JP4268432B2 - Multi-tube heat exchanger type reactor - Google Patents

Multi-tube heat exchanger type reactor Download PDF

Info

Publication number
JP4268432B2
JP4268432B2 JP2003091786A JP2003091786A JP4268432B2 JP 4268432 B2 JP4268432 B2 JP 4268432B2 JP 2003091786 A JP2003091786 A JP 2003091786A JP 2003091786 A JP2003091786 A JP 2003091786A JP 4268432 B2 JP4268432 B2 JP 4268432B2
Authority
JP
Japan
Prior art keywords
heat
reaction
fluid
heat medium
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091786A
Other languages
Japanese (ja)
Other versions
JP2004299924A (en
Inventor
信博 恩田
英二 佐々木
英二 渡部
裕明 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2003091786A priority Critical patent/JP4268432B2/en
Publication of JP2004299924A publication Critical patent/JP2004299924A/en
Application granted granted Critical
Publication of JP4268432B2 publication Critical patent/JP4268432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Description

【0001】
【発明の属する技術分野】
この発明は、反応物が流体(以下、「プロセス流体」という)であって比較的大量な熱エネルギーの授受を必要とする反応に用いられる多管式熱交換器型反応装置に係り、例えば、水素を製造し、製造された水素を圧縮して水素消費機関に高圧水素を供給する高圧水素の供給システムにおいて、水素製造装置として用いるのに好適な多管式熱交換器型反応装置に関する。
【0002】
【従来の技術】
例えば、高圧水素の供給システムで用いられる水素製造装置については、水素供給体として用いられるケミカルハイドライドを脱水素触媒の存在下に脱水素反応させて水素を製造する反応装置や、軽質炭化水素、メタノール、ジメチルエーテル等を改質触媒の存在下に水蒸気改質反応させて水素を製造する反応装置等が用いられている。これら脱水素反応や水蒸気改質反応は、いずれもその反応に大量の熱エネルギーを必要とする吸熱反応であり、水素の製造に大量の熱エネルギーの供給を必要とする。
【0003】
そこで、このような脱水素反応や水蒸気改質反応により水素を効率良く製造するためには、使用する反応装置に供給される反応物の流体、すなわちケミカルハイドライドや軽質炭化水素、メタノール、ジメチルエーテル等のプロセス流体が脱水素触媒や改質触媒等の触媒に接触する際に、効率良く熱エネルギーの供給を行う必要がある。
【0004】
そこで、従来においても、このような水素製造装置において、反応に必要な熱エネルギーの供給に工夫をした反応装置が提案されており、例えば、燃焼反応用触媒床を有して気相状燃料を燃焼させる燃焼部と、水蒸気改質触媒床が充填されてメタノール等のプロセス流体が導入される改質反応部との間に、蒸発部が燃焼反応用触媒床中に、また、凝縮部が水蒸気改質触媒床中にそれぞれ位置するようにヒートパイプを配設し、このヒートパイプにより改質反応部で必要とする熱エネルギーの供給を行うようにしたもの(特許文献1)や、バーナ燃焼により生じた熱エネルギーを改質反応部に供給して水素リッチな改質ガスに改質する装置において、改質反応部の内部にプロセス流体の通液方向に沿って均温用のヒートパイプを配設したもの(特許文献2)等が知られている。
【0005】
しかしながら、これらの水素製造装置においては、ヒートパイプの使用により、燃焼により生じた熱エネルギーを改質反応部に供給することはできても、例えば燃焼タービン発電装置等の関連設備や周辺設備から排出され、大量の熱エネルギーを保有する高温排ガスから、この熱エネルギーを回収して利用することはできない。
【0006】
また、上記のようなヒートパイプを利用し、スチレンモノマーの製造やメタノール合成のように反応熱の除去を必要とする反応装置も知られており、例えば、反応器内部を、反応が行われる反応室と、この反応室に熱エネルギーを供給するための共熱室とに仕切り、これら反応室と共熱室との間に熱エネルギーの輸送を行うためのヒートパイプを配設したもの(特許文献3)等が知られている。
【0007】
しかしながら、この反応装置においては、熱媒体として高温排ガスを用いることにより、高温排ガスから回収した熱エネルギーを反応室内に供給することはできても、例えば、高圧水素の供給システムで用いられて大量の熱エネルギーを均一にかつ効率良く供給することが求められる水素製造装置にはその応用が困難である。
【0008】
【特許文献1】
特開昭63-162,503号公報
【特許文献2】
特開昭63-248,702号公報
【特許文献3】
特開昭60-153,934号公報
【0009】
【発明が解決しようとする課題】
そこで、本発明者らは、水素製造装置のように、反応物が流体(プロセス流体)であって比較的大量な熱エネルギーの授受を必要とする反応に用いられる反応装置であり、このプロセス流体に対して均一で効率良く熱エネルギーの授受が可能であり、しかも、燃焼タービン発電装置、焼却炉等の関連設備や周辺設備から排出され、大量の熱エネルギーを保有する高温排流体を熱媒体として利用し、この高温排流体から効率良く熱エネルギーを回収することができる反応装置について鋭意検討した結果、反応器本体内に多数の反応管を配設し、これら各反応管には各反応管内に配置される管内熱交換部と反応器本体内で各反応管から突出して熱媒体中に露出する管外熱交換部とを有し、内部に作動流体が充填されたヒートパイプを配設し、反応器本体内に導入される熱媒体及び各ヒートパイプの管内熱交換部内の作動流体と各反応管内のプロセス流体とを熱交換させると共に、各ヒートパイプの管外熱交換部内の作動流体と各反応管外部の熱媒体とを熱交換させることにより、目的を達成できることを見出し、本発明を完成した。
【0010】
従って、本発明の目的は、比較的大量な熱エネルギーの授受を必要とするプロセス流体の反応に用いられる反応装置であって、このプロセス流体に対して均一で効率良く熱エネルギーの授受が可能であり、しかも、種々の設備から排出される高温排流体を熱媒体として利用し、この高温排流体から効率良く熱エネルギーを回収することができ、特に高圧水素の供給システムで用いられる水素製造装置として有用な多管式熱交換器型反応装置を提供することにある。
【0011】
【課題を解決するための手段】
すなわち、本発明は、熱媒体の熱媒導入口及び熱媒排出口を有する反応器本体と、この反応器本体内に配設され、プロセス流体の流体供給口及び流体取出口を有する多数の反応管と、上記各反応管内に配置される管内熱交換部及び反応器本体内で各反応管から突出して熱媒体中に露出する管外熱交換部を有し、内部に作動流体が充填された多数のヒートパイプとを有し、上記反応器本体が、多数の反応管が配設された熱交換反応室と、この熱交換反応室の熱媒体上流側に位置し、流体取出口を有して多数の反応管内を通過したプロセス流体を集める流体回収室と、上記流体回収室の熱媒体上流側に位置し、熱媒導入口を有する熱媒分配室と、上記熱交換反応室の熱媒体下流側に位置し、流体供給口を有して多数の反応管内にプロセス流体を分配する流体分配室と、この流体分配室の熱媒体下流側に位置し、熱媒排出口を有する熱媒回収室とに区画されており、多数のヒートパイプの管外熱交換部が熱媒回収室内に露出しており、この反応器本体内に導入される熱媒体及び各ヒートパイプの管内熱交換部内の作動流体と各反応管内のプロセス流体とを熱交換させると共に、各ヒートパイプの管外熱交換部内の作動流体と各反応管外部の熱媒体とを熱交換させることを特徴とする多管式熱交換器型反応装置である。
【0012】
本発明において、反応器本体内に導入される熱媒体と各反応管内のプロセス流体との間の熱交換を効率良く行わせるためには、好ましくは反応器本体内の熱媒体の流れと各反応管内のプロセス流体の流れとが互いに逆方向の流れになるように設計するのがよい。
【0013】
また、上記反応器本体については、好ましくは、その内部を、多数の反応管が配設された熱交換反応室と、この熱交換反応室の熱媒体上流側に位置し、流体取出口を有して多数の反応管内を通過したプロセス流体を集める流体回収室と、上記流体回収室の熱媒体上流側に位置し、熱媒導入口を有する熱媒分配室と、上記熱交換反応室の熱媒体下流側に位置し、流体供給口を有して多数の反応管内にプロセス流体を分配する流体分配室と、この流体分配室の熱媒体下流側に位置し、熱媒排出口を有する熱媒回収室とに区画し、反応器本体の熱媒導入口からこの反応器本体内部の熱交換反応室に導入される熱媒体の流れを熱交換反応室内で均一にすると共に、各反応管の流体供給口からこの反応管内に導入されるプロセス流体についても各反応管が同じ条件になるようにする。
【0014】
更に、各反応管内に配置される管内熱交換部と熱媒体中に露出する管外熱交換部とを有する各ヒートパイプについては、その管外熱交換部が各反応管の温度勾配を緩和する方向に突出して熱媒体中に露出していることが必要であり、これによって反応器本体内に導入される熱媒体は、反応器本体内の各反応管の外壁を介してプロセス流体と熱交換し、また、この反応管から突出する各ヒートパイプの管外熱交換部でその内部の作動流体と熱交換し、この作動流体と熱交換された熱エネルギーが作動流体により再び各反応管内に移送され、この反応管内でその内部からプロセス流体と熱交換する。このため、各反応管は、その長さ方向に関して比較的均一な温度となり、各反応管内でのプロセス流体の効率的な反応を達成することができる。
【0015】
上記の各ヒートパイプについては、その内部に充填する作動流体、管内熱交換部の伝熱面積(Ai)、管外熱交換部の面積(Ao)等をどのように設計するかは、この多管式熱交換器型反応装置がどのような反応に用いられ、各反応管がどのように設計され、また、どのような熱媒体を用いて熱交換させるか等の種々の条件で異なり、目的に応じて設計され、決定される。
【0016】
更に、上記の各反応管については、適用される反応の種類により、その内部、すなわち各反応管の内壁とこの反応管内に配置されたヒートパイプの管内熱交換部との間の間隙内に、反応に必要な触媒、例えば、反応が脱水素反応であれば所定の脱水素触媒を、また、反応が改質反応であれば所定の改質触媒を充填し、これによってこの触媒中に供給されるプロセス流体の反応が行われる。
【0017】
本発明の多管式熱交換器型反応装置は、反応物が気体や液体等の流体であって、反応に比較的大量な熱エネルギーの授受を必要とする反応に好適に用いられる。そして、この反応が吸熱反応である場合には、熱媒体は熱エネルギーの供給体として用いられるので、高温の流体を熱媒体として用いることができ、関連設備や周辺設備から排出される高温排ガスを好適に用いることができる。また、上記の反応が反応熱の除去を必要とする発熱反応である場合には、熱媒体は反応熱の除熱に用いられるので、例えば、熱容量の大きいスチーム等が好適に用いられる。
【0018】
また、本発明の多管式熱交換器型反応装置は、熱媒体が反応装置本体の一端側から導入されて他端側に排出される構成になっているので、垂直にも水平にも設置することができ、適用される反応の種類や設置場所の環境等に応じて任意に選択することができる。
【0019】
従って、本発明の多管式熱交換器型反応装置は、水素を製造し、製造された水素を圧縮して水素消費機関に高圧水素を供給する高圧水素の供給システムで用いる水素製造装置、特に、消費電力の一部又は全部を賄う燃焼タービン発電装置を備えた高圧水素の供給システムであって、プロセス流体としてシクロヘキサン、メチルシクロヘキサン、デカリン等の化学系水素貯蔵媒体(ケミカルハイドライド)や、メタノール、ジメチルエーテル、軽質炭化水素等からなる水素製造用の流体反応物が用いられ、また、反応管内には脱水素反応用又は水蒸気改質反応用の触媒が充填され、上記プロセス流体の脱水素反応や水蒸気改質反応により水素を製造するための水素製造装置として好適である。
【0020】
すなわち、上記の燃焼タービン発電装置では、軽油、灯油、都市ガス、LPG等の燃料が燃焼され、これによって500℃以上の高温排ガスが発生するのに対して、例えば脱水素触媒の存在下にシクロヘキサン(ケミカルハイドライド)を脱水素して400Nm3の水素を製造するためには脱水素反応の熱量として約1.2×106kjの熱量を必要とし、同様に、デカリン(ケミカルハイドライド)の脱水素反応の場合には約1.1×106kjの熱量を必要とし、また、水蒸気改質触媒の存在下にメタノール(プロセス流体)を改質させて400Nm3の水素を製造するためには約0.77×106kjの熱量を必要とするので、これら脱水素反応や水蒸気改質反応で必要とする熱量の一部又は全部を上記の燃焼タービン発電装置の高温排ガスで賄うことができる。
【0021】
そして、このように多管式熱交換器型反応装置を高圧水素の供給システムで用いる水素製造装置として用いる場合、各反応管内に充填された脱水素反応用又は水蒸気改質反応用の触媒の全体に亘ってできるだけ均一に熱エネルギーを供給する必要があることから、好ましくは、各反応管の外表面の面積〔すなわち、伝熱面積(Ar)〕とこの反応管内に配置されるヒートパイプの管内伝熱部の面積〔すなわち、伝熱面積(Ai)〕との伝熱面積比(Ar/Ai)が1.5以上3.0以下の範囲内、より好ましくは1.5以上2.0以下の範囲内に制御するのがよい。この伝熱面積比(Ar/Ah)が1.5より低いと機能発現が不十分であり、反対に、3.0より高くすると不経済である。
【0022】
また、この多管式熱交換器型反応装置を水素製造装置として用いる場合、各反応管内に充填された脱水素反応用又は水蒸気改質反応用の触媒の全体に亘ってできるだけ均一に熱エネルギーを供給するために、好ましくは、各ヒートパイプについて、その管内熱交換部の伝熱面積(Ai)と管外熱交換部の伝熱面積(Ao)との伝熱面積比(Ai/Ao)が0.5以上1.5以下の範囲内、より好ましくは0.5以上1.0以下の範囲内に制御するのがよい。この伝熱面積比(Ai/Ao)が0.5より低いと機能発現が不十分であり、反対に、1.5より高くすると不経済である。
【0023】
【発明の実施の形態】
以下、添付図面に示す実施例に基づいて、消費電力の一部又は全部を賄う燃焼タービン発電装置を備えた高圧水素の供給システムで用いる水素製造装置として好適な本発明の多管式熱交換器型反応装置の一例を具体的に説明する。
【0024】
図1及び図2に示すように、この実施例に係る多管式熱交換器型反応装置(水素製造装置)は、水平に設置され、基本的には、その一端側に熱媒体として用いられる高温排ガスGwの熱媒導入口1aを有すると共にその他端側に当該高温排ガスGwの熱媒排出口を有する反応器本体1と、この反応器本体1内に互いに平行に配設され、シクロヘキサンやデカリン等のケミカルハイドライドからなるプロセス流体Lpの流体供給口2a及び流体取出口2bに連通する多数の反応管2と、上記各反応管2内に配置される管内熱交換部3a及び反応器本体1内で各反応管2から突出してこの反応管2より下流側の高温排ガスGw中に露出する管外熱交換部3bを有し、内部に図示外の作動流体が充填された多数のヒートパイプ3とを有している。
【0025】
この実施例において、上記の反応器本体1は、4枚の隔壁4a,4b,6a,8aにより、多数の反応管2が配設された熱交換反応室4と、この熱交換反応室4の高温排ガスGw上流側に位置し、流体取出口2bを有して多数の反応管2内を通過したプロセス流体Lpを集める流体回収室5と、上記流体回収室5の高温排ガスGw上流側に位置し、熱媒導入口1aを有する熱媒分配室6と、上記熱交換反応室4の高温排ガスGw下流側に位置し、流体供給口2aを有して多数の反応管2内にプロセス流体Lpを分配する流体分配室7と、この流体分配室7の高温排ガスGw下流側に位置し、熱媒排出口1bを有する熱媒回収室8とに区画されており、また、多数のヒートパイプ3の管外熱交換部3bが熱媒回収室8内を通過する高温排ガスGw中に露出している。
【0026】
また、上記熱交換反応室4内に配設される多数の反応管2は、図2に示されているように、熱伝導性、耐熱性、耐食性等に優れた両端開口のパイプで形成され、その一端が隔壁4aに固定されていると共に流体分配室7内に向けて開口(9a)しており、また、その他端が隔壁4bに固定されていると共に流体回収室5内に向けて開口(9b)しており、更に、その内部にはヒートパイプ3の管内熱交換部3aとの間の間隙内に図示外の脱水素触媒が充填されている。
【0027】
更に、この実施例において、熱媒分配室6の隔壁6aとの隔壁4bとの間には、熱媒導入口1aから熱媒分配室6内に導入された高温排ガスGwを、流体回収室5を貫通して、分配して内へ送り込むための多数の両端開口の貫通管10が設けられており、また、の隔壁4aと熱媒回収室8の隔壁8aとの間には、内の高温排ガスGwを、流体分配室7を貫通して、熱媒回収室8内に送り込むための多数の両端開口の貫通管11が設けられており、これによって、熱媒分配室6から内を経て熱媒回収室8内に流れる高温排ガスGwと流体分配室7から内の多数の反応管2を通過して流体回収室5内に流れるプロセス流体Lpとが互いに直接に接触しないようになっている。
【0028】
従って、この実施例の多管式熱交換器型反応装置よりなる水素製造装置においては、燃焼タービン発電装置から排出された高温排ガス(熱媒体)Gwは、熱媒導入口1aから熱媒分配室6内に導入され、この熱媒分配室6内で各貫通管10に分配され、そして、これら各貫通管10を内全体に均一に送り込まれ、次いで貫通管11を介して熱媒回収室8内に入り、この熱媒回収室8内で集められてその熱媒排出口1bから排出される。
【0029】
また、流体供給口2aから流体分配室7内に供給されたプロセス流体Lpは、この流体分配室7内で各反応管2に均一に分配され、これら各反応管2内で脱水素触媒と接触し、また、その際に各反応管2の外部を流れる高温排ガスGwと熱交換し、これによって脱水素されて水素を生成し、この生成した水素を含むプロセス流体として流体回収室5に回収され、流体取出口2bから外部に抜き出され、図示外の固液分離装置により固液分離されて製造された水素が得られる。
【0030】
〔試験例〕
上記実施例に記載の多管式熱交換器型反応装置を下記の装置設計条件で試作し、この試作した多管式熱交換器型反応装置の4基を並列に水平設置して用い、下記の操作条件で操業試験を行った。
【0031】
[装置設計条件]
▲1▼ 反応管及びヒートパイプの本数:各々57本
▲2▼ 全触媒量:1.431m3
▲3▼ 全反応管の必要伝熱面積:220m2
▲4▼ 全反応管の伝熱面積(Ar):140.4m2
▲5▼ 全ヒートパイプの管内伝熱部の伝熱面積(Ai):79.3m2
▲6▼ 全ヒートパイプの管外伝熱部の伝熱面積(Ao):79.6m2
【0032】
上記実施例の多管式熱交換器型反応装置を用いて行った操業試験の結果、高温排ガスとプロセス流体との間の熱伝達が良好で、燃焼タービン発電装置から排出される高温排ガスの熱エネルギーを効率良く回収して利用し、水素を製造できることが確認された。
【0033】
【発明の効果】
本発明の多管式熱交換器型反応装置は、プロセス流体に対して均一で効率の良い熱エネルギーの授受が可能であり、しかも、種々の設備から排出される高温排流体を熱媒体として利用し、この高温排流体から効率良く熱エネルギーを回収することができるので、比較的大量な熱エネルギーの授受を必要とするプロセス流体の反応に用いる反応装置として好適に用いることができ、特に高圧水素の供給システムで用いられる水素製造装置等として有用である。
【図面の簡単な説明】
【図1】 図1は、本発明の実施例に係る多管式熱交換器型反応装置の全体を示す縦断面説明図である。
【図2】 図2は、図1の部分拡大説明図である。
【符号の説明】
1…反応器本体、1a…熱媒導入口、1b…熱媒排出口、2…反応管、2a…流体供給口、2b…流体取出口、3…ヒートパイプ、3a…管内熱交換部、3b…管外熱交換部、4…熱交換反応室、5…流体回収室、6…熱媒分配室、7…流体分配室、8…熱媒回収室、4a,4b,6a,8a…隔壁、9a,9b…開口、10,11…貫通管、Gw…高温排ガス、Lp…プロセス流体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-tube heat exchanger type reaction apparatus used for a reaction in which a reactant is a fluid (hereinafter referred to as a “process fluid”) and requires a relatively large amount of heat energy, for example, The present invention relates to a multi-tube heat exchanger type reaction apparatus suitable for use as a hydrogen production apparatus in a high pressure hydrogen supply system that produces hydrogen and compresses the produced hydrogen to supply high pressure hydrogen to a hydrogen consuming engine.
[0002]
[Prior art]
For example, for a hydrogen production apparatus used in a high-pressure hydrogen supply system, a reaction apparatus for producing hydrogen by dehydrogenating a chemical hydride used as a hydrogen supplier in the presence of a dehydrogenation catalyst, light hydrocarbons, methanol For example, a reaction apparatus that produces hydrogen by subjecting dimethyl ether or the like to a steam reforming reaction in the presence of a reforming catalyst is used. These dehydrogenation reactions and steam reforming reactions are endothermic reactions that require a large amount of heat energy for the reaction, and a large amount of heat energy is required for the production of hydrogen.
[0003]
Therefore, in order to efficiently produce hydrogen by such dehydrogenation reaction or steam reforming reaction, the reactant fluid supplied to the reactor used, that is, chemical hydride, light hydrocarbon, methanol, dimethyl ether, etc. When the process fluid comes into contact with a catalyst such as a dehydrogenation catalyst or a reforming catalyst, it is necessary to efficiently supply thermal energy.
[0004]
Therefore, conventionally, in such a hydrogen production apparatus, a reaction apparatus devised for supplying thermal energy necessary for the reaction has been proposed. For example, a gas phase fuel having a catalyst bed for combustion reaction has been proposed. Between the combustion section to be combusted and the reforming reaction section in which the steam reforming catalyst bed is filled and a process fluid such as methanol is introduced, the evaporation section is in the catalyst bed for combustion reaction, and the condensing section is steam. Heat pipes are arranged so as to be respectively located in the reforming catalyst bed, and heat energy required in the reforming reaction section is supplied by this heat pipe (Patent Document 1), or by burner combustion In a device that supplies the generated thermal energy to the reforming reaction section to reform it into a hydrogen-rich reformed gas, a heat pipe for temperature equalization is arranged along the direction of the process fluid flow inside the reforming reaction section. Set up ( Patent Document 2) and the like are known.
[0005]
However, in these hydrogen production apparatuses, although heat energy generated by combustion can be supplied to the reforming reaction section by using a heat pipe, it is discharged from related equipment such as a combustion turbine power generation apparatus or peripheral equipment. However, this thermal energy cannot be recovered and used from high-temperature exhaust gas that holds a large amount of thermal energy.
[0006]
In addition, a reaction apparatus that requires the removal of reaction heat, such as styrene monomer production or methanol synthesis, using a heat pipe as described above is also known. For example, a reaction is performed inside a reactor. A chamber and a common heat chamber for supplying thermal energy to the reaction chamber, and a heat pipe for transporting thermal energy between the reaction chamber and the common heat chamber (Patent Document) 3) etc. are known.
[0007]
However, in this reactor, even if the high-temperature exhaust gas is used as the heat medium, the thermal energy recovered from the high-temperature exhaust gas can be supplied into the reaction chamber. It is difficult to apply to a hydrogen production apparatus that is required to supply heat energy uniformly and efficiently.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 63-162,503 [Patent Document 2]
Japanese Patent Laid-Open No. 63-248,702 [Patent Document 3]
Japanese Patent Laid-Open No. 60-153,934
[Problems to be solved by the invention]
Therefore, the present inventors are a reaction apparatus used for a reaction in which a reactant is a fluid (process fluid) and requires transfer of a relatively large amount of heat energy, such as a hydrogen production apparatus. Heat energy can be exchanged uniformly and efficiently with high temperature exhaust fluid that is discharged from related equipment such as combustion turbine generators and incinerators and peripheral equipment, and holds a large amount of heat energy as a heat medium. As a result of intensive studies on a reaction apparatus that can efficiently recover thermal energy from this high-temperature exhaust fluid, a large number of reaction tubes are arranged in the reactor main body, and each of these reaction tubes is provided in each reaction tube. An in-tube heat exchanging portion and an external heat exchanging portion that protrudes from each reaction tube in the reactor body and is exposed in the heat medium, and a heat pipe filled with a working fluid is disposed therein, reaction Heat exchange between the heat medium introduced into the main body and the working fluid in the in-tube heat exchange section of each heat pipe and the process fluid in each reaction pipe, and the working fluid in the outside heat exchange section of each heat pipe and each reaction tube The present invention has been completed by finding that the object can be achieved by exchanging heat with an external heat medium.
[0010]
Accordingly, an object of the present invention is a reaction apparatus used for a reaction of a process fluid that requires a relatively large amount of heat energy to be transferred, and the heat energy can be transferred to the process fluid uniformly and efficiently. In addition, high-temperature exhaust fluid discharged from various facilities can be used as a heat medium, and heat energy can be efficiently recovered from this high-temperature exhaust fluid. Especially, as a hydrogen production apparatus used in a high-pressure hydrogen supply system It is an object of the present invention to provide a useful multitubular heat exchanger type reactor.
[0011]
[Means for Solving the Problems]
That is, the present invention provides a reactor main body having a heat medium inlet and a heat medium outlet for a heat medium, and a number of reactions disposed in the reactor main body and having a fluid supply port and a fluid outlet for a process fluid. A tube, an in-tube heat exchanging portion arranged in each of the reaction tubes, and an external heat exchanging portion protruding from each reaction tube in the reactor body and exposed to the heat medium, and filled with a working fluid. A heat exchange reaction chamber in which a large number of reaction tubes are arranged, and a fluid outlet port located on the upstream side of the heat medium of the heat exchange reaction chamber. A fluid recovery chamber that collects the process fluid that has passed through a number of reaction tubes, a heat medium distribution chamber that is located upstream of the fluid recovery chamber and has a heat medium inlet, and a heat medium of the heat exchange reaction chamber Located downstream, has a fluid supply port and distributes process fluid into multiple reaction tubes. Is divided into a fluid distribution chamber and a heat medium recovery chamber located downstream of the fluid distribution chamber and having a heat medium discharge port. Exposed inside the reactor, heat exchange between the heat medium introduced into the reactor main body and the working fluid in the in-pipe heat exchange section of each heat pipe and the process fluid in each reaction pipe, It is a multi-tube heat exchanger type reactor characterized by exchanging heat between a working fluid in a heat exchange section and a heat medium outside each reaction tube.
[0012]
In the present invention, in order to efficiently perform heat exchange between the heat medium introduced into the reactor main body and the process fluid in each reaction tube, the flow of the heat medium in the reactor main body and each reaction are preferably performed. It is preferable to design the flow of the process fluid in the pipes to be opposite to each other.
[0013]
The reactor main body is preferably located inside the heat exchange reaction chamber in which a number of reaction tubes are arranged, and on the upstream side of the heat medium of the heat exchange reaction chamber, and has a fluid outlet. A fluid recovery chamber that collects the process fluid that has passed through a number of reaction tubes, a heat medium distribution chamber that is located upstream of the fluid recovery chamber and has a heat medium inlet, and heat of the heat exchange reaction chamber. A fluid distribution chamber that is located on the downstream side of the medium and has a fluid supply port and distributes the process fluid into a number of reaction tubes, and a heat medium that is located on the downstream side of the heat medium in the fluid distribution chamber and has a heat medium discharge port It is divided into a recovery chamber, the flow of the heat medium introduced from the heat medium introduction port of the reactor body into the heat exchange reaction chamber inside the reactor body is made uniform in the heat exchange reaction chamber, and the fluid in each reaction tube Each process tube is also connected to the process fluid introduced from the supply port into the reaction tube. To be the same conditions.
[0014]
Further, for each heat pipe having an in-tube heat exchanging portion arranged in each reaction tube and an out-of-tube heat exchanging portion exposed in the heat medium, the out-of-tube heat exchanging portion alleviates the temperature gradient of each reaction tube. Projecting in the direction and exposed in the heat medium, the heat medium introduced into the reactor body exchanges heat with the process fluid through the outer wall of each reaction tube in the reactor body. In addition, heat exchange with the working fluid inside of each heat pipe protruding from the reaction tube is performed with the working fluid inside, and the heat energy exchanged with the working fluid is transferred again into the reaction tube by the working fluid. In the reaction tube, heat exchange with the process fluid is performed from the inside. For this reason, each reaction tube has a relatively uniform temperature in the length direction, and an efficient reaction of the process fluid in each reaction tube can be achieved.
[0015]
For each of the above heat pipes, how to design the working fluid to be filled therein, the heat transfer area (Ai) of the heat exchanger inside the pipe, the area (Ao) of the heat exchanger outside the pipe, etc. The tube heat exchanger type reactor is used for what kind of reaction, how each reaction tube is designed, and what kind of heat medium is used for heat exchange, etc. Designed and determined according to
[0016]
Further, for each of the above reaction tubes, depending on the type of reaction to be applied, the inside thereof, that is, in the gap between the inner wall of each reaction tube and the in-tube heat exchange portion of the heat pipe disposed in the reaction tube, A catalyst required for the reaction, for example, if the reaction is a dehydrogenation reaction, is charged with a predetermined dehydrogenation catalyst, and if the reaction is a reforming reaction, it is charged with a predetermined reforming catalyst, and is supplied into this catalyst. The reaction of the process fluid is performed.
[0017]
The multitubular heat exchanger type reaction apparatus of the present invention is suitably used for a reaction in which the reaction product is a fluid such as a gas or a liquid, and a relatively large amount of heat energy is required for the reaction. When this reaction is an endothermic reaction, since the heat medium is used as a heat energy supply body, a high-temperature fluid can be used as the heat medium, and high-temperature exhaust gas discharged from related equipment and peripheral equipment can be used. It can be used suitably. When the above reaction is an exothermic reaction that requires removal of reaction heat, the heat medium is used for heat removal from the reaction heat. For example, steam having a large heat capacity is preferably used.
[0018]
Further, the multi-tube heat exchanger type reactor of the present invention has a configuration in which the heat medium is introduced from one end side of the reactor main body and discharged to the other end side, so it is installed both vertically and horizontally. And can be arbitrarily selected according to the type of reaction to be applied and the environment of the installation location.
[0019]
Therefore, the multi-tube heat exchanger type reactor of the present invention is a hydrogen production apparatus used in a high pressure hydrogen supply system for producing hydrogen, compressing the produced hydrogen and supplying high pressure hydrogen to a hydrogen consuming engine, particularly , A high-pressure hydrogen supply system equipped with a combustion turbine power generator that covers part or all of the power consumption, as a process fluid, a chemical hydrogen storage medium (chemical hydride) such as cyclohexane, methylcyclohexane, decalin, methanol, A fluid reaction product for hydrogen production comprising dimethyl ether, light hydrocarbons, etc. is used, and the reaction tube is filled with a catalyst for dehydrogenation reaction or steam reforming reaction. It is suitable as a hydrogen production apparatus for producing hydrogen by a reforming reaction.
[0020]
That is, in the above-described combustion turbine power generator, fuel such as light oil, kerosene, city gas, and LPG is combusted. As a result, high-temperature exhaust gas of 500 ° C. or higher is generated, whereas cyclohexane is present in the presence of a dehydrogenation catalyst, for example. In order to dehydrogenate (chemical hydride) to produce 400 Nm 3 hydrogen, a heat amount of about 1.2 × 10 6 kj is required as a dehydrogenation reaction. Similarly, decalin (chemical hydride) is dehydrogenated. In the case of the reaction, about 1.1 × 10 6 kj is required, and in order to produce 400 Nm 3 of hydrogen by reforming methanol (process fluid) in the presence of a steam reforming catalyst. Since a heat amount of 0.77 × 10 6 kj is required, a part or all of the heat amount required for the dehydrogenation reaction and the steam reforming reaction can be covered by the high-temperature exhaust gas of the combustion turbine power generator. wear.
[0021]
When the multi-tube heat exchanger type reaction device is used as a hydrogen production device used in a high-pressure hydrogen supply system, the entire catalyst for dehydrogenation reaction or steam reforming reaction packed in each reaction tube is used. It is preferable that the heat energy be supplied as uniformly as possible over the area of the heat pipe. Therefore, it is preferable that the area of the outer surface of each reaction tube [that is, the heat transfer area (Ar)] and the heat pipe arranged in the reaction tube Heat transfer area ratio (Ar / Ai) to the area of the heat transfer section [ie, heat transfer area (Ai)] is in the range of 1.5 to 3.0, more preferably 1.5 to 2.0. It is better to control within the range. If this heat transfer area ratio (Ar / Ah) is lower than 1.5, the function is not sufficiently expressed, and conversely, if it is higher than 3.0, it is uneconomical.
[0022]
In addition, when this multi-tube heat exchanger type reaction apparatus is used as a hydrogen production apparatus, heat energy is distributed as uniformly as possible over the entire catalyst for dehydrogenation reaction or steam reforming reaction packed in each reaction tube. In order to supply, preferably, for each heat pipe, the heat transfer area ratio (Ai / Ao) between the heat transfer area (Ai) of the in-tube heat exchange part and the heat transfer area (Ao) of the external heat exchange part is It is preferable to control within the range of 0.5 or more and 1.5 or less, more preferably within the range of 0.5 or more and 1.0 or less. If the heat transfer area ratio (Ai / Ao) is lower than 0.5, the function is not sufficiently expressed, and conversely, if it is higher than 1.5, it is uneconomical.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, based on the embodiments shown in the accompanying drawings, the multitubular heat exchanger of the present invention suitable as a hydrogen production apparatus used in a high-pressure hydrogen supply system equipped with a combustion turbine power generator that covers part or all of the power consumption An example of the type reactor will be specifically described.
[0024]
As shown in FIGS. 1 and 2, the multi-tube heat exchanger type reaction apparatus (hydrogen production apparatus) according to this embodiment is installed horizontally and is basically used as a heat medium on one end side thereof. A reactor main body 1 having a heat medium inlet 1a for the high temperature exhaust gas Gw and a heat medium outlet for the high temperature exhaust gas Gw on the other end side, and arranged in parallel to each other in the reactor main body 1, cyclohexane or decalin A number of reaction tubes 2 communicating with the fluid supply port 2a and the fluid outlet 2b of the process fluid Lp made of a chemical hydride such as the above, the in-tube heat exchanging portion 3a disposed in each of the reaction tubes 2 and the reactor body 1 A plurality of heat pipes 3 having an external heat exchanging portion 3b protruding from each reaction tube 2 and exposed in the high temperature exhaust gas Gw on the downstream side of the reaction tube 2, and filled with a working fluid not shown in the figure. have.
[0025]
In this embodiment, the reactor main body 1 includes a heat exchange reaction chamber 4 in which a large number of reaction tubes 2 are arranged by four partition walls 4a, 4b, 6a, and 8a, and the heat exchange reaction chamber 4. A fluid recovery chamber 5 that is located upstream of the high temperature exhaust gas Gw and collects the process fluid Lp that has passed through the multiple reaction tubes 2 with the fluid outlet 2b, and is positioned upstream of the high temperature exhaust gas Gw of the fluid recovery chamber 5 The heat medium distribution chamber 6 having the heat medium introduction port 1a and the high-temperature exhaust gas Gw downstream of the heat exchange reaction chamber 4 are located on the downstream side of the high-temperature exhaust gas Gw. Is divided into a fluid distribution chamber 7 that distributes the gas and a heat medium recovery chamber 8 that is located on the downstream side of the high-temperature exhaust gas Gw of the fluid distribution chamber 7 and has a heat medium discharge port 1b. Is exposed to the high temperature exhaust gas Gw passing through the heat medium recovery chamber 8.
[0026]
In addition, as shown in FIG. 2, the multiple reaction tubes 2 disposed in the heat exchange reaction chamber 4 are formed of pipes having open ends that are excellent in thermal conductivity, heat resistance, corrosion resistance, and the like. One end thereof is fixed to the partition wall 4a and opened (9a) toward the fluid distribution chamber 7, and the other end is fixed to the partition wall 4b and opened toward the fluid recovery chamber 5. Further, a dehydrogenation catalyst (not shown) is filled in the space between the heat pipe 3 and the in-pipe heat exchanging portion 3a.
[0027]
Furthermore, in this embodiment, the high temperature exhaust gas Gw introduced into the heat medium distribution chamber 6 from the heat medium introduction port 1a is transferred between the partition wall 6a and the partition wall 4a of the heat medium distribution chamber 6 to the fluid recovery chamber 5. A large number of through pipes 10 having openings at both ends for distributing and feeding the gas into the inside are provided between the partition wall 4a and the partition wall 8a of the heat medium recovery chamber 8. A large number of through pipes 11 having both ends are provided for passing the exhaust gas Gw through the fluid distribution chamber 7 and into the heat medium recovery chamber 8, whereby heat passes from the heat medium distribution chamber 6 through the inside. The high-temperature exhaust gas Gw flowing into the medium recovery chamber 8 and the process fluid Lp flowing through the multiple reaction tubes 2 from the fluid distribution chamber 7 and flowing into the fluid recovery chamber 5 are not in direct contact with each other.
[0028]
Therefore, in the hydrogen production apparatus comprising the multi-tube heat exchanger type reactor of this embodiment, the high temperature exhaust gas (heat medium) Gw discharged from the combustion turbine power generator is transferred from the heat medium introduction port 1a to the heat medium distribution chamber. 6, is distributed to each through pipe 10 in the heat medium distribution chamber 6, and each of the through pipes 10 is uniformly fed into the entire inside, and then the heat medium recovery chamber 8 through the through pipe 11. The heat medium is then collected in the heat medium recovery chamber 8 and discharged from the heat medium outlet 1b.
[0029]
Further, the process fluid Lp supplied from the fluid supply port 2a into the fluid distribution chamber 7 is uniformly distributed to each reaction tube 2 in the fluid distribution chamber 7, and contacts the dehydrogenation catalyst in each reaction tube 2. At that time, heat is exchanged with the high-temperature exhaust gas Gw flowing outside the reaction tubes 2, thereby dehydrogenating to generate hydrogen, and the hydrogen is recovered in the fluid recovery chamber 5 as a process fluid containing the generated hydrogen. Then, hydrogen produced by being drawn out from the fluid outlet 2b and solid-liquid separated by a solid-liquid separator (not shown) is obtained.
[0030]
[Test example]
The multi-tube heat exchanger type reactor described in the above examples was made on a trial basis under the following apparatus design conditions, and four of the prototype multi-tube heat exchanger type reactors were installed horizontally in parallel. The operation test was conducted under the following operating conditions.
[0031]
[Equipment design conditions]
(1) Number of reaction tubes and heat pipes: 57 each (2) Total amount of catalyst: 1.431 m 3
(3) Necessary heat transfer area of all reaction tubes: 220m 2
(4) Heat transfer area (Ar) of all reaction tubes: 140.4m 2
(5) Heat transfer area (Ai) of the heat transfer section in the pipe of all heat pipes: 79.3 m 2
(6) Heat transfer area (Ao) of the heat transfer section outside the tube of all heat pipes: 79.6 m 2
[0032]
As a result of the operation test conducted using the multi-tube heat exchanger type reactor of the above embodiment, heat transfer between the hot exhaust gas and the process fluid is good, and the heat of the hot exhaust gas discharged from the combustion turbine power generator It was confirmed that hydrogen can be produced by efficiently recovering and using energy.
[0033]
【The invention's effect】
The multi-tube heat exchanger type reactor of the present invention can exchange heat energy uniformly and efficiently with respect to a process fluid, and uses a high-temperature exhaust fluid discharged from various facilities as a heat medium. In addition, since heat energy can be efficiently recovered from this high-temperature exhaust fluid, it can be suitably used as a reaction apparatus used for reaction of a process fluid that requires transfer of a relatively large amount of heat energy. It is useful as a hydrogen production apparatus used in the supply system.
[Brief description of the drawings]
FIG. 1 is an explanatory longitudinal sectional view showing the whole of a multi-tube heat exchanger type reactor according to an embodiment of the present invention.
FIG. 2 is a partially enlarged explanatory view of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor main body, 1a ... Heat-medium introduction port, 1b ... Heat-medium discharge port, 2 ... Reaction tube, 2a ... Fluid supply port, 2b ... Fluid outlet, 3 ... Heat pipe, 3a ... In-pipe heat exchange part, 3b ... external heat exchange section, 4 ... heat exchange reaction chamber, 5 ... fluid recovery chamber, 6 ... heat medium distribution chamber, 7 ... fluid distribution chamber, 8 ... heat medium recovery chamber, 4a, 4b, 6a, 8a ... partition wall, 9a, 9b ... Opening, 10, 11 ... Through pipe, Gw ... High temperature exhaust gas, Lp ... Process fluid.

Claims (4)

熱媒体の熱媒導入口及び熱媒排出口を有する反応器本体と、この反応器本体内に配設され、プロセス流体の流体供給口及び流体取出口を有する多数の反応管と、上記各反応管内に配置される管内熱交換部及び反応器本体内で各反応管から突出して熱媒体中に露出する管外熱交換部を有し、内部に作動流体が充填された多数のヒートパイプとを有し、
上記反応器本体が、多数の反応管が配設された熱交換反応室と、この熱交換反応室の熱媒体上流側に位置し、流体取出口を有して多数の反応管内を通過したプロセス流体を集める流体回収室と、上記流体回収室の熱媒体上流側に位置し、熱媒導入口を有する熱媒分配室と、上記熱交換反応室の熱媒体下流側に位置し、流体供給口を有して多数の反応管内にプロセス流体を分配する流体分配室と、この流体分配室の熱媒体下流側に位置し、熱媒排出口を有する熱媒回収室とに区画されており、多数のヒートパイプの管外熱交換部が熱媒回収室内に露出しており、
この反応器本体内に導入される熱媒体及び各ヒートパイプの管内熱交換部内の作動流体と各反応管内のプロセス流体とを熱交換させると共に、各ヒートパイプの管外熱交換部内の作動流体と各反応管外部の熱媒体とを熱交換させることを特徴とする多管式熱交換器型反応装置。
A reactor main body having a heat medium introduction port and a heat medium discharge port for the heat medium, a number of reaction tubes disposed in the reactor main body and having a fluid supply port and a fluid outlet for the process fluid, and each of the above reactions A plurality of heat pipes, each having an in-tube heat exchanging part disposed in the pipe and an external heat exchanging part protruding from each reaction tube in the reactor body and exposed to the heat medium, and filled with a working fluid. Have
The reactor body is a heat exchange reaction chamber in which a large number of reaction tubes are arranged, and a process that is located on the upstream side of the heat medium in the heat exchange reaction chamber and that has a fluid outlet and passes through the many reaction tubes. A fluid collection chamber for collecting fluid; a heat medium distribution chamber located on the heat medium upstream side of the fluid collection chamber and having a heat medium introduction port; and a fluid supply port located on the heat medium downstream side of the heat exchange reaction chamber A fluid distribution chamber that distributes the process fluid into a number of reaction tubes, and a heat medium recovery chamber that is located downstream of the fluid distribution chamber and has a heat medium discharge port. The heat exchanger outside the pipe of the heat pipe is exposed in the heat medium recovery chamber,
The heat medium introduced into the reactor main body and the working fluid in the in-tube heat exchange section of each heat pipe and the process fluid in each reaction pipe are subjected to heat exchange, and the working fluid in the outside heat exchange section of each heat pipe and A multi-tube heat exchanger type reaction apparatus characterized by exchanging heat with a heat medium outside each reaction tube.
反応器本体内の熱媒体の流れと各反応管内のプロセス流体の流れとが互いに逆方向である請求項1に記載の多管式熱交換器型反応装置。  The multi-tube heat exchanger type reactor according to claim 1, wherein the flow of the heat medium in the reactor main body and the flow of the process fluid in each reaction tube are in opposite directions. 水素を製造し、製造された水素を圧縮して水素消費機関に高圧水素を供給する高圧水素の供給システムにおいて、水素製造装置として用いられる多管式熱交換器型反応装置であり、熱媒体が高圧水素の供給システムで消費される電力の一部又は全部を賄う燃焼タービン発電装置から排出される高温排ガスであり、プロセス流体が水素製造用の流体反応物であり、反応管内には脱水素反応用又は水蒸気改質反応用の触媒が充填されている請求項1又は2に記載の多管式熱交換器型反応装置。In a high-pressure hydrogen supply system for producing hydrogen and compressing the produced hydrogen to supply high-pressure hydrogen to a hydrogen consuming engine, the multi-tube heat exchanger type reaction device used as a hydrogen production device has a heat medium High-temperature exhaust gas discharged from a combustion turbine power generator that covers part or all of the power consumed by the high-pressure hydrogen supply system. The process fluid is a fluid reactant for hydrogen production. The multi-tube heat exchanger type reaction apparatus according to claim 1 or 2 , which is filled with a catalyst for use or steam reforming reaction. 各反応管の伝熱面積(Ar)とこの反応管内に配置される各ヒートパイプの管内伝熱部の伝熱面積(Ai)との伝熱面積比(Ar/Ai)が1.5〜3の範囲内である請求項に記載の多管式熱交換器型反応装置。The heat transfer area ratio (Ar / Ai) between the heat transfer area (Ar) of each reaction tube and the heat transfer area (Ai) of the in-tube heat transfer section of each heat pipe is 1.5-3. The multitubular heat exchanger type reactor according to claim 3 , which falls within the range of
JP2003091786A 2003-03-28 2003-03-28 Multi-tube heat exchanger type reactor Expired - Fee Related JP4268432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091786A JP4268432B2 (en) 2003-03-28 2003-03-28 Multi-tube heat exchanger type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091786A JP4268432B2 (en) 2003-03-28 2003-03-28 Multi-tube heat exchanger type reactor

Publications (2)

Publication Number Publication Date
JP2004299924A JP2004299924A (en) 2004-10-28
JP4268432B2 true JP4268432B2 (en) 2009-05-27

Family

ID=33405073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091786A Expired - Fee Related JP4268432B2 (en) 2003-03-28 2003-03-28 Multi-tube heat exchanger type reactor

Country Status (1)

Country Link
JP (1) JP4268432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513047A (en) * 2011-12-21 2012-06-27 浙江大学 Fluid distributor based on elastic elements

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897811B2 (en) * 2011-03-30 2016-03-30 千代田化工建設株式会社 Hybrid hydrogen production and power generation system
TWI526655B (en) 2013-07-23 2016-03-21 財團法人工業技術研究院 Waste heat recovery apparatus and waste heat recovery method
EP4043424A4 (en) * 2019-09-27 2023-11-15 Sumitomo Chemical Company, Limited Chemical reaction method and chemical reaction device
US20230311092A1 (en) * 2020-08-31 2023-10-05 Sumitomo Chemical Company, Limited Chemical reaction method, chemical reaction apparatus and production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513047A (en) * 2011-12-21 2012-06-27 浙江大学 Fluid distributor based on elastic elements
CN102513047B (en) * 2011-12-21 2013-09-18 浙江大学 Fluid distributor based on elastic elements

Also Published As

Publication number Publication date
JP2004299924A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4869696B2 (en) Small cylindrical reformer
US20030044331A1 (en) Annular heat exchanging reactor system
WO2005080261A1 (en) Integrated fuel processor for distributed hydrogen production
KR101156401B1 (en) A cylindrical steam reformer including a heat exchanger
CN102145877B (en) Hydrogen generator using steam-reforming reaction
JP4268432B2 (en) Multi-tube heat exchanger type reactor
De Falco et al. The effect of heat-flux profile and of other geometric and operating variables in designing industrial membrane methane steam reformers
CA3176087A1 (en) Hydrogen generation systems
CN115465837A (en) Tube type reactor for steam reforming reaction of hydrocarbon
CN111453697B (en) Multi-fuel universal reforming hydrogen production system and method for SOFC
CN211719720U (en) Universal reforming fuel cell system
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
JP2572251B2 (en) Fuel reformer
JP4326078B2 (en) Solid oxide fuel cell module
JP2017113746A (en) Radiant non-catalytic recuperative reformer
JP3978016B2 (en) Hydrogen production equipment
KR20080075130A (en) Steam generation apparatus and method
CN217972598U (en) Tube type reactor for steam reforming reaction of hydrocarbon
JPH08287937A (en) Solid electrolyte fuel cell module
CA2685284C (en) Highly heat integrated fuel processor for hydrogen production
JP2550716B2 (en) Fuel reformer
CN220245562U (en) Intensive skid-mounted natural gas hydrogen production equipment
Bromberg et al. Plasma catalytic reforming of natural gas
CN114212755A (en) High-efficient compact methyl alcohol hydrogen production ware
JPH0329723B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Ref document number: 4268432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees