of main surfaces and main surface a product layer body having a pair of second side surfaces provided at both sides in the width direction of the surface, electrically connected alternately with the internal electrode layers respectively provided on the pair of first side of the laminate a multilayer piezoelectric element and a pair of external electrodes, a vibrating body having a, a support plate in which the main surface is bonded a laminated piezoelectric element, of the support plate side of the laminate The main surface and the support plate are joined by a bottom surface side adhesive layer, the exposed surface of the external electrode and the support plate are joined by a side surface side adhesive layer, and the second side surface of the laminate wherein the support plate is joined in the width direction side surface side adhesive layer, high from the support plate before SL side side adhesive layer and , Said at from the support plate above the height to the major surface of the support plate side of the laminate is less than half of the thickness of the laminate, from the support plate in the width direction side surface side adhesive layer The height is equal to or higher than the height from the support plate to the main surface on the support plate side of the laminate, and is ½ or less of the thickness of the laminate .


底面側接着剤層だけで積層型圧電素子を支持板に接合すると、落下試験で、着地した瞬間に、支持板の落下方向に位置する積層型圧電素子に、積層型圧電素子の重量に応じた重力方向の強い力が作用し、この力が底面側接着剤層による接合力を超えると、積層型圧電素子の支持板からの剥離が発生しやすいが、本発明の振動体では、底面側接着剤層だけでなく、支持板からの高さが積層体の支持板側の主面の高さ以上である側面側接着剤層によっても積層型圧電素子を支持板に接合することにより、言い換えれば、支持板からの高さが積層体の主面の高さ以上である側面側接着剤層により、積層型圧電素子の外部電極が支持板に強固に接合され、落下試験時の着地する瞬間に発生する、積層型圧電素子と支持板との間の引張応力に耐えることができ、振動体の落下時における積層型圧電素子の支持板からの剥離を抑制することができる。   When the laminated piezoelectric element is bonded to the support plate using only the bottom surface side adhesive layer, the drop test results in the laminated piezoelectric element positioned in the falling direction of the support plate at the moment of landing according to the weight of the laminated piezoelectric element. When a strong force in the direction of gravity is applied and this force exceeds the bonding force of the bottom surface side adhesive layer, peeling from the support plate of the laminated piezoelectric element is likely to occur. By bonding the laminated piezoelectric element to the support plate not only by the agent layer but also by the side surface side adhesive layer whose height from the support plate is not less than the height of the main surface on the support plate side of the laminate, in other words, At the moment when the external electrode of the laminated piezoelectric element is firmly joined to the support plate by the side adhesive layer whose height from the support plate is equal to or higher than the height of the main surface of the laminate, and landing during the drop test Withstand the tensile stress generated between the laminated piezoelectric element and the support plate Can, it is possible to suppress separation from the support plate of the laminated piezoelectric element at the time of drop of the vibrator.

さらに、側面側接着剤層の支持板からの高さが積層型圧電素子の厚みの1/2以下であるため、積層体からの外部電極の剥離を有効に抑制することができる。すなわち、側面側接着剤層の支持板からの高さが高い場合には、積層型圧電素子が支持板に強固に接合され、落下試験における積層型圧電素子の支持板からの剥離を抑制できる。一方で、積層型圧電素子の圧電体層、内部電極層、および外部電極よりも側面側接着剤層の熱膨張係数が大きいため、温度サイクル試験において、側面側接着剤層の収縮により積層体の側面と側面側接着剤層が接合している外部電極との間に主面の長さ方向の引張応力が発生し、この間で剥離しやすくなるが、側面側接着剤層の支持板からの高さ位置が、積層型圧電素子の厚みの1/2以下である場合には、積層体の側面と外部電極との間の長さ方向の引張応力を小さくでき、積層体からの外部電極の剥離を有効に抑制することができる。   Furthermore, since the height of the side adhesive layer from the support plate is ½ or less of the thickness of the multilayer piezoelectric element, peeling of the external electrode from the multilayer body can be effectively suppressed. That is, when the height of the side adhesive layer from the support plate is high, the multilayer piezoelectric element is firmly bonded to the support plate, and peeling of the multilayer piezoelectric element from the support plate in the drop test can be suppressed. On the other hand, the thermal expansion coefficient of the side adhesive layer is larger than that of the piezoelectric layer, the internal electrode layer, and the external electrode of the multilayer piezoelectric element. Tensile stress in the length direction of the main surface is generated between the side surface and the external electrode to which the side surface side adhesive layer is bonded, and it becomes easy to peel between them. When the vertical position is ½ or less of the thickness of the multilayer piezoelectric element, the tensile stress in the length direction between the side surface of the multilayer body and the external electrode can be reduced, and the external electrode is peeled from the multilayer body. Can be effectively suppressed.

本発明の振動体は、前記積層型圧電素子の前記圧電体層の積層数が7層以上であることを特徴とする。   The vibrating body according to the present invention is characterized in that the number of stacked piezoelectric layers of the stacked piezoelectric element is 7 or more.

積層型圧電素子を高変位及び低電圧駆動させるために、圧電体層の積層数を増やすことが考えられるが、圧電体層の積層数を7層以上と増加させると積層型圧電素子の重量が重くなり、落下試験において、支持板と積層型圧電素子との間が剥離しやすくなるため、本発明を特に好適に用いることができる。   In order to drive the multilayer piezoelectric element with high displacement and low voltage, it is conceivable to increase the number of piezoelectric layers, but if the number of piezoelectric layers is increased to 7 or more, the weight of the multilayer piezoelectric element increases. Since it becomes heavier and the support plate and the laminated piezoelectric element are easily peeled in a drop test, the present invention can be used particularly suitably.

本発明の振動体は、前記支持板が金属または合金からなり、前記側面側接着剤層の上面に、前記外部電極と前記支持板とを導通するための導体層が形成されていることを特徴とする。   The vibrating body according to the present invention is characterized in that the support plate is made of a metal or an alloy, and a conductive layer for electrically connecting the external electrode and the support plate is formed on the upper surface of the side-surface adhesive layer. And

本発明の振動体によれば、側面側接着剤層の上面に導体層を形成する場合には、側面側接着剤層の接着剤及び導体層の金属成分の熱膨張係数が積層型圧電素子の圧電体層の熱膨張係数よりも大きいため、積層体の側面と外部電極との間により大きな引張応力がかかるため、本発明を特に好適に用いることができる。   According to the vibrating body of the present invention, when the conductor layer is formed on the upper surface of the side adhesive layer, the thermal expansion coefficient of the adhesive of the side adhesive layer and the metal component of the conductor layer is Since it is larger than the thermal expansion coefficient of the piezoelectric layer, a larger tensile stress is applied between the side surface of the laminate and the external electrode, so that the present invention can be used particularly suitably.

本発明の振動体は、底面側接着剤層の厚みが1μm以上であることを特徴とする。底面側接着剤層の厚みが1μm以上である場合には、積層型圧電素子と支持板とをより強固に接合することができるため、振動板が落下衝撃等を受けた場合にも積層型圧電素子と支持板との剥離を抑制することができる。   The vibrating body according to the present invention is characterized in that the bottom-side adhesive layer has a thickness of 1 μm or more. When the thickness of the bottom surface side adhesive layer is 1 μm or more, the laminated piezoelectric element and the support plate can be more firmly bonded. Therefore, the laminated piezoelectric element can be used even when the diaphragm receives a drop impact or the like. Peeling between the element and the support plate can be suppressed.

また、本発明の振動体は、前記積層体がバレル加工されていることを特徴とする。このような振動体では、板状の積層体を、例えば、メディアと研磨粉末を同封した容器に投入して回転バレル加工することにより、積層体の12の辺(角部)、およびこれらの辺のうち3つが交わって作成される8の角部が全て丸く研磨されており、例えば、積層体の角部が60μm以上のR面を有しており、底面側接着剤層から側面側接着剤層にかけての接着剤層の連続性が良好となり、振動体の落下時における積層型圧電素子の支持板からの剥離をさらに抑制することができる。   Moreover, the vibrating body according to the present invention is characterized in that the laminate is barrel processed. In such a vibrating body, for example, by putting a plate-like laminate into a container enclosing a medium and abrasive powder and rotating barrel processing, 12 sides (corner portions) of the laminate, and these sides 8 corners created by crossing three of them are all rounded and polished, for example, the corners of the laminate have an R surface of 60 μm or more, and from the bottom adhesive layer to the side adhesive The continuity of the adhesive layer over the layers is improved, and peeling of the multilayer piezoelectric element from the support plate when the vibrating body is dropped can be further suppressed.

また、本発明の振動体は、前記積層体の厚みが0.7mm以下であることを特徴とする。このような薄い形状の積層型圧電素子の場合、外部電極にかかる引張応力が大きいだけでなく、落下等で積層型圧電素子に加わる応力も大きいため、本発明をより好適に用いることができる。   Moreover, the vibrating body of the present invention is characterized in that the thickness of the laminate is 0.7 mm or less. In the case of such a thin laminated piezoelectric element, not only the tensile stress applied to the external electrode is large, but also the stress applied to the laminated piezoelectric element due to dropping or the like is large, so that the present invention can be used more suitably.

本発明の振動体は、底面側接着剤層だけでなく、支持板からの高さが積層体の主面の高さ以上である側面側接着剤層によっても積層型圧電素子を支持板に接合することにより、積層型圧電素子の外部電極が支持板に強固に接合され、落下試験の着地する瞬間に発生する、積層型圧電素子と支持板との間の引張応力に耐えることができ、振動体の落下時における積層型圧電素子の支持板からの剥離を抑制することができるとともに、側面側接着剤層の支持板からの高さが積層型圧電素子の厚みの1/2以下であるため、積層体からの外部電極の剥離を有効に抑制することができ、信頼性の高い振動体を得ることができる。   The vibrating body of the present invention bonds the laminated piezoelectric element to the support plate not only by the bottom surface side adhesive layer but also by the side surface side adhesive layer whose height from the support plate is equal to or higher than the height of the main surface of the laminate. As a result, the external electrode of the multilayer piezoelectric element is firmly bonded to the support plate, and can withstand the tensile stress between the multilayer piezoelectric element and the support plate that occurs at the moment of landing of the drop test, and vibration It is possible to suppress peeling of the multilayer piezoelectric element from the support plate when the body falls, and the height of the side adhesive layer from the support plate is ½ or less of the thickness of the multilayer piezoelectric element. Further, peeling of the external electrode from the laminate can be effectively suppressed, and a highly reliable vibrator can be obtained.

本発明のバイモルフ型の振動体の断面図である。It is sectional drawing of the bimorph type vibrating body of this invention. 本発明のバイモルフ型の振動体の平面図である。It is a top view of the bimorph type oscillating body of the present invention. 側面側接着剤層の表面に導体層を有する本発明の振動体の断面図である。It is sectional drawing of the vibrating body of this invention which has a conductor layer on the surface of a side surface side adhesive layer. 本発明のバイモルフ型の振動体の他の形態を示す断面図である。It is sectional drawing which shows the other form of the bimorph type vibrating body of this invention. (a)は図4の積層型圧電素子を拡大して示す断面図であり、(b)は(a)の平面図である。(A) is sectional drawing which expands and shows the laminated piezoelectric element of FIG. 4, (b) is a top view of (a). 従来のバイモルフ型の振動体を示すもので、(a)は断面図、(b)は接着剤層を広く形成し、この接着剤層に積層型圧電素子を押し当てて接合した場合の断面図である。1 shows a conventional bimorph type vibrator, (a) is a cross-sectional view, (b) is a cross-sectional view when an adhesive layer is widely formed, and a laminated piezoelectric element is pressed against and bonded to the adhesive layer. It is.

以下、本発明の実施形態を図1、図2に基づいて説明する。図1は本発明のバイモルフ型の振動体の断面図を、図2は平面図を示す。なお、図2では理解を容易にするため、斜線等を記載した。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of a bimorph type vibrator of the present invention, and FIG. 2 is a plan view. In FIG. 2, hatched lines are shown for easy understanding.

本発明のバイモルフ型の振動体は、図1、2に示すように、積層型圧電素子10、16を支持板14の上下面に接着剤により接合して構成されている。尚、本発明は、バイモルフ型の積層型圧電素子に限定されるものではなく、支持板の片側に積層型圧電素子が接合されたユニモルフ型であっても本発明の効果は得られる。尚、図1は理解を容易にするため、積層型圧電素子10、16の厚みを拡大して記載した。   As shown in FIGS. 1 and 2, the bimorph type vibrating body of the present invention is configured by bonding laminated piezoelectric elements 10 and 16 to the upper and lower surfaces of a support plate 14 with an adhesive. Note that the present invention is not limited to the bimorph type multilayer piezoelectric element, and the effect of the present invention can be obtained even with a unimorph type in which the multilayer piezoelectric element is joined to one side of the support plate. In FIG. 1, the thickness of the multilayer piezoelectric elements 10 and 16 is enlarged for easy understanding.

積層型圧電素子10、16は、厚みが10〜60μmの7層の圧電体層11と6層の内部電極層12とを交互に積層してなり、上下面に表面電極層13aを有する積層体17と、この積層体17の長さ方向の両端部にそれぞれ設けられた一対の外部電極13bとを具備している。   The laminated piezoelectric elements 10 and 16 are formed by alternately laminating seven piezoelectric layers 11 having a thickness of 10 to 60 μm and six internal electrode layers 12 and having surface electrode layers 13a on the upper and lower surfaces. 17 and a pair of external electrodes 13b respectively provided at both ends in the longitudinal direction of the laminate 17.

積層体17は板状であり、上下の主面が長方形状とされ、積層体17の主面の長さ方向xには、内部電極層12が交互に引き出された一対の側面を有している。積層体17の長方形状の主面は、幅が5mm以下で、長さが10mm以上であることが望ましい。このような積層型圧電素子では、特に、主面の長さ方向xの変位が大きくなり、積層体17の側面と外部電極13bとの間に主面の長さ方向xの引張応力が発生し易くなるため、本発明を好適に用いることができる。積層体17の長方形状の主面は、特に幅が5mm以下で、長さが17mm以上の場合に、本発明を好適に用いることができる。   The laminated body 17 is plate-shaped, and the upper and lower main surfaces are rectangular, and the longitudinal direction x of the main surface of the laminated body 17 has a pair of side surfaces from which the internal electrode layers 12 are alternately drawn. Yes. The rectangular main surface of the laminated body 17 desirably has a width of 5 mm or less and a length of 10 mm or more. In such a multilayer piezoelectric element, in particular, the displacement in the length direction x of the main surface increases, and a tensile stress in the length direction x of the main surface is generated between the side surface of the multilayer body 17 and the external electrode 13b. Since it becomes easy, this invention can be used suitably. The present invention can be suitably used when the rectangular main surface of the laminate 17 has a width of 5 mm or less and a length of 17 mm or more.

また、積層体17の圧電体層11の積層数が7層以上である場合には、積層型圧電素子10、16の重量が重くなるため、落下試験において、支持板14と積層型圧電素子10、16との間が剥離しやすくなるため、本発明をより好適に用いることができる。   Further, when the number of stacked piezoelectric layers 11 of the stacked body 17 is 7 or more, the weight of the stacked piezoelectric elements 10 and 16 becomes heavy, and therefore the support plate 14 and the stacked piezoelectric element 10 are used in the drop test. , 16 can be easily peeled off, so that the present invention can be used more suitably.

内部電極層12としては、銀とパラジウムからなる金属成分と圧電体層11を構成する材料成分を含有することが望ましい。内部電極層12に圧電体層11を構成する材料成分を含有することにより、圧電体層11と内部電極層12の熱膨張差による応力を低減することができ、積層不良のない積層型圧電素子10、16を得ることができる。内部電極層12は、特に、銀とパラジウムからなる金属成分に限定されるものではなく、また、セラミック成分として、圧電体層11を構成する材料成分に限定されるものではなく、他のセラミック成分であっても良い。   The internal electrode layer 12 preferably contains a metal component composed of silver and palladium and a material component constituting the piezoelectric layer 11. By including the material component constituting the piezoelectric layer 11 in the internal electrode layer 12, it is possible to reduce stress due to a difference in thermal expansion between the piezoelectric layer 11 and the internal electrode layer 12, and a stacked piezoelectric element that does not have stacking faults 10, 16 can be obtained. The internal electrode layer 12 is not particularly limited to a metal component composed of silver and palladium, and is not limited to a material component constituting the piezoelectric layer 11 as a ceramic component. It may be.

表面電極層13aと外部電極13bは、銀からなる金属成分にガラス成分を含有することが望ましい。ガラス成分を含有することにより、圧電体層11や内部電極層12と、表面電極層13aまたは外部電極13bとの間に強固な密着力を得ることができる。   The surface electrode layer 13a and the external electrode 13b desirably contain a glass component in the metal component made of silver. By containing a glass component, it is possible to obtain a strong adhesion between the piezoelectric layer 11 and the internal electrode layer 12 and the surface electrode layer 13a or the external electrode 13b.

