JP4267723B2 - Method for producing particulate compound - Google Patents

Method for producing particulate compound Download PDF

Info

Publication number
JP4267723B2
JP4267723B2 JP22307498A JP22307498A JP4267723B2 JP 4267723 B2 JP4267723 B2 JP 4267723B2 JP 22307498 A JP22307498 A JP 22307498A JP 22307498 A JP22307498 A JP 22307498A JP 4267723 B2 JP4267723 B2 JP 4267723B2
Authority
JP
Japan
Prior art keywords
silicon carbide
compound
reaction
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22307498A
Other languages
Japanese (ja)
Other versions
JP2000053409A (en
Inventor
道雄 伊藤
宏明 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP22307498A priority Critical patent/JP4267723B2/en
Publication of JP2000053409A publication Critical patent/JP2000053409A/en
Application granted granted Critical
Publication of JP4267723B2 publication Critical patent/JP4267723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粒子状炭化ケイ素化合物の製造方法に関し、詳細には、2種類以上の化合物を反応させて粒子状の反応生成物を得る際に、容易に粒子径を制御し得る粒子状化合物の製造方法に関する。
【0002】
【従来の技術】
従来より、2種類以上の化合物を反応させて得られる反応生成物として、粒子状の化合物を製造することが行われている。例えば、セラミック材料である炭化ケイ素は、ケイ素含有化合物と炭素とを反応させて得られるが、得られる炭化ケイ素化合物を粉砕、分級して炭化ケイ素粒子を製造する方法の改良技術として、反応生成物が直接粒子形状をとるような製造技術が開発されつつある。
半導体関連部品であるウエハの熱処理工程で使用されている保持治具は石英材料であった。しかし、ウエハを処理する温度の上昇および処理時間の短縮に伴い、石英材料の熱変形、ふっ酸等の薬液洗浄による変質が問題になり、これらの諸問題を解決する方法として高温強度性、耐熱性、耐磨耗性、耐薬品性等に優れる炭化ケイ素を代替材料として使用することが要望されている。
しかし、一般的にセラミックスは難焼結物質であり高密度化することが難しく、とりわけ非酸化物セラミックスに属する炭化けい素においては、焼結に使用するセラミックス粉体の粒子径のバラツキが大きい場合、高密度焼結体を得ることが出来ないという問題があった。
【0003】
このように、均一な粒子径の炭化ケイ素微粒子を得ることが重要であるが、現在知られている微粒子状の炭化ケイ素粉体を製造する方法としてはアチソン法、シリカ還元炭化法、金属シリコン炭化法熱分解法、気相反応法があるが、いずれの方法においても得られるセラミックス粉体の粒子径のバラツキが大きいのが現状である。
例えば、アチソン法は金属酸化物と炭素を固相反応させてα型炭化ケイ素を製造する方法であるが、生成した炭化ケイ素は粗大であり微粒子化の為には粉砕、分級が必要となる。この為コスト面、純度面等で問題となる他、微粒子化する粒子径の大きさに限界がある。
気相反応法や有機ケイ素化合物の熱分解法は、0.1μm以下の微細な粉体が得られるが、原料コストが高いことや、大量生産に適していない等の欠点を有する。
【0004】
また、従来より、例えば、液相還元炭化法において、反応条件を調整することにより得られる粒子状化合物の粒子径を制御する試みはなされていたが、従来の加熱温度と時間のみを設定することにより行っていた液相還元炭化法においては反応の最終段階で発生する急な粒子成長を防止することができず、粒子径の制御は困難であった。
従って、炭化ケイ素の高密度焼結体を得ることができる、均一な微粒子状の炭化ケイ素を容易に且つ、大量に得ることは困難であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ケイ素含有化合物と炭素含有化合物とを反応させて粒子状の反応生成物である炭化ケイ素を得るにあたり、粒子径が簡単に制御でき、均一な粒子径を有する粒子状化合物の製造方法、特に、高密度炭化ケイ素焼結体の原料として有用な粒子径の均一な炭化ケイ素微粒子を得ることができる粒子状化合物の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、粒子状炭化ケイ素の製造方法として公知の液相還元炭化法において、内ループとして二酸化ケイ素とカーボンの反応時に発生する一酸化炭素量を検知し、その量に応じて加熱温度の昇降条件の制御を行うことにより上記粉体の急な粒子成長を防止し、粒子径のバラツキを小さくする方法を見出し本発明に至った。
【0007】
即ち、本発明の粒子状炭化ケイ素の製造方法は、加熱により気体を発生しながら反応するケイ素含有化合物と炭素含有化合物とを不活性雰囲気中で焼成して反応させ、粒子状の炭化ケイ素を製造する工程において、焼成中に発生する一酸化炭素の量を検出し、検出量に応じて焼成温度の昇降条件を制御することにより炭化ケイ素粒子の粒子径を制御することを特徴とする。
本発明の方法は、特に粒子状炭化ケイ素を製造する方法として好適である。ここで、さらに前記ケイ素含有化合物が液状ケイ素化合物であり、炭素含有化合物が加熱により炭素を生成する液状の有機化合物であり、さらに、重合触媒または架橋触媒を加えて反応させることが特に好ましい態様である。
また、得られる粒子状炭化ケイ素の平均粒子径(D50)は0.1μm〜10μmの範囲であり、且つ、粒度分布より算出される90%累積径(D90)と10%累積径(D10)との比(D90/D10)の値が5.0以下であることを特徴とする。
【0008】
【発明の実施の形態】
以下に、本発明をさらに詳細に説明する。
一般に、加熱により気体を発生しながら反応する2種類以上の化合物(以下に、化合物AB(固体)、化合物CD(固体)で示す)を加熱すると、以下の反応式モデルに示すような反応が起こり、その結果、目的物である粒子状の化合物ACが得られ、反応に伴って気体状の化合物BDが副生成物として生成する。
【0009】
(反応式モデル)
AB(固体)+CD(固体)→AC(固体)+BD(気体)
本発明者らの検討によれば、このとき、原料化合物AB、CDを不活性雰囲気中で焼成して反応させ、焼成中に発生する気体の量を検出すると、気体の発生量と反応の進行状況との間に相関があることがわかった。
【0010】
即ち、気体の発生量は反応の進行に伴い変化し、初期段階では中量、反応の中間段階では多量、反応の最終段階では中量となる。また、目的化合物ACの粒子径成長段階では、気体の発生量が少量となり、この場合には、2つの化合物の反応は終了しており得られる目的化合物ACの粒子径段階で急激な粒子成長を防止するために系内温度の降温を開始することが好ましい。
【0011】
これを炭化ケイ素微粒子の反応について述べれば、先に述べた反応式モデルを炭化ケイ素の製造に当てはめれば、以下のような反応が進行することが知られている。
SiO2 + 3C → SiC + 2CO(気体)
しかしながら、実際にはこのような理想的な反応が進むわけではなく、副生成物の分析から、以下のような反応が同時に進むと考えられている。
SiO2 +C → SiO(気体)+CO(気体)
SiO +C → Si +CO(気体)
Si +C → SiC
この反応に伴う気体の発生量を検出するには、該反応を行うチャンバー内を一定の圧力に保持する為、チャンバー内に圧力センサーを設置し、反応によって発生するガス量を電磁弁により排出する。この電磁弁からの排出ガス量(単位時間当たりの減圧量)より気体発生量を算出すればよい。
