JP4268032B2 - Discharge type surge absorber - Google Patents

Discharge type surge absorber Download PDF

Info

Publication number
JP4268032B2
JP4268032B2 JP2003430214A JP2003430214A JP4268032B2 JP 4268032 B2 JP4268032 B2 JP 4268032B2 JP 2003430214 A JP2003430214 A JP 2003430214A JP 2003430214 A JP2003430214 A JP 2003430214A JP 4268032 B2 JP4268032 B2 JP 4268032B2
Authority
JP
Japan
Prior art keywords
discharge
gas
hydrogen
volume
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003430214A
Other languages
Japanese (ja)
Other versions
JP2005190803A (en
Inventor
孝一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2003430214A priority Critical patent/JP4268032B2/en
Publication of JP2005190803A publication Critical patent/JP2005190803A/en
Application granted granted Critical
Publication of JP4268032B2 publication Critical patent/JP4268032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

この発明は、気密容器内に封入した複数の放電電極間の放電間隙における放電現象を利用して誘導雷等のサージを吸収することにより、電子機器が損傷することを防止する放電型サージ吸収素子に関する。   The present invention relates to a discharge type surge absorbing element that prevents damage to an electronic device by absorbing a surge such as an induced lightning by utilizing a discharge phenomenon in a discharge gap between a plurality of discharge electrodes enclosed in an airtight container. About.

従来、誘導雷等のサージから電子機器の電子回路を保護するためのサージ吸収素子として、電圧非直線特性を有する高抵抗体素子よりなるバリスタや、放電間隙を気密容器内に収容したガスアレスタ等が広く使用されている。   Conventionally, as a surge absorbing element for protecting electronic circuits of electronic equipment from surges such as induced lightning, a varistor made of a high-resistance element having voltage non-linear characteristics, a gas arrester in which a discharge gap is housed in an airtight container, etc. Is widely used.

上記バリスタは、サージ吸収の応答性に優れるものの、単位面積当たりの電流耐量が比較的小さく、したがって大きなサージ電流を効率よく吸収することが困難である。また、上記ガスアレスタは、放電間隙にアーク放電を生成し、このアーク電圧は殆ど上昇しないため、電流耐量を大きくすることができるのであるが、その反面、放電遅れ時間が大きく、急峻な立ち上がり特性を有するサージに対しては、残留電圧が発生してサージ防護を十分に行い得ないという問題がある。   Although the varistor is excellent in surge absorption responsiveness, it has a relatively small current resistance per unit area, and thus it is difficult to efficiently absorb a large surge current. In addition, the gas arrester generates arc discharge in the discharge gap, and the arc voltage hardly rises, so that the current withstand capability can be increased, but on the other hand, the discharge delay time is large and the steep rise characteristic There is a problem that a surge voltage having a residual voltage is generated and the surge protection cannot be sufficiently performed.

そこで、本出願人は、先に特開2002−334765号公報に示す放電型サージ吸収素子を提案した。
図7に示すように、この放電型サージ吸収素子60は、ガラスより成る気密容器62内に、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスより成る放電ガス、又は上記放電ガスに水素、六フッ化硫黄ガス、二酸化炭素を混合して成る放電ガスと、導電性に優れたニッケル等の金属を細長い丸棒状に加工して成る一対の放電電極64,64と、絶縁性材料であるセラミックより成るトリガ放電部材66を封入して成る。
上記一対の放電電極64,64は、所定の距離を隔てて平行配置されており、両放電電極64,64間に主放電間隙68が形成されている。また、上記放電電極64,64の下端部には、リード端子70,70の一端が接続されており、上記リード端子70,70の他端は、上記気密容器62の封止部72を貫通して外部に導出されている。
Therefore, the present applicant has previously proposed a discharge type surge absorbing element disclosed in Japanese Patent Application Laid-Open No. 2002-334765.
As shown in FIG. 7, the discharge type surge absorbing element 60 is made of a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas or a mixed gas in an airtight container 62 made of glass. A pair of discharge electrodes formed by processing a discharge gas formed by mixing hydrogen, sulfur hexafluoride gas or carbon dioxide into the discharge gas, and a metal such as nickel having excellent conductivity into an elongated round bar shape 64, 64 and a trigger discharge member 66 made of ceramic which is an insulating material are enclosed.
The pair of discharge electrodes 64 and 64 are arranged in parallel at a predetermined distance, and a main discharge gap 68 is formed between the discharge electrodes 64 and 64. Further, one end of a lead terminal 70, 70 is connected to the lower end of the discharge electrode 64, 64, and the other end of the lead terminal 70, 70 penetrates the sealing part 72 of the airtight container 62. Are derived outside.

上記トリガ放電部材66は、図8及び図9に拡大して示すように、略楕円盤状の本体部74と、該本体部74を上下に貫通する一対の孔76,76を有しており、該孔76,76内に、上記放電電極64,64とリード端子70,70が挿通されている。
上記トリガ放電部材66の一対の孔76,76間には、本体部74表面から所定の高さで突出し、その表面にカーボン系材料等より成る導電性被膜78が被着された凸部80が形成されており、該凸部80の両端縁の一部は、図9に示すように、微小放電間隙82を隔てて、孔76,76内に挿入された放電電極64,64の内方側の外面略半周に沿って配置されている。そして、凸部80表面の導電性被膜78と、各放電電極64,64とが、放電電極64,64の内方側の外面の略半周に亘って、上記微小放電間隙82を隔てて対向配置されている。
8 and 9, the trigger discharge member 66 has a substantially elliptical disk-shaped main body 74 and a pair of holes 76 and 76 penetrating the main body 74 in the vertical direction. The discharge electrodes 64 and 64 and the lead terminals 70 and 70 are inserted into the holes 76 and 76, respectively.
Between the pair of holes 76, 76 of the trigger discharge member 66, there is a convex portion 80 that protrudes from the surface of the main body portion 74 at a predetermined height, and a conductive coating 78 made of a carbon-based material or the like is attached to the surface. As shown in FIG. 9, a part of both end edges of the convex portion 80 is formed on the inner side of the discharge electrodes 64, 64 inserted into the holes 76, 76 with a minute discharge gap 82 therebetween. It is arrange | positioned along the outer surface substantially half circumference. Then, the conductive film 78 on the surface of the convex portion 80 and the discharge electrodes 64 and 64 are arranged opposite to each other across the micro discharge gap 82 over the substantially half circumference of the outer surface on the inner side of the discharge electrodes 64 and 64. Has been.

上記構成を備えた放電型サージ吸収素子60に、リード端子70,70を介してサージが印加されると、導電性被膜78と各放電電極64,64間の微小放電間隙82に電界が集中し、これにより微小放電間隙82に電子が放出されてトリガ放電が発生する。次いで、このトリガ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙68へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。
特開2002−334765号公報
When a surge is applied to the discharge type surge absorbing element 60 having the above-described configuration via the lead terminals 70, 70, an electric field is concentrated in the minute discharge gap 82 between the conductive film 78 and each of the discharge electrodes 64, 64. As a result, electrons are emitted into the minute discharge gap 82 to generate a trigger discharge. Next, this trigger discharge shifts to glow discharge due to the priming effect of electrons. The glow discharge is transferred to the main discharge gap 68 due to an increase in surge current, and further, the arc discharge as the main discharge is transferred to absorb the surge.
JP 2002-334765 A

ところで、放電ガス中に、原子量が小さく負極性ガスである水素(H)を混合すると、サージ印加時の放電遅れの防止に効果があり、特に、放電ガス中への水素の混合割合が10体積%を越える場合に顕著な効果が得られることから、従来より、10体積%を越える割合の水素を放電ガス中に混合させることが行われていた。
しかしながら、10体積%を越える割合の水素を放電ガス中に混合した場合には、水素が高活性化状態となり、水素が、放電電極64,64中に吸着されている酸素(O)や二酸化炭素(CO)等の不純ガスと反応したり、カーボン系材料等より成る導電性被膜78に吸着される等して徐々に減少する結果、放電開始電圧の上昇を来たし、放電特性の経時劣化を生じる場合があった。例えば、10体積%を越える割合の水素を放電ガス中に混合した場合、700時間経過後に放電開始電圧が約20%も上昇する場合がある。
By the way, mixing hydrogen (H 2 ), which has a small atomic weight and a negative polarity gas, into the discharge gas is effective in preventing discharge delay when applying a surge, and in particular, the mixing ratio of hydrogen in the discharge gas is 10%. Since a remarkable effect is obtained when the volume percentage is exceeded, hydrogen has been conventionally mixed into the discharge gas at a ratio exceeding 10 volume%.
However, when hydrogen in a proportion exceeding 10% by volume is mixed in the discharge gas, the hydrogen is in a highly activated state, and the hydrogen is absorbed in the discharge electrodes 64 and 64 by oxygen (O 2 ) or dioxide. As a result of reaction with an impure gas such as carbon (CO 2 ) or adsorption to a conductive coating 78 made of a carbon-based material or the like, it gradually decreases, resulting in an increase in discharge start voltage and deterioration of discharge characteristics over time. May have occurred. For example, when hydrogen in a proportion exceeding 10% by volume is mixed in the discharge gas, the discharge start voltage may increase by about 20% after 700 hours.

この発明は、従来の上記問題に鑑みてなされたものであり、その目的とするところは、サージに対する応答性が良好であると共に、放電特性の経時劣化を効果的に抑制できる放電型サージ吸収素子を実現することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a discharge-type surge absorbing element that has good responsiveness to surge and can effectively suppress deterioration over time of discharge characteristics. Is to realize.

本発明に係る放電型サージ吸収素子は、主放電間隙を隔てて対向配置した複数の放電電極と、各放電電極と微小放電間隙を隔てて対向配置した導電性被膜を備えたトリガ放電部材とを、放電ガスと共に気密容器内に封入して成る放電型サージ吸収素子において、上記放電ガスを、ネオン、アルゴン、水素の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合し、また、上記放電電極をニッケル−マンガン合金で構成したことを特徴とする。 A discharge type surge absorbing element according to the present invention comprises a plurality of discharge electrodes arranged opposite to each other with a main discharge gap, and a trigger discharge member provided with a conductive coating arranged opposite to each discharge electrode with a minute discharge gap. In the discharge type surge absorbing element, which is sealed with a discharge gas in an airtight container, the discharge gas is composed of a mixed gas of neon, argon and hydrogen, and argon is 10 to 20% by volume and hydrogen is 2 to 10 volumes. % , And the discharge electrode is made of a nickel-manganese alloy .

上記放電ガスを、ネオン、アルゴン、水素の混合ガスで構成し、アルゴンを15体積%、水素を10体積%の割合で混合しても良い。   The discharge gas may be composed of a mixed gas of neon, argon, and hydrogen, and argon may be mixed at a ratio of 15% by volume and hydrogen at 10% by volume.

本発明の放電型サージ吸収素子にあっては、放電ガスを、ネオン、アルゴン、水素の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合することにより、サージに対する応答性を向上させることができると共に、放電特性の経時劣化も効果的に抑制できる。
また、放電電極を耐酸化性に優れたニッケル−マンガン合金で構成したので、放電電極表面における酸化膜の形成を抑制することができる。従って、本発明のサージ吸収素子は、絶縁性の酸化膜によって放電電極間の主放電間隙におけるアーク放電の生成が阻害されることを有効に防止でき、サージに対する応答性が良好である。
In the discharge type surge absorbing element of the present invention, the discharge gas is composed of a mixed gas of neon, argon and hydrogen, and argon is mixed at a rate of 10 to 20% by volume and hydrogen at a rate of 2 to 10% by volume. As a result, it is possible to improve the responsiveness to the surge and to effectively suppress the deterioration of the discharge characteristics over time.
Moreover, since the discharge electrode is made of a nickel-manganese alloy having excellent oxidation resistance, formation of an oxide film on the surface of the discharge electrode can be suppressed. Therefore, the surge absorbing element of the present invention can effectively prevent the generation of arc discharge in the main discharge gap between the discharge electrodes by the insulating oxide film, and has good response to surge.

尚、放電ガスを、ネオン、アルゴン、水素の混合ガスで構成し、アルゴンを15体積%、水素を10体積%の割合で混合した場合に、サージに対する応答性が最も良好である。   In addition, when the discharge gas is composed of a mixed gas of neon, argon, and hydrogen, and argon is mixed at a ratio of 15% by volume and hydrogen at a ratio of 10% by volume, the response to surge is the best.

以下、添付図面に基づき本発明に係る放電型サージ吸収素子を説明する。図1は、本発明の放電型サージ吸収素子10を示す縦断面図である。
この放電型サージ吸収素子10は、ガラスより成る気密容器12内に、放電ガスと、細長い丸棒状の一対の放電電極14,14と、絶縁性材料であるフォルステライト、アルミナ、ステアタイト等のセラミックより成るトリガ放電部材16を封入して成る。
上記一対の放電電極14,14は、所定の距離を隔てて平行配置されており、両放電電極14,14間に主放電間隙18が形成されている。また、上記放電電極14,14の下端部には、デュメット線(銅被覆鉄ニッケル合金線)や42−6合金線等より成るリード端子20,20の一端が接続されており、上記リード端子20,20の他端は、上記気密容器12の封止部22を貫通して外部に導出されている。
Hereinafter, a discharge type surge absorbing element according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing a discharge type surge absorbing element 10 of the present invention.
This discharge-type surge absorbing element 10 includes a discharge gas, a pair of elongated round bar-like discharge electrodes 14 and 14, and an insulating material such as forsterite, alumina, and steatite in an airtight container 12 made of glass. A trigger discharge member 16 made of the material is enclosed.
The pair of discharge electrodes 14, 14 are arranged in parallel at a predetermined distance, and a main discharge gap 18 is formed between the discharge electrodes 14, 14. Further, one end of lead terminals 20 and 20 made of dumet wire (copper-coated iron-nickel alloy wire), 42-6 alloy wire or the like is connected to the lower ends of the discharge electrodes 14 and 14, and the lead terminal 20 , 20 penetrates the sealing portion 22 of the hermetic container 12 and is led out to the outside.

上記トリガ放電部材16は、気密容器12の封止部22上に配置されており、図2及び図3に拡大して示すように、略楕円盤状の本体部24と、該本体部24を上下に貫通する一対の孔26,26を有している。
上記孔26,26は、その上端から下端へ向かって所定位置に至るまでは、上記放電電極14の外形寸法と略同径と成されており、上記所定位置から下端へ至るまでは、放電電極14の外形寸法より小径と成されている。そして、上記孔26,26内に、放電電極14,14とリード端子20,20が挿通されている。
上記孔26,26内に挿入された放電電極14,14の外面は、本体部24の壁面に当接すると共に、上記放電電極14,14の下端部は、孔26,26内の上記所定位置近傍の本体部24壁面に当接支持されている。
The trigger discharge member 16 is disposed on the sealing portion 22 of the hermetic container 12, and as shown in enlarged views in FIGS. It has a pair of holes 26, 26 penetrating vertically.
The holes 26 and 26 have substantially the same outer diameter as the discharge electrode 14 until reaching a predetermined position from the upper end to the lower end, and the discharge electrode until reaching the lower end from the predetermined position. Smaller than 14 outer dimensions. The discharge electrodes 14 and 14 and the lead terminals 20 and 20 are inserted into the holes 26 and 26, respectively.
The outer surfaces of the discharge electrodes 14, 14 inserted into the holes 26, 26 are in contact with the wall surface of the main body 24, and the lower ends of the discharge electrodes 14, 14 are in the vicinity of the predetermined position in the holes 26, 26. The main body 24 is in contact with and supported by the wall surface.

上記トリガ放電部材16の一対の孔26,26間には、本体部24表面から所定の高さ(例えば、約1mmの高さ)で突出し、その表面にカーボン系材料等より成る導電性被膜28が被着された凸部30が形成されており、該凸部30の両端縁の一部は、図3に示すように、微小放電間隙32を隔てて、孔26,26内に挿入された放電電極14,14の内方側の外面略半周に沿って配置されている。そして、凸部30表面の導電性被膜28と、各放電電極14,14とが、放電電極14,14の内方側の外面の略半周に亘って、上記微小放電間隙32を隔てて対向配置されている。尚、上記微小放電間隙32は、例えば10〜50μmの範囲に設定される。   Between the pair of holes 26 and 26 of the trigger discharge member 16, it protrudes from the surface of the main body 24 at a predetermined height (for example, a height of about 1 mm), and a conductive coating 28 made of a carbon-based material or the like on the surface. Is formed, and part of both end edges of the protrusion 30 are inserted into the holes 26 and 26 with a minute discharge gap 32 therebetween as shown in FIG. The discharge electrodes 14 and 14 are disposed along substantially the outer circumference on the inner side. Then, the conductive coating 28 on the surface of the convex portion 30 and each of the discharge electrodes 14 and 14 are opposed to each other across the above-mentioned minute discharge gap 32 over the substantially half circumference of the outer surface on the inner side of the discharge electrodes 14 and 14. Has been. The minute discharge gap 32 is set in a range of 10 to 50 μm, for example.

上記放電電極14は、ニッケル−マンガン(Ni−Mn)合金等の耐酸化性に優れたニッケル合金で構成されている。   The discharge electrode 14 is made of a nickel alloy having excellent oxidation resistance, such as a nickel-manganese (Ni-Mn) alloy.

本発明の放電型サージ吸収素子10においては、上記放電ガスを、ネオン(Ne)、アルゴン(Ar)、水素(H)の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合して成る。 In the discharge type surge absorbing element 10 of the present invention, the discharge gas is composed of a mixed gas of neon (Ne), argon (Ar), and hydrogen (H 2 ), 10 to 20% by volume of argon, and 2 of hydrogen. It is mixed at a ratio of 10% by volume.

上記構成を備えた本発明の放電型サージ吸収素子10に、リード端子20,20を介してサージが印加されると、導電性被膜28と各放電電極14,14間の微小放電間隙32に電界が集中し、これにより微小放電間隙32に電子が放出されてトリガ放電が発生する。次いで、このトリガ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙18へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。
上記の通り、本発明の放電型サージ吸収素子10にあっては、各放電電極14,14と導電性被膜28とが、放電電極14,14の内方側の外面の略半周に亘って対向配置されているので、上記微小放電間隙32におけるトリガ放電を広い範囲に亘って生成することができる。
When a surge is applied via the lead terminals 20 and 20 to the discharge type surge absorbing element 10 of the present invention having the above-described configuration, an electric field is generated in the minute discharge gap 32 between the conductive film 28 and each of the discharge electrodes 14 and 14. As a result, electrons are emitted into the minute discharge gap 32 to generate a trigger discharge. Next, this trigger discharge shifts to glow discharge due to the priming effect of electrons. Then, the glow discharge is transferred to the main discharge gap 18 due to an increase in surge current, and is further transferred to arc discharge as the main discharge to absorb the surge.
As described above, in the discharge type surge absorbing element 10 of the present invention, the discharge electrodes 14 and 14 and the conductive coating 28 face each other over substantially half of the outer surface on the inner side of the discharge electrodes 14 and 14. Therefore, the trigger discharge in the minute discharge gap 32 can be generated over a wide range.

而して、本発明の放電型サージ吸収素子10にあっては、上記の通り、放電ガスを、ネオン(Ne)、アルゴン(Ar)、水素(H)の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合することにより、サージに対する応答性を向上させることができると共に、放電特性の経時劣化も効果的に抑制できる。 Thus, in the discharge type surge absorbing element 10 of the present invention, as described above, the discharge gas is composed of a mixed gas of neon (Ne), argon (Ar), and hydrogen (H 2 ), By mixing 10 to 20% by volume and hydrogen at a rate of 2 to 10% by volume, the responsiveness to surge can be improved, and deterioration of discharge characteristics with time can be effectively suppressed.

図4は、インパルス放電開始電圧と、放電ガスのガス組成(Ne、Ar、H)比率との関係を示すグラフである。
図4において、グラフAは、放電ガスをネオンとアルゴンで構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示し、グラフBは、放電ガスをネオン、アルゴン、水素(2体積%)で構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示し、グラフCは、放電ガスをネオン、アルゴン、水素(5体積%)で構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示し、グラフDは、放電ガスをネオン、アルゴン、水素(10体積%)で構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示す。また、放電型サージ吸収素子10は、直流放電開始電圧が300V、封入ガス圧500Torrのものを使用し、1kV/10μsのインパルス電圧を印加して測定した。因みに、急峻な立ち上がり特性を有するインパルス電圧を放電型サージ吸収素子10に印加した際には、放電動作開始に遅れを生じるためインパルス放電開始電圧は、直流放電開始電圧より高くなるが、このインパルス放電開始電圧が低いほど、サージに対する応答性が良好であるといえる。
FIG. 4 is a graph showing the relationship between the impulse discharge start voltage and the gas composition (Ne, Ar, H 2 ) ratio of the discharge gas.
In FIG. 4, graph A shows the relationship between the impulse discharge start voltage and the argon ratio when the discharge gas is composed of neon and argon, and graph B shows the discharge gas as neon, argon, and hydrogen (2% by volume). The graph shows the relationship between the impulse discharge start voltage and the argon ratio when configured, and graph C shows the relationship between the impulse discharge start voltage and the argon ratio when the discharge gas is composed of neon, argon, and hydrogen (5% by volume). The graph D shows the relationship between the impulse discharge start voltage and the argon ratio when the discharge gas is composed of neon, argon, and hydrogen (10% by volume). The discharge type surge absorber 10 was measured by applying an impulse voltage of 1 kV / 10 μs using a DC discharge start voltage of 300 V and a sealed gas pressure of 500 Torr. Incidentally, when an impulse voltage having a steep rising characteristic is applied to the discharge type surge absorbing element 10, the impulse discharge start voltage is higher than the DC discharge start voltage because a delay occurs in the discharge operation start. It can be said that the lower the starting voltage, the better the response to surge.

図4のグラフに示す通り、アルゴンを10〜20体積%、水素を2〜10体積%の割合でネオンと混合した場合に、インパルス放電開始電圧の低下効果が大きく、サージに対する応答性が良好である。特に、アルゴンが15体積%、水素が10体積%の場合(グラフD参照)にインパルス放電開始電圧が最低となっており、サージに対する応答性が最も高い。
尚、10体積%を越える割合の水素を放電ガス中に混合した場合には、上記の通り、水素が高活性化状態となり放電特性の経時劣化を生じることから、水素の混合割合は10体積%以下に設定される。また、水素の混合割合が2体積%未満の場合には、放電遅れの防止効果が十分に得られないことから、水素の混合割合は2体積%以上に設定される。
As shown in the graph of FIG. 4, when argon is mixed with neon at a rate of 10 to 20% by volume and hydrogen at a rate of 2 to 10% by volume, the effect of reducing the impulse discharge start voltage is great and the response to surge is good. is there. In particular, when argon is 15% by volume and hydrogen is 10% by volume (see graph D), the impulse discharge start voltage is the lowest, and the responsiveness to surge is the highest.
In addition, when a proportion of hydrogen exceeding 10% by volume is mixed in the discharge gas, as described above, hydrogen is in a highly activated state and the discharge characteristics deteriorate over time, so the mixing rate of hydrogen is 10% by volume. Set to: In addition, when the mixing ratio of hydrogen is less than 2% by volume, the effect of preventing discharge delay cannot be sufficiently obtained, so the mixing ratio of hydrogen is set to 2% by volume or more.

また、アルゴンを10〜20体積%、水素を2〜10体積%の割合でネオンと混合した場合には、1800時間を経過しても放電開始電圧(インパルス放電開始電圧及び直流放電開始電圧)の上昇は見られず、放電特性の経時劣化も抑制された。   In addition, when argon is mixed with neon at a rate of 10 to 20% by volume and hydrogen at a rate of 2 to 10% by volume, the discharge start voltage (impulse discharge start voltage and DC discharge start voltage) is maintained even after 1800 hours have passed. No increase was observed, and the deterioration of discharge characteristics with time was also suppressed.

尚、上記の通り、放電電極14を耐酸化性に優れたニッケル−マンガン(Ni−Mn)合金等のニッケル合金で構成することにより、放電電極14の酸化を抑制することができる。
すなわち、放電電極14の構成材料として導電性に優れたニッケル(Ni)が広く用いられているが、ニッケルで放電電極14を構成した場合、大気中でガラス管をバーナ等の炎で封じ切って気密容器12の封止部22を形成する際に、放電電極14表面に絶縁性の酸化膜が形成されてしまい、その結果、放電電極14,14間の主放電間隙18におけるアーク放電の生成が阻害され、サージに対する応答性を低下させる要因となる。
しかしながら、本発明の放電型サージ吸収素子10にあっては、放電電極14を耐酸化性に優れたニッケル−マンガン(Ni−Mn)合金等のニッケル合金で構成しているので、大気中でガラス管をバーナ等の炎で封じ切って気密容器12の封止部22を形成しても、放電電極14表面における酸化膜の形成を抑制することができる。従って、本発明のサージ吸収素子10は、絶縁性の酸化膜によって放電電極14,14間の主放電間隙18におけるアーク放電の生成が阻害されることを有効に防止でき、サージに対する応答性が良好となる。
As described above, by forming the discharge electrode 14 with a nickel alloy such as a nickel-manganese (Ni-Mn) alloy having excellent oxidation resistance, oxidation of the discharge electrode 14 can be suppressed.
That is, nickel (Ni) having excellent conductivity is widely used as a constituent material of the discharge electrode 14, but when the discharge electrode 14 is composed of nickel, the glass tube is sealed with a flame such as a burner in the atmosphere. When forming the sealing portion 22 of the hermetic container 12, an insulating oxide film is formed on the surface of the discharge electrode 14, and as a result, generation of arc discharge in the main discharge gap 18 between the discharge electrodes 14 and 14 occurs. It is obstructed and becomes a factor that reduces the response to surge.
However, in the discharge type surge absorbing element 10 of the present invention, since the discharge electrode 14 is made of a nickel alloy such as a nickel-manganese (Ni—Mn) alloy having excellent oxidation resistance, Even if the tube is sealed with a flame such as a burner to form the sealing portion 22 of the hermetic container 12, formation of an oxide film on the surface of the discharge electrode 14 can be suppressed. Therefore, the surge absorbing element 10 of the present invention can effectively prevent the generation of arc discharge in the main discharge gap 18 between the discharge electrodes 14 and 14 by the insulating oxide film, and has good response to surge. It becomes.

図5は、放電電極14をニッケルで構成した放電型サージ吸収素子10のインパルス放電開始電圧の分布を示すヒストグラム、図6は、放電電極14をNi−Mn合金で構成した放電型サージ吸収素子10のインパルス放電開始電圧の分布を示すヒストグラムである。尚、両放電型サージ吸収素子10共に、直流放電開始電圧が300V、放電ガスとして、ネオン、アルゴン(15体積%)、水素(5体積%)の混合ガスを320Torrで封入したものを用い、1kV/10μsのインパルス電圧を印加して測定した。
放電電極14をNi−Mn合金で構成した放電型サージ吸収素子10(図6)の方が、放電電極14をニッケルで構成した放電型サージ吸収素子10(図5)に比べて、インパルス放電開始電圧が低く分布しており、平均のインパルス放電開始電圧においても、放電電極14をNi−Mn合金で構成した放電型サージ吸収素子10が424Vであるのに対し、放電電極14をニッケルで構成した放電型サージ吸収素子10が454Vであり、放電電極14をNi−Mn合金で構成した場合の方がサージに対する応答性が優れている。
尚、放電電極14を耐酸化性に優れたニッケル合金で構成した場合、放電電極14表面における酸化膜の形成を抑制できることから、放電ガス中に混合した水素が酸化膜と反応して減少することを防止できる。
FIG. 5 is a histogram showing a distribution of impulse discharge start voltage of the discharge type surge absorbing element 10 in which the discharge electrode 14 is made of nickel, and FIG. 6 is a discharge type surge absorbing element 10 in which the discharge electrode 14 is made of a Ni-Mn alloy. It is a histogram which shows distribution of the impulse discharge start voltage. In addition, both discharge type surge absorbing elements 10 use a DC discharge start voltage of 300 V, and a discharge gas in which a mixed gas of neon, argon (15% by volume), hydrogen (5% by volume) is sealed at 320 Torr, 1 kV Measurement was performed by applying an impulse voltage of / 10 μs.
The discharge type surge absorbing element 10 (FIG. 6) in which the discharge electrode 14 is made of Ni—Mn alloy starts impulse discharge compared to the discharge type surge absorbing element 10 (FIG. 5) in which the discharge electrode 14 is made of nickel. The voltage is distributed low, and even at the average impulse discharge start voltage, the discharge type surge absorbing element 10 in which the discharge electrode 14 is made of a Ni—Mn alloy is 424 V, whereas the discharge electrode 14 is made of nickel. When the discharge type surge absorbing element 10 is 454 V and the discharge electrode 14 is made of a Ni—Mn alloy, the response to the surge is excellent.
When the discharge electrode 14 is made of a nickel alloy having excellent oxidation resistance, the formation of an oxide film on the surface of the discharge electrode 14 can be suppressed, so that the hydrogen mixed in the discharge gas reacts with the oxide film and decreases. Can be prevented.

本発明に係る放電型サージ吸収素子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the discharge type surge absorption element which concerns on this invention. 本発明に係る放電型サージ吸収素子の放電電極とトリガ放電部材の詳細を示す拡大断面図である。It is an expanded sectional view showing details of a discharge electrode and a trigger discharge member of a discharge type surge absorption element concerning the present invention. 図2のB−B拡大断面図である。It is BB expanded sectional drawing of FIG. 本発明に係る放電型サージ吸収素子のインパルス放電開始電圧と、放電ガスのガス組成(Ne、Ar、H)比率との関係を示すグラフである。An impulse discharge start voltage of the discharge type surge absorber according to the present invention, is a graph showing the gas composition of the discharge gas (Ne, Ar, H 2) the relationship between the ratio. 放電電極をニッケルで構成した放電型サージ吸収素子のインパルス放電開始電圧の分布を示すヒストグラムである。It is a histogram which shows distribution of the impulse discharge start voltage of the discharge type surge absorption element which comprised the discharge electrode with nickel. 放電電極をNi−Mn合金で構成した放電型サージ吸収素子のインパルス放電開始電圧の分布を示すヒストグラムである。It is a histogram which shows distribution of the impulse discharge start voltage of the discharge type surge absorption element which comprised the discharge electrode with the Ni-Mn alloy. 従来の放電型サージ吸収素子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional discharge type surge absorption element. 従来の放電型サージ吸収素子の放電電極とトリガ放電部材の詳細を示す拡大断面図である。It is an expanded sectional view which shows the detail of the discharge electrode and trigger discharge member of the conventional discharge type surge absorption element. 図8のA−A拡大断面図である。It is an AA expanded sectional view of FIG.

符号の説明Explanation of symbols

10 放電型サージ吸収素子
12 気密容器
14 放電電極
16 トリガ放電部材
18 主放電間隙
24 トリガ放電部材の本体部
26 トリガ放電部材の孔
28 導電性被膜
30 トリガ放電部材の凸部
32 微小放電間隙
10 Discharge type surge absorber
12 Airtight container
14 Discharge electrode
16 Trigger discharge member
18 Main discharge gap
24 Trigger discharge member body
26 Trigger discharge member hole
28 Conductive coating
30 Convex part of trigger discharge member
32 Micro discharge gap

Claims (2)

主放電間隙を隔てて対向配置した複数の放電電極と、各放電電極と微小放電間隙を隔てて対向配置した導電性被膜を備えたトリガ放電部材とを、放電ガスと共に気密容器内に封入して成る放電型サージ吸収素子において、上記放電ガスを、ネオン、アルゴン、水素の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合し、また、上記放電電極をニッケル−マンガン合金で構成したことを特徴とする放電型サージ吸収素子。 A plurality of discharge electrodes arranged opposite to each other with a main discharge gap and a trigger discharge member having a conductive coating arranged opposite to each discharge electrode with a minute discharge gap enclosed in an airtight container together with a discharge gas In the discharge type surge absorbing element, the discharge gas is composed of a mixed gas of neon, argon, and hydrogen, argon is mixed at a ratio of 10 to 20% by volume, and hydrogen is mixed at a rate of 2 to 10% by volume. A discharge type surge absorbing element, wherein the electrode is made of a nickel-manganese alloy . 上記放電ガスを、ネオン、アルゴン、水素の混合ガスで構成し、アルゴンを15体積%、水素を10体積%の割合で混合したことを特徴とする請求項1に記載の放電型サージ吸収素子。   2. The discharge type surge absorbing element according to claim 1, wherein the discharge gas is composed of a mixed gas of neon, argon and hydrogen, and argon is mixed at a ratio of 15% by volume and hydrogen at 10% by volume.
JP2003430214A 2003-12-25 2003-12-25 Discharge type surge absorber Expired - Lifetime JP4268032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430214A JP4268032B2 (en) 2003-12-25 2003-12-25 Discharge type surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430214A JP4268032B2 (en) 2003-12-25 2003-12-25 Discharge type surge absorber

Publications (2)

Publication Number Publication Date
JP2005190803A JP2005190803A (en) 2005-07-14
JP4268032B2 true JP4268032B2 (en) 2009-05-27

Family

ID=34788647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430214A Expired - Lifetime JP4268032B2 (en) 2003-12-25 2003-12-25 Discharge type surge absorber

Country Status (1)

Country Link
JP (1) JP4268032B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872645B2 (en) * 2006-12-14 2012-02-08 三菱マテリアル株式会社 surge absorber

Also Published As

Publication number Publication date
JP2005190803A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US20100309598A1 (en) Surge Arrester with Low Response Surge Voltage
CN101015101A (en) Surge absorber
JP4268032B2 (en) Discharge type surge absorber
JP4268031B2 (en) Discharge type surge absorber
JP5316020B2 (en) surge absorber
JPH057835B2 (en)
TW201739132A (en) Surge protection element
JP2004111311A (en) Surge absorber
JP3745242B2 (en) Discharge type surge absorber
US9627855B2 (en) Surge arrester
JP4872645B2 (en) surge absorber
JP3156065U (en) Surge absorber
JP2745393B2 (en) Discharge type surge absorbing element
JP2927698B2 (en) Discharge type surge absorbing element
JP3156033U (en) Surge absorber
JP2010092778A (en) Surge absorber
JP2615221B2 (en) Gas input / discharge arrester
JP2012155882A (en) Discharge type surge absorption element
JPH0443584A (en) Gas-tight structure of surge absorbing element
JP6668720B2 (en) Surge protection element
JP2024070997A (en) Surge protection device
JPH0569270B2 (en)
JP2012182094A (en) Discharge type surge absorbing element
JP3130568U (en) Discharge tube
JPH0226154Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Ref document number: 4268032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term