JP4267358B2 - 銀テープ及び超電導線材 - Google Patents

銀テープ及び超電導線材 Download PDF

Info

Publication number
JP4267358B2
JP4267358B2 JP2003111536A JP2003111536A JP4267358B2 JP 4267358 B2 JP4267358 B2 JP 4267358B2 JP 2003111536 A JP2003111536 A JP 2003111536A JP 2003111536 A JP2003111536 A JP 2003111536A JP 4267358 B2 JP4267358 B2 JP 4267358B2
Authority
JP
Japan
Prior art keywords
silver
tape
oxygen
temperature
silver tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111536A
Other languages
English (en)
Other versions
JP2004319256A (ja
Inventor
和英 田中
道哉 岡田
俊哉 土井
直二 鹿島
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2003111536A priority Critical patent/JP4267358B2/ja
Publication of JP2004319256A publication Critical patent/JP2004319256A/ja
Application granted granted Critical
Publication of JP4267358B2 publication Critical patent/JP4267358B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物系超電導物質を用いた高温超電導線材の基体となる新規な銀テープ及び超電導線材に関する。
【0002】
【従来の技術】
【非特許文献1】
Iijima:Proceedings of 5th International Symposium on Superconductivity、November16-19、1992、Kobe、Japan、pp.661-664
【非特許文献2】
芳野:Advances in Superconductivity 、vo1.6、T.Fujita and Y.Shiohara、出版社Springer-Ver1ag、Tokyo、1994年、pp759
【非特許文献3】
Goodstain:Superconductor Science and Technology、1995年、pp.123
【非特許文献4】
土井:Abstracts of 6th International Symposium on Superconductivity、October 26-23、1992、Hiroshima、Japan、pp.119
【非特許文献5】
J.D.Budai、et a1:App1. Phys. Lett.、vol.62、1993年、pp.1836
1986年に最初の酸化物高温超電導物質が発見されて以来、数十種類以上に及ぶ酸化物超電導物質が発見されている。これらの物質のうちのいくつかは、安価な冷媒である液体窒素で冷却することで超電導を発現することから、実用化が大いに期待されている。超電導物質を使った応用機器には様々なものが存在するが、代表的なものは、超電導状態では電気抵抗がゼロであるといった極めて優れた電気的性質を利用した、超電導マグネット、超電導送電ケーブル、超電導モーター、超電導発電機などが挙げられる。これらの超電導機器を作製するための第一歩は超電導物質で電線(超電導線材)を作製することである。
【0003】
液体窒素冷却で使用する超電導線材は現在、研究開発が盛んに行われているが、いずれもその構造は基本的に同じである。即ち、金属テープ上に単独もしくは複数の中間層を介して、2軸配向した超電導物質の薄い層を形成した構造をとっている。例えば、非特許文献1において、多結晶のNi基合金上にIon-Beam-Assisted Deposition法で結晶の方向を揃えたYttria-Stabilized-Zirconiaを作製し、その上にpulsed laser deposition法でY系超電導物質を作製する方法が開示されている。
【0004】
また、非特許文献2において、{11O}結晶面が圧延面に平行に並んだ銀テープを用いることで、結晶の方向を揃えた超電導体の作製方法を開示している。また、最近、非特許文献3には、超電導線材を形成するための金属基体テープとして、{110}<110>集合組織を有する銀テープについて報告されている。また、非特許文献4において、{110}<110>集合組織を有する銀テープが報告されている。
【0005】
【発明が解決しようとする課題】
非特許文献1の技術においては、結晶の方向を揃えたYttria-Stabilized-Zirconiaを作製する際に真空を必要とするプロセスIon-Beam-Assisted Deposition法を使用しなければいけない。しかし、長尺(例ば1km)の線材を作製することを想定した場合、この様なプロセスは非常に経済性が悪いことが予想される。従って、Ni基合金上に結晶の方向を揃えたYttria-Stabilized-Zirconiaを作製し、その上にY系超電導物質を作製する様な技術では長尺の超電導線材を製品として作製することは難しいと考えられる。
【0006】
非特許文献2の技術においては、超電導物質の結晶のC軸の方向を揃えることにしか留意されておらず、結晶のa軸の方向を揃えられていないため、77Kにおける臨界電流密度は1万A/cm2と低い値に留まっている。
【0007】