【0012】
この反応過程で発生するSiOガスは、不純物を多く含み、1700℃以下の温度で固形化し副生成物となる。したがって、このSiO(気体)は、先に本願出願人が特願平9−271601号において提案した如き、冷却機構を有する回収装置により、すべて回収することが高純度化の観点から好ましい。この特願平9−271601号明細書に記載の方法は、加熱炉において発生したガスを冷却装置で冷却することによりSiO(気体)を硬化させて固体状態とした後フィルターにより除去するものであり、これによりSiO(気体)は全て除去されるため、SiO回収、除去後の気体の量がCO(気体)発生量となる。
【0013】
ここで、反応の開始より、終了までのCO発生量と、好ましい温度制御について具体的に説明する。
加熱、焼成開始より、COの発生量が原料1kg当たり0.1〜50リットル/分の場合、反応は初期段階であり、加熱、昇温する必要があり、昇温速度は0.1〜15℃/分に設定することが好ましく、さらに好ましくは2〜8℃/分である。
反応の進行に伴い、CO発生量が原料1kg当たり50リットル/分を超えた場合、反応は中間段階にあることを示し、加熱、昇温速度は0.1〜15℃/分に設定することが好ましく、さらに好ましくは2〜8℃/分である。
このとき、最終的な加熱温度は1600〜2000℃程度となる。
その後、COの発生量が原料1kg当たり10リットル/分以下になった場合、反応は最終段階にあることを示す。このときには、昇温を行わず加熱温度を一定の1600〜2000℃程度に保ちそのまま保持する。
さらに経時すると、COの発生量は減少するが、原料1kg当たり1.0リットル/分以下になった場合、反応はほぼ終了し、粒子径成長段階にはいるため系内の温度を降温させる必要があり、降温速度1〜50℃/分で冷却する。冷却条件は好ましくは降温速度5〜30℃/分であり、10〜20℃/分であることがさらに好ましい。
【0014】
この時の、昇温、降温条件が重要であり、例えば、粒子径成長段階に入ったときの降温を急激に行うと、装置の破壊につながる虞があり、また、これ以上緩やかな降温条件をとると粒子の成長が継続されて、大きな粒子が形成され、温度の不均衡に伴う粒子径のばらつきが生じるため好ましくない。
【0015】
本発明の方法により得られる粒子状炭化ケイ素の平均粒子径(D50)は0.1μm〜10μmの範囲であり、且つ、その粒度分布は、その粉体の粒度分布より算出される90%累積径(D90)と10%累積径(D10)との比、即ち、D90/D10の値が5以下であることが好ましい。D90/D10の値が5を超えて粒度分布が広くなると、好適な平均粒子径よりも大きい粒子や小さい粒子が多く混入することになり、いずれの粒子径に偏っても、前記したのと同様の不都合が生じやすくなるため、好ましくない。
【0016】
本発明の製造方法は加熱により気体を発生しながら反応する2種類以上の化合物から粒子状化合物を製造する方法に適用でき、炭化ケイ素微粒子或いは窒化ケイ素微粒子の製造に好適に適用することができる。ここで、本発明の方法を炭化ケイ素微粒子の製造に用いる場合の、原料や詳細な反応条件について以下に具体的に述べる。
【0017】
本発明の製造方法において、最終的な目的とする高純度の微粒子状炭化ケイ素は、例えば、少なくとも1種以上のケイ素化合物を含む液状のケイ素源と、加熱により炭素を生成する少なくとも1種以上の液状の有機化合物を含む炭素源と、を原料とし、さらに好ましくはこれらに、重合触媒又は架橋触媒と、を均質に混合して得られた固形物を非酸化性雰囲気下で焼成することが好ましい。
【0018】
高純度の炭化ケイ素粉体の製造に用いられるケイ素化合物(以下、適宜、ケイ素源と称する)としては、液状のものと固体のものとを併用することができるが、少なくとも一種は液状のものから選ばれなくてはならない。液状のものとしては、アルコキシシラン(モノ−、ジ−、トリ−、テトラ−)及びテトラアルコキシシランの重合体が用いられる。アルコキシシランの中ではテトラアルコキシシランが好適に用いられ、具体的には、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が挙げられるが、ハンドリングの点からはエトキシシランが好ましい。また、テトラアルコキシシランの重合体としては、重合度が2〜15程度の低分子量重合体(オリゴマー)及びさらに重合度が高いケイ酸ポリマーで液状のものが挙げられる。これらと併用可能な固体状のものとしては、酸化ケイ素が挙げられる。本発明において酸化ケイ素とは、SiOの他、シリカゾル(コロイド状超微細シリカ含有液、内部にOH基やアルコキシル基を含む)、二酸化ケイ素(シリカゲル、微細シリカ、石英粉体)等を含む。
【0019】
これらケイ素源のなかでも、均質性やハンドリング性が良好な観点から、テトラエトキシシランのオリゴマー及びテトラエトキシシランのオリゴマーと微粉体シリカとの混合物等が好適である。また、これらのケイ素源は高純度の物質が用いられ、初期の不純物含有量が20ppm以下であることが好ましく、5ppm以下であることがさらに好ましい。
【0020】
また、高純度炭化ケイ素粉体の製造に使用される加熱により炭素を生成する有機化合物としては、液状のものの他、液状のものと固体のものとを併用することができ、残炭率が高く、且つ触媒若しくは加熱により重合又は架橋する有機化合物、具体的には例えば、フェノール樹脂、フラン樹脂、ポリイミド、ポリウレタン、ポリビニルアルコール等の樹脂のモノマーやプレポリマーが好ましく、その他、セルロース、蔗糖、ピッチ、タール等の液状物も用いられ、特にレゾール型フェノール樹脂が好ましい。また、その純度は目的により適宜制御選択が可能であるが、特に高純度の炭化ケイ素粉体が必要な場合には、各金属を5ppm以上含有していない有機化合物を用いることが望ましい。
【0021】
本発明の製造方法において、高純度炭化ケイ素粉体を製造するにあたっての、炭素とケイ素の比(以下、C/Si比と略記)は、混合物を1000℃にて炭化して得られる炭化物中間体を、元素分析することにより定義される。化学量論的には、C/Si比が3.0の時に生成炭化ケイ素中の遊離炭素が0%となるはずであるが、実際には同時に生成するSiOガスの揮散により低C/Si比において遊離炭素が発生する。この生成炭化ケイ素粉体中の遊離炭素量が焼結体等の製造用途に適当でない量にならないように予め配合を決定することが重要である。通常、1気圧近傍で1600℃以上での焼成では、C/Si比を2.0〜2.5にすると遊離炭素を抑制することができ、この範囲を好適に用いることができる。C/Si比を2.5以上にすると遊離炭素が顕著に増加するが、この遊離炭素は粒成長を抑制する効果を持つため、粒子形成の目的に応じて適宜選択しても良い。但し、雰囲気の圧力を低圧又は高圧で焼成する場合は、純粋な炭化ケイ素を得るためのC/Si比は変動するので、この場合は必ずしも前記C/Si比の範囲に限定するものではない。
【0022】
なお、遊離炭素の焼結の際の作用は、本発明で用いられる炭化ケイ素粉体の表面に被覆された非金属系焼結助剤に由来する炭素によるものに比較して非常に弱いため、基本的には無視することができる。
【0023】
また、本発明においてケイ素源と加熱により炭素を生成する有機化合物とを均質に混合した固形物を得るために、ケイ素源と該有機化合物の混合物を硬化させて固形物とすることも必要に応じて行われる。硬化の方法としては、加熱により架橋する方法、硬化触媒により硬化する方法、電子線や放射線による方法が挙げられる。硬化触媒としては、炭素源に応じて適宜選択できるが、フェノール樹脂やフラン樹脂の場合には、トルエンスルホン酸、トルエンカルボン酸、酢酸、しゅう酸、塩酸、硫酸、マレイン酸等の酸類、ヘキサミン等のアミン類等を用いる。
【0024】
この原料混合固形物は必要に応じ加熱炭化されたのち、焼成工程に付されてもよい。加熱炭化は窒素又はアルゴン等の非酸化性雰囲気中800℃〜1000℃にて30分〜120分間該固形物を加熱することにより行われる。
【0025】
さらに、この炭化物をアルゴン等の非酸化性雰囲気中1350℃以上2000℃以下で加熱、焼成する。これが焼成工程である。このときの最終的な焼成温度条件としては、効率性の観点からは1600℃〜2000℃での焼成が望ましいが、ここに至る昇温条件は、先に述べたように、発生する気体の量を見ながら制御する必要がある。
このように、発生する気体の量を見ながら、昇温、降温条件を制御することで、反応を効率よく進行させ、粒子径の過大な成長或いは、温度の不均一による粒子径の不均一化を防止し、粒子径の均一な粒子状化合物を形成することができる。
【0026】
【実施例】
以下に実施例を挙げて本発明を具体的に説明するが、本発明の主旨を超えない限り本実施例に限定されるものではない。
(実施例1)
−炭化ケイ素粉体の製造−
原料として、常温で液状のケイ素化合物であるエチルシリケート3050gと、加熱により炭素を発生する有機化合物であるレゾール型フェノール1420gを約3000r.p.m.の攪拌速度で5分間攪拌した後、この混合物に触媒として無水マレイン酸(三菱化学社製)の飽和水溶液255gを添加してさらに3000r.p.m.の攪拌速度で約15分間攪拌し、これを窒素雰囲気中、900℃で1時間炭化して、均質な樹脂状固形物を得た。
【0027】
次に、この炭化物をアルゴン雰囲気中に配置して焼成を開始し、反応時に発生するCOの量を電磁弁からの排出ガス量により連続的に算出して、記録した。
焼成即ち、加熱を開始したところ、COの発生量が原料1kg当たり15リットル/分であり、反応は初期段階であることが確認された。このときの昇温速度を5℃/分に設定し、1800℃まで加熱した。
反応の進行に伴い、CO発生量が原料1kg当たり52リットル/分となり、反応は中間段階にあることが確認された。加熱、昇温速度は3℃/分に設定し、最終的な加熱温度を1870℃程度とした。
その後、COの発生量が原料1kg当たり7リットル/分以下になったので、反応は最終段階に入ったことが確認された。そこで昇温を停止し、温度を一定の1870℃程度に保持した。
温度保持して10分間後には、COの発生量は原料1kg当たり1.0リットル/分以下となり、反応はほぼ終了したことを確認した。そこで、系内の温度を降温速度15℃/分の条件で1200℃になるまで冷却し、その後、強制冷却を行った。
得られた粒子状炭化ケイ素の平均粒子径は、0.128μmであった。粒度径分布より得られるD90/D10の値は3.8であった。
【0028】
−炭化ケイ素焼結体の製造−
得られた高純度炭化ケイ素(以下、適宜、SiCと称する)粉体50gとアミンを含むレゾール型フェノール樹脂(熱分解後の残炭率50%)8gとをエタノール溶媒50g中で湿式ボールミル混合した後、乾燥し、直径20mm、厚さ10mmの円柱状に成形した。この成形体に含まれるフェノール樹脂量及びアミン量はそれぞれ6wt%及び0.1wt%であった。
この成形体をホットプレス法により700kgf/cm2 の圧力下、アルゴンガス雰囲気下にて2300℃の温度で3時間焼結して炭化ケイ素焼結体を得た。この炭化ケイ素焼結体の物性を下記の方法で測定した。
(焼結特性)
アルキメディス法(JIS R1634)により得られた焼結体の密度を求めた。測定した密度と理論密度により焼結特性を下記式により算出した。数値が100に近いほど焼結特性が優れていると評価する。
焼結特性=[密度/理論密度(3.21g/cm3 )]×100
得られた値は、96%であり、良好な焼結特性を有することが確認された。これらの結果を下記表1に示す。
【0029】
(実施例2)
COの発生量が原料1kg当たり0.5リットル/分以下となったとき、冷却を開始した他は実施例1と同様にして炭化ケイ素粉体を製造し、それを用いて焼結体を製造した。同様に評価を行い、これらの結果を下記表1に示した。
【0030】
(実施例3)
COの発生量が原料1kg当たり0.2リットル/分以下となったとき、冷却を開始した他は実施例1と同様にして炭化ケイ素粉体を製造し、それを用いて焼結体を製造した。同様に評価を行い、これらの結果を下記表1に示した。
【0031】
(比較例1)
昇温後、温度を一定の1870℃程度に54分間保持し、その後、系内の温度を降温速度15℃/分の条件で1200℃になるまで冷却し、その後、強制冷却を行った他は実施例1と同様にして炭化ケイ素粉体を製造し、それを用いて焼結体を製造した。同様に評価を行い、これらの結果を下記表1に示した。
【0032】
(比較例2)
昇温後、温度を一定の1870℃程度に61分間保持し、その後、系内の温度を降温速度15℃/分の条件で1200℃になるまで冷却し、その後、強制冷却を行った他は実施例1と同様にして炭化ケイ素粉体を製造し、それを用いて焼結体を製造した。同様に評価を行い、これらの結果を下記表1に示した。
【0033】
(比較例3)
昇温後、温度を一定の1870℃程度に70分間保持し、その後、系内の温度を降温速度15℃/分の条件で1200℃になるまで冷却し、その後、強制冷却を行った他は実施例1と同様にして炭化ケイ素粉体を製造し、それを用いて焼結体を製造した。同様に評価を行い、これらの結果を下記表1に示した。
【0034】
【表1】

Figure 0004267723
【0035】
前記表1の各実施例並びに比較例に明らかなように、本発明の方法により得られた炭化ケイ素粉体は目標粒子径に制度高く一致しており、粒度分布の観点から均一な粒子径を有することが分かった。また、この炭化ケイ素粉体より得られる炭化ケイ素焼結体は、十分な密度を有する高密度焼結体であり、優れた焼結特性を有していた。
一方、加熱温度の保持時間のみを制御することにより得られた比較例の炭化ケイ素粉体は目標粒子径に一致しておらず、ばらつきも大きいものであった。さらに、その粉体により得られた炭化ケイ素焼結体は、焼結特性が低く、目的とする高密度を達成しえなかった。
【0036】
(実施例4)
−窒化ケイ素粉体の製造−
原料として、高純度シリカ(高純度エチルシリケート酸素雰囲気中にて焼成し、シリカ微粉末としてもの)500gと、高純度カーボン(SEC社製)750gをボールミルを用いて8時間攪拌した後、これを窒素雰囲気中、下記の条件で焼成して、窒化ケイ素粉体を得た。
【0037】
このときの反応は下記のように進行すると考えられる。
SiO2 +C → SiO(気体)+CO(気体)
SiO +C → Si +CO(気体)
3Si +2N2 → Si3 4
【0038】
前記混合物を窒素雰囲気中に配置して焼成を開始し、反応時に発生するCOの量を電磁弁からの排出ガス量により連続的に算出して、記録した。
焼成即ち、加熱を開始したところ、COの発生量が原料1kg当たり15リットル/分であり、反応は初期段階であることが確認された。このときの昇温速度を8℃/分に設定し、1400℃まで加熱した。
反応の進行に伴い、CO発生量が原料1kg当たり55リットル/分となり、反応は中間段階にあることが確認された。加熱、昇温速度は2℃/分に設定し、最終的な加熱温度を1500℃程度とした。
その後、COの発生量が原料1kg当たり5リットル/分以下になったので、反応は最終段階に入ったことが確認された。そこで昇温を停止し、温度を一定の1500℃程度に保持した。
温度保持して8分間後には、COの発生量は原料1kg当たり1.0リットル/分以下となり、反応はほぼ終了したことを確認した。そこで、系内の温度を降温速度12℃/分の条件で1200℃になるまで冷却し、その後、強制冷却を行った。
得られた粒子状窒化ケイ素の平均粒子径は、0.985μmであった。粒度径分布より得られるD90/D10の値は4.8であった。
【0039】
−窒化ケイ素焼結体の製造−
得られた高純度窒化ケイ素粉体50gに酸素雰囲気中、焼結助剤としてアルミナ2wt%、イットリア3wt%を添加し、ボールミル混合した後、乾燥し、直径20mm、厚さ10mmの円柱状に成形した。
この成形体をホットプレス法により10kgf/cm2 の圧力下、最高温度1900℃で8時間焼結して窒化ケイ素焼結体を得た。この窒化ケイ素焼結体の物性を窒化ケイ素の理論密度(3.196g/cm3 )を基礎として、実施例1と同様の方法で測定した。これらの結果を下記表2に示す。
【0040】
(比較例4)
昇温後、温度を一定の1500℃程度に60分間保持し、その後、系内の温度を降温速度12℃/分の条件で1200℃になるまで冷却し、その後、強制冷却を行った他は実施例1と同様にして窒化ケイ素粉体を製造し、それを用いて焼結体を製造した。同様に評価を行い、これらの結果を下記表2に示した。
【0041】
【表2】
Figure 0004267723
【0042】
前記表2の実施例並びに比較例に明らかなように、本発明の方法により得られた窒化ケイ素粉体は目標粒子径に制度高く一致しており、粒度分布の観点から均一な粒子径を有することが分かった。また、この窒化ケイ素粉体より得られる焼結体は、十分な密度を有する高密度焼結体であり、優れた焼結特性を有していた。
一方、加熱温度の保持時間のみを制御することにより得られた比較例の窒化ケイ素粉体は目標粒子径に一致しておらず、ばらつきも大きいものであった。さらに、その粉体により得られた焼結体は、焼結特性が低く、目的とする高密度を達成しえなかった。
【0043】
【発明の効果】
本発明の粒子状化合物の製造方法によれば、ケイ素含有化合物と炭素含有化合物とを反応させて粒子状の反応生成物である炭化ケイ素を得るにあたり、粒子径が簡単に制御でき、均一な粒子径を有する粒子状化合物が簡易に得られ、この方法は、高密度炭化ケイ素焼結体の原料として有用な粒子径の均一な炭化ケイ素微粒子を得るのに特に適している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a particulate silicon carbide compound, and more specifically, a particulate compound capable of easily controlling the particle size when two or more kinds of compounds are reacted to obtain a particulate reaction product. It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, a particulate compound has been produced as a reaction product obtained by reacting two or more kinds of compounds. For example, silicon carbide, which is a ceramic material, is obtained by reacting a silicon-containing compound with carbon. As an improved technique for producing silicon carbide particles by pulverizing and classifying the obtained silicon carbide compound, a reaction product is used. Manufacturing techniques that directly take the particle shape are being developed.
The holding jig used in the heat treatment process of the wafer, which is a semiconductor-related component, was a quartz material. However, as the temperature at which wafers are processed and the processing time are shortened, thermal deformation of quartz materials and alteration due to chemical cleaning such as hydrofluoric acid become problems, and high-temperature strength and heat resistance are methods for solving these problems. There is a demand to use silicon carbide, which has excellent properties, wear resistance, chemical resistance, and the like, as an alternative material.
However, ceramics are generally difficult to sinter and difficult to increase in density. In particular, silicon carbide belonging to non-oxide ceramics has a large variation in the particle size of the ceramic powder used for sintering. There was a problem that a high-density sintered body could not be obtained.
[0003]
As described above, it is important to obtain silicon carbide fine particles having a uniform particle diameter, but currently known methods for producing fine particle silicon carbide powder include the Atchison method, the silica reduction carbonization method, the metal silicon carbonization method. Although there are a method pyrolysis method and a gas phase reaction method, there is a large variation in the particle diameter of the ceramic powder obtained by either method.
For example, the Atchison method is a method of producing α-type silicon carbide by solid-phase reaction of a metal oxide and carbon, but the produced silicon carbide is coarse and needs to be pulverized and classified to make fine particles. For this reason, there is a problem in terms of cost, purity, etc., and there is a limit to the size of the particles to be finely divided.
The gas phase reaction method and the thermal decomposition method of the organosilicon compound can produce fine powders of 0.1 μm or less, but have disadvantages such as high raw material costs and unsuitability for mass production.
[0004]
Conventionally, for example, in the liquid phase reduction carbonization method, attempts have been made to control the particle diameter of the particulate compound obtained by adjusting the reaction conditions, but only setting the conventional heating temperature and time. In the liquid phase reduction carbonization method carried out by the above method, the rapid particle growth that occurs at the final stage of the reaction cannot be prevented, and it is difficult to control the particle size.
