JP4268031B2 - Discharge type surge absorber - Google Patents

Discharge type surge absorber Download PDF

Info

Publication number
JP4268031B2
JP4268031B2 JP2003430196A JP2003430196A JP4268031B2 JP 4268031 B2 JP4268031 B2 JP 4268031B2 JP 2003430196 A JP2003430196 A JP 2003430196A JP 2003430196 A JP2003430196 A JP 2003430196A JP 4268031 B2 JP4268031 B2 JP 4268031B2
Authority
JP
Japan
Prior art keywords
discharge
type surge
gas
electrodes
absorbing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003430196A
Other languages
Japanese (ja)
Other versions
JP2005190801A (en
Inventor
孝一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2003430196A priority Critical patent/JP4268031B2/en
Publication of JP2005190801A publication Critical patent/JP2005190801A/en
Application granted granted Critical
Publication of JP4268031B2 publication Critical patent/JP4268031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

この発明は、気密容器内に封入した複数の放電電極間の放電間隙における放電現象を利用して誘導雷等のサージを吸収することにより、電子機器が損傷することを防止する放電型サージ吸収素子に関する。   The present invention relates to a discharge type surge absorbing element that prevents damage to an electronic device by absorbing a surge such as an induced lightning by utilizing a discharge phenomenon in a discharge gap between a plurality of discharge electrodes enclosed in an airtight container. About.

従来、誘導雷等のサージから電子機器の電子回路を保護するためのサージ吸収素子として、電圧非直線特性を有する高抵抗体素子よりなるバリスタや、放電間隙を気密容器内に収容したガスアレスタ等が広く使用されている。   Conventionally, as a surge absorbing element for protecting electronic circuits of electronic equipment from surges such as induced lightning, a varistor made of a high-resistance element having voltage non-linear characteristics, a gas arrester in which a discharge gap is housed in an airtight container, etc. Is widely used.

上記バリスタは、サージ吸収の応答性に優れるものの、単位面積当たりの電流耐量が比較的小さく、したがって大きなサージ電流を効率よく吸収することが困難である。また、上記ガスアレスタは、放電間隙にアーク放電を生成し、このアーク電圧は殆ど上昇しないため、電流耐量を大きくすることができるのであるが、その反面、放電遅れ時間が大きく、急峻な立ち上がり特性を有するサージに対しては、残留電圧が発生してサージ防護を十分に行い得ないという問題がある。   Although the varistor is excellent in surge absorption responsiveness, it has a relatively small current resistance per unit area, and thus it is difficult to efficiently absorb a large surge current. In addition, the gas arrester generates arc discharge in the discharge gap, and the arc voltage hardly rises, so that the current withstand capability can be increased, but on the other hand, the discharge delay time is large and the steep rise characteristic There is a problem that a surge having a voltage cannot generate sufficient surge protection due to a residual voltage.

そこで、本出願人は、先に特開2002−334765号公報に示す放電型サージ吸収素子を提案した。
図7に示すように、この放電型サージ吸収素子60は、ガラスより成る気密容器62内に、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスより成る放電ガス、又は上記放電ガスに水素、六フッ化硫黄ガス、二酸化炭素を混合して成る放電ガスと、導電性に優れたニッケル等の金属を細長い丸棒状に加工して成る一対の放電電極64,64と、絶縁性材料であるセラミックより成るトリガ放電部材66を封入して成る。
上記一対の放電電極64,64は、所定の距離を隔てて平行配置されており、両放電電極64,64間に主放電間隙68が形成されている。また、上記放電電極64,64の下端部には、リード端子70,70の一端が接続されており、上記リード端子70,70の他端は、上記気密容器62の封止部72を貫通して外部に導出されている。
Therefore, the present applicant has previously proposed a discharge type surge absorbing element disclosed in Japanese Patent Application Laid-Open No. 2002-334765.
As shown in FIG. 7, the discharge type surge absorbing element 60 is made of a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas or a mixed gas in an airtight container 62 made of glass. A pair of discharge electrodes formed by processing a discharge gas formed by mixing hydrogen, sulfur hexafluoride gas or carbon dioxide into the discharge gas, and a metal such as nickel having excellent conductivity into an elongated round bar shape 64, 64 and a trigger discharge member 66 made of ceramic which is an insulating material are enclosed.
The pair of discharge electrodes 64 and 64 are arranged in parallel at a predetermined distance, and a main discharge gap 68 is formed between the discharge electrodes 64 and 64. Further, one end of a lead terminal 70, 70 is connected to the lower end of the discharge electrode 64, 64, and the other end of the lead terminal 70, 70 penetrates the sealing part 72 of the airtight container 62. Are derived outside.

上記トリガ放電部材66は、図8及び図9に拡大して示すように、略楕円盤状の本体部74と、該本体部74を上下に貫通する一対の孔76,76を有しており、該孔76,76内に、上記放電電極64,64とリード端子70,70が挿通されている。
上記トリガ放電部材66の一対の孔76,76間には、本体部74表面から所定の高さで突出し、その表面にカーボン系材料等より成る導電性被膜78が被着された凸部80が形成されており、該凸部80の両端縁の一部は、図9に示すように、微小放電間隙82を隔てて、孔76,76内に挿入された放電電極64,64の内方側の外面略半周に沿って配置されている。そして、凸部80表面の導電性被膜78と、各放電電極64,64とが、放電電極64,64の内方側の外面の略半周に亘って、上記微小放電間隙82を隔てて対向配置されている。
8 and 9, the trigger discharge member 66 has a substantially elliptical disk-shaped main body 74 and a pair of holes 76 and 76 penetrating the main body 74 in the vertical direction. The discharge electrodes 64 and 64 and the lead terminals 70 and 70 are inserted into the holes 76 and 76, respectively.
Between the pair of holes 76, 76 of the trigger discharge member 66, there is a convex portion 80 that protrudes from the surface of the main body portion 74 at a predetermined height and on which the conductive coating 78 made of a carbon-based material or the like is attached. As shown in FIG. 9, a part of both end edges of the convex portion 80 is formed on the inner side of the discharge electrodes 64, 64 inserted into the holes 76, 76 with a minute discharge gap 82 therebetween. It is arrange | positioned along the outer surface substantially half circumference. Then, the conductive film 78 on the surface of the convex portion 80 and the discharge electrodes 64 and 64 are arranged opposite to each other across the micro discharge gap 82 over the substantially half circumference of the outer surface on the inner side of the discharge electrodes 64 and 64. Has been.

上記構成を備えた放電型サージ吸収素子60に、リード端子70,70を介してサージが印加されると、導電性被膜78と各放電電極64,64間の微小放電間隙82に電界が集中し、これにより微小放電間隙82に電子が放出されてトリガ放電が発生する。次いで、このトリガ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙68へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。
特開2002−334765号公報
When a surge is applied to the discharge type surge absorbing element 60 having the above-described configuration via the lead terminals 70, 70, an electric field is concentrated in the minute discharge gap 82 between the conductive film 78 and each of the discharge electrodes 64, 64. As a result, electrons are emitted into the minute discharge gap 82 to generate a trigger discharge. Next, this trigger discharge shifts to glow discharge due to the priming effect of electrons. The glow discharge is transferred to the main discharge gap 68 due to an increase in surge current, and further, the arc discharge as the main discharge is transferred to absorb the surge.
JP 2002-334765 A

ところで、上記放電電極64,64の構成材料としては、導電性に優れたニッケル(Ni)が広く用いられている。しかしながら、ニッケルで放電電極64,64を構成した場合、大気中でガラス管をバーナ等の炎で封じ切って気密容器62の封止部72を形成する際に、放電電極64,64表面に絶縁性の酸化膜が形成されてしまい、その結果、放電電極64,64間の主放電間隙68におけるアーク放電の生成が阻害され、サージに対する応答性を低下させる要因となっていた。   Incidentally, nickel (Ni) having excellent conductivity is widely used as a constituent material of the discharge electrodes 64 and 64. However, when the discharge electrodes 64 and 64 are made of nickel, the surfaces of the discharge electrodes 64 and 64 are insulated when the glass tube is sealed with a flame such as a burner in the atmosphere to form the sealing portion 72 of the hermetic vessel 62. As a result, the generation of arc discharge in the main discharge gap 68 between the discharge electrodes 64 and 64 is hindered, resulting in a decrease in responsiveness to surges.

この発明は、従来の上記問題に鑑みてなされたものであり、その目的とするところは、放電電極の酸化を効果的に抑制でき、サージに対する応答性が良好な放電型サージ吸収素子を実現することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to realize a discharge-type surge absorbing element that can effectively suppress oxidation of a discharge electrode and has good responsiveness to a surge. There is.

上記目的を達成するために、本発明に係る放電型サージ吸収素子は、主放電間隙を隔てて対向配置した複数の放電電極と、各放電電極と微小放電間隙を隔てて対向配置した導電性被膜を備えたトリガ放電部材とを、放電ガスと共に気密容器内に封入して成る放電型サージ吸収素子において、上記放電電極をニッケル−マンガン合金で構成したことを特徴とする。 In order to achieve the above object, a discharge type surge absorbing element according to the present invention comprises a plurality of discharge electrodes arranged opposite to each other with a main discharge gap, and a conductive film arranged opposite to each discharge electrode with a minute discharge gap. A discharge type surge absorbing element comprising a trigger discharge member provided with a discharge gas sealed in an airtight container, wherein the discharge electrode is made of a nickel-manganese alloy .

本発明の放電型サージ吸収素子にあっては、放電電極を耐酸化性に優れたニッケル−マンガン(Ni−Mn)合金で構成しているので、放電電極表面における酸化膜の形成を抑制することができる。従って、本発明のサージ吸収素子は、絶縁性の酸化膜によって放電電極間の主放電間隙におけるアーク放電の生成が阻害されることを有効に防止でき、サージに対する応答性が良好である。 In the discharge type surge absorbing element of the present invention, since the discharge electrode is made of a nickel-manganese (Ni-Mn) alloy having excellent oxidation resistance, the formation of an oxide film on the surface of the discharge electrode is suppressed. Can do. Therefore, the surge absorbing element of the present invention can effectively prevent the generation of arc discharge in the main discharge gap between the discharge electrodes by the insulating oxide film, and has good response to surge.

以下、添付図面に基づき本発明に係る放電型サージ吸収素子を説明する。図1は、本発明の放電型サージ吸収素子10を示す縦断面図である。
この放電型サージ吸収素子10は、ガラスより成る気密容器12内に、所定の放電ガスと、細長い丸棒状の一対の放電電極14,14と、絶縁性材料であるフォルステライト、アルミナ、ステアタイト等のセラミックより成るトリガ放電部材16を封入して成る。
上記一対の放電電極14,14は、所定の距離を隔てて平行配置されており、両放電電極14,14間に主放電間隙18が形成されている。また、上記放電電極14,14の下端部には、デュメット線(銅被覆鉄ニッケル合金線)や42−6合金線等より成るリード端子20,20の一端が接続されており、上記リード端子20,20の他端は、上記気密容器12の封止部22を貫通して外部に導出されている。
Hereinafter, a discharge type surge absorbing element according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing a discharge type surge absorbing element 10 of the present invention.
This discharge type surge absorbing element 10 has a predetermined discharge gas, a pair of elongated round bar-like discharge electrodes 14 and 14, and an insulating material such as forsterite, alumina, and steatite in an airtight container 12 made of glass. A trigger discharge member 16 made of ceramic is enclosed.
The pair of discharge electrodes 14, 14 are arranged in parallel at a predetermined distance, and a main discharge gap 18 is formed between the discharge electrodes 14, 14. Further, one end of lead terminals 20 and 20 made of dumet wire (copper-coated iron-nickel alloy wire), 42-6 alloy wire or the like is connected to the lower ends of the discharge electrodes 14 and 14, and the lead terminal 20 , 20 penetrates the sealing portion 22 of the hermetic container 12 and is led out to the outside.

上記トリガ放電部材16は、気密容器12の封止部22上に配置されており、図2及び図3に拡大して示すように、略楕円盤状の本体部24と、該本体部24を上下に貫通する一対の孔26,26を有している。
上記孔26,26は、その上端から下端へ向かって所定位置に至るまでは、上記放電電極14の外形寸法と略同径と成されており、上記所定位置から下端へ至るまでは、放電電極14の外形寸法より小径と成されている。そして、上記孔26,26内に、放電電極14,14とリード端子20,20が挿通されている。
上記孔26,26内に挿入された放電電極14,14の外面は、本体部24の壁面に当接すると共に、上記放電電極14,14の下端部は、孔26,26内の上記所定位置近傍の本体部24壁面に当接支持されている。
The trigger discharge member 16 is disposed on the sealing portion 22 of the hermetic container 12, and as shown in enlarged views in FIGS. It has a pair of holes 26, 26 penetrating vertically.
The holes 26 and 26 have substantially the same outer diameter as the discharge electrode 14 until reaching a predetermined position from the upper end to the lower end, and the discharge electrode until reaching the lower end from the predetermined position. Smaller than 14 outer dimensions. The discharge electrodes 14 and 14 and the lead terminals 20 and 20 are inserted into the holes 26 and 26, respectively.
The outer surfaces of the discharge electrodes 14, 14 inserted into the holes 26, 26 are in contact with the wall surface of the main body 24, and the lower ends of the discharge electrodes 14, 14 are in the vicinity of the predetermined position in the holes 26, 26. The main body 24 is in contact with and supported by the wall surface.

上記トリガ放電部材16の一対の孔26,26間には、本体部24表面から所定の高さ(例えば、約1mmの高さ)で突出し、その表面にカーボン系材料等より成る導電性被膜28が被着された凸部30が形成されており、該凸部30の両端縁の一部は、図3に示すように、微小放電間隙32を隔てて、孔26,26内に挿入された放電電極14,14の内方側の外面略半周に沿って配置されている。そして、凸部30表面の導電性被膜28と、各放電電極14,14とが、放電電極14,14の内方側の外面の略半周に亘って、上記微小放電間隙32を隔てて対向配置されている。尚、上記微小放電間隙32は、例えば10〜50μmの範囲に設定される。   Between the pair of holes 26 and 26 of the trigger discharge member 16, it protrudes from the surface of the main body 24 at a predetermined height (for example, a height of about 1 mm), and a conductive coating 28 made of a carbon-based material or the like on the surface. Is formed, and part of both end edges of the protrusion 30 are inserted into the holes 26 and 26 with a minute discharge gap 32 therebetween as shown in FIG. The discharge electrodes 14 and 14 are disposed along substantially the outer circumference of the inner surface of the discharge electrodes 14 and 14. Then, the conductive coating 28 on the surface of the convex portion 30 and the discharge electrodes 14 and 14 are arranged opposite to each other across the micro discharge gap 32 over the almost half of the outer surface on the inner side of the discharge electrodes 14 and 14. Has been. The minute discharge gap 32 is set in a range of 10 to 50 μm, for example.

上記放電電極14は、ニッケル−マンガン(Ni−Mn)合金等のニッケル合金で構成されている。
ニッケル合金は耐酸化性に優れているため、放電電極14をニッケル−マンガン(Ni−Mn)合金等のニッケル合金で構成することにより、放電電極14の酸化を抑制することができる。
The discharge electrode 14 is made of a nickel alloy such as a nickel-manganese (Ni-Mn) alloy.
Since the nickel alloy is excellent in oxidation resistance, oxidation of the discharge electrode 14 can be suppressed by configuring the discharge electrode 14 with a nickel alloy such as a nickel-manganese (Ni-Mn) alloy.

本発明の放電型サージ吸収素子10においては、上記放電ガスを、ネオン(Ne)、アルゴン(Ar)、水素(H)の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合して成る。 In the discharge type surge absorbing element 10 of the present invention, the discharge gas is composed of a mixed gas of neon (Ne), argon (Ar), and hydrogen (H 2 ), 10 to 20% by volume of argon, and 2 of hydrogen. It is mixed at a ratio of 10% by volume.

上記構成を備えた本発明の放電型サージ吸収素子10に、リード端子20,20を介してサージが印加されると、導電性被膜28と各放電電極14,14間の微小放電間隙32に電界が集中し、これにより微小放電間隙32に電子が放出されてトリガ放電が発生する。次いで、このトリガ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電がサージ電流の増加によって主放電間隙18へと転移し、さらに主放電としてのアーク放電に移行してサージの吸収が行われるのである。
上記の通り、本発明の放電型サージ吸収素子10にあっては、各放電電極14,14と導電性被膜28とが、放電電極14,14の内方側の外面の略半周に亘って対向配置されているので、上記微小放電間隙32におけるトリガ放電を広い範囲に亘って生成することができる。
When a surge is applied via the lead terminals 20 and 20 to the discharge type surge absorbing element 10 of the present invention having the above-described configuration, an electric field is generated in the minute discharge gap 32 between the conductive coating 28 and each of the discharge electrodes 14 and 14. As a result, electrons are emitted into the minute discharge gap 32 and a trigger discharge is generated. Next, this trigger discharge shifts to glow discharge due to the priming effect of electrons. Then, the glow discharge is transferred to the main discharge gap 18 due to an increase in surge current, and is further transferred to arc discharge as the main discharge to absorb the surge.
As described above, in the discharge type surge absorbing element 10 of the present invention, the discharge electrodes 14 and 14 and the conductive coating 28 face each other over substantially half of the outer surface on the inner side of the discharge electrodes 14 and 14. Therefore, the trigger discharge in the minute discharge gap 32 can be generated over a wide range.

而して、本発明の放電型サージ吸収素子10にあっては、放電電極14を耐酸化性に優れたニッケル−マンガン(Ni−Mn)合金等のニッケル合金で構成しているので、大気中でガラス管をバーナ等の炎で封じ切って気密容器12の封止部22を形成しても、放電電極14表面における酸化膜の形成を抑制することができる。従って、本発明のサージ吸収素子10は、絶縁性の酸化膜によって放電電極14,14間の主放電間隙18におけるアーク放電の生成が阻害されることを有効に防止でき、サージに対する応答性が良好である。   Thus, in the discharge type surge absorbing element 10 of the present invention, the discharge electrode 14 is made of a nickel alloy such as a nickel-manganese (Ni-Mn) alloy having excellent oxidation resistance. Thus, even if the glass tube is sealed with a flame such as a burner to form the sealing portion 22 of the hermetic container 12, formation of an oxide film on the surface of the discharge electrode 14 can be suppressed. Therefore, the surge absorbing element 10 of the present invention can effectively prevent the generation of arc discharge in the main discharge gap 18 between the discharge electrodes 14 and 14 by the insulating oxide film, and has good response to surge. It is.

図4は、放電電極64をニッケルで構成した従来の放電型サージ吸収素子60のインパルス放電開始電圧の分布を示すヒストグラム、図5は、放電電極14をNi−Mn合金で構成した本発明の放電型サージ吸収素子10のインパルス放電開始電圧の分布を示すヒストグラムである。尚、両放電型サージ吸収素子10,60共に、直流放電開始電圧が300V、放電ガスとして、ネオン、アルゴン(15体積%)、水素(5体積%)の混合ガスを320Torrで封入したものを用い、1kV/10μsのインパルス電圧を印加して測定した。因みに、急峻な立ち上がり特性を有するインパルス電圧を放電型サージ吸収素子10に印加した際には、放電動作開始に遅れを生じるためインパルス放電開始電圧は、直流放電開始電圧より高くなるが、このインパルス放電開始電圧が低いほど、サージに対する応答性が良好であるといえる。
図4及び図5のヒストグラムに示される通り、本発明の放電型サージ吸収素子10(図5参照)の方が、従来の放電型サージ吸収素子60(図4参照)に比べて、インパルス放電開始電圧が低く分布しており、平均のインパルス放電開始電圧においても、本発明の放電型サージ吸収素子10が424Vであるのに対し、従来の放電型サージ吸収素子60が454Vであり、本発明の放電型サージ吸収素子10の方がサージに対する応答性が優れている。
FIG. 4 is a histogram showing a distribution of impulse discharge start voltage of a conventional discharge type surge absorbing element 60 in which the discharge electrode 64 is made of nickel, and FIG. 5 is a discharge of the present invention in which the discharge electrode 14 is made of a Ni—Mn alloy. 3 is a histogram showing a distribution of impulse discharge start voltage of the type surge absorbing element 10. Both the discharge type surge absorbing elements 10 and 60 use a DC discharge start voltage of 300 V and a discharge gas filled with a mixed gas of neon, argon (15% by volume) and hydrogen (5% by volume) at 320 Torr. Measurement was performed by applying an impulse voltage of 1 kV / 10 μs. Incidentally, when an impulse voltage having a steep rising characteristic is applied to the discharge type surge absorbing element 10, the impulse discharge start voltage is higher than the DC discharge start voltage because a delay occurs in the discharge operation start. It can be said that the lower the starting voltage, the better the response to surge.
As shown in the histograms of FIGS. 4 and 5, the discharge type surge absorber 10 (see FIG. 5) of the present invention starts impulse discharge compared to the conventional discharge type surge absorber 60 (see FIG. 4). The voltage is distributed low, and even at the average impulse discharge start voltage, the discharge type surge absorption element 10 of the present invention is 424V, whereas the conventional discharge type surge absorption element 60 is 454V. The discharge type surge absorbing element 10 is more responsive to surge.

尚、上記の通り、放電ガスを、ネオン(Ne)、アルゴン(Ar)、水素(H)の混合ガスで構成し、アルゴンを10〜20体積%、水素を2〜10体積%の割合で混合することにより、サージに対する応答性を向上させることができる。
図6は、インパルス放電開始電圧と、放電ガスのガス組成(Ne、Ar、H)比率との関係を示すグラフである。
図6において、グラフAは、放電ガスをネオンとアルゴンで構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示し、グラフBは、放電ガスをネオン、アルゴン、水素(2体積%)で構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示し、グラフCは、放電ガスをネオン、アルゴン、水素(5体積%)で構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示し、グラフDは、放電ガスをネオン、アルゴン、水素(10体積%)で構成した場合におけるインパルス放電開始電圧とアルゴン比率との関係を示す。また、放電型サージ吸収素子10は、直流放電開始電圧が300V、封入ガス圧500Torrのものを使用し、1kV/10μsのインパルス電圧を印加して測定した。
図6のグラフに示す通り、アルゴンを10〜20体積%、水素を2〜10%体積%の割合でネオンと混合した場合に、インパルス放電開始電圧の低下効果が大きく、サージに対する応答性が良好である。特に、アルゴンが15体積%、水素が10体積%の場合(グラフD参照)にインパルス放電開始電圧が最低となっており、サージに対する応答性が最も高い。
Incidentally, as described above, the discharge gas, neon (Ne), argon (Ar), constituted by a mixed gas of hydrogen (H 2), argon 10-20% by volume, at a rate of 2 to 10% by volume hydrogen By mixing, responsiveness to surge can be improved.
FIG. 6 is a graph showing the relationship between the impulse discharge start voltage and the gas composition (Ne, Ar, H 2 ) ratio of the discharge gas.
In FIG. 6, graph A shows the relationship between the impulse discharge start voltage and the argon ratio when the discharge gas is composed of neon and argon, and graph B shows the discharge gas as neon, argon, and hydrogen (2% by volume). The graph shows the relationship between the impulse discharge start voltage and the argon ratio when configured, and graph C shows the relationship between the impulse discharge start voltage and the argon ratio when the discharge gas is composed of neon, argon, and hydrogen (5% by volume). The graph D shows the relationship between the impulse discharge start voltage and the argon ratio when the discharge gas is composed of neon, argon, and hydrogen (10% by volume). The discharge type surge absorber 10 was measured by applying an impulse voltage of 1 kV / 10 μs using a DC discharge start voltage of 300 V and a sealed gas pressure of 500 Torr.
As shown in the graph of FIG. 6, when argon is mixed with neon at a ratio of 10 to 20% by volume and hydrogen at a rate of 2 to 10% by volume, the effect of reducing the impulse discharge start voltage is large and the response to surge is good. It is. In particular, when argon is 15% by volume and hydrogen is 10% by volume (see graph D), the impulse discharge start voltage is the lowest, and the responsiveness to surge is the highest.

本発明に係る放電型サージ吸収素子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the discharge type surge absorption element which concerns on this invention. 本発明に係る放電型サージ吸収素子の放電電極とトリガ放電部材の詳細を示す拡大断面図である。It is an expanded sectional view showing details of a discharge electrode and a trigger discharge member of a discharge type surge absorption element concerning the present invention. 図2のB−B拡大断面図である。It is BB expanded sectional drawing of FIG. 従来の放電型サージ吸収素子のインパルス放電開始電圧の分布を示すヒストグラムである。It is a histogram which shows distribution of the impulse discharge start voltage of the conventional discharge type surge absorption element. 本発明に係る放電型サージ吸収素子のインパルス放電開始電圧の分布を示すヒストグラムである。It is a histogram which shows distribution of the impulse discharge start voltage of the discharge type surge absorption element which concerns on this invention. 本発明に係る放電型サージ吸収素子のインパルス放電開始電圧と、放電ガスのガス組成(Ne、Ar、H)比率との関係を示すグラフである。An impulse discharge start voltage of the discharge type surge absorber according to the present invention, is a graph showing the gas composition of the discharge gas (Ne, Ar, H 2) the relationship between the ratio. 従来の放電型サージ吸収素子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional discharge type surge absorption element. 従来の放電型サージ吸収素子の放電電極とトリガ放電部材の詳細を示す拡大断面図である。It is an expanded sectional view which shows the detail of the discharge electrode and trigger discharge member of the conventional discharge type surge absorption element. 図7のA−A拡大断面図である。It is an AA expanded sectional view of FIG.

符号の説明Explanation of symbols

10 放電型サージ吸収素子
12 気密容器
14 放電電極
16 トリガ放電部材
18 主放電間隙
24 トリガ放電部材の本体部
26 トリガ放電部材の孔
28 導電性被膜
30 トリガ放電部材の凸部
32 微小放電間隙
10 Discharge type surge absorber
12 Airtight container
14 Discharge electrode
16 Trigger discharge member
18 Main discharge gap
24 Trigger discharge member body
26 Trigger discharge member hole
28 Conductive coating
30 Convex part of trigger discharge member
32 Micro discharge gap

Claims (1)

主放電間隙を隔てて対向配置した複数の放電電極と、各放電電極と微小放電間隙を隔てて対向配置した導電性被膜を備えたトリガ放電部材とを、放電ガスと共に気密容器内に封入して成る放電型サージ吸収素子において、上記放電電極をニッケル−マンガン合金で構成したことを特徴とする放電型サージ吸収素子。 A plurality of discharge electrodes arranged opposite to each other with a main discharge gap and a trigger discharge member having a conductive coating arranged opposite to each discharge electrode with a minute discharge gap enclosed in an airtight container together with a discharge gas A discharge type surge absorbing element, wherein the discharge electrode is made of a nickel-manganese alloy .
JP2003430196A 2003-12-25 2003-12-25 Discharge type surge absorber Expired - Lifetime JP4268031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430196A JP4268031B2 (en) 2003-12-25 2003-12-25 Discharge type surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430196A JP4268031B2 (en) 2003-12-25 2003-12-25 Discharge type surge absorber

Publications (2)

Publication Number Publication Date
JP2005190801A JP2005190801A (en) 2005-07-14
JP4268031B2 true JP4268031B2 (en) 2009-05-27

Family

ID=34788636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430196A Expired - Lifetime JP4268031B2 (en) 2003-12-25 2003-12-25 Discharge type surge absorber

Country Status (1)

Country Link
JP (1) JP4268031B2 (en)

Also Published As

Publication number Publication date
JP2005190801A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP5554721B2 (en) Low response surge voltage arrester
CA1124317A (en) Surge arrester with improved impulse ratio
JP4268031B2 (en) Discharge type surge absorber
JP4268032B2 (en) Discharge type surge absorber
JP5316020B2 (en) surge absorber
JP2004111311A (en) Surge absorber
JP3745242B2 (en) Discharge type surge absorber
JP6623158B2 (en) Surge arrester
JP5421040B2 (en) Discharge-type surge absorbing element sealing portion forming jig, and discharge-type surge absorbing element sealing portion forming method using the sealing portion forming jig
JP4872645B2 (en) surge absorber
JP3156065U (en) Surge absorber
JPH057835B2 (en)
JP2745393B2 (en) Discharge type surge absorbing element
JP2927698B2 (en) Discharge type surge absorbing element
JP2615221B2 (en) Gas input / discharge arrester
JP3156033U (en) Surge absorber
KR100993518B1 (en) Thin filmed gas discharge arrester of smd type
JPH0443584A (en) Gas-tight structure of surge absorbing element
JP2003077617A (en) Arrester for low voltage power system
JP2012155882A (en) Discharge type surge absorption element
JP2024070997A (en) Surge protection element
JP6668720B2 (en) Surge protection element
JP3155975U (en) Discharge type surge absorber
JP2012182094A (en) Discharge type surge absorbing element
JP2010192322A (en) Surge absorber, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Ref document number: 4268031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term