非特許文献3の銀テープにおいては、銀テープが酸素ガスの存在下で再結晶化を行わせるための熱処理が500℃以上の温度で施されているので表面の銀原子が酸素ガスにエッチングされて、表面の凸凹が大きくなってしまう。このような表面の凸凹が大きい銀テープの上に超電導層を形成した場合、凸凹部分での超電導結晶同士の電気的接続が悪いので、ゼロ抵抗で流せる超電導電流の値(臨界電流)が小さくなるという問題があった。また、非特許文献4の銀テープにおいても銀テープ表面の凹凸が大きく、高い臨界電流密度を持つ超電導線材の基体としては不適当であった。
【0008】
本発明の目的は、酸化物系超電導物質による高い臨界電流密度を有する超電導線材を作製することのできる銀テープ及び超電導線材を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、銀結晶が小傾角粒界によって形成され、銀結晶の80%以上、より望ましくは90%以上の{110}面がテープ表面に13度以内、好ましくは10度以内、最も望ましくは5度以内で平行に揃った集合組織及び銀結晶の80%以上、より望ましくは90%以上の<110>方向が銀テープ長手方向に13度以内、好ましくは10度以内、最も望ましくは5度以内で揃った集合組織を有し、テープ表面の凹凸が125nm以下、好ましくは100nm以下、最も望ましくは50nm以下であることを特徴とする銀テープにある。又、前述の凹凸として特に小傾角粒界の凹みとなる深さを小さくすることが好ましい。
【0010】
本発明においては、{110}面をテープ表面に13度以内、及び<110>方向をテープ長手方向に13度以内とすることにより、更にテープ表面の凹凸を125nm以下とすることにより酸化物系超電導物質の結晶においても揃ったものが形成され、高い臨界電流密度を得ることができる。
【0011】
更に、本発明の銀テープの製造方法においては、銀中の酸素を除く脱酸素工程と、該脱酸素工程後に圧延する冷間加工工程と、該冷間加工工程後に酸素ガス存在下で再結晶温度以下で加熱する酸素注入工程と、該酸素注入工程後に非酸化性雰囲気下で加熱する再結晶化工程とを有し、
前記冷間加工工程を50℃以下の温度及び前記酸素注入工程を酸素ガス存在下で100〜400℃の温度で行い、前記再結晶化工程を酸素が存在しない雰囲気下で500〜850℃の温度で加熱し、前記冷間加工工程が冷間圧延であり、該冷間圧延における加工度を1パス当たり5%以下及び全体の加工度を95.5〜98%にし、前記圧延をセラミックスロールを用いて行い、該ロール表面の凹凸を125nm以下にすることが好ましい
【0012】
より詳細には、冷間加工工程を50℃以下、好ましくは10〜50℃の温度の温度で圧延すること、酸素注入工程を酸素ガス存在下で100 400℃、より望ましくは酸素ガス存在下で100〜300℃の温度で酸素を吸収させること、再結晶化工程を酸素が存在しない雰囲気下、より望ましくは酸素が実質的に存在しない不活性ガス雰囲気下で500〜850℃、より好ましくは600〜850℃の温度で加熱すること、更に1パス当たりの冷間圧延における加工度を5%以下及び全体の加工度を95.5〜98%とし、その冷間圧延をセラミックスロールによって行い、その表面の凹凸を125nm以下、好ましくは100nm以下、最も望ましくは50nm以下にすることが好ましい。この製造工程によって、前述の銀テープが得られるものである。
【0013】
脱酸素工程前の銀部材には、純度99.5%以上で、通常高温での塑性加工後に焼鈍が施された多結晶銀棒が用いられ、銀テープの幅が5〜10mmであるので、この幅と同等の直径又は厚さのものである。
【0014】
本発明は、銀テープ表面に酸化物超電導物質の薄膜が形成された超電導線材において、前記銀テープが前述に記載の銀テープよりなり、前記酸化物超電導物質が、YBa2Cu3O7であること、前記酸化物超電導物質の薄膜がCVD法によって形成されていることが好ましい。
【0015】
即ち、本発明は、原料となる銀のインゴットの中の酸素ガスを取り除いた(脱酸素工程)後に、50℃以下の温度で圧延する冷間加工工程を有し、その後、圧延後の銀テープを酸素ガス存在下で100 400℃の温度で酸素を吸収(酸素注入工程)させ、最後に、酸素が存在しない雰囲気下(例えばアルゴンガス中)で該銀テープを500〜850℃の温度に加熱(再結晶化工程)することによって、表面が平滑で銀結晶が2軸とも良好に単結晶的に揃っている{110}面及び<110>方向の少なくとも一方がテープ面に平行又はテープの長手方向に揃った銀テープを作製することができる。
【0016】
銀には、さまざまな結晶面が存在し、その中で、どの結晶面を銀テープ表面に出すかによって、超電導線材の性能は異なったものになる。銀の単結晶を使った実験(非特許文献5)によれば、高温超電導物質と最も相性の良い銀の結晶面は{110}面であることが報告されている。従って、本発明においては、銀結晶の{110}面がテーブの表面に平行で、且つ銀結晶の〈110〉方向がテープの長手方向に揃っている集合組織を有する銀テープは、各結晶粒同士が非常に長い単結晶のような小傾角粒界によって形成された多結晶からなるテープであり、また同時に高温超電導体と最も相性の良い銀結晶の{110}面上に高温超電導物質を形成できることから、高温超電導線材の基材テープとしては、最適な性質を備えた金属テープであるといえる。
【0017】
発明者等は、表面の凹凸が10nm程度の銀単結晶を準備し、その{110}面上に、CVD法(ケミカルベーパーデポジション法)によって、代表的な高温超電導物質であるYba2Cu3O7を1μmの厚さで形成したサンプルを作製し、77Kに冷却して臨界電流密度Jc(電気抵抗ゼロで流せる最大の電流密度)を測定したところ、8,000,000A/cm2と、非常に高い値が得られることを確認した。このようなことから、表面が平滑で、{110}面が表面に出ており、<110>方向においても特定の集合組織を有する銀テープを作製することができれば、非常にJcの高い高温超電導線材が得られることが強く期待できる。
【0018】
表面の平滑な{110}面と<110>方向を有する集合組織を有する銀テープは、銀中の酸素ガスを取り除く脱酸素工程と、該脱酸素工程の後に50℃以下の温度で圧延する冷間加工工程と、該冷間加工工程後に該銀テープを酸素ガス存在下で100 400℃の温度で酸素を吸収させる酸素注入工程と、該酸素注入工程の後に酸素が存在しない雰囲気下で該銀テープを500〜850℃の温度に加熱する再結晶化工程を施すような製造を行うことで得ることができる。
【0019】
銀テープを作製するための出発材料の形状は、厚板、丸棒のいずれでも構わない。また、厚さや直径にも、特に制約は無い。出発材料の組成は、99.9%程度の純銀が好ましいが、O.5%未満の銅、ニッケル、マグネシウム、その他の金属との合金であっても構わない。基本的に、合金元素の濃度が低い場合には、純銀と同じことである。
【0020】
出発材料を圧延する前に、材料中から、酸素を抜いておく必要がある。一般に、金属では塑性加工した場合には特定の結晶面で特定の方向に面が滑ることで塑性変形が起こるのであるが、この滑る方向などは、合金元素、濃度、不純物などに影響を受ける。銀の場合には、材料中にかなりの量の酸素を含んでおり、この酸素が塑性変形させたときの滑り面と方向に影響を与え、後述するように、圧延開始前に脱酸素処理を行わない場合、{110}面と<110>方向を有する集合組織が得られないことが分かる。また、この脱酸素処理工程は、真空中に限定されるわけではなく、酸素を含まないガス雰囲気、酸素濃度が非常に低いガス雰囲気など、出発材料中から酸素を取り除くことができる雰囲気で行えばよい。また、酸素を取り除けばよいのであるから、高温短時間の熱処理、低温長時間の熱処理など、製造するものの設備、都合により自由に選択することが可能である。
【0021】
脱酸素処理を行った出発材料を、圧延して、薄いテープ状に加工する際に、注意するべきことは、圧延1パスあたりの加工度、最終的な加工度、圧延温度の3点である。後述するように、圧延1パス当たりの加工度は5%を越えないようにすることが望ましい。1回の圧延パスで加工度を大きくとりすぎると、銀の結晶面が最も滑り易い面、方向以外の方向にも無理やり滑らされることになるので、特定の結晶の揃いが悪くなる。また、圧延の加工度は高すぎても、低くすぎても結晶の揃いは悪くなり、95.5〜98%の範囲内が好ましい。圧延温度は、50℃以下、好ましくは40℃以下で行うことが好ましい。
【0022】
後述するように、圧延後の銀テーブを800℃程度の温度で熱処理することによっても、{110}面と<110>方向を有する集合組織を得ることができる。しかしながら、圧延後の銀テープを直ぐに800℃程度(500℃以上)の温度で熱処理して再結晶化させて、{110}面と<110>方向を有する集合組織を作製する場合には、80%以上の結晶の方向を揃えるためには5時間以上もの長時間の熱処理を必要とする。また、酸素の存在下で500℃以上もの高温で熱処理すると、酸素が銀テープ表面を激しくアタックして、銀表面の凹凸が大きく、また銀の結晶粒界部分が大きく凹む。そこで、このような表面の凹凸を低減するために、再結晶化のための熱処理を酸素が存在しない状態で行うと、この場合は残念ながら、{110}面と<110>方向ではなく、{110}面と<112>方向の集合組織が出現してしまう。残念ながら、この方位と高温超電導物質の相性は悪く、{110}面と<112>方向の集合組織を持っ銀テープ上に形成した高温超電導物質のJcは非常に低い値となってしまう。
【0023】
そこで本発明では、圧延後の銀テープに、銀表面の平滑性が保たれ、且つ酸素を存在させるに銀の再結晶温度以下の100℃〜400℃の温度で加熱して酸素を銀テープ中に注入し、その後、酸素の存在しない雰囲気で再結晶化に必要な温度まで加熱して、目的とする{110}面と<110>方向を有する集合組織を得るものである。
【0024】
圧延後の銀テープに酸素を注入する温度は表面の平滑性を保持するためにできるだけ低温であることが好ましいが、100℃以下の温度では、十分に酸素が注入されるまでに余りにも長い時間を必要とするので実用的ではない。酸素注入工程の温度は100〜400℃とすべきであることが分かる。また、この酸素注入工程を行うガスの雰囲気は、酸素が10%以上必要であることが分かる。
【0025】
酸素を注入した銀テープを、最後に再結晶化させて、目的とする{110}面と<110>方向を有する集合組織を有する銀テープが完成する。再結晶化工程の熱処理温度は600〜850℃の範囲が好ましい。また、熱処理を行う雰囲気は、銀表面の平滑性を保ように酸素が存在しない雰囲気でなければならない。また、この工程を真空中で行うと、熱処理前或いは熱処理中に酸素が銀テープ中から離脱してしまうので、真空中で行ってはいけない。熱処理時間は、3分以上であれば、良好な銀テープが得られることが分かる。
【0026】
酸素注入工程を省略した製造では、{110}面と<110>方向が揃った集合組織を得るためには3時聞程度の熱処理時間を必要としていたが、本発明のように酸素注入工程を採用することで、熱処理時間を大幅に短縮することができるという大きなメリットがある。補足すると、3分の熱処理時間で{110}面と<110>方向が揃った集合組織が得られるということは、再結晶化工程を省略した銀テープの上に、そのまま高温超電導線材の製造工程にまわすことができるということである。なぜなら、銀テープ上に高温超電導物質の層を形成するプロセスでは、テープ温度を700℃〜900℃に加熱して超電導層を作製するので、この工程で再結晶化工程を重ねることができるからである。従って、本発明による銀テープでは、高温超電導線材の製造コストの低減にも大きな効果があることが分かる。
【0027】
以上のように、銀中の酸素ガスを取り除いた銀から出発して、50℃以下の温度で圧延し、酸素ガス存在下で100 400℃の温度で酸素を吸収させ、続いて酸素が存在しない雰囲気下で500〜850℃の温度で熱処理することで、表面が平滑で、結晶粒が小傾角粒界を有する{110}面及び<110〉方向が揃った集合組織を持つ銀テープが得られ、同時に表面が平滑な銀テープが得られるものである。特に、本発明は、液体窒素の沸点77Kまで冷却することによって超電導性を発現する酸化物系超電導物質を用いた高温超電導線材の基体としてキーコンポーネントとなるものである。
【0028】
【発明の実施の形態】
(実施例1)
幅10mm、厚さ5mm、長さ50mmの銀(99.9%)の棒を、1/10000気圧の真空中で、700℃、lO時間の脱酸素のための熱処理を行った。この脱酸素処理工程後の銀棒を、25℃の温度で表面の凹凸が100nm以下であるSiAlONの組成を有するセラミックスロールを用いて冷間圧延し、170μmまで薄くした。この時、1回の圧延加工での板(テープ)の厚さの減少は5%を越えないようにした。即ち、1回の圧延で板厚を薄くすることはせず、圧延回数を多くすることで、板厚を少しずつ薄くして、最終的に170μmの厚さ(加工度96.6%)まで圧延してその後、この冷間加工工程後の圧延銀テープを酸素中で300℃に加熱して3時間保持し、酸素を十分に吸収させた。その後、この酸素注入工程後の銀テープに、アルゴン中で800℃で1時間30分の熱処理を施した。
【0029】
得られた銀テープの結晶の向きの揃い方は、X線極点図測定法により評価した。図1に、銀結晶の{100}面を使って測定した{1OO}極点図を示す。α=45度、β=90度と270度の位置にのみ、X線回折強度の強い場所が観測されていることから、この銀テーブは{110}面が銀テープ表面に平行に形成され、<110>方向が銀テープの長手方向に平行である小傾角粒界を有するほぼ単結晶に近い集合組織を有する銀テープとなっていることが確認できた。図2には、この{110}面及び<110>方向の集合組織を有する銀テープの表面の原子間力顕微鏡による観察結果を示す。この銀テープの表面は非常に結晶面が極めて平滑であることが分かる。そして、銀結晶の小傾角粒界の凹みが90nmと小さく、銀テープの表面の凹凸は90nmであった。
【0030】
この銀テープの上に、CVD法(ケミカルベーパーデポジション法)によって、代表的な高温超電導物質であるYba2Cu3O7を1μmの厚さで形成して、10cm長さの高温超電導線材を作製し、77Kに冷却して臨界電流密度Jc(電気抵抗ゼロで流せる最大の電流密度)を測定したところ、6,O00,000A/cm2と、非常に高い値であった。本実施例より、作製した銀テープは、高温超電導線材の基材テープとして、極めて優れた特性を有していることが分かる。
【0031】
(比較例1)
幅10mm、厚さ5mm、長さ50mmの銀(99.9%)の棒を、1/10000気圧の真空中で、700℃×lO時向の脱酸素のための熱処理を行った。この脱酸素処理工程後の銀棒を、25℃の温度で冷間圧延し、170μmまで薄くした。この時、1回の圧延加工での板(テーブ)の厚さの減少は5%を越えないようにした。即ち、1回の圧延で板厚を薄くすることはせず、圧延回数を多くすることで、板厚を少しずつ薄くして、最終的に170μmの厚さまで圧延した。その後、実施例1とは異なり、酸素注入工程を行わずに、冷間加工工程後の銀テーブを直ぐに、アルゴン中で800℃で1時間30分の熱処理を施した。
【0032】
得られた銀テープの結晶の向きの揃い方は、X線極点図測定法により評価した。図3に、銀結晶の{100}面を使って測定した{100}極点図を示す。α=45度、β=45度と135度と225度と315度の位置に、X線回折強度の強い場所が観測されていることから、この銀テープは{110}<110>集合組織ではなく、{110}<112>集合組織を有する銀テープとなっていることが確認できた。この銀テープの表面を、原子間力顕微鏡で観察したところ、実施例1で作製した銀テープと同程度の非常に平滑であることが分かった。また、銀結晶の小傾角粒界も凹みが小さく、90nmであった。
【0033】
この比較例1で作製した銀テープの上に、CVD法によって、代表的な高温超電導物質であるYba2Cu3O7を1μmの厚さで形成して、10cm長さの高温超電導線材を作製し、77Kに冷却して臨界電流密度Jcを測定したところ、3,000A/cm2と、非常に低い値であった。本比較例1より、酸素導入工程は不可欠な工程であることが分かる。
【0034】
(比較例2)
幅10mm、厚さ5mm、長さ50mmの銀(99.9%)の棒を、1/10000気圧の真空中で、700℃xlO時間の脱酸素のための熱処理を行った。この脱酸素処理工程後の銀棒を、25℃の温度で冷間圧延し、170μmまで薄くした。この時、1回の圧延加工での板(テープ)の厚さの減少は5%を越えないようにした。即ち、1回の圧延で板厚を薄くすることはせず、圧延回数を多くすることで、板厚を少しずつ薄くして、最終的に170μmの厚さまで圧延した。その後、実施例1とは異なり、酸素注入工程を行わずに、冷間加工工程後の銀テープを直ぐに、酸素中で800℃で1時間30分の熱処理を施した。
【0035】
得られた銀テープの結晶の向きの揃い方を、X線極点図測定法により評価した。図4に、銀結晶の{100}面を使って測定した、{110}極点図を示す。α=45度、β=90度と270度の位置に、X線回折強度の強い場所が観測されていることから、この銀テープは実施例1の場合と同様に、{110}<110>集合組織を有する銀テープとなっていることが確認できた。しかしながら、図4では、上記の位置以外にも、強いX線回折強度の強い部分が観測されていることから、比較例2で作製した銀テープには{110}<110>で示される方向以外を向いている銀結晶も相当量、存在していることがわかる。この銀テーブの表面を、原子間力顕微鏡で観察した。結果を図5に示す。実施例1で作製した銀テープに比べて、表面の凹凸が非常に大きいことが分かる。また、銀結晶の粒界も深く、220nmであった。
【0036】
この比較例2で作製した銀テープの上に、CVD法によって、代表的な高温超電導物質であるYba2Cu3O7を1μmの厚さで形成して、10cm長さの高温超電導線材を作製し、77Kに冷却して臨界電流密度Jcを測定したところ、2,000A/cm2と、非常に低い値であった。比較例2より、酸素中で800℃のような高い温度で熱処理することは好ましくないことが分かる。そして、本発明による方法、即ち、低い温度で酸素導入を行い、その後、高い温度で酸素の存在しない雰囲気下で熱処理することにより、特性の良い銀テーブが作製できることが分かる。
【0037】
(比較例3)
