JP2003282993A - Polarizing method of laminated piezoelectric member and laminated piezoelectric member polarized by the polarizing method - Google Patents

Polarizing method of laminated piezoelectric member and laminated piezoelectric member polarized by the polarizing method

Info

Publication number
JP2003282993A
JP2003282993A JP2002082213A JP2002082213A JP2003282993A JP 2003282993 A JP2003282993 A JP 2003282993A JP 2002082213 A JP2002082213 A JP 2002082213A JP 2002082213 A JP2002082213 A JP 2002082213A JP 2003282993 A JP2003282993 A JP 2003282993A
Authority
JP
Japan
Prior art keywords
laminated piezoelectric
laminated
electrode
internal electrode
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002082213A
Other languages
Japanese (ja)
Other versions
JP4082053B2 (en
Inventor
Mikio Nakajima
幹雄 中島
Yoshito Nakafuku
祥人 中福
Seiji Iyama
清司 井山
Yoshimasa Yoshino
芳正 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002082213A priority Critical patent/JP4082053B2/en
Publication of JP2003282993A publication Critical patent/JP2003282993A/en
Application granted granted Critical
Publication of JP4082053B2 publication Critical patent/JP4082053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing method of a laminated piezoelectric member wherein deformation of a laminated piezoelectric member which remains after polarization is reduced and generation of crack and cut can be reduced. <P>SOLUTION: In the laminated piezoelectric member 1A, at least two layers of piezoelectric ceramics layers 2, 3 are laminated by inserting an internal electrode 6 between the layers 2, 3, and external electrodes 4, 5 are arranged on a main surface and a main back surface. In a polarizing method wherein the two outside piezoelectric ceramics layers 2, 3 are polarized in the thickness direction and in the same direction, a second DC electric field E2 is applied between the internal electrode 6 and the other external electrode 5, simultaneously with applying a first DC electric field E1 between one of the external electrodes 4 and the internal electrode 6 in such a manner that the internal electrode 6 has a ground potential, one of the external electrodes 4 has a positive potential and the other external electrode 5 has a negative potential. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は圧電受話器,圧電サ
ウンダ,圧電スピーカ,圧電ブザーなどの圧電型電気音
響変換器に用いられる積層圧電体の分極方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polarizing a laminated piezoelectric material used in a piezoelectric electroacoustic transducer such as a piezoelectric receiver, a piezoelectric sounder, a piezoelectric speaker, and a piezoelectric buzzer.

【0002】[0002]

【従来の技術】従来、圧電受話器や圧電ブザーなどの圧
電型電気音響変換器は、円形の圧電セラミック板の片面
に円形の金属板を貼り付けたユニモルフ型振動板を用
い、この振動板の周縁部を円形のケースの中に支持し、
ケースの開口部をカバーで閉鎖した構造のものが一般的
である。しかしながら、ユニモルフ型振動板の場合、電
圧印加によって外径が伸縮するセラミック板を、寸法変
化しない金属板に接着して屈曲振動を得るものであるか
ら、その変位量つまり音圧が小さいという欠点がある。
2. Description of the Related Art Conventionally, piezoelectric electroacoustic transducers such as piezoelectric receivers and buzzers use a unimorph type diaphragm in which a circular metal plate is attached to one side of a circular piezoelectric ceramic plate, and the periphery of the diaphragm is used. Supported in a circular case,
Generally, the case has a structure in which the opening is closed by a cover. However, in the case of a unimorph type diaphragm, since a ceramic plate whose outer diameter expands and contracts when a voltage is applied is adhered to a metal plate that does not change in size to obtain flexural vibration, the displacement amount, that is, the sound pressure is small. is there.

【0003】これに対し、複数の圧電セラミックス層か
らなる積層構造のバイモルフ型振動板が提案されている
(特開2001−95094号公報,特開2002−1
0393号公報)。この振動板は、2層以上の圧電セラ
ミックス層を内部電極を間にして積層するとともに、そ
の表裏主面に外部電極を設けた積層圧電体であって、少
なくとも外側の2層の圧電セラミックス層を厚み方向に
かつ同一方向に分極したものである。上記外部電極と内
部電極との間に交番信号を印加することで、積層圧電体
を全体として屈曲振動させることができる。この場合に
は、厚み方向に順に配置された第1および第2の振動領
域を相互に逆方向に振動させることで、ユニモルフ型に
比べて大きな変位量つまり大きな音圧を得ることができ
る。
On the other hand, a bimorph type diaphragm having a laminated structure composed of a plurality of piezoelectric ceramic layers has been proposed (JP 2001-95094 A, JP 2002-1 A).
No. 0393). This vibration plate is a laminated piezoelectric body in which two or more piezoelectric ceramic layers are laminated with an internal electrode in between, and external electrodes are provided on the front and back main surfaces, and at least two outer piezoelectric ceramic layers are provided. It is polarized in the thickness direction and in the same direction. By applying an alternating signal between the external electrode and the internal electrode, the laminated piezoelectric body can be flexurally vibrated as a whole. In this case, by vibrating the first and second vibrating regions sequentially arranged in the thickness direction in mutually opposite directions, a larger displacement amount, that is, a larger sound pressure can be obtained as compared with the unimorph type.

【0004】[0004]

【発明が解決しようとする課題】図8に一般的な積層圧
電体20の分極方法を示す。積層圧電体20の表裏の外
部電極21,22間に直流電圧Eを印加することによ
り、積層圧電体20の厚み方向において同一方向に分極
している。分極時に発生する積層圧電体20の変形(反
り)は、積層圧電体20を導電体よりなる加圧治具3
0,31の間で加圧することにより抑制している。
FIG. 8 shows a general method for polarizing the laminated piezoelectric material 20. By applying the DC voltage E between the external electrodes 21 and 22 on the front and back of the laminated piezoelectric body 20, the laminated piezoelectric body 20 is polarized in the same direction in the thickness direction. Deformation (warping) of the laminated piezoelectric body 20 that occurs during polarization causes the laminated piezoelectric body 20 to be a pressing jig 3 made of a conductor.
It is suppressed by pressurizing between 0 and 31.