Therefore, it has been difficult to easily obtain a large amount of uniform fine particle silicon carbide capable of obtaining a high-density sintered body of silicon carbide.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to provide a particulate compound having a uniform particle size, which can be easily controlled when a silicon-containing compound and a carbon-containing compound are reacted to obtain silicon carbide which is a particulate reaction product. An object of the present invention is to provide a production method, in particular, a production method of a particulate compound capable of obtaining silicon carbide fine particles having a uniform particle size useful as a raw material for a high-density silicon carbide sintered body.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have detected the amount of carbon monoxide generated during the reaction of silicon dioxide and carbon as an inner loop in a known liquid phase reduction carbonization method as a method for producing particulate silicon carbide. Accordingly, the present inventors have found a method for preventing the rapid particle growth of the powder and reducing the variation in the particle diameter by controlling the raising and lowering conditions of the heating temperature.
[0007]
That is, the method of manufacturing the particulate of silicon carbide of the present invention, heating the silicon-containing compound to react while generating gas and a carbon-containing compound by firing in an inert atmosphere and reacted by producing a particulate silicon carbide in the step of, detecting the amount of carbon monoxide generated during the firing, by controlling the lifting condition of the firing temperature according to the detected amount and controlling the particle diameter of the silicon carbide particles.
The method of the present invention, Ru preferred Der as a method particular to produce a particulate silicon carbide. Here, the silicon-containing compound is a liquid silicon compound, the carbon-containing compound is a liquid organic compound that generates carbon by heating, and it is particularly preferable to add a polymerization catalyst or a crosslinking catalyst for reaction. is there.
The average particle diameter (D 50 ) of the obtained particulate silicon carbide is in the range of 0.1 μm to 10 μm, and 90% cumulative diameter (D 90 ) and 10% cumulative diameter (D the value of the ratio of the 10) (D 90 / D 10 ) is equal to or more than 5.0.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
In general, when two or more kinds of compounds that react while generating gas by heating (hereinafter referred to as compound AB (solid) and compound CD (solid)) are heated, the reaction shown in the following reaction model occurs. As a result, the target compound, particulate compound AC, is obtained, and gaseous compound BD is produced as a by-product with the reaction.
[0009]
(Reaction equation model)
AB (solid) + CD (solid) → AC (solid) + BD (gas)
According to studies by the present inventors, at this time, when the raw material compounds AB and CD are baked and reacted in an inert atmosphere and the amount of gas generated during the calcination is detected, the amount of gas generated and the progress of the reaction It was found that there was a correlation with the situation.
[0010]
That is, the amount of gas generated changes with the progress of the reaction, and is medium amount in the initial stage, large amount in the intermediate stage of the reaction, and medium amount in the final stage of the reaction. In addition, in the particle size growth stage of the target compound AC, the amount of gas generated is small. In this case, the reaction between the two compounds is completed, and the rapid growth of particles is achieved at the particle size stage of the target compound AC obtained. In order to prevent this, it is preferable to start the temperature decrease in the system.
[0011]
When this is described with respect to the reaction of silicon carbide fine particles, it is known that the following reaction proceeds if the reaction equation model described above is applied to the production of silicon carbide.
SiO 2 + 3C → SiC + 2CO (gas)
However, in reality, such an ideal reaction does not proceed. From the analysis of by-products, it is considered that the following reactions proceed simultaneously.
SiO 2 + C → SiO (gas) + CO (gas)
SiO + C → Si + CO (gas)
Si + C → SiC
In order to detect the amount of gas generated by this reaction, a pressure sensor is installed in the chamber to hold the reaction chamber at a constant pressure, and the amount of gas generated by the reaction is discharged by a solenoid valve. . The amount of gas generated may be calculated from the amount of exhaust gas from this solenoid valve (the amount of pressure reduction per unit time).
[0012]
The SiO gas generated in this reaction process contains a large amount of impurities and solidifies at a temperature of 1700 ° C. or lower to become a by-product. Therefore, it is preferable from the viewpoint of high purity that this SiO (gas) is recovered by a recovery device having a cooling mechanism as previously proposed in Japanese Patent Application No. 9-271601 by the applicant of the present application. In the method described in Japanese Patent Application No. 9-271601, the gas generated in the heating furnace is cooled by a cooling device to harden SiO (gas) to a solid state and then removed by a filter. Since this removes all of the SiO (gas), the amount of gas after SiO recovery and removal becomes the CO (gas) generation amount.
[0013]
Here, the amount of CO generated from the start to the end of the reaction and preferable temperature control will be specifically described.
From the start of heating and firing, when the amount of CO generated is 0.1 to 50 liters / minute per 1 kg of raw material, the reaction is in the initial stage, and it is necessary to heat and heat up. The temperature is preferably set to ° C./min, and more preferably 2 to 8 ° C./min.
As the reaction progresses, if the amount of CO generated exceeds 50 liters / minute per 1 kg of raw material, it indicates that the reaction is in an intermediate stage, and the heating and heating rate is set to 0.1 to 15 ° C./minute. Is more preferable, and 2 to 8 ° C./min is more preferable.
At this time, the final heating temperature is about 1600 to 2000 ° C.
Thereafter, when the amount of CO generated is 10 liters / min or less per kg of the raw material, it indicates that the reaction is in the final stage. At this time, the temperature is not raised and the heating temperature is kept at a constant value of about 1600 to 2000 ° C. and held as it is.
As the amount of CO generated decreases with time, the reaction is almost completed and the temperature in the system must be lowered because the reaction is almost complete when the amount of the raw material is 1.0 liter / min or less per kg of the raw material. And cooling at a temperature drop rate of 1 to 50 ° C./min. The cooling condition is preferably a temperature drop rate of 5 to 30 ° C./min, and more preferably 10 to 20 ° C./min.
[0014]
The temperature rise and temperature drop conditions at this time are important.For example, if the temperature drop rapidly when entering the particle diameter growth stage, it may lead to the destruction of the device. This is not preferable because the particle growth is continued and large particles are formed, resulting in a variation in particle diameter due to temperature imbalance.
[0015]
The average particle diameter (D 50 ) of the particulate silicon carbide obtained by the method of the present invention is in the range of 0.1 μm to 10 μm, and the particle size distribution is 90% cumulative calculated from the particle size distribution of the powder. The ratio of the diameter (D 90 ) to the 10% cumulative diameter (D 10 ), that is, the value of D 90 / D 10 is preferably 5 or less. When the value of D 90 / D 10 exceeds 5 and the particle size distribution becomes wide, many particles larger or smaller than the preferred average particle size are mixed. It is not preferable because the same inconvenience is likely to occur.
[0016]
The production method of the present invention can be applied to a method of producing a particulate compound from two or more compounds that react while generating gas by heating, and can be suitably applied to the production of silicon carbide fine particles or silicon nitride fine particles. Here, the raw materials and detailed reaction conditions when the method of the present invention is used for the production of silicon carbide fine particles will be specifically described below.
[0017]
In the production method of the present invention, the final target high-purity particulate silicon carbide is, for example, a liquid silicon source containing at least one silicon compound, and at least one kind of carbon that generates carbon by heating. It is preferable that a carbon source containing a liquid organic compound is used as a raw material, and more preferably a solid obtained by homogeneously mixing them with a polymerization catalyst or a crosslinking catalyst is calcined in a non-oxidizing atmosphere. .
[0018]
As a silicon compound (hereinafter, appropriately referred to as a silicon source) used for the production of high-purity silicon carbide powder, a liquid and a solid can be used in combination, but at least one of them is from a liquid Must be chosen. As the liquid, a polymer of alkoxysilane (mono-, di-, tri-, tetra-) and tetraalkoxysilane is used. Among the alkoxysilanes, tetraalkoxysilane is preferably used, and specific examples include methoxysilane, ethoxysilane, propoxysilane, butoxysilane, and the like. From the viewpoint of handling, ethoxysilane is preferable. Examples of the tetraalkoxysilane polymer include a low molecular weight polymer (oligomer) having a degree of polymerization of about 2 to 15 and a silicate polymer having a higher degree of polymerization, which are liquid. Examples of solid materials that can be used in combination with these include silicon oxide. In the present invention, silicon oxide includes silica sol (a colloidal ultrafine silica-containing liquid containing OH groups and alkoxyl groups inside), silicon dioxide (silica gel, fine silica, quartz powder) and the like in addition to SiO.
[0019]
Among these silicon sources, from the viewpoint of good homogeneity and handling properties, an oligomer of tetraethoxysilane and a mixture of an oligomer of tetraethoxysilane and fine powder silica are preferable. These silicon sources are high-purity substances, and the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less.
[0020]
Moreover, as an organic compound which produces | generates carbon by the heating used for manufacture of high purity silicon carbide powder, a liquid thing and a solid thing can be used together other than a liquid thing, and a residual carbon ratio is high. And an organic compound that is polymerized or cross-linked by a catalyst or heating, specifically, for example, a resin monomer or prepolymer such as phenol resin, furan resin, polyimide, polyurethane, polyvinyl alcohol, etc., cellulose, sucrose, pitch, A liquid material such as tar is also used, and a resol type phenol resin is particularly preferable. The purity can be appropriately controlled and selected depending on the purpose, but when a high-purity silicon carbide powder is required, it is desirable to use an organic compound that does not contain 5 ppm or more of each metal.
[0021]
In the production method of the present invention, the ratio of carbon to silicon (hereinafter abbreviated as C / Si ratio) in producing high-purity silicon carbide powder is a carbide intermediate obtained by carbonizing the mixture at 1000 ° C. Is defined by elemental analysis. Stoichiometrically, when the C / Si ratio is 3.0, the free carbon in the generated silicon carbide should be 0%. However, in practice, the low C / Si ratio is caused by volatilization of the SiO gas generated at the same time. Free carbon is generated in It is important to determine the formulation in advance so that the amount of free carbon in the generated silicon carbide powder does not become an amount that is not suitable for the purpose of manufacturing a sintered body or the like. Usually, in firing at 1600 ° C. or more near 1 atm, free carbon can be suppressed when the C / Si ratio is set to 2.0 to 2.5, and this range can be suitably used. When the C / Si ratio is 2.5 or more, free carbon significantly increases. However, since this free carbon has an effect of suppressing grain growth, it may be appropriately selected according to the purpose of grain formation. However, when the atmosphere is fired at a low pressure or a high pressure, the C / Si ratio for obtaining pure silicon carbide varies, and in this case, it is not necessarily limited to the range of the C / Si ratio.
[0022]
In addition, since the action at the time of sintering free carbon is very weak compared to that due to carbon derived from the nonmetallic sintering aid coated on the surface of the silicon carbide powder used in the present invention, Basically it can be ignored.
[0023]
Further, in the present invention, in order to obtain a solid material in which the silicon source and the organic compound that generates carbon by heating are homogeneously mixed, the mixture of the silicon source and the organic compound is cured to form a solid material as necessary. Done. Examples of the curing method include a method of crosslinking by heating, a method of curing with a curing catalyst, and a method of electron beam or radiation. The curing catalyst can be appropriately selected according to the carbon source, but in the case of phenol resin or furan resin, acids such as toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, hydrochloric acid, sulfuric acid, maleic acid, hexamine, etc. These amines are used.
[0024]
This raw material mixed solid may be subjected to a firing step after being carbonized by heating as necessary. Heat carbonization is performed by heating the solid matter at 800 ° C. to 1000 ° C. for 30 minutes to 120 minutes in a non-oxidizing atmosphere such as nitrogen or argon.
[0025]
Further, the carbide is heated and fired at 1350 ° C. or more and 2000 ° C. or less in a non-oxidizing atmosphere such as argon. This is the firing step. As the final firing temperature condition at this time, firing at 1600 ° C. to 2000 ° C. is desirable from the viewpoint of efficiency. However, as described above, the temperature rise condition is the amount of gas generated. It is necessary to control while watching.
In this way, by controlling the temperature rise and fall conditions while observing the amount of gas generated, the reaction can proceed efficiently, and the particle diameter becomes uneven due to excessive growth of the particle diameter or uneven temperature. And a particulate compound having a uniform particle size can be formed.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.
Example 1
-Production of silicon carbide powder-
As raw materials, 3050 g of ethyl silicate which is a liquid silicon compound at room temperature and 1420 g of resol type phenol which is an organic compound which generates carbon by heating are about 3000 r. p. m. After stirring at a stirring speed of 5 minutes, 255 g of a saturated aqueous solution of maleic anhydride (manufactured by Mitsubishi Chemical) was added as a catalyst to this mixture, and 3000 rpm was added. p. m. The mixture was stirred at a stirring speed of about 15 minutes and carbonized in a nitrogen atmosphere at 900 ° C. for 1 hour to obtain a homogeneous resinous solid.
[0027]
Next, this carbide was placed in an argon atmosphere to start firing, and the amount of CO generated during the reaction was continuously calculated from the amount of exhaust gas from the solenoid valve and recorded.
When firing, ie, heating, was started, the amount of CO generated was 15 liters / minute per 1 kg of raw material, and it was confirmed that the reaction was in the initial stage. The heating rate at this time was set to 5 ° C./min, and heating was performed to 1800 ° C.
As the reaction progressed, the amount of CO generated was 52 liters / minute per kg of the raw material, confirming that the reaction was in an intermediate stage. The heating and temperature rising rates were set at 3 ° C./min, and the final heating temperature was about 1870 ° C.
Thereafter, the amount of CO generated was 7 liters / min or less per kg of the raw material, so it was confirmed that the reaction entered the final stage. Therefore, the temperature elevation was stopped and the temperature was kept at a constant level of about 1870 ° C.
After 10 minutes of maintaining the temperature, the amount of CO generated was 1.0 liter / min or less per kg of the raw material, and it was confirmed that the reaction was almost completed. Therefore, the temperature in the system was cooled to 1200 ° C. at a temperature drop rate of 15 ° C./min, and then forced cooling was performed.
The average particle diameter of the obtained particulate silicon carbide was 0.128 μm. The value of D 90 / D 10 obtained from the particle size distribution was 3.8.
[0028]
-Production of sintered silicon carbide-
50 g of the obtained high-purity silicon carbide (hereinafter referred to as “SiC” as appropriate) powder and 8 g of a resol-type phenol resin containing amine (residual carbon ratio after thermal decomposition of 50%) were wet-ball milled in 50 g of an ethanol solvent. Thereafter, it was dried and formed into a cylindrical shape having a diameter of 20 mm and a thickness of 10 mm. The amount of phenol resin and the amount of amine contained in this molded body were 6 wt% and 0.1 wt%, respectively.
This compact was sintered by hot pressing at 700 kgf / cm 2 under an argon gas atmosphere at a temperature of 2300 ° C. for 3 hours to obtain a silicon carbide sintered body. The physical properties of this silicon carbide sintered body were measured by the following methods.
(Sintering characteristics)
The density of the sintered body obtained by the Archimedis method (JIS R1634) was determined. Sintering characteristics were calculated from the measured density and theoretical density according to the following formula. The closer the value is to 100, the better the sintering characteristics.
Sintering characteristics = [density / theoretical density (3.21 g / cm 3 )] × 100
The obtained value was 96%, and it was confirmed to have good sintering characteristics. These results are shown in Table 1 below.
[0029]
(Example 2)
When the amount of CO generated was 0.5 liter / min or less per kg of raw material, a silicon carbide powder was produced in the same manner as in Example 1 except that cooling was started, and a sintered body was produced using it. did. Evaluation was conducted in the same manner, and these results are shown in Table 1 below.
[0030]
(Example 3)
When the amount of CO generated was 0.2 liter / min or less per kg of raw material, a silicon carbide powder was produced in the same manner as in Example 1 except that cooling was started, and a sintered body was produced using the silicon carbide powder. did. Evaluation was conducted in the same manner, and these results are shown in Table 1 below.
[0031]
(Comparative Example 1)
After raising the temperature, the temperature was maintained at a constant temperature of about 1870 ° C. for 54 minutes, then the temperature in the system was cooled to 1200 ° C. at a temperature lowering rate of 15 ° C./min, and then forced cooling was performed. Silicon carbide powder was produced in the same manner as in Example 1, and a sintered body was produced using the silicon carbide powder. Evaluation was conducted in the same manner, and these results are shown in Table 1 below.
[0032]
(Comparative Example 2)
After the temperature increase, the temperature was kept at a constant 1870 ° C. for 61 minutes, and then the temperature in the system was cooled to 1200 ° C. at a temperature decrease rate of 15 ° C./min, and then forced cooling was performed. Silicon carbide powder was produced in the same manner as in Example 1, and a sintered body was produced using the silicon carbide powder. Evaluation was conducted in the same manner, and these results are shown in Table 1 below.
[0033]
(Comparative Example 3)
After raising the temperature, the temperature was maintained at a constant level of about 1870 ° C. for 70 minutes, and then the temperature in the system was cooled to 1200 ° C. at a temperature drop rate of 15 ° C./min, and then forced cooling was performed. Silicon carbide powder was produced in the same manner as in Example 1, and a sintered body was produced using the silicon carbide powder. Evaluation was conducted in the same manner, and these results are shown in Table 1 below.
[0034]
[Table 1]
Figure 0004267723
[0035]
As is apparent from the examples and comparative examples of Table 1, the silicon carbide powder obtained by the method of the present invention is highly consistent with the target particle size, and has a uniform particle size from the viewpoint of particle size distribution. It turns out to have. Moreover, the silicon carbide sintered body obtained from this silicon carbide powder was a high-density sintered body having a sufficient density, and had excellent sintering characteristics.
On the other hand, the silicon carbide powder of the comparative example obtained by controlling only the holding time of the heating temperature did not coincide with the target particle diameter and had a large variation. Furthermore, the silicon carbide sintered body obtained from the powder has low sintering characteristics and cannot achieve the desired high density.
[0036]
(Example 4)
-Production of silicon nitride powder-
As raw materials, 500 g of high-purity silica (calcined in a high-purity ethyl silicate oxygen atmosphere and silica fine powder) and 750 g of high-purity carbon (manufactured by SEC) were stirred for 8 hours using a ball mill. Baking was performed in a nitrogen atmosphere under the following conditions to obtain silicon nitride powder.
[0037]
The reaction at this time is considered to proceed as follows.
SiO 2 + C → SiO (gas) + CO (gas)
SiO + C → Si + CO (gas)
3Si + 2N 2 → Si 3 N 4
[0038]
The mixture was placed in a nitrogen atmosphere to start firing, and the amount of CO generated during the reaction was continuously calculated from the amount of exhaust gas from the solenoid valve and recorded.
When firing, ie, heating, was started, the amount of CO generated was 15 liters / minute per 1 kg of raw material, and it was confirmed that the reaction was in the initial stage. The heating rate at this time was set to 8 ° C./min, and the mixture was heated to 1400 ° C.
As the reaction progressed, the amount of CO generated was 55 liters / minute per kg of the raw material, confirming that the reaction was in an intermediate stage. The heating and temperature rising rates were set at 2 ° C./min, and the final heating temperature was about 1500 ° C.
Thereafter, the amount of CO generated was 5 liters / min or less per kg of the raw material, so it was confirmed that the reaction entered the final stage. Therefore, the temperature rise was stopped and the temperature was kept at a constant level of 1500 ° C.
8 minutes after maintaining the temperature, the amount of CO generated was 1.0 liter / min or less per kg of the raw material, and it was confirmed that the reaction was almost completed. Therefore, the temperature in the system was cooled to 1200 ° C. at a temperature drop rate of 12 ° C./min, and then forced cooling was performed.
The average particle diameter of the obtained particulate silicon nitride was 0.985 μm. The value of D 90 / D 10 obtained from the particle size distribution was 4.8.
[0039]
-Production of sintered silicon nitride-
50 g of the obtained high-purity silicon nitride powder was added with 2 wt% alumina and 3 wt% yttria as a sintering aid in an oxygen atmosphere, mixed with a ball mill, dried, and formed into a cylindrical shape having a diameter of 20 mm and a thickness of 10 mm. did.
The compact was sintered by hot pressing at a maximum temperature of 1900 ° C. for 8 hours under a pressure of 10 kgf / cm 2 to obtain a silicon nitride sintered body. The physical properties of this silicon nitride sintered body were measured in the same manner as in Example 1 on the basis of the theoretical density of silicon nitride (3.196 g / cm 3 ). These results are shown in Table 2 below.
[0040]
(Comparative Example 4)
After raising the temperature, the temperature is kept at a constant 1500 ° C. for 60 minutes, and then the temperature in the system is cooled to 1200 ° C. under a temperature drop rate of 12 ° C./min, and then forced cooling is performed. Silicon nitride powder was produced in the same manner as in Example 1, and a sintered body was produced using it. Evaluation was performed in the same manner, and these results are shown in Table 2 below.
[0041]
[Table 2]
Figure 0004267723
[0042]
As is apparent from the examples and comparative examples of Table 2, the silicon nitride powder obtained by the method of the present invention is highly consistent with the target particle size and has a uniform particle size from the viewpoint of particle size distribution. I understood that. Further, the sintered body obtained from the silicon nitride powder was a high-density sintered body having a sufficient density, and had excellent sintering characteristics.
On the other hand, the silicon nitride powder of the comparative example obtained by controlling only the holding time of the heating temperature did not coincide with the target particle diameter and had a large variation. Further, the sintered body obtained from the powder has low sintering characteristics and cannot achieve the desired high density.
[0043]
【The invention's effect】
According to the method for producing a particulate compound of the present invention, when obtaining silicon carbide which is a particulate reaction product by reacting a silicon-containing compound with a carbon-containing compound , the particle diameter can be easily controlled and uniform particles can be obtained. A particulate compound having a diameter can be easily obtained, and this method is particularly suitable for obtaining silicon carbide fine particles having a uniform particle diameter useful as a raw material for a high-density silicon carbide sintered body.

Claims (3)

加熱により気体を発生しながら反応するケイ素含有化合物と炭素含有化合物とを不活性雰囲気中で焼成して反応させ、粒子状の炭化ケイ素を製造する工程において、焼成中に発生する一酸化炭素の量を検出し、検出量に応じて焼成温度の昇降条件を制御することにより炭化ケイ素粒子の粒子径を制御することを特徴とする粒子状炭化ケイ素化合物の製造方法。A silicon-containing compound to react while generating gas by heating and the carbon-containing compound is fired to react in an inert atmosphere, in the process of producing the particulate silicon carbide, the amount of carbon monoxide generated during firing method for producing a detected particulate silicon carbide compound characterized by controlling the particle diameter of the silicon carbide particles by controlling the lifting condition of the firing temperature according to the detected amount. 前記ケイ素含有化合物が液状ケイ素化合物であり、炭素含有化合物が加熱により炭素を生成する液状の有機化合物であり、さらに、重合触媒または架橋触媒を加えて反応させることを特徴とする請求項1に記載の粒子状炭化ケイ素化合物の製造方法。The silicon-containing compound is the liquid silicon compound is an organic compound of liquid carbon-containing compound to produce carbon upon heating, and further, according to claim 1, characterized in that the reaction by adding a polymerization catalyst or crosslinking catalyst A method for producing a particulate silicon carbide compound. 得られる粒子状炭化ケイ素の平均粒子径(D50)が0.1μm〜10μmの範囲であり、且つ、粒度分布より算出される90%累積径(D90)と10%累積径(D10)との比(D90/D10)の値が5.0以下であることを特徴とする請求項1に記載の粒子状炭化ケイ素化合物の製造方法。The average particle diameter (D 50 ) of the obtained particulate silicon carbide is in the range of 0.1 μm to 10 μm, and 90% cumulative diameter (D 90 ) and 10% cumulative diameter (D 10 ) calculated from the particle size distribution. The method for producing a particulate silicon carbide compound according to claim 1 , wherein the ratio of (D 90 / D 10 ) to is 5.0 or less.
JP22307498A 1998-08-06 1998-08-06 Method for producing particulate compound Expired - Lifetime JP4267723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22307498A JP4267723B2 (en) 1998-08-06 1998-08-06 Method for producing particulate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22307498A JP4267723B2 (en) 1998-08-06 1998-08-06 Method for producing particulate compound

Publications (2)

Publication Number Publication Date
JP2000053409A JP2000053409A (en) 2000-02-22
JP4267723B2 true JP4267723B2 (en) 2009-05-27

Family

ID=16792437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22307498A Expired - Lifetime JP4267723B2 (en) 1998-08-06 1998-08-06 Method for producing particulate compound

Country Status (1)

Country Link
JP (1) JP4267723B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700835B2 (en) * 2001-05-01 2011-06-15 株式会社ブリヂストン Silicon carbide powder, method for producing the same, and silicon carbide sintered body
KR20060017739A (en) * 2003-05-29 2006-02-27 니뽄 가이시 가부시키가이샤 Method for producing honeycomb structure and silicon carbide particles used for producing honeycomb structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168514A (en) * 1985-01-17 1986-07-30 Bridgestone Corp Production of easily sinterable silicon carbide
JPH05213612A (en) * 1991-02-06 1993-08-24 Tokai Konetsu Kogyo Co Ltd Production of beta-silicon carbide
FR2684091B1 (en) * 1991-11-21 1994-02-25 Pechiney Recherche METHOD FOR MANUFACTURING METAL CARBIDES WITH A LARGE SPECIFIC SURFACE UNDER ATMOSPHERIC PRESSURE INERATED GAS SCANNING.
JPH05339006A (en) * 1992-06-08 1993-12-21 Bridgestone Corp Production of high purity beta-silicon carbide-carbon mixed powder
JP3934695B2 (en) * 1995-05-31 2007-06-20 株式会社ブリヂストン Method for producing high-purity silicon carbide powder for producing silicon carbide single crystal

Also Published As

Publication number Publication date
JP2000053409A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US6627169B1 (en) Silicon carbide powder and production method thereof
JP2011102205A (en) METHOD FOR CONTROLLING PARTICLE SIZE OF alpha-SILICON CARBIDE POWDER AND SILICON CARBIDE SINGLE CRYSTAL
Koc et al. β-SiC production by reacting silica gel with hydrocarbon gas
US4342837A (en) Sinterable silicon carbide powders and sintered body produced therefrom
JP2001130972A (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
JP2007045689A (en) Powder for silicon carbide sintered compact and its manufacturing method
JP4490304B2 (en) Susceptor
JP4267723B2 (en) Method for producing particulate compound
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
JPH1067565A (en) Sintered silicon carbide body and its production
JP2907366B2 (en) Method for producing crystalline silicon nitride powder
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
JPS6152106B2 (en)
JP4918316B2 (en) Plasma-resistant silicon carbide sintered body and method for producing the same
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JPH1179840A (en) Silicon carbide sintered compact
JPH07157367A (en) Production of high purity beta-silicon carbide sintered compact for device for producing semiconductor
JP5130099B2 (en) Method for producing sintered silicon carbide
JP5770754B2 (en) Annealing method of sintered silicon carbide
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP2013216550A (en) Method for manufacturing silicon carbide sintered body, and silicon carbide sintered body
JPH1179847A (en) Production of silicon carbide sintered compact
JPS638265A (en) Manufacture of composite sintered body
JP2001048651A (en) Silicon carbide sintered body and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term