積層体17の長さ方向xの両端部には、積層体17の側面から上下の主面の長さ方向x端部まで被覆する外部電極13bがそれぞれ設けられている。積層型圧電素子10、16は、6層の内部電極層12および2層の表面電極層13aが交互に電極層とされており、一対の外部電極13bには、積層体17の対向する側面において3層ずつの内部電極層12及び1層ずつの表面電極層13aが電気的に接続されている。   External electrodes 13b are provided at both ends in the length direction x of the laminate 17 so as to cover from the side surface of the laminate 17 to the ends in the length direction x of the upper and lower main surfaces. In the multilayer piezoelectric elements 10 and 16, six internal electrode layers 12 and two surface electrode layers 13 a are alternately formed as electrode layers, and the pair of external electrodes 13 b are provided on the side surfaces facing the multilayer body 17. Three internal electrode layers 12 and three surface electrode layers 13a are electrically connected.

そして、本発明の振動体は、積層体17の支持板14側の主面と支持板14とが底面側接着剤層15aで接合され、かつ外部電極13bの露出面の一部と支持板14とが側面側接着剤層15bで接合されている。言い換えれば、側面側接着剤層15bは、外部電極13bの露出面に付着し、裾が広がるようにして支持板14の表面にも付着している。この側面側接着剤層15bは、高さhが積層体17の支持板14側の主面の高さ以上とされ、側面側接着剤層15bの支持板14からの高さhは、積層体17の厚みtの1/2以下とされている。   In the vibrating body of the present invention, the main surface of the laminate 17 on the support plate 14 side and the support plate 14 are joined by the bottom surface side adhesive layer 15a, and a part of the exposed surface of the external electrode 13b and the support plate 14 are joined. Are joined by the side adhesive layer 15b. In other words, the side adhesive layer 15b is attached to the exposed surface of the external electrode 13b, and is also attached to the surface of the support plate 14 so that the skirt is widened. The side surface side adhesive layer 15b has a height h equal to or higher than the height of the main surface on the support plate 14 side of the laminate 17, and the height h of the side surface side adhesive layer 15b from the support plate 14 is equal to the laminate body. 17 or less of the thickness t of 17.

本発明では、底面側接着剤層15aだけでなく、支持板14からの高さhが積層体17の支持板14側の主面の高さ以上の側面側接着剤層15bにより、落下試験の着地時に発生する、積層型圧電素子10、16と支持板14との間に発生する引張応力に対して、外部電極13bの露出面と側面側接着剤層15bとの間に発生する剪断応力が対抗して耐えることができ、積層型圧電素子10、16の支持板14からの剥離を抑制することができる。   In the present invention, not only the bottom surface side adhesive layer 15a but also the side surface side adhesive layer 15b whose height h from the support plate 14 is higher than the height of the main surface on the support plate 14 side of the laminate 17 is used for the drop test. A shear stress generated between the exposed surface of the external electrode 13b and the side adhesive layer 15b is generated with respect to the tensile stress generated between the laminated piezoelectric elements 10 and 16 and the support plate 14 generated at the time of landing. It can withstand and resist the peeling of the laminated piezoelectric elements 10 and 16 from the support plate 14.

一方、側面側接着剤層15bの高さhが積層体17の主面の高さよりも低い場合には、落下試験の着地時に発生する、積層型圧電素子10、16と支持板14との間の引張応力に耐えきれず、積層型圧電素子10、16の支持板14からの剥離抑制効果が殆どない。   On the other hand, when the height h of the side adhesive layer 15b is lower than the height of the main surface of the laminated body 17, the gap between the laminated piezoelectric elements 10 and 16 and the support plate 14 that occurs at the time of landing in the drop test. The tensile stress of the laminated piezoelectric elements 10 and 16 from the support plate 14 can hardly be prevented.

また、側面側接着剤層15bの支持板14からの高さhが、積層体17の厚みtの1/2より大きくなると、積層型圧電素子10、16、支持板14及び側面側接着剤層15bの熱膨張係数の違いにより、温度サイクルや高温高湿放置試験等の信頼性試験において、積層体17の内部電極層12と外部電極13bとの接合部が剥離し、電気的接続がとれず、積層型圧電素子10、16が変位せず、振動体が振動しなくなるという問題があるが、本発明のように、側面側接着剤層15bの支持板14からの高さhを、積層体17の厚みtの1/2以下とすることにより、積層体17の側面からの外部電極13bの剥離を抑制し、積層体17の内部電極層12と外部電極13bとを確実に接合でき、電気的接続を維持できる。   Further, when the height h of the side adhesive layer 15b from the support plate 14 is larger than ½ of the thickness t of the laminate 17, the multilayer piezoelectric elements 10 and 16, the support plate 14 and the side adhesive layer. Due to the difference in the thermal expansion coefficient of 15b, in a reliability test such as a temperature cycle or a high temperature and high humidity leaving test, the joint between the internal electrode layer 12 and the external electrode 13b of the laminate 17 is peeled off, and electrical connection cannot be obtained. The laminated piezoelectric elements 10 and 16 are not displaced and the vibrating body does not vibrate. However, as in the present invention, the height h of the side adhesive layer 15b from the support plate 14 is set to the laminated body. When the thickness t is equal to or less than ½ of the thickness t of 17, the peeling of the external electrode 13b from the side surface of the multilayer body 17 can be suppressed, and the internal electrode layer 12 and the external electrode 13b of the multilayer body 17 can be reliably bonded. Maintain a secure connection.

側面側接着剤層15bは、底面側接着剤層15aと連続しており、本発明では、一対の外部電極13bの支持板14側に突出した部分間の接着剤層を底面側接着剤層15aとし、さらに詳細に説明すると、積層体17の側面間に位置する接着剤層を底面側接着剤層15aとし、それよりも外側に位置する接着剤層を側面側接着剤層15bと定義した。   The side adhesive layer 15b is continuous with the bottom adhesive layer 15a, and in the present invention, the adhesive layer between the portions of the pair of external electrodes 13b protruding toward the support plate 14 is used as the bottom adhesive layer 15a. In more detail, the adhesive layer positioned between the side surfaces of the laminate 17 is defined as the bottom surface side adhesive layer 15a, and the adhesive layer positioned outside the side surface layer is defined as the side surface side adhesive layer 15b.

また、積層型圧電素子10、16と支持板14との接合強度を高めるべく、積層型圧電素子10、16と支持板14との間の底面側接着剤層15aの厚みが、1μm以上とされている。このように、底面側接着剤層15aの厚みが1μm以上である場合には、接着剤の熱膨張係数が大きいため、特に、温度変化のサイクルによって積層体17と外部電極13bとの間に長さ方向xの引張・圧縮応力が発生し外部電極13bが剥離し易いため、本発明をより好適に用いることができる。   Further, in order to increase the bonding strength between the multilayer piezoelectric elements 10 and 16 and the support plate 14, the thickness of the bottom surface side adhesive layer 15a between the multilayer piezoelectric elements 10 and 16 and the support plate 14 is set to 1 μm or more. ing. Thus, when the thickness of the bottom surface side adhesive layer 15a is 1 μm or more, since the thermal expansion coefficient of the adhesive is large, it is particularly long between the laminate 17 and the external electrode 13b due to a temperature change cycle. Since the tensile / compressive stress in the length direction x is generated and the external electrode 13b is easily peeled off, the present invention can be used more suitably.

また、積層型圧電素子10、16の幅方向の側面にも、幅方向側面側接着剤層18が形成され、この幅方向側面側接着剤層18の支持板14からの高さも、積層体17の支持板14側の主面の高さ以上とされ、積層体17の厚みtの1/2以下とされている。これにより、積層型圧電素子10、16の幅方向の側面も強固に接合されている。   In addition, a width-direction side adhesive layer 18 is also formed on the side surfaces in the width direction of the multilayer piezoelectric elements 10 and 16, and the height of the width-direction side adhesive layer 18 from the support plate 14 is also set to the laminate 17. The height of the main surface on the support plate 14 side is equal to or greater than 1/2 of the thickness t of the laminate 17. As a result, the side surfaces in the width direction of the multilayer piezoelectric elements 10 and 16 are also firmly bonded.

底面側接着剤層15a、側面側接着剤層15bを形成するための接着剤としては、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂等公知のものを使用することができる。接着剤に使用する樹脂の硬化方法としては、熱硬化性、光硬化性、嫌気性硬化等いずれを用いても振動体を作製することができる。   As the adhesive for forming the bottom surface side adhesive layer 15a and the side surface side adhesive layer 15b, known ones such as epoxy resins, silicon resins, polyester resins and the like can be used. As a method for curing the resin used for the adhesive, the vibrating body can be produced by using any of thermosetting, photocuring, anaerobic curing, and the like.