【0005】しかし、上記のような分極方法では、音圧
向上のために圧電体20を薄板化した場合に、圧電体2
0の変形が厚みの減少に反比例して助長され、20mm
×30mm×0.04mmの大きさの圧電体1の場合、
図9のように反りは数mmにも達する。また、加圧治具
30,31によって加圧分極を行った場合でも、分極後
の圧電体20に大きな変形が残留している。さらに、分
極中に異常に大きな変形が生じるにも拘わらず、加圧治
具30,31により強制的に変形を押さえ込んでいるた
め、圧電体20に非常に大きな負荷がかかり、割れや欠
けを生じてしまうという問題を有している。特に、圧電
体20の厚みが50μm以下に薄板化すると、割れ・欠
け不良率は極端に高くなる結果となっていた。
However, in the polarization method as described above, when the piezoelectric body 20 is thinned to improve the sound pressure, the piezoelectric body 2 is
Deformation of 0 is promoted in inverse proportion to the decrease in thickness, 20 mm
In the case of the piezoelectric body 1 having a size of × 30 mm × 0.04 mm,
As shown in FIG. 9, the warp reaches several mm. Further, even when pressure polarization is performed by the pressure jigs 30 and 31, a large deformation remains in the piezoelectric body 20 after polarization. Further, although the deformation is forcibly suppressed by the pressure jigs 30 and 31 despite the abnormally large deformation occurring during polarization, a very large load is applied to the piezoelectric body 20 and cracks or chips are generated. There is a problem that it will end up. In particular, when the thickness of the piezoelectric body 20 is reduced to 50 μm or less, the crack / chip defect rate becomes extremely high.

【0006】そこで、本発明の目的は、分極後に残留す
る積層圧電体の変形を少なくするとともに、割れや欠け
の発生を少なくできる積層圧電体の分極方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a method for polarizing a laminated piezoelectric material which can reduce the deformation of the laminated piezoelectric material remaining after polarization and the occurrence of cracks and chips.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、2層以上の圧電セラミッ
クス層を内部電極を間にして積層するとともに、その表
裏主面に外部電極を設けた積層圧電体であって、少なく
とも外側の2層の圧電セラミックス層を厚み方向にかつ
同一方向に分極する分極方法において、上記内部電極が
グランド電位、一方の外部電極がプラス電位、他方の外
部電極がマイナス電位となるように、上記一方の外部電
極と内部電極との間に第1の直流電界を印加すると同時
に、上記内部電極と他方の外部電極との間に第2の直流
電界を印加することを特徴とする積層圧電体の分極方法
を提供する。
In order to achieve the above object, the invention according to claim 1 laminates two or more piezoelectric ceramic layers with internal electrodes in between, and external electrodes on the front and back main surfaces thereof. In the polarization method of polarizing at least two piezoelectric ceramic layers on the outer side in the thickness direction and in the same direction, the internal electrode is ground potential, one external electrode is positive potential, and the other is A first DC electric field is applied between the one external electrode and the internal electrode so that the external electrode has a negative potential, and at the same time, a second DC electric field is applied between the internal electrode and the other external electrode. There is provided a method for polarizing a laminated piezoelectric material characterized by applying a voltage.

【0008】また、請求項4に記載の発明は、2層以上
の圧電セラミックス層を内部電極を間にして積層すると
ともに、その表裏主面に外部電極を設けた積層圧電体で
あって、上記内部電極がグランド電位、一方の外部電極
がプラス電位、他方の外部電極がマイナス電位となるよ
うに、上記一方の外部電極と内部電極との間に第1の直
流電界を印加すると同時に、上記内部電極と他方の外部
電極との間に第2の直流電界を印加し、外側の2層の圧
電セラミックス層を厚み方向にかつ同一方向に分極した
ことを特徴とする積層圧電体を提供する。
According to a fourth aspect of the present invention, there is provided a laminated piezoelectric body in which two or more piezoelectric ceramic layers are laminated with internal electrodes interposed therebetween, and external electrodes are provided on the front and back main surfaces thereof. The first DC electric field is applied between the one external electrode and the internal electrode so that the internal electrode has a ground potential, one external electrode has a positive potential, and the other external electrode has a negative potential. A laminated piezoelectric body characterized in that a second DC electric field is applied between the electrode and the other external electrode, and the two outer piezoelectric ceramic layers are polarized in the thickness direction and in the same direction.

【0009】本発明の分極方法では、表裏の外部電極間
に直流電界を印加するのではなく、各圧電セラミックス
層に個別の電界を印加して分極している。例えば2層の
圧電セラミックス層を持つ積層圧電体の場合、内部電極
の影響により各層の絶縁抵抗にバラツキが発生し、特に
薄層なセラミックス層を用いた場合、各層のばらつきが
顕著となる。そのため、従来のように表裏の外部電極間
に直流電界を印加すると、一方の層に偏った電圧が印加
され、反りの原因となる。本発明では、それぞれの層に
個別に電界を印加するので、各層の絶縁抵抗にばらつき
があっても、各層に印加される電圧がほぼ等しくなる。
しかも2つの層を同時に分極するので、2つの層のバラ
ンスを取ることができる。そのため、残留変形を少なく
できるだけでなく、分極途中の変形も抑制できる。
In the polarization method of the present invention, instead of applying a DC electric field between the front and back external electrodes, an electric field is individually applied to each piezoelectric ceramic layer for polarization. For example, in the case of a laminated piezoelectric body having two piezoelectric ceramic layers, the insulation resistance of each layer varies due to the influence of the internal electrodes, and especially when a thin ceramic layer is used, the variation of each layer becomes significant. Therefore, when a DC electric field is applied between the front and back external electrodes as in the conventional case, a biased voltage is applied to one layer, which causes warpage. In the present invention, since an electric field is applied to each layer individually, the voltages applied to each layer are substantially the same even if the insulation resistance of each layer varies.
Moreover, since the two layers are polarized at the same time, the two layers can be balanced. Therefore, not only residual deformation can be reduced, but also deformation during polarization can be suppressed.

【0010】請求項2のように、積層圧電体の厚さを5
0μm以下とした場合に、本発明の効果が顕著となる。
厚みが50μmより厚い場合には、内部電極による各層
の絶縁抵抗のばらつきは比較的小さいが、50μm以下
の厚みの積層圧電体の場合には、各層の絶縁抵抗のばら
つきが非常に大きくなり、例えば数十倍程度になる。そ
のため、このような薄層の積層圧電体を分極した時の変
形が非常に大きくなるからである。
According to a second aspect of the present invention, the thickness of the laminated piezoelectric material is 5
When the thickness is 0 μm or less, the effect of the present invention becomes remarkable.
When the thickness is thicker than 50 μm, the variation of the insulation resistance of each layer due to the internal electrodes is relatively small, but in the case of the laminated piezoelectric body having the thickness of 50 μm or less, the variation of the insulation resistance of each layer becomes very large. It becomes about several tens of times. Therefore, the deformation of such a laminated piezoelectric material having a thin layer becomes extremely large when polarized.

【0011】請求項3のように、直流電界の印加を、積
層圧電体の両主面を対向方向に加圧しながら行うのが望
ましい。積層圧電体を加圧せずに分極することも可能で
あるが、加圧した場合には、残留変形量を無加圧に比べ
て数分の1に低減させることができる。また、本発明で
は分極途中の変形も小さいので、加圧による圧電体の割
れや欠けを少なくすることができる。
As described in claim 3, it is desirable to apply the DC electric field while applying pressure to both main surfaces of the laminated piezoelectric material in opposite directions. Although it is possible to polarize the laminated piezoelectric material without applying pressure, the amount of residual deformation can be reduced to a fraction of that when no pressure is applied. Further, in the present invention, since the deformation during polarization is small, it is possible to reduce the cracking or chipping of the piezoelectric body due to the pressurization.

【0012】本発明の積層圧電体は、2層構造に限るも
のではなく、3層以上であってもよい。例えば3層構造
の場合には、内部電極に挟まれた中間層は分極されない
ダミー層となる。3層構造の場合、中間層の厚みを外側
の2層に比べて厚くしてもよい。この場合には、外側の
2層を薄くできるので、同一電圧でもより大きな変位量
が得られ、より大きな音圧を得ることができる。
The laminated piezoelectric material of the present invention is not limited to the two-layer structure and may have three or more layers. For example, in the case of a three-layer structure, the intermediate layer sandwiched by the internal electrodes is a non-polarized dummy layer. In the case of a three-layer structure, the intermediate layer may be thicker than the outer two layers. In this case, since the outer two layers can be thinned, a larger displacement amount can be obtained even with the same voltage, and a larger sound pressure can be obtained.

【0013】[0013]

【発明の実施の形態】図1は本発明にかかる積層圧電体
の一例を示す。本実施例の積層圧電体1は、屈曲振動を
利用した圧電型電気音響変換器の振動板として用いられ
るものである。積層圧電体1は、PZT系の2層の圧電
セラミックス層2,3を積層したものであり、積層圧電
体1の表裏主面には外部電極4,5が形成され、セラミ
ックス層2,3の間には内部電極6が形成されている。
2つのセラミックス層2,3は、図1に矢印Pで示すよ
うに厚み方向において同一方向に分極されている。積層
圧電体1の端面には、外部電極4,5を接続する端面電
極7と、内部電極6を外部に引き出すための端面電極8
とが形成されている。
1 shows an example of a laminated piezoelectric material according to the present invention. The laminated piezoelectric body 1 of the present embodiment is used as a diaphragm of a piezoelectric electroacoustic transducer that utilizes bending vibration. The laminated piezoelectric body 1 is formed by laminating two PZT-based piezoelectric ceramic layers 2 and 3, and external electrodes 4 and 5 are formed on the front and back main surfaces of the laminated piezoelectric body 1 to form the ceramic layers 2 and 3. An internal electrode 6 is formed between them.
The two ceramic layers 2 and 3 are polarized in the same direction in the thickness direction as indicated by an arrow P in FIG. On the end face of the laminated piezoelectric body 1, an end face electrode 7 for connecting the external electrodes 4 and 5 and an end face electrode 8 for pulling out the internal electrode 6 to the outside.
And are formed.

【0014】上記構造の積層圧電体1において、外部電
極4,5と内部電極6との間に交番電圧を印加すると、
表側および裏側のセラミックス層2,3に働く電界方向
が厚み方向において逆方向になる。一方、両セラミック
ス層2,3の分極方向は厚み方向において同一方向であ
る。圧電セラミックスは、分極方向と電界方向とが同一
方向であれば平面方向に縮む性質を有し、分極方向と電
界方向とが逆方向であれば平面方向に伸びる性質を有す
る。したがって、上記のように交番電圧を印加すれば、
一方のセラミックス層が伸びた時、他方のセラミックス
層が縮み、全体として積層体1は周期的な屈曲振動を生
じることになる。この変位量はユニモルフ型振動板に比
べて大きくなるので、音圧も増大する。
In the laminated piezoelectric body 1 having the above structure, when an alternating voltage is applied between the external electrodes 4, 5 and the internal electrode 6,
The electric field directions acting on the front and back ceramic layers 2 and 3 are opposite to each other in the thickness direction. On the other hand, the polarization directions of both ceramic layers 2 and 3 are the same in the thickness direction. Piezoelectric ceramics have the property of contracting in the plane direction if the polarization direction and the electric field direction are the same direction, and have the property of expanding in the plane direction if the polarization direction and the electric field direction are opposite. Therefore, if an alternating voltage is applied as described above,
When one ceramic layer expands, the other ceramic layer contracts, and the laminated body 1 as a whole causes periodic bending vibration. Since this displacement amount is larger than that of the unimorph type diaphragm, the sound pressure also increases.

【0015】上記積層圧電体1は次のようにして製造さ
れる。まず裏側セラミックス層3になる圧電セラミック
スのグリーンシートを準備し、その片面に内部電極とな
る導電ペースト6を塗布した後、表側セラミックス層2
になる圧電セラミックスのグリーンシートを積層した。
なお、導電ペースト6の印刷パターンは、例えば図2の
(a)のようにした。そして、この積層体を約1100
℃で一体的に焼成し、縦×横×厚み=20mm×30m
m×0.040mmの圧電体ユニット1Aを得た。焼成
後、圧電体ユニット1Aの表裏面に、図2の(b)のよ
うに薄膜形成法により外部電極4,5を形成するととも
に、端面に内部電極6を外部に引き出すための引出電極
6a(図3参照)を形成した。
The laminated piezoelectric material 1 is manufactured as follows. First, a green sheet of piezoelectric ceramics to be the back side ceramics layer 3 is prepared, and a conductive paste 6 to be an internal electrode is applied to one side thereof, and then the front side ceramics layer 2 is formed.
The green sheets of piezoelectric ceramics are laminated.
The printed pattern of the conductive paste 6 is, for example, as shown in FIG. Then, about 1100 this laminated body
Baked integrally at ° C, length x width x thickness = 20 mm x 30 m
A piezoelectric body unit 1A of m × 0.040 mm was obtained. After firing, external electrodes 4 and 5 are formed on the front and back surfaces of the piezoelectric body unit 1A by a thin film forming method as shown in FIG. 2B, and lead electrodes 6a ( (See FIG. 3).

【0016】次に、外部電極4,5と内部電極6の引出
電極6aとを用いて、図3のように、圧電体ユニット1
Aの層ごとに個別に直流電界E1,E2を印加し、分極
処理を行った。具体的には、電源E1のプラス側を一方
の外部電極4に、電源E2のマイナス側を他方の外部電
極5に接続し、電源E1のマイナス側と電源E2のプラ
ス側とを内部電極6に接続された引出電極6aと共にグ
ランドに接続した。そして、加圧治具10,11を用い
て圧電体ユニット1Aを全面加圧しながら分極した。表
側のセラミックス層2の分極条件は、図4のように最大
電圧までの傾斜時間:60sec、電界:2.50kV
/mm(50V/20μm)、保持時間×保持温度=3
0sec×50℃で一定とした。一方、裏側のセラミッ
クス層3の分極条件は、最大電圧までの傾斜時間:60
sec、電界:−2.5kV/mm(50V/20μ
m)、保持時間×保持温度=30sec×50℃で一定
とした。また、加圧治具10,11は約15g/cm2
の荷重を付加した。分極された圧電体ユニット1Aを素
子に切り出した後、その端面に外部電極4,5同士を接
続する端面電極7と内部電極6を外部に引き出すための
端面電極8とを形成することで、図1に示す積層圧電体
1を得た。
Next, using the external electrodes 4 and 5 and the extraction electrode 6a of the internal electrode 6, as shown in FIG.
Direct current electric fields E1 and E2 were individually applied to each layer of A to perform polarization treatment. Specifically, the positive side of the power source E1 is connected to one external electrode 4, the negative side of the power source E2 is connected to the other external electrode 5, and the negative side of the power source E1 and the positive side of the power source E2 are connected to the internal electrode 6. It was connected to the ground together with the connected extraction electrode 6a. Then, the piezoelectric unit 1A was polarized while pressing the entire surface of the piezoelectric unit 1A using the pressing jigs 10 and 11. As shown in FIG. 4, the polarization condition of the ceramic layer 2 on the front side is as follows: ramp time to maximum voltage: 60 sec, electric field: 2.50 kV
/ Mm (50 V / 20 μm), holding time × holding temperature = 3
It was kept constant at 0 sec × 50 ° C. On the other hand, the polarization condition of the ceramic layer 3 on the back side is that the inclination time to the maximum voltage is 60:
sec, electric field: −2.5 kV / mm (50 V / 20 μ
m), holding time × holding temperature = 30 sec × 50 ° C. The pressure jigs 10 and 11 are about 15 g / cm 2
Was added. After cutting out the polarized piezoelectric unit 1A into elements, an end face electrode 7 for connecting the external electrodes 4 and 5 and an end face electrode 8 for drawing out the internal electrode 6 to the outside are formed on the end face, The laminated piezoelectric material 1 shown in FIG.

【0017】一方、比較例として、次のような方法で積
層圧電体を製造した。まず、圧電セラミックスのグリー
ンシートを準備し、その片面に導電ペーストを図2の
(a)と同様な印刷パターンで塗布した後、印刷してい
ないグリーンシートを積層した。この積層体を約110
0℃で一体的に焼成し、20mm×30mm×0.04
0mmの圧電体ユニットを得た。焼成後、圧電体ユニッ
トの表裏面に薄膜形成法により外部電極4,5を形成し
た。次に、外部電極4,5を用いて、図8と同様に、圧
電体ユニット全体に直流電界Eを印加し、分極処理を行
った。分極条件は、最大電圧までの傾斜時間:60se
c、電界:2.50kV/mm(100V/40μ
m)、保持時間×保持温度=30sec×50℃で一定
とした。また、加圧治具30,31の間に約15g/c
2 の荷重を付加し、加圧を行った。分極された圧電体
ユニットを素子に切り出した後、その端面に外部電極
4,5同士を接続する端面電極7と内部電極6を外部に
引き出すための端面電極8とを形成することで、図1と
同様な積層圧電体1を得た。
On the other hand, as a comparative example, a laminated piezoelectric material was manufactured by the following method. First, a green sheet of piezoelectric ceramics was prepared, a conductive paste was applied to one surface of the green sheet in the same printing pattern as in FIG. 2A, and then unprinted green sheets were laminated. This stack is about 110
Integrally baked at 0 ° C, 20mm × 30mm × 0.04
A 0 mm piezoelectric unit was obtained. After firing, external electrodes 4 and 5 were formed on the front and back surfaces of the piezoelectric unit by a thin film forming method. Next, using the external electrodes 4 and 5, a DC electric field E was applied to the entire piezoelectric unit to perform polarization treatment, as in FIG. The polarization condition is a ramp time to the maximum voltage: 60 se
c, electric field: 2.50 kV / mm (100 V / 40 μ
m), holding time × holding temperature = 30 sec × 50 ° C. In addition, about 15 g / c between the pressing jigs 30 and 31
A load of m 2 was applied and pressure was applied. After cutting out the polarized piezoelectric unit into elements, an end face electrode 7 for connecting the external electrodes 4 and 5 and an end face electrode 8 for pulling out the internal electrode 6 to the outside are formed on the end face thereof. A laminated piezoelectric material 1 similar to that was obtained.

【0018】図5は分極後のユニットの残留そり量を測
定したものである。本発明では、0.08〜0.57m
mの範囲で分布しており、平均そり量は0.26mmで
あった。一方、比較例では、0.15〜1.40mmの
範囲で分布しており、平均そり量は0.63mmであっ
た。上記結果から明らかなように、本発明方法による分
極後の残留そり量は、比較例に比べて約1/3に低減し
ていることがわかる。素子として完成品工程で不良を出
さないためには、素子でのそり量を0.2mm以下、つ
まりユニットのそり量を0.60mm以下とする必要が
ある。本発明ではほぼ全量が良品となったが、比較例で
は約50%が不良となった。
FIG. 5 shows the measured amount of residual warpage of the unit after polarization. In the present invention, 0.08 to 0.57 m
It was distributed in the range of m, and the average amount of warpage was 0.26 mm. On the other hand, in the comparative example, the particles were distributed in the range of 0.15 to 1.40 mm and the average warpage amount was 0.63 mm. As is clear from the above results, the amount of residual warpage after polarization by the method of the present invention is reduced to about 1/3 of that of the comparative example. In order to prevent defects in the finished product process as an element, the amount of warp in the element must be 0.2 mm or less, that is, the amount of warp in the unit must be 0.60 mm or less. In the present invention, almost all of the products were non-defective, but in the comparative example, about 50% were defective.

【0019】図5は圧電体ユニットの全面を加圧治具に
よって加圧した状態で分極を行い、その後の残留そり量
を比較したものであるが、分極中における圧電体ユニッ
トの変形量を求めるため、図6にほぼフリー状態でのユ
ニットのそり量の変化を示す。図6は本発明方法と従来
方法による比較例との分極中のそりの変化を示したもの
である。測定温度は50℃である。本発明方法では、8
gの分銅をユニットの中央部に配置し、電圧を2層個別
に50Vまで60secの傾斜をつけて印加し、等間隔
(8点)での最大そりを逐次測定した。そして、最大電
圧50Vで30sec保持し、そりを測定した。その
後、電圧を取り去り、残留そり量を測定した。一方、従
来方法でも同様に、8gの位置決め用分銅をユニットの
中央部に配置し、電圧を2層同時に100Vまで60s
ecの傾斜をつけて印加し、等間隔(8点)での最大そ
りを逐次測定した。そして、最大電圧100Vで30s
ec保持し、そりを測定した。その後、電圧を取り去
り、残留そり量を測定した。図6の横軸は、本発明では
1層当たりの電圧であり、比較例では2層の合計電圧で
ある。したがって、本発明における50Vは比較例の1
00Vに相当する。
FIG. 5 shows a comparison of residual warpage after polarization is performed with the entire surface of the piezoelectric unit pressed by a pressing jig. The amount of deformation of the piezoelectric unit during polarization is obtained. Therefore, FIG. 6 shows a change in the warp amount of the unit in a substantially free state. FIG. 6 shows changes in warpage during polarization between the method of the present invention and the comparative example by the conventional method. The measurement temperature is 50 ° C. In the method of the present invention, 8
A weight g of g was placed in the center of the unit, a voltage was applied to each of the two layers up to 50 V with an inclination of 60 sec, and the maximum warpage at equal intervals (8 points) was sequentially measured. Then, the maximum voltage was maintained at 50 V for 30 seconds, and the warpage was measured. Then, the voltage was removed and the amount of residual warpage was measured. On the other hand, also in the conventional method, similarly, a positioning weight of 8 g is arranged in the central part of the unit, and the voltage is simultaneously applied to two layers at 100 V for 60 seconds.
It was applied with an inclination of ec, and the maximum warpage at equal intervals (8 points) was sequentially measured. And 30s at maximum voltage 100V
ec was held and the warpage was measured. Then, the voltage was removed and the amount of residual warpage was measured. The horizontal axis of FIG. 6 is the voltage per layer in the present invention, and is the total voltage of the two layers in the comparative example. Therefore, 50V in the present invention is 1 of Comparative Example.
It corresponds to 00V.

【0020】図6から明らかなように、本発明では10
〜25Vで約2mmの最大そりを生じる。しかし、電圧
をさらに増大させても、そりは増大しない。電圧を取り
去った条件では、約0.5mmの残留そりがある。一
方、比較例の場合には、電圧を増大させるにつれてそり
量も単純増大しており、100Vで約5mmの最大そり
を生じる。また、各試料によってそり量のばらつきも大
きい。電圧を取り去った条件では、約3mmの大きなそ
りが残留する。以上の結果から、本発明方法では、分極
中における変形量も従来方法に比べて小さいことがわか
る。そのため、分極中、加圧治具10,11により強制
的に押さえ込んでも、圧電体ユニット1Aにかかる負荷
が小さく、割れや欠けを少なくすることができる。な
お、全面加圧した場合には、加圧しない場合に比べて、
残留そりを約半分に低減できた。
As is apparent from FIG. 6, in the present invention, 10
~ 25V produces a maximum warpage of about 2 mm. However, increasing the voltage further does not increase the warpage. Under the condition where the voltage is removed, there is a residual sled of about 0.5 mm. On the other hand, in the case of the comparative example, the amount of warpage simply increases as the voltage increases, and a maximum warpage of about 5 mm occurs at 100V. Also, the amount of warpage varies greatly among samples. Under the condition where the voltage is removed, a large warp of about 3 mm remains. From the above results, it is understood that the deformation amount during polarization is smaller in the method of the present invention than in the conventional method. Therefore, even if the pressing jigs 10 and 11 are forcibly pressed during polarization, the load applied to the piezoelectric body unit 1A is small and cracks and chips can be reduced. In addition, compared with the case where no pressure is applied,
The residual sled could be reduced to about half.

【0021】上記実施例では、表側のセラミック層2に
直流電界を印加する電源E1と、裏側のセラミック層3
に直流電界を印加する電源E2とを同一電圧(50V)
としたが、両方のセラミック層2,3の絶縁抵抗比率を
予め測定しておき、その絶縁抵抗比率に応じて電源E
1,E2の電圧比率を調整してもよい。この場合には、
積層圧電体の変形量をさらに小さくすることができる。
In the above embodiment, the power source E1 for applying a DC electric field to the front ceramic layer 2 and the back ceramic layer 3 are used.
The same voltage (50V) as the power source E2 that applies a DC electric field to the
However, the insulation resistance ratio of both ceramic layers 2 and 3 is measured in advance, and the power source E is determined according to the insulation resistance ratio.
The voltage ratio of 1 and E2 may be adjusted. In this case,
The amount of deformation of the laminated piezoelectric body can be further reduced.

【0022】図7は本発明にかかる積層圧電体の分極方
法の第2実施例を示す。この実施例は、3層構造よりな
る積層圧電体1’の分極方法を示すものである。セラミ
ックス層2a,2b,2cの間には内部電極6b,6c
が形成され、表裏主面には外部電極4,5が形成されて
いる。電源E1のプラス側を外部電極4に、電源E2の
マイナス側を外部電極5に接続し、電源E1のマイナス
側と電源E2のプラス側とを、内部電極6b,6cに接
続された引出電極6aと共にグランドに接続すると、外
側の2つのセラミックス層2a,2cは、矢印Pで示す
ように厚み方向において同一方向に分極される。なお、
内部電極6b,6cに挟まれた中間層2bは分極されな
いダミー層となる。
FIG. 7 shows a second embodiment of the method for polarizing the laminated piezoelectric material according to the present invention. This example shows a polarization method of a laminated piezoelectric body 1'having a three-layer structure. Internal electrodes 6b, 6c are provided between the ceramic layers 2a, 2b, 2c.
And external electrodes 4 and 5 are formed on the front and back main surfaces. The plus side of the power source E1 is connected to the external electrode 4, the minus side of the power source E2 is connected to the external electrode 5, and the minus side of the power source E1 and the plus side of the power source E2 are connected to the internal electrodes 6b and 6c. When it is connected to the ground together with it, the two outer ceramic layers 2a and 2c are polarized in the same direction in the thickness direction as shown by an arrow P. In addition,
The intermediate layer 2b sandwiched between the internal electrodes 6b and 6c becomes a dummy layer which is not polarized.

【0023】3層構造の場合、圧電体1’としての強度
上必要な厚みを確保しながら、外側の2層2a,2cを
2層構造の場合に比べて薄くできるので、同一電圧を印
加した場合でも、圧電体1’の大きな変位量が得られ、
より大きな音圧を得ることができる。なお、3層のう
ち、中間層2bの厚みを外側の2層2a,2bと同一厚
みとしてもよいし、厚くしてもよい。厚くした場合に
は、外側の2層2a,2bの厚みをさらに薄くできる。
In the case of the three-layer structure, the outer two layers 2a and 2c can be made thinner than in the case of the two-layer structure, while the thickness required for the strength of the piezoelectric body 1'is secured, so that the same voltage is applied. Even if a large displacement amount of the piezoelectric body 1'is obtained,
Greater sound pressure can be obtained. Of the three layers, the intermediate layer 2b may have the same thickness as the outer two layers 2a and 2b, or may have a larger thickness. When the thickness is increased, the thickness of the outer two layers 2a and 2b can be further reduced.

【0024】本発明は上記実施例に限定されるものでは
なく、本発明の趣旨を逸脱しない範囲で種々変更が可能
である。上記実施例では、圧電セラミック層が2層また
は3層の構造の例について説明したが、4層以上であっ
てもよい。ただし、分極時、内部電極は全てグランドに
接続されるので、外側の2層以外はすべて分極されない
ダミー層となる。上記実施例では、積層圧電体の端面に
内部電極と導通する端面電極を形成し、この端面電極を
介して外部へ引き出すようにしたが、これに限るもので
はない。すなわち、特開昭61−205100号公報の
ようにスルーホールを介して内部電極を外部へ引き出し
てもよいし、スリット状の溝あるいは穴を介して外部へ
引き出してもよい。上記実施例の積層圧電体の製造方法
は、セラミックグリーンシートを電極膜を介して積層
し、この積層体を同時焼成して焼結積層体を得た後、こ
の焼結積層体を分極処理するものであるが、この方法に
代えて、予め焼成した2枚以上の圧電セラミックス板を
積層接着した後、分極処理してもよい。ただし、積層後
に焼成する前者の製造方法は、予め焼成したものを積層
する後者の方法に比べて、圧電体の厚みを格段に薄くで
き、音圧を大きくできるので、音響変換効率に優れた振
動板を得ることが可能である。本発明の積層圧電体は、
圧電セラミックス層のみで構成されたものに限らず、圧
電体の片面または両面に樹脂フィルムなどの補強シート
を貼り付けてもよい。但し、この補強シートはユニモル
フ型振動板の金属板とは異なり、積層体の割れなどを防
止するためのものであり、積層体の屈曲振動を阻害しな
いものが望ましい。
The present invention is not limited to the above embodiments, but various modifications can be made without departing from the spirit of the present invention. In the above embodiment, an example of the structure in which the piezoelectric ceramic layer has two layers or three layers has been described, but it may have four or more layers. However, at the time of polarization, all the internal electrodes are connected to the ground, so that all layers except the outer two layers are dummy layers that are not polarized. In the above-described embodiment, the end face electrode that is electrically connected to the internal electrode is formed on the end face of the laminated piezoelectric body, and the end face electrode is drawn out to the outside through the end face electrode, but the present invention is not limited to this. That is, the internal electrodes may be drawn out through the through holes as in JP-A-61-205100, or may be drawn out through the slit-shaped grooves or holes. In the method for manufacturing the laminated piezoelectric body of the above-mentioned embodiment, the ceramic green sheets are laminated via the electrode film, the laminated body is simultaneously fired to obtain a sintered laminated body, and then the sintered laminated body is polarized. Instead of this method, two or more piezoelectric ceramic plates that have been fired in advance may be laminated and adhered, and then the polarization treatment may be performed. However, the former manufacturing method in which firing is performed after lamination can significantly reduce the thickness of the piezoelectric body and increase the sound pressure as compared with the latter method in which firing is performed in advance, so vibration with excellent acoustic conversion efficiency can be achieved. It is possible to obtain a plate. The laminated piezoelectric material of the present invention is
The piezoelectric sheet is not limited to being composed of only the piezoelectric ceramic layer, and a reinforcing sheet such as a resin film may be attached to one surface or both surfaces of the piezoelectric body. However, unlike the metal plate of the unimorph type diaphragm, this reinforcing sheet is for preventing cracks and the like of the laminate, and is preferably one that does not hinder the flexural vibration of the laminate.

【0025】[0025]

【発明の効果】以上の説明で明らかなように、請求項1
に係る発明によれば、2層以上の圧電セラミックス層を
内部電極を間にして積層するとともに、その表裏主面に
外部電極を設けた積層圧電体に対し、内部電極がグラン
ド電位、一方の外部電極がプラス電位、他方の外部電極
がマイナス電位となるように、一方の外部電極と内部電
極との間に第1の直流電界を印加すると同時に、内部電
極と他方の外部電極との間に第2の直流電界を印加する
ことで、外側の2層の圧電セラミックス層を厚み方向に
かつ同一方向に分極するものであるから、従来のような
外部電極間に電界を印加する方法に比べて、分極後に残
留する積層圧電体の変形を小さくすることができ、良質
の積層圧電体を得ることができる。また、本発明ではそ
れぞれの層に個別に電界を印加するので、分極途中の変
形も抑制でき、加圧による圧電体の割れや欠けを少なく
することができる。そのため、残留変形量を無加圧に比
べて数分の1に低減させることができる。
As is apparent from the above description, claim 1
According to the invention of claim 2, the piezoelectric ceramic layer is formed by laminating two or more piezoelectric ceramic layers with the internal electrodes in between, and the external electrodes are provided on the front and back main surfaces thereof. A first DC electric field is applied between one external electrode and the internal electrode so that the electrode has a positive potential and the other external electrode has a negative potential, and at the same time, a first DC electric field is applied between the internal electrode and the other external electrode. By applying a DC electric field of 2, the two outer piezoelectric ceramic layers are polarized in the thickness direction and in the same direction, so compared with the conventional method of applying an electric field between external electrodes, The deformation of the laminated piezoelectric material remaining after polarization can be reduced, and a laminated piezoelectric material of good quality can be obtained. In addition, in the present invention, since an electric field is applied to each layer individually, deformation during polarization can be suppressed, and cracking or chipping of the piezoelectric body due to pressure can be reduced. Therefore, the amount of residual deformation can be reduced to a fraction of that when no pressure is applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる積層圧電体の第1実施例の断面
図である。
FIG. 1 is a sectional view of a first embodiment of a laminated piezoelectric material according to the present invention.

【図2】内部電極および外部電極のパターン図である。FIG. 2 is a pattern diagram of internal electrodes and external electrodes.

【図3】図1に示す積層圧電体の分極方法を示す図であ
る。
FIG. 3 is a diagram showing a polarization method of the laminated piezoelectric material shown in FIG.

【図4】分極時における電圧印加プロファイル図であ
る。
FIG. 4 is a voltage application profile diagram during polarization.

【図5】本発明と比較従来例との分極後の残留そり量の
分布図である。
FIG. 5 is a distribution chart of residual warpage after polarization of the present invention and a comparative conventional example.

【図6】本発明と比較従来例との無加圧分極時における
電圧−そり量の変化図である。
FIG. 6 is a voltage-warpage amount change diagram during non-pressure polarization of the present invention and a comparative conventional example.

【図7】本発明にかかる積層圧電体の第2実施例の分極
方法を示す図である。
FIG. 7 is a diagram showing a polarization method of a second embodiment of the laminated piezoelectric material according to the present invention.

【図8】従来の積層圧電体の分極方法を示す図である。FIG. 8 is a diagram showing a conventional method for polarizing a laminated piezoelectric material.

【図9】従来の積層圧電体の残留そりを示す図である。FIG. 9 is a diagram showing residual warpage of a conventional laminated piezoelectric material.

【符号の説明】[Explanation of symbols]

1A 圧電体ユニット 1,1’ 積層圧電体 2,3,2a〜2c セラミックス層 4,5 外部電極 6,6b,6c 内部電極 E1,E2 直流電源 10,11 加圧治具 1A Piezoelectric unit 1,1 'laminated piezoelectric body 2,3,2a to 2c Ceramics layer 4, 5 External electrode 6,6b, 6c Internal electrodes E1, E2 DC power supply 10,11 Pressure jig

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井山 清司 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 (72)発明者 吉野 芳正 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyama Iyama             Stock number 2 26-10 Tenjin, Nagaokakyo-shi, Kyoto             Murata Manufacturing Co., Ltd. (72) Inventor Yoshimasa Yoshimasa             Stock number 2 26-10 Tenjin, Nagaokakyo-shi, Kyoto             Murata Manufacturing Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】2層以上の圧電セラミックス層を内部電極
を間にして積層するとともに、その表裏主面に外部電極
を設けた積層圧電体であって、少なくとも外側の2層の
圧電セラミックス層を厚み方向にかつ同一方向に分極す
る分極方法において、上記内部電極がグランド電位、一
方の外部電極がプラス電位、他方の外部電極がマイナス
電位となるように、上記一方の外部電極と内部電極との
間に第1の直流電界を印加すると同時に、上記内部電極
と他方の外部電極との間に第2の直流電界を印加するこ
とを特徴とする積層圧電体の分極方法。
1. A laminated piezoelectric body in which two or more piezoelectric ceramic layers are laminated with an internal electrode interposed therebetween, and external electrodes are provided on the front and back main surfaces thereof, and at least two outer piezoelectric ceramic layers are provided. In the polarization method of polarizing in the thickness direction and in the same direction, the one external electrode and the internal electrode are so arranged that the internal electrode has a ground potential, one external electrode has a positive potential, and the other external electrode has a negative potential. A method for polarizing a laminated piezoelectric material, characterized in that a second DC electric field is applied between the internal electrode and the other external electrode at the same time as applying a first DC electric field therebetween.
【請求項2】上記積層圧電体の厚さは50μm以下であ
ることを特徴とする請求項1に記載の積層圧電体の分極
方法。
2. The polarization method for a laminated piezoelectric material according to claim 1, wherein the thickness of the laminated piezoelectric material is 50 μm or less.
【請求項3】上記直流電界の印加を、積層圧電体の両主
面を対向方向に加圧しながら行うことを特徴とする請求
項1または2に記載の積層圧電体の分極方法。
3. The method for polarizing a laminated piezoelectric material according to claim 1, wherein the application of the DC electric field is performed while pressing both main surfaces of the laminated piezoelectric material in opposite directions.
【請求項4】2層以上の圧電セラミックス層を内部電極
を間にして積層するとともに、その表裏主面に外部電極
を設けた積層圧電体であって、上記内部電極がグランド
電位、一方の外部電極がプラス電位、他方の外部電極が
マイナス電位となるように、上記一方の外部電極と内部
電極との間に第1の直流電界を印加すると同時に、上記
内部電極と他方の外部電極との間に第2の直流電界を印
加し、外側の2層の圧電セラミックス層を厚み方向にか
つ同一方向に分極したことを特徴とする積層圧電体。
4. A laminated piezoelectric body in which two or more piezoelectric ceramic layers are laminated with an internal electrode interposed therebetween, and external electrodes are provided on the front and back main surfaces thereof, wherein the internal electrode is ground potential and one external A first DC electric field is applied between the one external electrode and the internal electrode so that the electrode has a positive potential and the other external electrode has a negative potential, and at the same time, between the internal electrode and the other external electrode. A laminated piezoelectric body characterized in that a second DC electric field is applied to the two outermost piezoelectric ceramic layers to polarize in the thickness direction and in the same direction.
JP2002082213A 2002-03-25 2002-03-25 Method for polarizing laminated piezoelectric material Expired - Fee Related JP4082053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082213A JP4082053B2 (en) 2002-03-25 2002-03-25 Method for polarizing laminated piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082213A JP4082053B2 (en) 2002-03-25 2002-03-25 Method for polarizing laminated piezoelectric material

Publications (2)

Publication Number Publication Date
JP2003282993A true JP2003282993A (en) 2003-10-03
JP4082053B2 JP4082053B2 (en) 2008-04-30

Family

ID=29230482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082213A Expired - Fee Related JP4082053B2 (en) 2002-03-25 2002-03-25 Method for polarizing laminated piezoelectric material

Country Status (1)

Country Link
JP (1) JP4082053B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759792B2 (en) * 2001-02-01 2004-07-06 Murata Manufacturing Co., Ltd Polarization method of a multi-layered piezoelectric body
DE102004009140A1 (en) * 2004-02-25 2005-09-22 Siemens Ag Method and device for polarizing a piezoelectric actuator
WO2014105898A1 (en) * 2012-12-26 2014-07-03 Applied Cavitation, Inc. Piezoelectric devices
CN110137340A (en) * 2019-04-08 2019-08-16 杭州士兰微电子股份有限公司 The polarization method of sensor module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759792B2 (en) * 2001-02-01 2004-07-06 Murata Manufacturing Co., Ltd Polarization method of a multi-layered piezoelectric body
DE102004009140A1 (en) * 2004-02-25 2005-09-22 Siemens Ag Method and device for polarizing a piezoelectric actuator
DE102004009140B4 (en) * 2004-02-25 2006-10-05 Siemens Ag Method and device for polarizing a piezoelectric actuator
WO2014105898A1 (en) * 2012-12-26 2014-07-03 Applied Cavitation, Inc. Piezoelectric devices
EP2939281A4 (en) * 2012-12-26 2016-04-20 Applied Cavitation Inc Piezoelectric devices
CN105900253A (en) * 2012-12-26 2016-08-24 应用空化有限公司 Piezoelectric device
US9478728B2 (en) 2012-12-26 2016-10-25 Applied Cavitation, Inc. Piezoelectric devices
CN110137340A (en) * 2019-04-08 2019-08-16 杭州士兰微电子股份有限公司 The polarization method of sensor module
CN110137340B (en) * 2019-04-08 2023-06-20 杭州士兰微电子股份有限公司 Method for polarizing sensor assembly

Also Published As

Publication number Publication date
JP4082053B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US5153859A (en) Laminated piezoelectric structure and process of forming the same
US6626526B2 (en) Layered unit provided with piezoelectric ceramics, method for producing the same, and ink jet printing head employing the same
JP5409198B2 (en) Vibrator
JP2738706B2 (en) Manufacturing method of laminated piezoelectric element
JP4295238B2 (en) Piezoelectric sound generator
JP2010177867A (en) Piezoelectric speaker
WO2010035437A1 (en) Piezoelectric stack
US9180668B2 (en) Piezoelectric actuator, ink jet head, and method for producing piezoelectric actuator
JP2010161286A (en) Laminated piezoelectric element and method of manufacturing the same
JP5043311B2 (en) Piezoelectric laminate and manufacturing method thereof, piezoelectric speaker, electronic device
JP4686975B2 (en) Multilayer piezoelectric element and manufacturing method thereof
JP2003282993A (en) Polarizing method of laminated piezoelectric member and laminated piezoelectric member polarized by the polarizing method
JP5319195B2 (en) Vibrator
JP2020170868A5 (en)
JP4175535B2 (en) Multilayer piezoelectric vibrator and manufacturing method thereof
JP2004080193A (en) Ultrasonic transducer and manufacturing method thereof
JPS6372171A (en) Manufacture of electrostrictive driver
JPH0257353B2 (en)
JP2004328973A (en) Highly integrated piezoelectric actuator and ink jet recording head provided with actuator
JP2003110159A (en) Stuck structure between piezoelectric ceramics sheets, and ink jet recording head using the structure
JP4349950B2 (en) Ultrasonic motor
JP2003133898A (en) Laminated piezoelectric vibrator
JP2009194226A (en) Multilayer piezoelectric device and manufacturing method for the same
JPH08222777A (en) Piezoelectric element and its manufacture
JPH01261879A (en) Lamination type displacement element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4082053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees