US2870521A - Method of adjusting the resonant frequency of a vibrating system - Google Patents

Method of adjusting the resonant frequency of a vibrating system Download PDF

Info

Publication number
US2870521A
US2870521A US490229A US49022955A US2870521A US 2870521 A US2870521 A US 2870521A US 490229 A US490229 A US 490229A US 49022955 A US49022955 A US 49022955A US 2870521 A US2870521 A US 2870521A
Authority
US
United States
Prior art keywords
transducer
resonant frequency
designates
numeral
planes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US490229A
Inventor
Rudnick Norman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulton Industries Inc
Original Assignee
Gulton Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by Gulton Industries Inc filed Critical Gulton Industries Inc
Priority to US490229A priority Critical patent/US2870521A/en
Application granted granted Critical
Publication of US2870521A publication Critical patent/US2870521A/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23947157&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US2870521(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezo-electric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezo-electric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S116/00Signals and indicators
    • Y10S116/19Wave generator with resonating element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S116/00Signals and indicators
    • Y10S116/30Remote TV tuner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Description

Jan. 27, 1959 RUDNICK 2,870,521 METHOD 0F ADJUSTING THE RESONANT FREQUENCY 0F A VIBRATING SYSTEM Filed Feb. 24, 1955 mm /4 EN E L OE Pl a YM a .3 wc R LI Cm E Y OP T ll mm r@ m VD C mi. LENGTH JNVENTOR. Nom/)FwunN/CK Trae/Ef 2870521 m2 iN 29";/251135 United States Patent C) METHOD OF ADJUSTING THE RESONANT FRE- QUENCY OF A VIBRATING SYSTEM Norman Rudnick, New Brunswick, N. J., assignor to Gulton Industries, Inc., Metuchen, N. J., a corporation of New Jersey Application February 24, 1955, Serial No. 490,229
3 Claims. (Cl. 29-25.35)
My invention relates to methods of adjusting the resonant frequency of vibrating systems and in particular to adjusting the resonant frequencies of electromechanical systems without changing the system dimensions.
Due to the inherent variations which are encountered in the manufacture and production of piezoelectric ceramics, it is not feasible to produce these elements to a specified exact resonant frequency. It is feasible, however, to produce these elements to a resonant frequency within certain reasonable limits of resonant frequency. Where close accurate resonant frequencies are required, it is the practice to produce the piezoelectric ceramic so that it is resonant at a frequency lower than the desired frequency, measure the resonant frequency and then grind olf one end of the nished element. This is done because the resonant frequency is raised as the length of the piezoelectric ceramic is lessened. This method removes at least one of the electrodes and in order to deposit a new electrode on the surface it is necessary to heat the material. The heating depolarizes the ceramic and repolarization is required. This repolarization introduces an additional variable and possible variation in the piezoelectric properties so that the relationship between dimension and resonant frequency may be somewhat different from the relationship arrived at for the original piece. This method only permits one to raise the resonant frequency by reducing the dimensions and does not permit one to lower the resonant frequency of a particular piezoelectric ceramic piece.
It is, accordingly, a principal object of my invention to provide a method of raising and lowering the resonant frequency of a piezoelectric ceramic without altering the major dimensions.
It is a further object of my invention to provide a method of raising and lowering the resonant frequency of piezoelectric ceramics without disturbing the electrodes or the existing condition of polarization of the piezoelectric ceramic piece.
Other objects and advantages of my invention will be apparent during the course of the following description.
In the accompanying drawings, forming a part of this application, and in which like numerals are employed to designate like parts throughout the same,
Figure l is an elevation of a transducer produced iu accordance with m-y invention wherein there is a groove at a nodal surface,
Figure 2 is a plan view of the transducer of Figure l,
Figure 3 is an elevation of a transducer produced in accordance with my invention wherein there are discrete indentations at a nodal surface,
Figure 4 is an elevation of a transducer produced in accordance with my invention wherein there are grooves at or near surfaces of velocity loops,
Figure 5 is an elevation of a transducer produced in accordance with my invention wherein there are discrete indentations at or near surfaces of velocity loops,
Figure 6 is an elevation of a transducer produced in accordance with my invention wherein there are grooves "ice 2 at nodal surfaces and at or near velocity loop surfaces,
Figure 7 is an elevation of a transducer produced in accordance with my invention wherein there are discrete indentations at nodal surfaces and at or near velocity loop surfaces,
Figure 8 is a plot of velocity or displacement against length, and
Figure 9 is a plot of stress against length.
In the drawings, wherein for the purpose of illustration, are shown preferred embodiments of my invention, the numeral 15 designates a transducer, the numeral 16 designates the electrodes of transducer 15 and the numeral 17 designates a groove cut in transducer 15 at it nodal plane. The numeral 18 designates a transducer, the numeral 18a designates the electrodes of transducer 18 and the numeral 19 designates holes cut in transducer 18 at its nodal plane. The numeral 20 designates a transducer, the numeral 21 designates the electrodes of transducer 2l) and the numeral 22 designates grooves cut in transducer 20 at planes at, or near, the planes of velocity loops.
The numeral 23 designates a transducer, the numeral 24 designates the electrodes of transducer 23 and the numeral 25 designates holes cut in transducer 23 at planes at, or near, planes of velocity loops. The numeral 26 designates a transducer, the numera1 27 designates the electrodes of transducer 26, the numeral 28 designates a groove cut in transducer 26 at its nodal plane and the numeral 29 designates grooves cut in transducer 26 at planes at, or near, planes of velocity loops. The numeral 30 designates a transducer, the numeral 31 designates the electrodes of transducer 30, the numeral 32 designates holes cut in transducer 30 at its nodal plane, and the numeral 33 designates holes cut in transducer 30 at planes at, or near, planes of velocity loops. The numeral 34 designates the curve which is a plot of velocity or displacement against length and the numera1 35 designates the curve which is a plot of stress against length.
I have chosen to illustrate my invention by means of solid right circular cylinders which have their electrodes bonded on the bases of the cylinder and have been polarized parallel to the long axis but the same technique may be employed for other shapes. The transducer 15 illustrated in Figures l and 2 has groove 17 cut into it at the nodal plane of the fundamental resonant frequency of 15. Groove 17 is not cut too deeply into transducer 15 since it is not desirable to reduce the mass of 15 by any appreciable amount. The groove 17 at, or near, the plane of a velocity node or stress loop increases the compliance of the system, with very small change in mass, thereby decreasing the resonant frequency of the system. The removal of material of the transducer at the nodal plane may be accomplished by a groove such as groove 17 of Figure l or by holes 19 such as are illustrated in Figure 3. In the cases illustrated in Figures l and 3. the resonant frequency of transducers 15 and 18 are measured and if the frequency is found to be too high either a groove such as groove 17 or shallow holes such as 19 are cut in transducers 15 and 18 respectively until the frequency is found to be correct for the particular application of the respective transducers. Any other shape of penetration into the transducer may be employed with equally good effect so long as the compliance is increased without any appreciable decrease in the mass of the transducer. These adjustments in the resonant frequency of the transducers 15 and 18 may be made without disturbing the electrodes 16 or 18a, or heating the transducers 15 and 18 or affecting the condition of polarization of the transducers 15 or 18.
When it is desirable to lower a resonant frequency other than the fundamental frequency of a transducer, the material is removed at the nodal planes for the particular harmonic frequency for which theadjustment is being made.
Figures 4 and 5 illustrate the groove and hole method for raising the resonant frequency of transducers 20 and 23 respectively. In these two illustrations, material is removed by grooves 22 or holes 25 at, or near, the planes of velocity loops. These adjustments in the resonant frequencies of transducers 20 and 23 are accomplished without disturbing the electrodes 21 or 24 or affecting the condition of polarization of the transducers. Any other shape of penetration in the material of the trans ducers may be employed as long as the mass-compliance product is decreased, with little change in compliance.
In Figure 6, the resonant frequency of the transducer 26 has been reduced by the cutting of groove 28 in transducer 26 at the nodal plane. Upon measurement, it has been found that the frequency had been reduced too much so that it was then necessary to cut grooves 29 at, or near, the planes of velocity loops in order to raise the resonant frequency of transducer 26. These adjustments were made without disturbing the electrodes 27 or the condition of polarization of transducer 26. The figure serves equally well to illustrate the final condition of transducer 26 wherein the resonant frequency of 26 was first raised by cutting grooves 29 and was then lowered by cutting groove 28.
Figure 7 illustrates the condition of Figure 6 except that holes 32 and 33 are cut into transducer 30 at the nodal plane and at, or near, the planes of velocity loops respectively. Electrodes 31 were not disturbed in this process and the condition of polarization of transducer 30 was left unaffected. Any other type of penetration into the transducer may be employed with equal effect as long as the mass of the transducer is not materially affected.
Grooves 22 and 29 and holes 25 and 33 are shown close to the ends of their respective transducers. The actual planes of velocity loops are at the electrodes 24 and 27 but it is not desirable to remove the electrodes and since the velocity loops are broad as shown in Figure 8, the moving of these penetrations into the respective transducers by a small distance does not materially alter the effect of these cuts or penetrations. On the other hand, a change in the position of grooves 17 and 28 and holes 19 and 32 will materially alter the effect of these cuts or penetrations because of the sharp 4 node as shown in Figure 8 and illustrated by the slope of curve 34 as it crosses the horizontal axis. The nodal plane also locates the position of greatest stress of the vibrating system as shown by curve 35 in Figure 9.
The location of the planes of velocity nodes and loops depends on the particular resonant frequency chosen, the number of such planes increasing as the number of the harmonic is increased.
I have illustrated my invention by means of ceramic piezoelectric transducers which are right circular cylinders vibrating in the length modes. The invention is equally applicable to vibrating systems which are excited in other modes and of other shapes; in many of which cases the nodal surfaces and the surfaces of velocity loops are not planes.
It will be apparent to those skilled in the art that the novel principles of the invention disclosed herein in connection with specific exemplifications thereof will suggest various other modifications and applications of the same. It is accordingly desired that in construing the breadth of the appended claims they shall not be limited to the specific exemplications of the invention described herein.
Having thus described my invention, I claim:
1. The method of lowering the resonant frequency of a piezoelectric ceramic electromechanical transducer which comprises removing small masses from said transducer at at least one of the nodal surfaces of said transducer.
2. The method of raising the resonant frequency of a piezoelectric ceramic electromechanical transducer which comprises removing small masses from said transducer at at least one of the surfaces of velocity loops of said transducer.
3. The method of adjusting the resonant frequency of a piezoelectric ceramic electromechanical transducer which comprises removing small masses from said transducer at at least one of the nodal surfaces of said trans ducer to lower the resonant frequency and removing small masses from said transducer at at least one of the surfaces of velocity loops of said transducer to raise the resonant frequency.
References Cited in the file of this patent UNITED STATES PATENTS 2,018,246 Beard Oct. 22, 1935
US490229A 1955-02-24 1955-02-24 Method of adjusting the resonant frequency of a vibrating system Expired - Lifetime US2870521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US490229A US2870521A (en) 1955-02-24 1955-02-24 Method of adjusting the resonant frequency of a vibrating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US490229A US2870521A (en) 1955-02-24 1955-02-24 Method of adjusting the resonant frequency of a vibrating system

Publications (1)

Publication Number Publication Date
US2870521A true US2870521A (en) 1959-01-27

Family

ID=23947157

Family Applications (1)

Application Number Title Priority Date Filing Date
US490229A Expired - Lifetime US2870521A (en) 1955-02-24 1955-02-24 Method of adjusting the resonant frequency of a vibrating system

Country Status (1)

Country Link
US (1) US2870521A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943279A (en) * 1958-11-17 1960-06-28 Oskar E Mattiat Piezoelectric band pass filter
US3059129A (en) * 1961-03-08 1962-10-16 Collins Radio Co Pulse forming circuit using momentarily conducting transistor base-emitter leakage current to charge timing capacitor
US3074034A (en) * 1959-01-15 1963-01-15 Litton Systems Inc Disk resonator
US3101421A (en) * 1959-07-06 1963-08-20 Acoustica Associates Inc Elastic wave vibrator
US3128532A (en) * 1957-09-17 1964-04-14 Massa Division Of Cohu Electro Method of making electroacoustic transducers
US3157151A (en) * 1962-04-25 1964-11-17 Westinghouse Electric Corp Ultrasonic generator
US3258738A (en) * 1963-11-20 1966-06-28 Honeywell Inc Underwater transducer apparatus
US3284762A (en) * 1965-03-26 1966-11-08 Harry W Kompanek Mechanical-to-electrical transducer
US3372669A (en) * 1964-03-23 1968-03-12 Westinghouse Electric Corp Ultrasonic transmitter
US3808563A (en) * 1971-08-24 1974-04-30 Licentia Gmbh Filter and method for its manufacture
US3808752A (en) * 1972-07-10 1974-05-07 Comtec Economation Method of automatically adjusting the frequency of crystal resonators
US4156156A (en) * 1977-08-18 1979-05-22 P. R. Mallory & Co. Inc. Method for reducing the resonant frequency of a piezoelectric transducer
US4191906A (en) * 1978-01-26 1980-03-04 Kabushiki Kaisha Suwa Seikosha Tuning fork type quartz crystal resonator with notched tines
US4455500A (en) * 1983-07-28 1984-06-19 Western Geophysical Company Of America Sensitivity and capacitance adjustment method for piezoelectric accelerometers
US4638205A (en) * 1980-05-06 1987-01-20 Tdk Electronics Co., Ltd. Piezo-electric transducer
US4641055A (en) * 1985-04-01 1987-02-03 Murata Manufacturing Co., Ltd. Piezoelectric resonator with notched sides
US4658173A (en) * 1984-11-19 1987-04-14 Murata Manufacturing Co., Ltd. Piezoelectric vibrator and method of adjusting vibrating frequency thereof
US4704709A (en) * 1985-07-12 1987-11-03 Westinghouse Electric Corp. Transducer assembly with explosive shock protection
US4999536A (en) * 1988-05-26 1991-03-12 Kohzi Toda Vibrator-type actuator
US5020035A (en) * 1989-03-30 1991-05-28 Undersea Transducer Technology, Inc. Transducer assemblies
US5032755A (en) * 1988-03-03 1991-07-16 Motorola, Inc. Method and means for damping modes of piezoelectric vibrators
US5078834A (en) * 1988-03-03 1992-01-07 Motorola, Inc. Method and means for damping modes of piezoelectric vibrators
US5800671A (en) * 1995-06-16 1998-09-01 Tetra Laval Holdings & Finance S.A. Ultrasound sealing unit for preventing interference of resonance frequencies of interfering oscillation
US6278218B1 (en) * 1999-04-15 2001-08-21 Ethicon Endo-Surgery, Inc. Apparatus and method for tuning ultrasonic transducers
US20100277034A1 (en) * 2009-03-11 2010-11-04 Rajarishi Sinha Array of baw resonators with mask controlled resonant frequencies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018246A (en) * 1934-10-09 1935-10-22 Westinghouse Electric & Mfg Co Quartz crystal manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018246A (en) * 1934-10-09 1935-10-22 Westinghouse Electric & Mfg Co Quartz crystal manufacture

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128532A (en) * 1957-09-17 1964-04-14 Massa Division Of Cohu Electro Method of making electroacoustic transducers
US2943279A (en) * 1958-11-17 1960-06-28 Oskar E Mattiat Piezoelectric band pass filter
US3074034A (en) * 1959-01-15 1963-01-15 Litton Systems Inc Disk resonator
US3101421A (en) * 1959-07-06 1963-08-20 Acoustica Associates Inc Elastic wave vibrator
US3059129A (en) * 1961-03-08 1962-10-16 Collins Radio Co Pulse forming circuit using momentarily conducting transistor base-emitter leakage current to charge timing capacitor
US3157151A (en) * 1962-04-25 1964-11-17 Westinghouse Electric Corp Ultrasonic generator
US3258738A (en) * 1963-11-20 1966-06-28 Honeywell Inc Underwater transducer apparatus
US3372669A (en) * 1964-03-23 1968-03-12 Westinghouse Electric Corp Ultrasonic transmitter
US3284762A (en) * 1965-03-26 1966-11-08 Harry W Kompanek Mechanical-to-electrical transducer
US3808563A (en) * 1971-08-24 1974-04-30 Licentia Gmbh Filter and method for its manufacture
US3808752A (en) * 1972-07-10 1974-05-07 Comtec Economation Method of automatically adjusting the frequency of crystal resonators
US4156156A (en) * 1977-08-18 1979-05-22 P. R. Mallory & Co. Inc. Method for reducing the resonant frequency of a piezoelectric transducer
US4191906A (en) * 1978-01-26 1980-03-04 Kabushiki Kaisha Suwa Seikosha Tuning fork type quartz crystal resonator with notched tines
US4638205A (en) * 1980-05-06 1987-01-20 Tdk Electronics Co., Ltd. Piezo-electric transducer
US4455500A (en) * 1983-07-28 1984-06-19 Western Geophysical Company Of America Sensitivity and capacitance adjustment method for piezoelectric accelerometers
US4658173A (en) * 1984-11-19 1987-04-14 Murata Manufacturing Co., Ltd. Piezoelectric vibrator and method of adjusting vibrating frequency thereof
US4641055A (en) * 1985-04-01 1987-02-03 Murata Manufacturing Co., Ltd. Piezoelectric resonator with notched sides
US4704709A (en) * 1985-07-12 1987-11-03 Westinghouse Electric Corp. Transducer assembly with explosive shock protection
US5032755A (en) * 1988-03-03 1991-07-16 Motorola, Inc. Method and means for damping modes of piezoelectric vibrators
US5078834A (en) * 1988-03-03 1992-01-07 Motorola, Inc. Method and means for damping modes of piezoelectric vibrators
US4999536A (en) * 1988-05-26 1991-03-12 Kohzi Toda Vibrator-type actuator
US5020035A (en) * 1989-03-30 1991-05-28 Undersea Transducer Technology, Inc. Transducer assemblies
US5800671A (en) * 1995-06-16 1998-09-01 Tetra Laval Holdings & Finance S.A. Ultrasound sealing unit for preventing interference of resonance frequencies of interfering oscillation
US6278218B1 (en) * 1999-04-15 2001-08-21 Ethicon Endo-Surgery, Inc. Apparatus and method for tuning ultrasonic transducers
US20100277034A1 (en) * 2009-03-11 2010-11-04 Rajarishi Sinha Array of baw resonators with mask controlled resonant frequencies
US9362880B2 (en) 2009-03-11 2016-06-07 Rajarishi Sinha Manufacturing method of an array of BAW resonators with mask controlled resonant frequencies

Similar Documents

Publication Publication Date Title
USRE23813E (en) Piezoelectric transducer and method for producing same
US3549414A (en) Method of tuning piezoelectric resonators
KR100430366B1 (en) Piezoelectric resonator and piezoelectric filter using the same
US7170215B2 (en) Electronic component and method for manufacturing the same
JP6245265B2 (en) Vibration device and manufacturing method thereof
US6931701B2 (en) Method for manufacturing a thin film
EP0092427B1 (en) Piezoelectric resonator chip and a method for adjusting its resonant frequency
Wacogne et al. Effective piezoelectric activity of zinc oxide films grown by radio‐frequency planar magnetron sputtering
US20070040473A1 (en) Hybrid resonant structure
US5200714A (en) Crystal oscillator with quartz vibrator having temperature detecting faculty, quartz vibrator for use therein, and method of measuring temperature using quartz vibrator
KR20080080339A (en) Piezoelectric ceramic, process for producing said piezoelectric ceramic, piezoelectric resonator, and process for producing piezoelectric resonator
Onoe et al. Shift in the location of resonant frequencies caused by large electromechanical coupling in thickness‐mode resonators
US2614144A (en) Transducer element and method of making same
CN100511992C (en) Mesa-shaped piezoelectric resonator element
JP6132022B2 (en) Piezoelectric resonator and manufacturing method thereof
EP0144311A4 (en) Double resonating beam force transducer with reduced longitudinal pumping.
US3015789A (en) Mechanical filter
US7194793B2 (en) Method for producing an edge reflection type surface acoustic wave device
US20070247260A1 (en) Electronic device
JPWO2014042020A1 (en) Vibration device and manufacturing method thereof
JP2002515667A (en) Thin film piezoelectric vibrator
DE10142157A1 (en) Acoustic resonator for cellular telephone, has compensator that partially offers temperature induced effects caused by negative temperature coefficient of frequency
TWI597392B (en) Lithium tantalate single crystal substrate, bonding substrate and method for manufacturing the same, and elastic surface acoustic wave device using the same
WO2009019308A2 (en) Component having a reduced temperature gradient and method for the production thereof
US3528851A (en) Method of making a piezoelectric resonator