本発明の振動体は、外部電極13bを絶縁性の支持板14に形成された電極パターン、または導電性の支持板14そのものに導通せしめ、これらの外部電極13b間に電圧を印加し、積層型圧電素子が駆動することになる。また、積層型圧電素子10と積層型圧電素子16とは、支持板14に対してそれぞれ同じ側に変位するように、電圧が印加される。これにより、図1、2に示すようなバイモルフ型の振動体は、大きく振動することになる。   In the vibrating body of the present invention, the external electrode 13b is electrically connected to the electrode pattern formed on the insulating support plate 14 or the conductive support plate 14 itself, and a voltage is applied between the external electrodes 13b to form a laminated type. The piezoelectric element is driven. In addition, a voltage is applied to the multilayer piezoelectric element 10 and the multilayer piezoelectric element 16 so as to be displaced to the same side with respect to the support plate 14. Thereby, the bimorph type vibrator as shown in FIGS. 1 and 2 vibrates greatly.

尚、図3に示すように、支持板14が金属または合金からなり、側面側接着剤層15bの上面に、一方の外部電極13bと支持板14とを導通するための導体層55が形成されている。このように側面側接着剤層15bの上面に導体層55を形成した場合には、側面側接着剤層15bの接着剤及び導体層55の金属の熱膨張係数が積層型圧電素子10、16の熱膨張係数よりも大きいため、積層型圧電素子10、16の内部電極層12と外部電極層13bとの間により大きな引張応力がかかるため、本発明をより好適に用いることができる。   As shown in FIG. 3, the support plate 14 is made of a metal or an alloy, and a conductor layer 55 is formed on the upper surface of the side adhesive layer 15b to connect the one external electrode 13b and the support plate 14. ing. Thus, when the conductor layer 55 is formed on the upper surface of the side adhesive layer 15b, the thermal expansion coefficient of the adhesive of the side adhesive layer 15b and the metal of the conductor layer 55 is the same as that of the stacked piezoelectric elements 10 and 16. Since it is larger than the thermal expansion coefficient, a larger tensile stress is applied between the internal electrode layer 12 and the external electrode layer 13b of the multilayer piezoelectric elements 10 and 16, so that the present invention can be used more suitably.

次に、本発明の振動体の製造方法について説明する。   Next, the manufacturing method of the vibrating body of this invention is demonstrated.

まず、圧電材料の粉末にバインダー、分散剤、可塑剤、溶剤を混練し、スラリーを作製する。圧電材料としては、鉛系、非鉛系のうちいずれでも使用することができる。   First, a binder, a dispersant, a plasticizer, and a solvent are kneaded with the piezoelectric material powder to prepare a slurry. As the piezoelectric material, any of lead-based and non-lead-based materials can be used.

次に、得られたスラリーをシート状に成形し、グリーンシートを得ることができ、グリーンシートに内部電極ペーストを印刷して内部電極パターンを形成し、この電極パターンが形成されたグリーンシートを所望の枚数積層し、最上層にはグリーンシートのみ積層して、積層成形体を作製する。   Next, the obtained slurry can be formed into a sheet shape to obtain a green sheet, and an internal electrode pattern is formed by printing an internal electrode paste on the green sheet, and a green sheet on which this electrode pattern is formed is desired Are laminated, and only the green sheet is laminated on the uppermost layer to produce a laminated molded body.

次に、この積層成形体を脱脂、焼成することにより積層体17を得ることができる。積層体17は、必要に応じて外周部を加工し、積層体17の圧電体層11の積層方向の両主面に表面電極層13aのペーストを印刷し、引き続き、積層体17の長さ方向xの両側面に外部電極13bのペーストを印刷し、所定の温度で電極の焼付けを行うことにより積層型圧電素子10、16を得ることができる。   Next, the laminated body 17 can be obtained by degreasing and firing the laminated molded body. The laminated body 17 processes the outer peripheral part as necessary, prints the paste of the surface electrode layer 13a on both main surfaces of the laminated body 17 in the lamination direction, and continues the length direction of the laminated body 17 The laminated piezoelectric elements 10 and 16 can be obtained by printing the paste of the external electrode 13b on both sides of x and baking the electrode at a predetermined temperature.

次に、積層型圧電素子10、16に圧電性を付与するために表面電極層13a又は外部電極13bを通じて直流電圧を印加して、積層型圧電素子10、16の分極を行う。   Next, in order to impart piezoelectricity to the multilayer piezoelectric elements 10 and 16, a DC voltage is applied through the surface electrode layer 13a or the external electrode 13b to polarize the multilayer piezoelectric elements 10 and 16.

次に、支持板14に接着剤を塗布して、その支持板14上に積層型圧電素子10、16を押し当て、その後、側面側接着剤層の高さを高くするため、外部電極13bの露出面の側面側接着剤層に接着剤を筆等で重ね塗りし、この後、接着剤を熱や紫外線を照射することにより硬化させ、本発明の振動体を得ることができる。   Next, an adhesive is applied to the support plate 14, the laminated piezoelectric elements 10 and 16 are pressed onto the support plate 14, and then the height of the side adhesive layer is increased in order to increase the height of the external electrode 13 b. The adhesive can be overcoated on the side adhesive layer of the exposed surface with a brush or the like, and then the adhesive can be cured by irradiation with heat or ultraviolet rays to obtain the vibrator of the present invention.

図4は、本発明の振動体の他の形態を示すもので、この振動体では、図1と異なる点は、図5に示すように、積層体17がバレル加工されて作製されている点である。   FIG. 4 shows another embodiment of the vibrating body of the present invention. In this vibrating body, the difference from FIG. 1 is that the laminated body 17 is manufactured by barrel processing as shown in FIG. It is.

すなわち、積層体17は板状であり、上下の主面は外周部が研磨された擬長方形状とされ、積層体17の主面の長さ方向xには、内部電極層12が交互に引き出された一対の側面を有している。   That is, the laminated body 17 has a plate shape, the upper and lower main surfaces are formed into a pseudo-rectangular shape whose outer peripheral portion is polished, and the internal electrode layers 12 are alternately drawn in the length direction x of the main surface of the laminated body 17. A pair of side surfaces.

積層体17は、例えば、メディアと研磨粉末を同封した容器に投入して回転バレル加工することにより、積層体17の2つの主面および4つの側面で形成される12の辺(角部)、およびこれらの辺のうち3つが交わって形成される8の角部が全て丸く研磨されており、例えば、積層体17の角部が60μm以上のR面(曲率半径)を有している。積層体17の角部の曲率半径は80μm以上が望ましい。   The laminated body 17 is, for example, 12 sides (corner portions) formed by the two main surfaces and the four side surfaces of the laminated body 17 by putting them in a container enclosing a medium and abrasive powder and carrying out a rotating barrel process. In addition, the eight corners formed by intersecting three of these sides are all rounded and polished, for example, the corners of the laminate 17 have an R surface (curvature radius) of 60 μm or more. The radius of curvature of the corner of the laminate 17 is desirably 80 μm or more.

積層体をバレル加工することにより、積層体17の両主面に表面電極13aをそれぞれ形成し、内部電極層12が露出した側面に外部電極13bを形成する際に、丸く研磨されている部分に、確実に外部電極13b、表面電極層13aを形成できる。すなわち、積層体17をバレル加工しない場合には、主面と側面とでなす角部に外部電極や表面電極層を形成する必要があり、角部で電極ペーストの塗布量が少なくなり、角部で電極切れを起すおそれがあったが、本発明では、12の辺、およびこれらの辺のうち3つが交わって形成される8の角部が全て丸く研磨されているため、丸く研磨された部分に電極ペーストを多く塗布することができ、外部電極13bと表面電極13aとの接続を確実に行うことができる。   By subjecting the multilayer body to barrel processing, surface electrodes 13a are formed on both main surfaces of the multilayer body 17, and the external electrode 13b is formed on the side surface where the internal electrode layer 12 is exposed. The external electrode 13b and the surface electrode layer 13a can be reliably formed. That is, when the laminated body 17 is not barrel-processed, it is necessary to form an external electrode or a surface electrode layer at the corner formed by the main surface and the side surface, and the application amount of the electrode paste is reduced at the corner. However, in the present invention, the 12 sides and the 8 corners formed by the intersection of these 3 sides are all rounded, so that the rounded portions A large amount of electrode paste can be applied to the external electrode 13b, and the connection between the external electrode 13b and the surface electrode 13a can be reliably performed.

R面の大きさは、用いたメディアの直径、研磨剤の平均粒径、加工時間によって変化する。例えば、研磨時間を10時間とし、研磨剤の平均粒径を8μmに固定して、メディア径を直径4mmと直径2mmとした結果、直径4mmのメディアを用いた場合にはコーナー部の曲率半径(以下、アールということがある)は120μm、直径2mmのメディアを用いた場合にはコーナー部のアールは85μmであった。また、メディア径を直径4mmとし、研磨剤の平均粒径を8μmに固定して、研磨時間を5Hrと15Hrとした場合、コーナー部のアールはそれぞれ、100μm,140μmであった。なお、メディア径が直径2mmを用いて時間を5Hrとした場合、コーナー部のアールは60μmであった。   The size of the R surface varies depending on the diameter of the medium used, the average particle size of the abrasive, and the processing time. For example, when the polishing time is 10 hours, the average particle diameter of the abrasive is fixed to 8 μm, and the media diameter is 4 mm and 2 mm, the radius of curvature of the corner ( The radius of the corner portion was 85 μm when a medium having a diameter of 2 mm was used. When the media diameter was 4 mm, the average particle size of the abrasive was fixed at 8 μm, and the polishing time was 5 Hr and 15 Hr, the corner radiuses were 100 μm and 140 μm, respectively. When the media diameter was 2 mm and the time was 5 hours, the corner radius was 60 μm.

積層体17の厚みが0.7mm以下、特に0.55mm以下である場合には、本発明を好適に用いることができる。このような薄い板状の積層型圧電素子の場合、外部電極にかかる引張応力が大きいだけでなく、落下等で素子に加わる応力も大きいため、本発明をより好適に用いることができる。積層体17の主面の面積が50mm以上である場合には、積層体17の強度が低下し、破損し易いため、本発明をより好適に用いることができる。なお、積層体17の主面の面積は、対向する一対の側面間の距離で定義される幅と、他の一対の側面間の距離で定義される長さとの積で表される。 The present invention can be suitably used when the thickness of the laminate 17 is 0.7 mm or less, particularly 0.55 mm or less. In the case of such a thin plate-shaped laminated piezoelectric element, not only the tensile stress applied to the external electrode is large, but also the stress applied to the element due to dropping or the like is large, so that the present invention can be used more suitably. When the area of the main surface of the laminated body 17 is 50 mm 2 or more, the strength of the laminated body 17 is lowered and easily damaged, and therefore the present invention can be used more suitably. In addition, the area of the main surface of the laminated body 17 is represented by the product of the width defined by the distance between a pair of opposing side surfaces and the length defined by the distance between the other pair of side surfaces.

破損は、磁器の有する強度以上の応力発生にて生じる。磁器強度が低いPZT薄板では、バレル加工すると破損し易いと考えられており、従来ではバレル加工は採用されていなかった。一方、積層型圧電素子は落下時の衝撃でクラックが発生して破損し、支持板から剥離することもあるが、クラックの原因となる脱粒は、大量生産していく上で発生が一定しておらず、積層体の面と面の交わる12の辺(角部)および8の角部のどこかで発生していたため、脱粒のおそれがある箇所全てを予め除去することで、積層型圧電素子におけるクラックを抑制し、破損を抑制できる。   The damage is caused by the generation of stress exceeding the strength of the porcelain. A PZT thin plate with low porcelain strength is considered to be easily damaged when barreled, and conventionally barrel processing has not been adopted. On the other hand, the multilayer piezoelectric element breaks due to a crack when it is dropped and may peel off from the support plate. However, the occurrence of cracking that causes cracking is constant in mass production. In addition, since it occurred at any of the 12 sides (corner portions) and the 8 corner portions where the surfaces of the laminate intersect, the laminated piezoelectric element can be removed in advance by removing all the parts that may cause grain loss. It is possible to suppress cracks and to prevent breakage.

セラミックスのバレル加工には、通常高硬度のジルコニアボールがメディアとして用いられるが、本発明では、メディアとして柔らかいガラスビーズを採用し、また、研磨粉末としてAlを用いる。なお、メディア径、研磨粉末の粒度分布はセラミックス素子に衝突した際の破壊力を高めるため、ガラスビーズとして直径2mm以上を採用し、研磨粉末は平均粒径15.5μm以下の細かいものを用いる。このようにして、角部の丸い積層型圧電素子を容易に作製できる。 In the barrel processing of ceramics, zirconia balls having high hardness are usually used as media. In the present invention, soft glass beads are used as media, and Al 2 O 3 is used as polishing powder. In order to increase the breaking force when colliding with the ceramic element, the media diameter and the particle size distribution of the abrasive powder employ a glass bead having a diameter of 2 mm or more, and the abrasive powder having an average particle diameter of 15.5 μm or less is used. In this way, a laminated piezoelectric element with rounded corners can be easily manufactured.

そして、角部が全て丸く研磨された積層体17に表面電極13a、外部電極13bを形成した積層型圧電素子10を、図1に示すような底面側接着剤層15aおよび側面側接着剤層15bを用いて支持板14に接合すると、積層体17に表面電極13a、外部電極13bが滑らかに形成されるため、図4に示すように、底面側接着剤層15aから側面側接着剤層15bにかけての接着剤層の連続性が良好となり、振動体の落下時における積層型圧電素子10、16の支持板14からの剥離をさらに抑制することができる。   Then, the laminated piezoelectric element 10 in which the surface electrode 13a and the external electrode 13b are formed on the laminated body 17 whose corners are rounded and polished is used as a bottom surface side adhesive layer 15a and a side surface side adhesive layer 15b as shown in FIG. As shown in FIG. 4, from the bottom surface side adhesive layer 15a to the side surface side adhesive layer 15b, the surface electrode 13a and the external electrode 13b are smoothly formed on the laminate 17. The continuity of the adhesive layer becomes favorable, and the peeling of the laminated piezoelectric elements 10 and 16 from the support plate 14 when the vibrating body is dropped can be further suppressed.

Zrの一部をSbで置換したチタン酸ジルコン酸鉛(PZT)を含有する圧電粉末と、バインダーと、分散剤と、可塑剤と、溶剤とをボールミル混合により24時間混練してスラリーを作製した。   A slurry was prepared by kneading a piezoelectric powder containing lead zirconate titanate (PZT) in which a part of Zr was substituted with Sb, a binder, a dispersant, a plasticizer, and a solvent by ball mill mixing for 24 hours. .

得られたスラリーを用いてドクターブレード法により厚み約50μmのグリーンシートを作製した。このグリーンシートに電極材料としてAgおよびPdを含有する電極ペーストをスクリーン印刷法により所定形状に塗布し、該電極ペーストが塗布されたグリーンシートを6層もしくは12層積層し、最上層には電極ペーストが塗布されていないグリーンシートを1層重ね合わせて加圧し、積層数の異なる2種類の積層成形体を作製した。そして、これらの積層成形体を500℃、1時間、大気中で脱脂し、その後、1100℃、3時間、大気中で焼成し、積層焼結体を得た。   Using the obtained slurry, a green sheet having a thickness of about 50 μm was prepared by a doctor blade method. An electrode paste containing Ag and Pd as an electrode material is applied to the green sheet in a predetermined shape by screen printing, and 6 or 12 layers of the green sheet coated with the electrode paste are laminated, and the uppermost layer is an electrode paste. A green sheet not coated with one layer was stacked and pressed to produce two types of laminated molded bodies having different numbers of layers. These laminated molded bodies were degreased in the air at 500 ° C. for 1 hour, and then fired in the air at 1100 ° C. for 3 hours to obtain a laminated sintered body.

次に、得られた積層体17の長さ方向xの両端面部をダイシング加工によりカットし、内部電極層12の先端を積層体の側面に露出させ、積層体17の両主面に電極層を形成すべく、電極材料としてAgとガラスを含有する電極ペーストを、積層体の主面にスクリーン印刷法により塗布し、その後、長さ方向xの両端部に、外部電極材料としてAgとガラスを含有する電極ペーストをディップ法により塗布し、700℃、10分、大気中で焼き付け、積層型圧電素子10、16を作製した。   Next, both end portions in the length direction x of the obtained laminate 17 are cut by dicing, the tips of the internal electrode layers 12 are exposed on the side surfaces of the laminate, and electrode layers are formed on both main surfaces of the laminate 17. In order to form, an electrode paste containing Ag and glass as an electrode material is applied to the main surface of the laminate by screen printing, and then Ag and glass are contained as external electrode materials at both ends in the length direction x. The electrode paste to be applied was applied by a dip method and baked in the air at 700 ° C. for 10 minutes to produce the multilayer piezoelectric elements 10 and 16.

作製された積層体17の主面の寸法は幅3.5mm、長さ26mmであり、圧電体層11の厚みは40μm、内部電極層12の厚みは3μmであった。   The dimensions of the main surface of the produced laminate 17 were 3.5 mm wide and 26 mm long, the piezoelectric layer 11 was 40 μm thick, and the internal electrode layer 12 was 3 μm thick.

次に、積層型圧電素子10、16の表面電極13aを通して内部電極層12間及び内部電極層12と表面電極13a間に、圧電体層11が7層、13層の積層型圧電素子10、16とも、100V、2分間電圧を印加し分極を行った。   Next, between the internal electrode layers 12 through the surface electrodes 13a of the multilayer piezoelectric elements 10 and 16, and between the internal electrode layer 12 and the surface electrode 13a, the multilayer piezoelectric elements 10 and 16 having seven layers and thirteen piezoelectric layers 11 are provided. Both were polarized by applying a voltage of 100 V for 2 minutes.

次に、厚み0.2mmの42アロイ(合金製)の支持板14を準備し、支持板14の両主面に熱硬化型のエポキシ樹脂からなる接着剤を塗布し、接着剤を塗布した支持板14の部分に積層型圧電素子10、16を押し付け、さらに、外部電極13bの露出面の側面側接着剤層に接着剤を筆等で重ね塗りし、120℃、1時間、空気中で接着剤を硬化させ、この側面側接着剤層の表面に導体層55を形成し外部電極13bと支持板14とを電気的に接合し、図3に示すようなバイモルフ型の振動体を作製した。一方、接着剤の塗布面積を狭くし、この部分に積層型圧電素子10、16を押し付け、積層体の主面を底面側接着剤層だけで接合し、図6(a)に示すような比較例の試料を作製した。   Next, a support plate 14 of 42 alloy (made of alloy) having a thickness of 0.2 mm was prepared, an adhesive made of a thermosetting epoxy resin was applied to both main surfaces of the support plate 14, and the adhesive was applied. The laminated piezoelectric elements 10 and 16 are pressed against the plate 14, and further, the adhesive is repeatedly applied to the side adhesive layer on the exposed surface of the external electrode 13 b with a brush or the like, and bonded in air at 120 ° C. for 1 hour. The agent was cured, a conductor layer 55 was formed on the surface of the side adhesive layer, and the external electrode 13b and the support plate 14 were electrically joined to produce a bimorph type vibrator as shown in FIG. On the other hand, the application area of the adhesive is narrowed, the laminated piezoelectric elements 10 and 16 are pressed against this part, and the main surface of the laminated body is joined only by the bottom adhesive layer, and the comparison as shown in FIG. Example samples were prepared.

作製されたバイモルフ型振動体は、インピーダンスアナライザーにより電気容量を測定し、表2に記載した。また、作製されたバイモルフ型振動体について、−40℃〜85℃、各温度での保持時間30分の温度サイクルを100サイクル行う温度サイクル試験を行い、静電容量が初期値から5%以上低下したものを不良とし、不良数/試験数を不良率とし、表2に記載した。   The produced bimorph type vibrator was measured for electric capacity with an impedance analyzer and listed in Table 2. In addition, the produced bimorph type vibrator was subjected to a temperature cycle test in which a temperature cycle of −40 ° C. to 85 ° C. and a holding time of 30 minutes at each temperature was performed 100 times, and the capacitance decreased by 5% or more from the initial value. The results are shown in Table 2, with the number of defects / number of tests as the defect rate.

さらに、作製されたバイモルフ型振動体は、温度60℃、湿度90%の雰囲気中で1000時間で高温高湿放置試験を行い、静電容量が初期値から5%以上低下したものを不良とし、不良数/試験数で不良率とし、表2に記載した。   Furthermore, the produced bimorph type vibrator was subjected to a high-temperature and high-humidity standing test for 1000 hours in an atmosphere at a temperature of 60 ° C. and a humidity of 90%. It is shown in Table 2 as the defect rate by the number of defects / number of tests.

また、振動体の支持板と積層型圧電素子との接合強度について、落下試験で確認した。試験条件は、振動体の支持板の一端部を実装部材に固定し、この実装部材を100gの落下試験治具に固定し、落下高さ100cmから大理石から成る落下地点へ合計3回自由落下させ、振動体を40倍の顕微鏡で観察し、積層型圧電素子と支持板との間に剥離が発生し、または積層型圧電素子にクラックが発生したものを不良とし、不良数/試験数で不良率とした。   Further, the bonding strength between the support plate of the vibrating body and the laminated piezoelectric element was confirmed by a drop test. The test condition was that one end of the support plate of the vibrating body was fixed to a mounting member, this mounting member was fixed to a 100 g drop test jig, and dropped freely from a drop height of 100 cm to a drop point made of marble three times in total. The vibrating body is observed with a 40 × microscope, and peeling occurs between the multilayer piezoelectric element and the support plate, or cracks in the multilayer piezoelectric element are regarded as defective. Rate.

Figure 0005409198
Figure 0005409198

Figure 0005409198
Figure 0005409198

表1、2から、底面側接着剤層と、支持板からの高さが積層体の支持板側の主面の高さ以上で、積層体の厚みの1/2以下である側面側接着剤層で、積層型圧電素子を支持板に接合した本発明の試料では、温度サイクル試験、高温高湿放置試験及び落下衝撃試験において不良率が低く、良好な結果となった。   From Tables 1 and 2, the bottom side adhesive layer and the side adhesive whose height from the support plate is not less than the height of the main surface on the support plate side of the laminate and not more than 1/2 of the thickness of the laminate. In the sample of the present invention in which the laminated piezoelectric element was bonded to the support plate in layers, the defect rate was low in the temperature cycle test, the high temperature and high humidity leaving test and the drop impact test, and good results were obtained.

一方、底面側接着剤層だけで積層型圧電素子と支持板を接合した試料No.1(7層品)、試料No.9(13層品)では、温度サイクル試験、高温高湿放置試験及び落下衝撃試験において不良率が高く、また、側面側接着剤層の支持板からの高さが積層体の厚みの1/2を超える試料No.4、5(7層品)、試料No.12、13(13層品)では、側面側接着剤層の高さが高くなるほど、不良率が高くなることがわかる。   On the other hand, sample No. 1 in which the laminated piezoelectric element and the support plate were joined only by the bottom surface side adhesive layer. 1 (7-layer product), sample no. 9 (13-layer product) has a high defect rate in the temperature cycle test, the high-temperature and high-humidity test and the drop impact test, and the height of the side adhesive layer from the support plate is 1/2 of the thickness of the laminate. Sample no. 4, 5 (7-layer product), sample No. 12 and 13 (13-layer products), it can be seen that the defect rate increases as the height of the side surface side adhesive layer increases.

上記実施例1で作製した積層体をバレル加工した。積層体17の主面の寸法は幅3.5mm、長さ26mmであり、主面の面積が91mmのものと、積層体17の主面の寸法を変化させ、表3に示すような主面の面積の積層体17を作製した。積層体17の厚さを表3に示した。 The laminate produced in Example 1 was barrel processed. The dimensions of the main surface of the laminate 17 are 3.5 mm in width and 26 mm in length, the main surface area is 91 mm 2 , and the dimensions of the main surface of the laminate 17 are changed. A laminate 17 having a surface area was produced. The thickness of the laminate 17 is shown in Table 3.

バレル加工には、3Lのポリエチレン製ポットを用い、メディアとして直径2mmのガラス製ボールを用いた。研磨粉末としては平均粒径8μmのアルミナ研磨材(WA)を採用し、ポットにメディアと積層体17と研磨剤と溶媒として純水を入れて、6〜40時間混合し、積層体17をバレル加工した。なお、バレル加工しない試料として、表1、2の試料No.6〜8を、表3、4の試料No.17、19、21として記載した。   For barrel processing, a 3 L polyethylene pot was used, and a glass ball having a diameter of 2 mm was used as a medium. As an abrasive powder, an alumina abrasive (WA) having an average particle size of 8 μm is used. A pot is filled with media, a laminate 17, an abrasive, and pure water as a solvent, and mixed for 6 to 40 hours. processed. In addition, as a sample which is not barrel processed, the sample Nos. 6-8 are shown in Tables 3 and 4. 17, 19, and 21.

積層体17のバレル加工後、流水超音波洗浄によって、付着した研磨剤を除去した。積層体17の両主面と4側面とで形成される8つの辺(角部)のアールを測定し、それらの平均を角部のアールとして表3に記載した。アールは、角部を3次元形状測定器(メジャーリングスコープ:日商精密光学株式会社製)で測定することにより求めた。なお、アールの制御はバレル加工時間によって調整した。   After the barrel processing of the laminate 17, the attached abrasive was removed by running water ultrasonic cleaning. The radius of eight sides (corner portions) formed by both main surfaces and the four side surfaces of the laminate 17 was measured, and the average of these was listed in Table 3 as the corner radius. Earl was obtained by measuring the corner with a three-dimensional shape measuring instrument (measurement scope: manufactured by Nissho Precision Optical Co., Ltd.). In addition, the control of Earl was adjusted by barrel processing time.

積層体17の両主面に表面電極層を形成すべく、電極材料としてAgとガラスを含有する電極ペーストを、積層体の主面にスクリーン印刷法により塗布し、その後、長さ方向xの両端部に、外部電極材料としてAgとガラスを含有する電極ペーストをディップ法により塗布し、700℃、10分、大気中で焼き付け、積層体のR面において表面電極層と外部電極が重畳する、図5(a)に示すような積層型圧電素子10、16を作製した。   In order to form surface electrode layers on both main surfaces of the laminate 17, an electrode paste containing Ag and glass as an electrode material is applied to the main surface of the laminate by screen printing, and then both ends in the length direction x. An electrode paste containing Ag and glass as an external electrode material is applied to the part by a dip method and baked in the atmosphere at 700 ° C. for 10 minutes, and the surface electrode layer and the external electrode are superimposed on the R surface of the laminate. Multilayer piezoelectric elements 10 and 16 as shown in FIG.

また、バレル加工を施した積層型圧電素子10、16について、積層体の側面の外部電極の電極厚みと、積層体の角部の電極厚み(外部電極の厚み、または表面電極の厚み、または外部電極と表面電極の重畳部の厚み)の厚みを断面観察したところ、積層体の角部の電極厚みは、積層体の側面の外部電極の厚みの1/2以上であり、十分な厚みを有しており、バレル加工を施した積層体の角部での電極厚みは十分であり、表面電極層と外部電極との電気接続性は良好であった。   In addition, for the laminated piezoelectric elements 10 and 16 subjected to barrel processing, the electrode thickness of the external electrode on the side surface of the laminate and the electrode thickness at the corner of the laminate (the thickness of the external electrode, the thickness of the surface electrode, or the external The thickness of the overlapping portion of the electrode and the surface electrode) was observed in a cross-section, and the electrode thickness at the corner of the laminate was 1/2 or more of the thickness of the external electrode on the side surface of the laminate, and had a sufficient thickness. In addition, the electrode thickness at the corner of the laminated body subjected to barrel processing was sufficient, and the electrical connectivity between the surface electrode layer and the external electrode was good.

次に、積層型圧電素子10、16の表面電極13aを通して内部電極層12間及び内部電極層12と表面電極13a間に、100V、2分間電圧を印加し分極を行った。   Next, polarization was performed by applying a voltage of 100 V for 2 minutes between the internal electrode layers 12 and between the internal electrode layers 12 and the surface electrodes 13a through the surface electrodes 13a of the multilayer piezoelectric elements 10 and 16.

次に、厚み0.2mmの42アロイ(合金製)の支持板14を準備し、支持板14の両主面に熱硬化型のエポキシ樹脂からなる接着剤を塗布し、接着剤を塗布した支持板14の部分に積層型圧電素子10、16を押し付け、さらに、外部電極13bの露出面の側面側接着剤層に接着剤を筆等で重ね塗りし、120℃、1時間、空気中で接着剤を硬化させ、この側面側接着剤層の表面に導体層55を形成して外部電極13bと支持板14とを電気的に接合し、図4に示すようなバイモルフ型の振動体を作製した。側面側接着剤層の高さhと、底面側接着剤層の厚みを測定し、表3に記載した。側面側接着剤層の高さhは支持板からの高さであり、積層体の厚みtに対する比で記載した。   Next, a support plate 14 of 42 alloy (made of alloy) having a thickness of 0.2 mm was prepared, an adhesive made of a thermosetting epoxy resin was applied to both main surfaces of the support plate 14, and the adhesive was applied. The laminated piezoelectric elements 10 and 16 are pressed against the plate 14, and further, the adhesive is repeatedly applied to the side adhesive layer on the exposed surface of the external electrode 13 b with a brush or the like, and bonded in air at 120 ° C. for 1 hour. The adhesive was cured, a conductor layer 55 was formed on the surface of the side adhesive layer, and the external electrode 13b and the support plate 14 were electrically joined to produce a bimorph type vibrator as shown in FIG. . The height h of the side adhesive layer and the thickness of the bottom adhesive layer were measured and listed in Table 3. The height h of the side adhesive layer is the height from the support plate, and is described as a ratio to the thickness t of the laminate.

これらのバイモルフ型振動体についてインピーダンスアナライザーにより静電容量を測定し、表4に記載した。作製したバイモルフ型振動体について、実施例1と同様にして温度サイクル試験、高温高湿放置試験を行い、不良率を表4に記載した。   The electrostatic capacity of these bimorph type vibrators was measured with an impedance analyzer and listed in Table 4. About the produced bimorph type | mold vibrator, the temperature cycle test and the high temperature, high humidity leaving test were done like Example 1, and the defect rate was described in Table 4.

また、振動体の支持板と積層型圧電素子との接合強度について、落下試験で確認した。試験条件は、振動体の支持板の一端部を実装部材に固定し、この実装部材を100gの落下試験治具に固定し、落下高さ100cmから大理石から成る落下地点へ合計3回自由落下させ、振動体を40倍の顕微鏡で観察し、積層型圧電素子と支持板との間に剥離が発生し、または積層型圧電素子にクラックが発生したものを不良とし、不良数/試験数で不良率とし、表4に記載した。また、落下高さを150cmとする以外は、上記と同様とした落下試験も行い、結果を表4の高度落下試験の欄に記載した。   Further, the bonding strength between the support plate of the vibrating body and the laminated piezoelectric element was confirmed by a drop test. The test condition was that one end of the support plate of the vibrating body was fixed to a mounting member, this mounting member was fixed to a 100 g drop test jig, and dropped freely from a drop height of 100 cm to a drop point made of marble three times in total. The vibrating body is observed with a 40 × microscope, and peeling occurs between the multilayer piezoelectric element and the support plate, or cracks in the multilayer piezoelectric element are regarded as defective. It was set as a rate and it described in Table 4. Further, a drop test similar to the above was performed except that the drop height was 150 cm, and the results are shown in the column of the advanced drop test in Table 4.

高度落下試験後に、不良となった振動体を40倍の顕微鏡で観察したところ、バレル加工した試料では積層型圧電素子に殆どクラックは見られず、積層型圧電素子と支持板との間に剥離が発生して不良となるものが殆どであった。一方、バレル加工しなかった試料では、殆どの試料の積層型圧電素子にクラックが発生していた。   After the high drop test, the defective vibrating body was observed with a 40 × microscope. As a result, almost no cracks were observed in the multilayer piezoelectric element in the barrel-processed sample, and peeling occurred between the multilayer piezoelectric element and the support plate. In most cases, defects occur and become defective. On the other hand, in the samples that were not barrel-processed, cracks occurred in the multilayer piezoelectric elements of most samples.

Figure 0005409198
Figure 0005409198

Figure 0005409198
Figure 0005409198

これらの表3、4から、積層体をバレル加工すると、図4に示したように、底面側接着剤層から側面側接着剤層にかけての接着剤層の連続性が良好となり、振動体の落下時における積層型圧電素子の支持板からの剥離をさらに抑制できることがわかる。さらに、バレル加工を施すことにより積層型圧電素子における脱粒を抑制して、クラックの発生を抑制し、高度落下試験における不良率を低下できることがわかる。   From these Tables 3 and 4, when the laminated body is barrel processed, the continuity of the adhesive layer from the bottom surface side adhesive layer to the side surface side adhesive layer becomes good as shown in FIG. It can be seen that peeling of the laminated piezoelectric element from the support plate at the time can be further suppressed. Furthermore, it can be seen that by performing barrel processing, the grain breakage in the multilayer piezoelectric element can be suppressed, the generation of cracks can be suppressed, and the defect rate in the advanced drop test can be reduced.

10、16・・・積層型圧電素子
11・・・圧電体層
12・・・内部電極層
13a・・・表面電極層
13b・・・外部電極
14・・・支持板
15a・・・底面側接着剤層
15b・・・側面側接着剤層
x・・・主面の長さ方向
h・・・側面側接着剤層の支持板からの高さ
t・・・積層体の厚み
DESCRIPTION OF SYMBOLS 10, 16 ... Laminated piezoelectric element 11 ... Piezoelectric layer 12 ... Internal electrode layer 13a ... Surface electrode layer 13b ... External electrode 14 ... Support plate 15a ... Bottom side adhesion Adhesive layer 15b ... Side-side adhesive layer x ... Main surface length direction h ... Side-side adhesive layer height t from support plate ... Laminate thickness

Claims (7)

圧電体層と内部電極層と交互に積層されり、一対の面と該主面の長手方向の両端側に設けられた一対の第1側面と前記主面の幅方向の両端側に設けられた一対の第2側面とを有する層体と、該積層体の前記一対の第1側面にそれぞれ設けられて前記内部電極層と交互に電気的に接続された一対の外部電極とを備える積層型圧電素子と、該積層型圧電素子の前記主面側が接合された支持板とを具備する振動体であって、
前記積層体の前記支持板側の主面と前記支持板と底面側接着剤層で接合されており、前記外部電極の露出面と前記支持板と側面側接着剤層で接合されており前記積層体の前記第2側面と前記支持板とが幅方向側面側接着剤層で接合されており、
記側面側接着剤層の前記支持板からの高さは、前記支持板から前記積層体の前記支持板側の主面までの高さ以上で、前記積層体の厚みの1/2以下であり、
前記幅方向側面側接着剤層の前記支持板からの高さは、前記支持板から前記積層体の前記支持板側の主面までの高さ以上で、前記積層体の厚みの1/2以下である、振動体。
A piezoelectric layer and the internal electrode layers Ri Contact are alternately stacked, both end sides in the width direction of the pair of first side surface and the main surface provided on the longitudinal end side of the pair of main surfaces and main surface a product layer body having a pair of second side provided in a pair of external electrodes on the pair of first side surface of the laminate are electrically connected alternately with the internal electrode layers respectively provided a laminated piezoelectric element comprising a said main surface side of the laminated piezoelectric device is a vibrating body having a, a support plate joined,
The main surface of the laminate on the support plate side and the support plate are joined by a bottom surface side adhesive layer, and the exposed surface of the external electrode and the support plate are joined by a side surface side adhesive layer. , The second side surface of the laminate and the support plate are joined by a lateral side adhesive layer,
Height from the support plate before SL side side adhesive layer, wherein in the support plate above the height to the major surface of the support plate side of the laminate, less than half of the thickness of the laminate Yes,
The height of the width side adhesive layer from the support plate is not less than the height from the support plate to the main surface of the laminate on the support plate side, and not more than 1/2 of the thickness of the laminate. It is a vibrating body.
前記積層型圧電素子の前記圧電体層の積層数が7層以上である請求項1に記載の振動体。 The number of stacked piezoelectric layers is 7 or more layers, the vibrating body according to claim 1 of the multilayer piezoelectric element. 前記支持板が金属または合金からなり、前記側面側接着剤層の上面に、前記外部電極と前記支持板とを導通するための導体層が設けられている請求項1または2に記載の振動体。 3. The vibration according to claim 1 , wherein the support plate is made of a metal or an alloy, and a conductor layer for electrically connecting the external electrode and the support plate is provided on an upper surface of the side adhesive layer. body. 前記底面側接着剤層の厚みが1μm以上である請求項1乃至3のうちいずれかに記載の振動体。 The thickness of the bottom surface-side adhesive layer is 1μm or more, the vibrating body according to any one of claims 1 to 3. 前記積層体は、バレル加工されている請求項1乃至4のうちいずれかに記載の振動体。 The laminate is barrel finishing, vibrator according to any one of claims 1 to 4. 前記積層体の角部が60μm以上のR面を有する請求項1乃至5のうちいずれかに記載の振動体。 The vibrating body according to claim 1 , wherein a corner portion of the laminated body has an R surface of 60 μm or more. 前記積層体の厚みが0.7mm以下である請求項1乃至6のうちいずれかに記載の振動体。 The vibrating body according to claim 1 , wherein a thickness of the laminated body is 0.7 mm or less.
JP2009196328A 2008-09-25 2009-08-27 Vibrator Active JP5409198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196328A JP5409198B2 (en) 2008-09-25 2009-08-27 Vibrator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008245218 2008-09-25
JP2008245218 2008-09-25
JP2009196328A JP5409198B2 (en) 2008-09-25 2009-08-27 Vibrator

Publications (2)

Publication Number Publication Date
JP2010103977A JP2010103977A (en) 2010-05-06
JP5409198B2 true JP5409198B2 (en) 2014-02-05

Family

ID=42294155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196328A Active JP5409198B2 (en) 2008-09-25 2009-08-27 Vibrator

Country Status (1)

Country Link
JP (1) JP5409198B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439193B1 (en) 2010-06-25 2014-09-12 쿄세라 코포레이션 Acoustic generator
WO2012001954A1 (en) * 2010-06-30 2012-01-05 Necカシオモバイルコミュニケーションズ株式会社 Oscillation device and electronic component
US9215531B2 (en) 2012-08-30 2015-12-15 Kyocera Corporation Acoustic generator, acoustic generating device, and electronic device
CN104012116B (en) * 2012-09-19 2017-08-01 京瓷株式会社 Sound producer, flexible piezoelectric sound-generating devices and electronic equipment
CN104012115B (en) * 2012-09-20 2018-02-16 京瓷株式会社 Sound producer, flexible piezoelectric sound-generating devices and electronic equipment
JP5620616B2 (en) * 2012-09-21 2014-11-05 京セラ株式会社 SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP6189648B2 (en) * 2013-06-04 2017-08-30 京セラ株式会社 Piezoelectric vibration element, piezoelectric vibration device using the same, and portable terminal
KR101662126B1 (en) * 2014-05-02 2016-10-05 주식회사 엠플러스 Vibrator
JP6933054B2 (en) * 2017-02-13 2021-09-08 Tdk株式会社 Vibration device
JP6825404B2 (en) * 2017-02-13 2021-02-03 Tdk株式会社 Vibration device
JP6897339B2 (en) * 2017-06-02 2021-06-30 Tdk株式会社 Piezoelectric drive
JP7125031B2 (en) * 2017-07-18 2022-08-24 太陽誘電株式会社 Laminated piezoelectric element, piezoelectric vibration device, and electronic equipment
JP7116388B2 (en) * 2017-07-20 2022-08-10 太陽誘電株式会社 Laminated piezoelectric element, piezoelectric vibration device, and electronic equipment
JP7163570B2 (en) * 2017-09-20 2022-11-01 Tdk株式会社 Laminated piezoelectric element and vibration device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293631A (en) * 1995-04-24 1996-11-05 Tokin Corp Piezoelectric bimorph
JPH08306979A (en) * 1995-05-11 1996-11-22 Tdk Corp Laminated piezoelectric device
JP2003046154A (en) * 2001-07-30 2003-02-14 Ngk Insulators Ltd Piezoelectric/electrostrictive element, piezoelectric/ electrostrictive device, and method of manufacturing them
JP4295238B2 (en) * 2005-04-01 2009-07-15 日本碍子株式会社 Piezoelectric sound generator
JP2007287910A (en) * 2006-04-17 2007-11-01 Nec Tokin Corp Laminated piezoelectric bimorph element
JP2007329431A (en) * 2006-06-09 2007-12-20 Citizen Electronics Co Ltd Piezoelectric exciter
JP5506009B2 (en) * 2007-02-27 2014-05-28 キヤノン株式会社 Piezoelectric element, method for manufacturing the same, diaphragm, and vibration wave drive device

Also Published As

Publication number Publication date
JP2010103977A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5409198B2 (en) Vibrator
JP5361635B2 (en) Vibrator
JP5050165B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP6184182B2 (en) Vibrating body, method for manufacturing the same, and vibration type driving device
JP4925825B2 (en) Multilayer electronic component and injection device using the same
US20150243877A1 (en) Piezoelectric element unit and driving device
WO2005011009A1 (en) Laminate type electronic component and production method therefor and laminate type piezoelectric element
WO2011122416A1 (en) Piezoelectric-element-using device
JP5319195B2 (en) Vibrator
JP4175535B2 (en) Multilayer piezoelectric vibrator and manufacturing method thereof
JP2003101092A (en) Laminated piezoelectric element and manufacturing method therefor, and injection device
JP5476213B2 (en) Method for manufacturing piezoelectric element
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP2005072113A (en) Piezoelectric/electrostrictive device
US10381544B2 (en) System and fabrication method of piezoelectric stack that reduces driving voltage and clamping effect
JP2003309298A (en) Piezoelectric/electrostrictive element and its manufacturing method
JP5754879B2 (en) Vibrator
JP4280321B2 (en) Piezoelectric unit and manufacturing method thereof
WO2015171726A2 (en) System and fabrication method of piezoelectric stack that reduces driving voltage and clamping effect
US7799156B2 (en) Method for manufacturing ceramic substrate and ceramic substrate
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
JPH11238918A (en) Laminated type piezoelectric actuator
JP6927848B2 (en) Piezoelectric actuator
JP4090278B2 (en) Manufacturing method of multilayer piezoelectric element
JP7172401B2 (en) Piezoelectric actuators and piezoelectric drives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150