脱酸素工程を省略して、その他は実施例1と同様にして銀テープを作製した。そして、その銀テープを用いて、実施例1と同様にして高温超電導線材を作製し、実施例1と同様にJcを測定したところ、Jcは2,000A/cm2と、非常に低い値であった。良質な銀テープを作製するためには、脱酸素処理工程は省略できないことが分かる。
【0038】
(実施例2)
実施例1と同様にして銀テープを作製したが、脱酸素処理工程を真空中ではなく、アルゴン中、窒素ガス中、水素ガス中、ネオンガス中で行った。その4本の銀テープを用いて、実施例1と同様にして高温超電導線材を作製し、実施例1と同様にJcを測定したところ、アルゴン中で脱酸素処理工程を実施した銀テープを用いて作製した高温超電導線材のJcは4,000,000A/cm2、窒素ガス中のもののJcは4,100,000A/cm2、水素ガス中のもののJcは4,300,000A/cm2、ネオンガス中のもののJcは4,200,000A/cm2であった。いずれのガスを用いて脱酸素工程を行っても、良好な特性の銀テープが得られることが分かる。脱酸素工程は、真空中で行っても、アルゴン中、窒素ガス中、水素ガス中、ネオンガス中で行っても良いことが分かる。つまり、この脱酸素処理工程は、酸素が存在しないか、若しくは酸素濃度が非常に低い雰囲気で行えば良いことが分かる。
【0039】
(実施例3)
実施例1と同様にして銀テープを作製したが、冷間加工工程を25℃ではなく、0℃、10℃、30℃、40℃、50℃、60℃、70℃と7種類の温度で行った。その7本の銀テープを用いて、実施例1と同様にして7本の高温超電導線材を作製し、実施例1と同様にJcを測定した。冷間加工工程を実施した銀テープを用いて作製した高温超電導線材のJcは0℃のものが4,200,000A/cm2、10℃のものが4,100,000A/cm2、30℃のものが3,500,000A/cm2、40℃のものが2,100,000A/cm2、50℃のものが1,300,000A/cm2、60℃のものが50,000A/cm2、70℃のものが20,000A/cm2であった。
【0040】
従って、冷間加工工程を50℃以下で実施した銀テープは良好な特性を備えているが、60℃以上で実施した銀テープの特性は十分でないことが分かる。特に、30℃以下では、3,000,000A/cm2以上の高いJcが得られることが明らかである。
【0041】
(実施例4)
実施例1と同様にして銀テープを作製したが、冷間加工工程における加工度を違えた銀テープを6本作製した。即ち、冷間加工前の銀棒の厚さ5mmのものを、冷間加工工程後にテープの厚さを0.3mm(加工度94%)、O.25mm(加工度95%)、0.2mm(加工度96%)、0.15mm(加工度97%)、0.1mm(加工度98%)、O.05mm(加工度99%)とした銀テープを作製した。その6本の銀テープを用いて、実施例1と同様にして6本の高温超電導線材を作製し、実施例1と同様にJcを測定した。最終板厚をO.3mmとした銀テープを用いて作製した高温超電導線材のJcは15,000A/cm2、0.25mmとしたもののJcは30,000A/cm2、0.2mmとしたもののJcは1,500,000A/cm2、0.15mmとしたもののJcは3,900,000A/cm2、0.1mmとしたもののJcは900,000A/cm2、0.05mmとしたもののJcは40,000A/cm2であった。
【0042】
冷間加工工程において、銀の銀の加工度には適切な範囲が存在し、良好な銀テープを得ることができる加工度は95.5〜98%であることが分かる。
【0043】
(実施例5)
実施例1と同様にして銀テープを作製したが、最初の銀棒の厚さを3mm、4mm、5mm、6mm、7mm、8mmと異なる厚さのものを6種類準備して、冷間加工工程での加工度を96.8%として銀テープを6本作製した。
【0044】
その6本の銀テープを用いて、実施例1と同様にして6本の高温超電導線材を作製し、実施例1と同様にJcを測定した。出発板厚を3mmとした銀テープを用いて作製した高温超電導線材のJcは1,700,000A/cm2、4mmとしたもののJcは3,700,000A/cm2、5mmとしたもののJcは4,900,000A/cm2、6mmとしたもののJcは4,500,000A/cm2、7mmとしたもののJcは4,300,000A/cm2、8mmとしたもののJcは4,400,000A/cm2であった。
【0045】
本発明の方法によれば、原料に供する銀棒の厚さには関係なく、良好な銀テープを得ることができることが分かる。
【0046】
(実施例6)
実施例1と同様にして銀テープを作製したが、最初の銀棒の形状は角棒ではなく、直径5mm及び直径8mmの丸棒から出発し、冷間加工工程での加工度を97%として銀テーブを2本作製した。
【0047】
その2本の銀テープを用いて、実施例1と同様にして2本の高温超電導線材を作製し、実施例1と同様にJcを測定した。直径5mmの丸棒からスタートとした銀テープを用いて作製した高温超電導線材のJcは3,200,000A/cm2、直径5mmの丸棒からスタートとしたもののJcは2,700,000A/cm2であった。本発明の方法によれば、原料に供する銀棒の形状には関係なく、良好な銀テープを得ることができることが分かる。
【0048】
(実施例7)
実施例1と同様にして銀テープを作製したが、酸素注入工程における処理温度を違えた銀テープを6本作製した。即ち、冷間加工工程後の銀テープを、酸素ガス中で、25℃で5時間保持、100℃で5時間保持、200℃で5時間保持、300℃で5時間保持、400℃で5時間保持、500℃で5時間保持した銀テープを作製した。その6本の銀テープを用いて、実施例1と同様にして6本の高温超電導線材を作製し、実施例1と同様にJcを測定した。酸素注入工程の熱処理を各温度で5時間処理した銀テープを用いた高温超電導線材のJcは、25℃で12,000A/cm2、100℃で300,000A/cm2、200℃で2,500,000A/cm2、300℃で4,100,000A/cm2、400℃で800,000A/cm2、500℃で20,000A/cm2であった。特に、150〜350℃、より200〜350℃が好ましい。
【0049】
酸素注入工程において、処理温度が低すぎる場合には酸素導入量が不十分であるために、銀テープの特性が悪いことが分かる。また、処理温度が高すぎると、銀テープ表面の凹凸が大きくなってしまうことがわかる。
【0050】
(実施例8)
実施例1と同様にして銀テープを作製したが、酸素注入工程における処理温度を100℃にし、保持時間を変化させた銀テープを6本作製した。即ち、冷間加工工程後の銀テープを、酸素ガス中で、100℃で10〜100時間保持した銀テープを6本作製した。その6本の銀テープを用いて、実施例1と同様にして6本の高温超電導線材を作製し、実施例1と同様にJcを測定した。酸素注入工程の熱処理を施した銀テープを用いて作製した高温超電導線材のJcは、10時間保持としたものが11,0OOA/cm2、15時間保持としたものが13,000A/cm2、20時間保持としたものが60,000A/cm2、25時間保持としたものが100,000A/cm2、30時間保持としたものが800,000A/cm2、100時間保持としたものが3,400,000A/cm2であった。
【0051】
酸素注入工程において、処理温度を下げるためには、処理時間を長時間とすれぱよいことが分かる。しかしながら、十分な特性の銀テープを得るためには、100℃の場合でも100時間以上の処理時間を必要とすることが分かる。これ以下の温度であれば、更に長時間の処理時間を必要とするので、実用上は注意が必要である。
【0052】
(実施例9)
実施例1と同様にして銀テープを作製したが、酸素注入工程における処理雰囲気を酸素濃度の異なるガス中で行った。即ち、冷間加工工程後の銀テープを、1%の酸素と99%の窒素ガス中、10%の酸素と90%の窒素ガス中、20%の酸素と80%の窒素ガス中、大気中、30%の酸素と70%のアルゴン中、40%の酸素と60%のアルゴン中で、300℃で3時間保持した銀テープを作製した。その6本の銀テープを用いて、実施例1と同様にして6本の高温超電導線材を作製し、実施例1と同様にJcを測定した。酸素1%のガス中で処理した銀テープを用いて作製した高温超電導線材のJcは、酸素1%のガス中で処理したものが7,O00A/cm2、酸素10%のガス中で処理したものが2,300,000A/cm2、酸素20%のガス中で処理したものが4,100,000A/cm2、大気中で処理したものが3,800,000A/cm2、酸素30%のガス中で処理したものが4,400,000A/cm2、酸素40%のガス中で処理したものが4,300,000A/cm2であった。特に、酸素10%以上、より望ましくは15%以上、更には20%以上で高いJcが得られる。
【0053】
酸素注入工程において、処理温度と時間が適切であれば、良好な特性の銀テープが得られることがわかる。即ち、酸素注入工程においては、銀テープの表面が凸凹にならない条件で、十分に銀に酸素を吸収させることが必要十分な条件であることが分かる。
【0054】
(実施例10)
実施例1と同様にして銀テープを作製したが、再結晶化工程における処理時間を変化させて6本の銀テープを作製した。即ち、酸素注入工程後の銀テープを、アルゴンガス中、800℃で1分、3分、5分、10分、1時間、24時間保持して処理した銀テープを作製した。その6本の銀テープを用いて、実施例1と同様にして6本の高温超電導線材を作製し、実施例1と同様にJcを測定した。アルゴンガス中、800℃で各時間処理した銀テープを用いて作製した高温超電導線材のJcは、1分間処理したものが10,000A/cm2、3分間処理したものが3,300,000A/cm2、5分間処理したものが4,1OO,000A/cm2、10分間処理したものが4,800,OOOA/cm2、1時間処理したものが4,400,000A/cm2、24時間処理したものが4,300,000A/cm2であった。
【0055】
酸素注入工程を施した本発明による方法で作製した銀テープにおいては、再結晶化工程での熱処理時間を非常に短縮することができることが分かる。
【0056】
(実施例11)
実施例1と同様にして銀テープを作製したが、再結晶化工程における処理をアルゴン中ではなく、大気中、酸素ガス中、真空中、窒素ガス中、水素ガス中、ネオンガス中と変化させて6本の銀テープを作製した。その6本の銀テープを用いて、実施例1と同様にして高温超電導線材を作製し、実施例1と同様にJcを測定したところ、大気中で再結晶化工程を実施した銀テープを用いて作製した高温超電導線材のJcは9,000A/cm2、酸素ガス中のもののJcは9,000A/cm2、真空中のもののJcは90,000A/cm2、窒素ガス中のもののJcは4,100,000A/cm2、水素ガス中のもののJcは4,400,000A/cm2、ネオンガス中のもののJcは4,000,000A/cm2であった。大気中や酸素中のように、酸素の存在する雰囲気で再結晶化工程を行った銀テープの特性は非常に悪いことが分かる。また、真空中で再結晶化工程を行った銀テープの特性も悪いことが分かる。これは、いずれのガスを用いて脱酸素工程を行っても、良好な特性の銀テープが得られることが分かる。
【0057】
再結晶化工程は、アルゴン中、窒素ガス中、水素ガス中、ネオンガス中等のように、酸素が存在しないか、若しくは酸素濃度が非常に低い雰囲気で行う必要があることが分かる。
【0058】
(実施例12)
実施例1と同様にして銀テープを作製したが、再結晶化工程における処理温度を変化させて5本の銀テープを作製した。即ち、酸素注入工程後の銀テープを、アルゴンガス中、500℃、600℃、700℃、800℃及び850℃で各2時間保持して処理した銀テープを作製した。その5本の銀テープを用いて、実施例1と同様にして4本の高温超電導線材を作製し、実施例1と同様にJcを測定した。アルゴンガス中、各温度で処理した銀テープを用いて作製した高温超電導線材のJcは、500℃で処理したものが70,000A/cm2、600℃で処理したものが1,800,000A/cm2、700℃で処理したものが3,800,000A/cm2、800℃で処理したものが4,400,000A/cm2、900℃で処理したものが800,000A/cmm2であった。
【0059】
再結晶化工程の処理温度は、より600〜850℃の範囲が好ましいことが分かる。
【0060】
(実施例13)
実施例1にて作製した銀テープの{l1O}面が表面に出ている銀の単結晶を2枚張り合わせて、{1lO}面同士の成す角度を様々に変化させたバイクリスタルを20枚作製した。このバイクリスタルの上に、CVD法によって、代表的な高温超電導物質であるYBa2Cu37を1μmの厚さで形成し、77Kに冷却して臨界電流密度Jcを測定した。
【0061】
図6は、{11O}面同士の成す角度を横軸に、臨界電流密度Jcを縦軸にプロットした図である。図6に示すように、銀結晶の揃う割合が13度以下、より望ましくは1O度以下になると、急激にJcが向上し、更に5度以下で5,000,000A/cm2以上のより高いJcが得られることが分かる。
【0062】
(実施例14)
実施例1にて作製した銀テープの{11O}面が表面に出ている銀の単結晶を2枚張り合わせて、{11O}面同士の成す角度はゼロ度で、〈11O>方向の成す角度を様々に変化させたバイクリスタルを20枚作製した。このバイクリスタルの上に、実施例13と同様に高温超電導物質であるYBa2Cu37を1μmの厚さで形成し、77Kに冷却して臨界電流密度Jcを測定した。
【0063】
図7は、〈1lO〉方向の成す角度を横軸に、臨界電流密度Jcを縦軸にプロットした図である。図7に示すように、〈l1O〉方向の成す角度が13度以下、より1O度以下になると、急激にJcが向上し、更に5度以下で5,000,000A/cm2以上のより高いJcが得られることが分かる。
【0064】
(実施例15)
実施例1において、様々に冷間圧延における1パスにおける加工率条件を変えることにより銀テープ表面の{11O}面を有する割合を変えた銀テープを作成し、この銀テープの上に、実施例13と同様に高温超電導物質であるYBa2Cu307を1μmの厚さで形成して、1Ocm長さの高温超電導線材を作製し、77Kに冷却して臨界電流密度Jcを測定した。また、これらの銀テープの銀結晶の結晶方位及びその表面の平滑度を調べた。
【0065】
図8は、銀テープ表面に{11O}面が平行に揃っている銀結晶の割合を横軸に、臨界電流密度Jcを縦軸にプロットした図である。図8に示すように、銀テープ表面に{11O}面を有する銀結晶の揃う割合が80%以上で、急激にJcが向上し、更に90%以上では4,000,000A/cm2以上のより高いJcが得られることが分かる。
【0066】
図9は、銀テープ長手方向に〈llO〉方向が平行に揃っている銀結晶の割合を横軸に、臨界電流密度Jcを縦軸にプロットした図である。図9に示すように、銀テープ長手方向に〈llO〉方向が平行に揃っている銀結晶の揃う割合が80%以上で急激にJcが向上し、更に90%以上では3,500,000A/cm2以上のより高いJcが得られることが分かる。
【0067】
図10は、銀テープ表面の平滑度として銀結晶の粒界部分の凹みの深さを横軸に、臨界電流密度Jcを縦軸にプロットした図である。銀結晶の粒界部分の凹みの深さ、即ち銀テープ表面の凹凸が125nm以下、より100nm以下になると急激にJcが向上し、5Onm以下で4,000,000A/cm2以上の高いJcが得られることが分かる。
【0068】
【発明の効果】
本発明によれば、液体窒素冷却で超電導性を示す酸化物系超電導物質を使用する高温超電導線材に好適な、単結晶のように結晶の向きが揃い、かつ表面が平坦な銀テープを作製することができ、この銀テープを基材テープとすることにより、液体窒素冷却で使用する高い臨界電流密度を有する高性能な高温超電導線材を得ることができる。このような高温超電導線材を用いると、液体窒素による冷却によって運転される超電導マグネット、超電導利用機器において高い臨界電流密度が得られる。
【図面の簡単な説明】
【図1】 本発明の銀テープのX線極点図測定法により評価した{100}極点図。
【図2】 本発明の{110}<110>集合組織を有する銀テープの表面の原子間力顕微鏡により観察した図。
【図3】 本発明の銀テープのX線極点図測定法により評価した{100}極点図。
【図4】 比較例の銀テープのX線極点図測定法により評価した{100}極点図。
【図5】 比較例の{110}<110>集合組織を有する銀テープの表面の原子間力顕微鏡により観察した図。
【図6】 {11O}面同士の成す角度と臨界電流密度Jcとの関係を示す図。
【図7】 〈11O〉方向の成す角度と臨界電流密度Jcとの関係を示す図。
【図8】 銀テープ表面に{1lO}面が平行に揃っている銀結晶の割合と臨界電流密度Jcとの関係を示す図。
【図9】 銀テープ長手方向に<l1O〉方向が平行に揃っている銀結晶の割合と臨界電流密度Jcとの関係を示す図。
【図10】 銀テープ表面の銀結晶の粒界部分の凹みの深さと臨界電流密度Jcとの関係を示す図。

Claims (5)

  1. 銀結晶が小傾角粒界によって形成され、銀結晶の80%以上の{110}面がテープ表面に13度以内で平行に揃った集合組織及び銀結晶の80%以上の<110>方向がテープ長手方向に13度以内で揃った集合組織を有し、テープ表面の凹凸が125nm以下であることを特徴とする銀テープ。
  2. 請求項1において、前記テープ表面の凹凸が小傾角粒界の凹みであることを特徴とする銀テープ。
  3. 銀テープ表面に酸化物超電導物質の薄膜が形成された超電導線材において、前記銀テープが請求項1又は2に記載の銀テープよりなることを特徴とする超電導線材。
  4. 請求項において、前記酸化物超電導物質が、YBa2Cu37であることを特徴とする超電導線材。
  5. 請求項又はにおいて、前記酸化物超電導物質の薄膜がCVD法によって形成されていることを特徴とする超電導線材。
JP2003111536A 2003-04-16 2003-04-16 銀テープ及び超電導線材 Expired - Fee Related JP4267358B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111536A JP4267358B2 (ja) 2003-04-16 2003-04-16 銀テープ及び超電導線材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111536A JP4267358B2 (ja) 2003-04-16 2003-04-16 銀テープ及び超電導線材

Publications (2)

Publication Number Publication Date
JP2004319256A JP2004319256A (ja) 2004-11-11
JP4267358B2 true JP4267358B2 (ja) 2009-05-27

Family

ID=33472056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111536A Expired - Fee Related JP4267358B2 (ja) 2003-04-16 2003-04-16 銀テープ及び超電導線材

Country Status (1)

Country Link
JP (1) JP4267358B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471806B2 (ja) * 2010-05-14 2014-04-16 トヨタ自動車株式会社 超電導モータ
JP5701253B2 (ja) * 2012-06-15 2015-04-15 株式会社フジクラ 酸化物超電導線材およびその製造方法

Also Published As

Publication number Publication date
JP2004319256A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
US6114287A (en) Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom
US6428635B1 (en) Substrates for superconductors
JP3587956B2 (ja) 酸化物超電導線材およびその製造方法
US6624122B1 (en) High critical current superconducting tapes
JP4800740B2 (ja) 希土類系テープ状酸化物超電導体及びその製造方法
JP2002540294A (ja) 合金材料
US6645313B2 (en) Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture
US6455166B1 (en) Metallic substrates for high temperature superconductors
Norton et al. Epitaxial YBa2Cu3O7 films on rolled-textured metals for high-temperature superconducting applications
Kikuchi et al. Microstructures of rapidly-heated/quenched and transformed Nb/sub 3/Al multifilamentary superconducting wires
US7432229B2 (en) Superconductors on iridium substrates and buffer layers
US7445808B2 (en) Method of forming a superconducting article
Gladstone et al. Control of texture in Ag and Ag-alloy substrates for superconducting tapes
JP4267358B2 (ja) 銀テープ及び超電導線材
KR20050118294A (ko) 산화물 초전도 선재용 금속 기판, 산화물 초전도 선재 및그 제조방법
Wang et al. A new direct process to prepare YBa2Cu3O7− δ films on biaxially textured Ag {110}< 211
Wells et al. {110}⟨ 110⟩ textured Ag ribbons for biaxially aligned YBa2Cu3O7-x coated conductor tapes
Freyhardt et al. Y-123 films on technical substrates
Nekkanti et al. Development of nickel alloy substrates for Y-Ba-Cu-O coated conductor applications
Xie et al. Epitaxy of HgBa 2 CaCu 2 O 6 superconducting films on biaxially textured Ni substrates
Xu et al. A new seeding approach to the melt texture growth of a large YBCO single domain with diameter above 53 mm
KR100721901B1 (ko) 초전도 소자 및 그 제조방법
JP4048270B2 (ja) MgB2超伝導膜状体とその製造方法
Kikuchi et al. Nb/sub 3/(Al, Ge) multifilamentary wires made by the rapidly-heating/quenching process
Wen et al. Direct deposition of c-axis textured MBCO thick film on unoriented metallic substrate for the development of long superconducting tapes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees