JP4266882B2 - Magnesium hydroxide flame retardant and flame retardant resin composition - Google Patents

Magnesium hydroxide flame retardant and flame retardant resin composition Download PDF

Info

Publication number
JP4266882B2
JP4266882B2 JP2004148524A JP2004148524A JP4266882B2 JP 4266882 B2 JP4266882 B2 JP 4266882B2 JP 2004148524 A JP2004148524 A JP 2004148524A JP 2004148524 A JP2004148524 A JP 2004148524A JP 4266882 B2 JP4266882 B2 JP 4266882B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
flame retardant
weight
parts
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004148524A
Other languages
Japanese (ja)
Other versions
JP2005330343A (en
Inventor
一則 坂尾
宏 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2004148524A priority Critical patent/JP4266882B2/en
Publication of JP2005330343A publication Critical patent/JP2005330343A/en
Application granted granted Critical
Publication of JP4266882B2 publication Critical patent/JP4266882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、水酸化マグネシウム系難燃剤に関するものであり、より詳細には脂肪酸で表面処理された水酸化マグネシウム系難燃剤に関する。   The present invention relates to a magnesium hydroxide flame retardant, and more particularly to a magnesium hydroxide flame retardant surface-treated with a fatty acid.

水酸化マグネシウムがオレフィン系樹脂等に対する優れた難燃剤であることは古くから知られている。また、この水酸化マグネシウムは、樹脂に配合されたとき、白い粉ふき現象を生じることも知られている。この現象は、水酸化マグネシウムが空気中の炭酸ガスと反応して炭酸マグネシウムを生成することによるものである。   It has long been known that magnesium hydroxide is an excellent flame retardant for olefin resins and the like. This magnesium hydroxide is also known to produce a white dusting phenomenon when blended in a resin. This phenomenon is due to magnesium hydroxide reacting with carbon dioxide in the air to produce magnesium carbonate.

上記のような粉ふき現象を防止するための手段として、水酸化マグネシウムをステアリン酸などの脂肪酸やその金属塩、或いはアンモニウム塩やアミン塩で表面処理することが提案されている(特許文献1,2参照)。
特開平5−65367号公報 特公平7−42461号公報
As means for preventing the dusting phenomenon as described above, it has been proposed to treat magnesium hydroxide with a fatty acid such as stearic acid or a metal salt thereof, or an ammonium salt or an amine salt (Patent Document 1, Patent Document 1). 2).
Japanese Patent Laid-Open No. 5-65367 Japanese Examined Patent Publication No. 7-42461

しかしながら、上記のような表面処理された水酸化マグネシウム難燃剤は、オレフィン系樹脂に配合したとき、その流動性を低下させてしまい、樹脂の加工性を低下させるという問題があった。また、樹脂加工時に発泡を生じるという問題もあった。   However, the surface-treated magnesium hydroxide flame retardant as described above has a problem that when it is blended in an olefin resin, its fluidity is lowered and the processability of the resin is lowered. There is also a problem that foaming occurs during resin processing.

従って、本発明の目的は、オレフィン系樹脂に配合したとき、流動性や加工性の低下、及び加工時の発泡の問題が有効に解決された表面処理水酸化マグネシウム系難燃剤を提供することにある。   Accordingly, an object of the present invention is to provide a surface-treated magnesium hydroxide-based flame retardant in which, when blended with an olefin-based resin, the problems of flowability and workability degradation and foaming during processing are effectively solved. is there.

本発明によれば、12−ヒドロキシステアリン酸を水酸化マグネシウム粒子表面に湿式コーティングしてなる水酸化マグネシウム系難燃剤が提供される。
本発明によれば、また、水酸化マグネシウムの水性スラリーを湿式粉砕し、次いで12−ヒドロキシステアリン酸と混合して、水熱処理し、次いでろ過、乾燥することにより湿式コーティングを行うことを特徴とする水酸化マグネシウム系難燃剤の製法が提供される。
本発明によれば、さらに、オレフィン系樹脂に前記水酸化マグネシウム系難燃剤を配合してなる難燃性樹脂組成物が提供される。
According to the present invention, there is provided a magnesium hydroxide flame retardant obtained by wet-coating 12-hydroxystearic acid on the surface of magnesium hydroxide particles.
According to the present invention, the aqueous slurry of magnesium hydroxide is wet pulverized, then mixed with 12-hydroxystearic acid, hydrothermally treated, then filtered and dried to perform wet coating. A method for producing a magnesium hydroxide flame retardant is provided.
According to the present invention, there is further provided a flame retardant resin composition obtained by blending the magnesium hydroxide flame retardant with an olefin resin.

本発明の水酸化マグネシウム系難燃剤においては、
(1)水酸化マグネシウム粒子100重量部当り0.5乃至10重量部の量で、12−ヒドロキシステアリン酸が湿式コーティングされていること、
(2)水酸化マグネシウム粒子が天然産ブルーサイトであること、
が好ましい。
また、本発明の製法においては、
(3)60乃至150℃の温度で水熱処理を行うこと、
が好ましい。
In the magnesium hydroxide flame retardant of the present invention,
(1) 12-hydroxystearic acid is wet-coated in an amount of 0.5 to 10 parts by weight per 100 parts by weight of magnesium hydroxide particles;
(2) Magnesium hydroxide particles are natural brucite,
Is preferred.
In the production method of the present invention,
(3) performing hydrothermal treatment at a temperature of 60 to 150 ° C .;
Is preferred.

本発明によれば、12−ヒドロキシステアリン酸を水酸化マグネシウム粒子表面に湿式コーティングすることにより、従来用いられていた表面処理された水酸化マグネシウム難燃剤では問題となっていた、オレフィン系樹脂に配合したときの、流動性や加工性の低下、及び加工時の発泡を有効に解決することができた。従来の技術では難しかった、樹脂の難燃性と樹脂の流動性或いは加工性の向上を両立することができた。 According to the present invention, 12-hydroxystearic acid is wet-coated on the surface of magnesium hydroxide particles, thereby blending with an olefin resin, which has been a problem with conventionally used surface-treated magnesium hydroxide flame retardants. In this case, it was possible to effectively solve the deterioration of fluidity and workability and foaming during processing. It was possible to achieve both the flame retardancy of the resin and the improvement of the fluidity or processability of the resin, which was difficult with the prior art.

本発明においては、表面処理剤として、12−ヒドロキシステアリン酸を使用していることが重要な特徴である。即ち、水酸基とカルボキシル基との少なくとも2個の官能基を一分子中に有している表面処理剤を使用しているため、この表面処理剤が強固に水酸化マグネシウム粒子表面に拘束され且つ樹脂に対する親和性も高められ、この結果として、難燃性を損なうことなく、オレフィン系樹脂に高分散させることができ、流動性の低下を回避し、且つ加工時の加熱に際しての表面処理剤の離脱が抑制され、加工時の発泡を回避できるものと信じられる。例えば、脂肪酸の金属塩などを用いた場合には、後述する比較例2に示されているように、オレフィン系樹脂に対する分散性が低く、その流動性(メルトフローレート;MFR)が低いものとなってしまう。これに対して、本発明のように、12−ヒドロキシステアリン酸を用いた場合には、オレフィン系樹脂に配合したときのMFRが高く、著しく流動性が良好となり、さらには加工時の発泡も防止され、勿論、難燃性の低下も生じない(実施例1)。 In the present invention, it is an important feature that 12-hydroxystearic acid is used as the surface treatment agent. That is, since a surface treatment agent having at least two functional groups of a hydroxyl group and a carboxyl group is used in one molecule, the surface treatment agent is firmly bound to the surface of the magnesium hydroxide particles and the resin. As a result, it can be highly dispersed in an olefin resin without impairing flame retardancy, avoiding a decrease in fluidity, and detachment of the surface treatment agent during heating during processing. It is believed that foaming is suppressed and foaming during processing can be avoided. For example, when a fatty acid metal salt or the like is used, as shown in Comparative Example 2 described later, the dispersibility with respect to the olefin resin is low, and the fluidity (melt flow rate; MFR) is low. turn into. On the other hand, when 12-hydroxystearic acid is used as in the present invention, the MFR when blended with an olefin resin is high, the fluidity is remarkably good, and foaming during processing is also prevented. Of course, the flame retardancy does not decrease (Example 1).

また、本発明においては、上記の表面処理剤を湿式コーティングすることも極めて重要である。例えば、12−ヒドロキシステアリン酸を表面処理剤として用いたとしても、単に乾式で処理した場合には(比較例3或いは4)、MFRが低く、流動性向上効果は認められず、さらに加工時の発泡も回避することが困難である。即ち、乾式で処理した場合には、上記表面処理剤が単なるブレンド物として水酸化マグネシウム表面に存在しているに過ぎず、しかも水酸化マグネシウム粒子表面の処理が均一に行われず、この結果、上記のように各特性が不満足なものとなってしまう。しかるに、本発明では、湿式で処理することにより、さらに好ましくは60乃至150℃の温度、特に85乃至95℃の水熱処理を介して上記表面処理剤による表面処理が行われているため、水酸化マグネシウム粒子表面への表面処理剤の親和性が促進され、該表面処理剤が水酸化マグネシウム粒子表面に強固に拘束され、この結果として、MFRの著しい向上(流動性の向上)がもたらされ、且つ加工時の発泡を有効に回避できることとなる。   In the present invention, it is also extremely important to wet coat the above-mentioned surface treatment agent. For example, even when 12-hydroxystearic acid is used as a surface treatment agent, when it is simply processed by dry processing (Comparative Example 3 or 4), the MFR is low, and the fluidity improvement effect is not recognized. It is difficult to avoid foaming. That is, when the dry treatment is performed, the surface treatment agent is merely present on the surface of magnesium hydroxide as a blend, and the surface treatment of the magnesium hydroxide particles is not performed uniformly. Thus, each characteristic becomes unsatisfactory. However, in the present invention, since the surface treatment with the above-mentioned surface treatment agent is performed by wet treatment, more preferably through a hydrothermal treatment at a temperature of 60 to 150 ° C., particularly 85 to 95 ° C. The affinity of the surface treatment agent to the magnesium particle surface is promoted, and the surface treatment agent is firmly bound to the magnesium hydroxide particle surface, resulting in a significant improvement in MFR (improved fluidity), In addition, foaming during processing can be effectively avoided.

(水酸化マグネシウム)
本発明において、表面処理する水酸化マグネシウムとしては、天然及び合成の何れのものをも使用することができる。例えば、天然産のブルーサイトを用いることもできるし、さらに、海水又は苦汁中に苛性アルカリ又は消石灰乳を加えて反応させ、生成物を洗浄、乾燥して得られたもの、塩基性マグネシウム塩を、水性媒体中で加圧加熱処理して得られたもの、水可溶性マグネシウム塩とアンモニアとを反応させて得られたものなど、合成法によって得られたものなども使用できる。特に、一般的な傾向として、天然産のものを使用した場合には、オレフィン系樹脂に配合したときに流動性が低下する傾向があるが、本発明では、天然産の水酸化マグネシウムを用いた場合においても、流動性を大きく向上させることができる。
(Magnesium hydroxide)
In the present invention, natural or synthetic magnesium hydroxide can be used as the surface-treated magnesium hydroxide. For example, natural brucite can be used, and further, caustic or slaked lime milk is added to seawater or bitter juice and reacted, and the product is washed and dried. Those obtained by a synthesis method such as those obtained by subjecting a water-soluble magnesium salt and ammonia to reaction can also be used. In particular, as a general tendency, when natural products are used, fluidity tends to decrease when blended with olefin resins. In the present invention, natural magnesium hydroxide was used. Even in this case, the fluidity can be greatly improved.

(表面処理剤)
本発明において、表面処理剤としては、12−ヒドロキシステアリン酸が使用される
(Surface treatment agent)
In the present invention , 12-hydroxystearic acid is used as the surface treatment agent .

また、上記表面処理剤の表面処理量は、水酸化マグネシウム粒子100重量部当り、0.5乃至10重量部、特に1乃至5重量部の範囲にあることが好ましい。表面処理量があまり少ないと、例えば水酸化マグネシウムと炭酸ガスとの反応による粉ふきを抑制することが困難となり、また、必要以上に多量に使用すると、難燃性が低下するおそれがあり、さらに流動性向上効果や発泡防止効果も希薄となる傾向がある。   The surface treatment amount of the surface treatment agent is preferably in the range of 0.5 to 10 parts by weight, particularly 1 to 5 parts by weight per 100 parts by weight of the magnesium hydroxide particles. If the amount of surface treatment is too small, for example, it will be difficult to suppress powdering due to the reaction between magnesium hydroxide and carbon dioxide gas, and if used in an excessive amount, flame retardancy may be reduced. The fluidity improving effect and the anti-foaming effect also tend to be dilute.

(湿式コーティング)
上記表面処理剤を用いての湿式コーティングは、水酸化マグネシウムを湿式粉砕して水性スラリーを調製し、該水性スラリーを前記表面処理剤と混合して水熱処理し、次いでろ過、乾燥することにより行われる。
(Wet coating)
The wet coating using the surface treatment agent is performed by wet pulverizing magnesium hydroxide to prepare an aqueous slurry, mixing the aqueous slurry with the surface treatment agent, hydrothermally treating, and then filtering and drying. Is called.

水酸化マグネシウムの水性スラリーの湿式粉砕は、このスラリーを、ボールミル、タワーミル、円形振動ミル、らせん施動振動ミル、遊星形粉砕機、サンドグラインダー、アトマイザー、パルペライザー、スーパーミクロンミル、コロイドミル等に供給して粉砕する。スラリーの濃度は一般に5乃至40重量%、特に10乃至35重量%の範囲が適当である。粉砕物の粒度は、通常、コールターカウンター法により測定されるメジアン径(D50)が0.1乃至6μm、特に0.5 乃至4μmの範囲とするのがよい。この粒径が上記範囲外であると、表面処理剤による表面処理を均一に行うことが困難となったり、或いは十分な量の表面処理剤を水酸化マグネシウム粒子表面に吸着させることが困難となるおそれがある。また、一般に必要でないが、所望により、粉砕スラリーを液体サイクロンに通して分級操作を行ない、所望の粒度のものを取出すこともできる。 For wet grinding of aqueous magnesium hydroxide slurry, this slurry is supplied to ball mill, tower mill, circular vibration mill, spiral driven vibration mill, planetary grinder, sand grinder, atomizer, pulperizer, supermicron mill, colloid mill, etc. And crush. The concentration of the slurry is generally 5 to 40% by weight, particularly 10 to 35% by weight. As for the particle size of the pulverized product, the median diameter (D 50 ) measured by the Coulter counter method is usually in the range of 0.1 to 6 μm, particularly 0.5 to 4 μm. When the particle size is outside the above range, it is difficult to uniformly perform the surface treatment with the surface treatment agent, or it is difficult to adsorb a sufficient amount of the surface treatment agent on the surface of the magnesium hydroxide particles. There is a fear. Although not generally required, if desired, the pulverized slurry can be passed through a hydrocyclone for classification to take out a desired particle size.

上記の粉砕スラリーに、前述した表面処理剤、即ち水酸基含有脂肪酸の粉末の所定量を添加し、この系を撹拌して表面処理を行うが、この際、60乃至150℃、特に85乃至95℃の温度に加熱しての水熱処理を行うことが好ましい。即ち、この水熱処理によって、表面処理剤の親和性を均一に且つ促進させ、該表面処理剤を水酸化マグネシウム粒子表面に強固に拘束させることができる。水熱温度が上記範囲より低いと(或いは水熱処理を行わないと)、表面処理剤を水酸化マグネシウム粒子表面に接触させることができず、表面処理が不十分となるおそれがある。また、水熱処理温度を上記範囲よりも高くすると、水が揮散してしまい、乾式混合と同等となってしまい、表面処理剤の拘束力が低くなってしまい、流動性の向上効果や発泡防止効果が低下してしまうおそれがある。さらに、水熱温度を高くし、例えば上記表面処理剤と水酸化マグネシウムとの間にエステル結合を形成させて拘束力をさらに高めることも考えられるが、このエステルは直ちに加水分解してしまい、結局、拘束力の向上による各種特性の向上を得ることはできない。   A predetermined amount of the above-mentioned surface treatment agent, that is, a hydroxyl group-containing fatty acid powder, is added to the above pulverized slurry, and this system is stirred to perform the surface treatment. At this time, 60 to 150 ° C., particularly 85 to 95 ° C. It is preferable to perform hydrothermal treatment by heating to a temperature of. That is, by this hydrothermal treatment, the affinity of the surface treatment agent can be promoted uniformly and the surface treatment agent can be firmly bound to the surface of the magnesium hydroxide particles. If the hydrothermal temperature is lower than the above range (or if no hydrothermal treatment is performed), the surface treatment agent cannot be brought into contact with the surface of the magnesium hydroxide particles, and the surface treatment may be insufficient. In addition, if the hydrothermal treatment temperature is higher than the above range, water is volatilized, which is equivalent to dry mixing, and the binding force of the surface treatment agent is reduced, improving the fluidity and preventing foaming. May decrease. Furthermore, it is conceivable that the hydrothermal temperature is increased, for example, an ester bond is formed between the surface treatment agent and magnesium hydroxide to further increase the binding force, but this ester is immediately hydrolyzed, and eventually Various characteristics cannot be improved by improving the binding force.

また、上記の水熱処理は、用いる水酸化マグネシウムや表面処理剤の量によっても異なるが、通常、1乃至3時間程度、攪拌下に行えばよい。   Further, the hydrothermal treatment described above may be performed under stirring for about 1 to 3 hours, although it varies depending on the amount of magnesium hydroxide and surface treatment agent used.

以上のようにして得られた表面処理物のスラリーは、ろ過して水性媒体から固液分離し、乾燥し、必要により粉砕して製品とする。この粉砕は、体積基準のメジアン径(D50)が0.1乃至6μm、特に0.5乃至4μmの範囲とするのがよい。 The slurry of the surface-treated product obtained as described above is filtered, solid-liquid separated from the aqueous medium, dried, and pulverized as necessary to obtain a product. In this pulverization, the volume-based median diameter (D 50 ) is preferably in the range of 0.1 to 6 μm, particularly 0.5 to 4 μm.

(用途)
上記のような湿式コーティングにより表面処理された本発明の水酸化マグネシウム系難燃剤は、種々の熱可塑性樹脂、特にオレフィン系樹脂の難燃剤として有用である。オレフィン系樹脂としては、低−、中−又は高−密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体、イオン架橋オレフィン共重合体(アイオノマー)等を挙げることができ、本発明の水酸化マグネシウム系難燃剤は樹脂100重量部当り0.1乃至300重量部、特に好ましくは1乃至200重量部の量で使用される。この場合、少量の樹脂に水酸化マグネシウム系難燃剤を混合した樹脂ペレットを調製しておき、この樹脂ペレットを残量の樹脂と混合するようにすることが、該難燃剤を樹脂中に均一に分散させる上で好ましい。かかる樹脂ペレットでは、樹脂100重量部当り10乃至600重量部、特に100乃至500重量部の高濃度で難燃剤が配合されているのがよい。また、本発明の難燃剤と他の難燃剤、例えば錫酸亜鉛、ヒドロキシ錫酸亜鉛、アンチモン、ジルコニウム、モリブデンなどの酸化物、水酸化物、硫化物、或いはホウ酸亜鉛、水酸化アルミニウム、アミン含有燐酸亜鉛等を併用することも勿論可能である。
(Use)
The magnesium hydroxide flame retardant of the present invention, which has been surface-treated by the above wet coating, is useful as a flame retardant for various thermoplastic resins, particularly olefin resins. Examples of olefin resins include low-, medium- or high-density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer. The magnesium hydroxide flame retardant of the present invention is 0.1 to 300 parts by weight, particularly preferably 1 to 200 parts by weight per 100 parts by weight of the resin. Used in quantity. In this case, it is possible to prepare resin pellets in which a small amount of resin is mixed with a magnesium hydroxide flame retardant, and to mix the resin pellets with the remaining amount of resin so that the flame retardant is uniformly contained in the resin. It is preferable for dispersing. In such a resin pellet, the flame retardant is preferably blended at a high concentration of 10 to 600 parts by weight, particularly 100 to 500 parts by weight per 100 parts by weight of the resin. In addition, the flame retardant of the present invention and other flame retardants, such as oxides such as zinc stannate, zinc hydroxystannate, antimony, zirconium, molybdenum, hydroxide, sulfide, zinc borate, aluminum hydroxide, amine Of course, it is possible to use zinc phosphate and the like in combination.

本発明を次の例で説明するが、本発明は以下の例に限定されるものではない。
なお、以下の実施例及び比較例で用いた天然産ブルーサイトは全て中国産のものを用いた。また、樹脂試験片の作成は、ポリプロピレン樹脂(日本ポリケム社製BC3;MFR=9g/10min)100重量部に、各試料(難燃剤)150重量部を混合し、二軸押し出し機でペレット化した後、射出成型して得た。得られた試験片について、下記の試験を行った。
The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples.
The natural brucite used in the following examples and comparative examples was all made in China. The resin test piece was prepared by mixing 150 parts by weight of each sample (flame retardant) with 100 parts by weight of polypropylene resin (BC3 manufactured by Nippon Polychem; MFR = 9 g / 10 min), and pelletizing with a twin screw extruder. Thereafter, it was obtained by injection molding. The following test was done about the obtained test piece.

(1)酸素指数(OI値)
(株)東洋精機製作所製キャンドル法燃焼試験機を使用し、JIS−K−7201法に準じて、酸素指数(OI値%)を測定し難燃性を評価した。
(1) Oxygen index (OI value)
Using a candle method combustion tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the oxygen index (OI value%) was measured according to the JIS-K-7201 method to evaluate flame retardancy.

(2)メルトフローレート(MFR)
JIS−K−7210法に準じて、シリンダ温度230℃、荷重2.16kgの条件でMFR(単位:g/10min)を測定した。
(2) Melt flow rate (MFR)
According to JIS-K-7210 method, MFR (unit: g / 10 min) was measured under conditions of a cylinder temperature of 230 ° C. and a load of 2.16 kg.

(実施例1)
天然産ブルーサイト2000gと水4000g(スラリー濃度33重量%)を容量15Lの磁性ポットミルにそれぞれ採り、フリントボールを粉砕媒体として、3時間回転させ湿式粉砕を行った。ブルーサイトの平均粒径は3μmであった。次に、前記スラリー中のブルーサイト(平均粒径3μm)100重量部に対し12−ヒドロキシステアリン酸2重量部を加え、90℃で1時間水熱処理し湿式コーティングを行い、ろ過、乾燥して試料を得た。各試験を行い、測定結果を表1に示す。
Example 1
2000 g of natural brucite and 4000 g of water (slurry concentration: 33% by weight) were respectively placed in a magnetic pot mill having a capacity of 15 L, and wet milling was performed by rotating for 3 hours using flint balls as a grinding medium. The average particle size of brucite was 3 μm. Next, 2 parts by weight of 12-hydroxystearic acid is added to 100 parts by weight of brucite (average particle size 3 μm) in the slurry, hydrothermally treated at 90 ° C. for 1 hour, wet-coated, filtered and dried to obtain a sample. Got. Each test was performed and the measurement results are shown in Table 1.

(実施例2〜4)
実施例1において、12−ヒドロキシステアリン酸の添加量を3、4、6重量部にそれぞれ変更して、各試料を同様に処理した。各試験を行い、測定結果を表1に示す。
(Examples 2 to 4)
In Example 1, the amount of 12-hydroxystearic acid added was changed to 3, 4, and 6 parts by weight, and each sample was treated in the same manner. Each test was performed and the measurement results are shown in Table 1.

(実施例5)
天然産ブルーサイト1200gと水4800g(スラリー濃度20重量%)を容量15Lの磁性ポットミルにそれぞれ採り、フリントボールを粉砕媒体として、7時間回転させ湿式粉砕を行った。ブルーサイトの平均粒径は1μmであった。次に、前記スラリー中のブルーサイト(平均粒径1μm)100重量部に対し12−ヒドロキシステアリン酸3重量部を加え、90℃で1時間水熱処理し湿式コーティングを行い、ろ過、乾燥して試料を得た。各試験を行い、測定結果を表1に示す。
(Example 5)
1200 g of natural brucite and 4800 g of water (slurry concentration 20% by weight) were each taken in a magnetic pot mill with a capacity of 15 L and wet milled by rotating for 7 hours using flint balls as a milling medium. The average particle size of brucite was 1 μm. Next, 3 parts by weight of 12-hydroxystearic acid is added to 100 parts by weight of brucite (average particle size 1 μm) in the slurry, hydrothermally treated at 90 ° C. for 1 hour, wet-coated, filtered and dried to obtain a sample. Got. Each test was performed and the measurement results are shown in Table 1.

(比較例1)
ブルーサイト(平均粒径6.3μm)を、そのまま用いた。各試験を行い、測定結果を表1に示す。
(Comparative Example 1)
Brusite (average particle size 6.3 μm) was used as is. Each test was performed and the measurement results are shown in Table 1.

(比較例2)
ブルーサイト2000gと水4000g(スラリー濃度33重量%)を容量15Lの磁性ポットミルにそれぞれ採り、フリントボールを粉砕媒体として、3時間回転させ湿式粉砕を行った。ブルーサイトの平均粒径は3μmであった。次に、前記スラリー中のブルーサイト(平均粒径3μm)100重量部に対しオレイン酸ソーダ3重量部を加え、60℃で1時間水熱処理し湿式コーティングを行い、ろ過、乾燥して試料を得た。各試験を行い、測定結果を表1に示す。
(Comparative Example 2)
2000 g of Brucite and 4000 g of water (slurry concentration: 33% by weight) were respectively placed in a 15 L magnetic pot mill, and were subjected to wet grinding by rotating for 3 hours using flint balls as grinding media. The average particle size of brucite was 3 μm. Next, 3 parts by weight of sodium oleate is added to 100 parts by weight of brucite (average particle size 3 μm) in the slurry, hydrothermally treated at 60 ° C. for 1 hour, wet-coated, filtered and dried to obtain a sample. It was. Each test was performed and the measurement results are shown in Table 1.

(比較例3)
ジェットミル粉砕したブルーサイト(平均粒径3μm)100重量部に12−ヒドロキシステアリン酸2重量部を加え、スーパーミキサーで90℃、10分間乾式コーティングし試料を得た。各試験を行い、測定結果を表1に示す。
(Comparative Example 3)
2 parts by weight of 12-hydroxystearic acid was added to 100 parts by weight of brucite (average particle size: 3 μm) that had been pulverized by jet milling, and dry-coated with a super mixer at 90 ° C. for 10 minutes to obtain a sample. Each test was performed and the measurement results are shown in Table 1.

(比較例4)
ジェットミル粉砕したブルーサイト(平均粒径1μm)100重量部に12−ヒドロキシステアリン酸3重量部を加え、スーパーミキサーで90℃、10分間乾式コーティングし試料を得た。各試験を行い、測定結果を表1に示す。
(Comparative Example 4)
3 parts by weight of 12-hydroxystearic acid was added to 100 parts by weight of brucite (average particle size: 1 μm) that had been pulverized by jet milling, and dry-coated with a super mixer at 90 ° C. for 10 minutes to obtain a sample. Each test was performed and the measurement results are shown in Table 1.

(比較例5)
ジェットミル粉砕したブルーサイト(平均粒径1μm)100重量部と12−ヒドロキシステアリン酸3重量部を混合し試料を得た。各試験を行い、測定結果を表1に示す。
(Comparative Example 5)
A sample was obtained by mixing 100 parts by weight of brucite (average particle size 1 μm) pulverized by jet mill and 3 parts by weight of 12-hydroxystearic acid. Each test was performed and the measurement results are shown in Table 1.

Figure 0004266882
Figure 0004266882

Claims (6)

12−ヒドロキシステアリン酸を水酸化マグネシウム粒子表面に湿式コーティングしてなる水酸化マグネシウム系難燃剤。 A magnesium hydroxide flame retardant obtained by wet-coating 12-hydroxystearic acid on the surface of magnesium hydroxide particles. 水酸化マグネシウム粒子100重量部当り0.5乃至10重量部の量で、12−ヒドロキシステアリン酸が湿式コーティングされている請求項1の水酸化マグネシウム系難燃剤。 The magnesium hydroxide flame retardant according to claim 1 , wherein 12-hydroxystearic acid is wet-coated in an amount of 0.5 to 10 parts by weight per 100 parts by weight of magnesium hydroxide particles. 水酸化マグネシウム粒子が天然産ブルーサイトである請求項1または2に記載の水酸化マグネシウム系難燃剤。 The magnesium hydroxide flame retardant according to claim 1 or 2 , wherein the magnesium hydroxide particles are natural brucite. 水酸化マグネシウムの水性スラリーを湿式粉砕し、次いで12−ヒドロキシステアリン酸と混合して、水熱処理し、次いでろ過、乾燥することにより湿式コーティングを行うことを特徴とする水酸化マグネシウム系難燃剤の製法。 A method for producing a magnesium hydroxide-based flame retardant comprising wet-grinding an aqueous slurry of magnesium hydroxide, then mixing with 12-hydroxystearic acid , hydrothermally treating, then filtering and drying to perform wet coating . 60乃至150℃の温度で水熱処理を行う請求項4に記載の水酸化マグネシウム系難燃剤の製法。 The method for producing a magnesium hydroxide flame retardant according to claim 4 , wherein hydrothermal treatment is performed at a temperature of 60 to 150 ° C. オレフィン系樹脂に請求項1乃至3の何れかに記載の水酸化マグネシウム系難燃剤を配合して成る難燃性樹脂組成物。 A flame retardant resin composition comprising the olefin resin and the magnesium hydroxide flame retardant according to any one of claims 1 to 3 .
JP2004148524A 2004-05-19 2004-05-19 Magnesium hydroxide flame retardant and flame retardant resin composition Expired - Fee Related JP4266882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148524A JP4266882B2 (en) 2004-05-19 2004-05-19 Magnesium hydroxide flame retardant and flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148524A JP4266882B2 (en) 2004-05-19 2004-05-19 Magnesium hydroxide flame retardant and flame retardant resin composition

Publications (2)

Publication Number Publication Date
JP2005330343A JP2005330343A (en) 2005-12-02
JP4266882B2 true JP4266882B2 (en) 2009-05-20

Family

ID=35485229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148524A Expired - Fee Related JP4266882B2 (en) 2004-05-19 2004-05-19 Magnesium hydroxide flame retardant and flame retardant resin composition

Country Status (1)

Country Link
JP (1) JP4266882B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0622106D0 (en) * 2006-11-06 2006-12-20 Imerys Minerals Ltd Grinding and beneficiation of brucite
CN101541921B (en) 2006-11-21 2016-01-20 株式会社自动网络技术研究所 Fire retardant, flame-retardant composition, insulated line, wire harness and flame-retardant composition manufacture method
JP5409461B2 (en) * 2010-03-19 2014-02-05 富士フイルム株式会社 Method for producing metal hydroxide fine particles
KR102705835B1 (en) * 2019-11-05 2024-09-10 한국전기연구원 Method for organic-inorganic nanocomposites using inorganic nanoparticles surface-treated with hydroxy acids and thermoplastic polymers, organic-inorganic nanocomposites manufactured by the same method

Also Published As

Publication number Publication date
JP2005330343A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5751432B2 (en) Basic zinc cyanurate fine particles and method for producing the same
CN1043490A (en) Alumina-ceramic abrasive grain with the formation of ferric oxide seeding
JPWO2008120746A1 (en) Magnesium hydroxide powder and method for producing the same
TW201213241A (en) Process for producing dispersion of particles of rutile titanium oxide
CN106715335A (en) Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition
JP2009249389A (en) Magnesium hydroxide flame retardant and flame-retardant polymer composition
CN105800661A (en) Hydro-thermal preparation method for cerium oxide and application of cerium oxide in chemical-mechanical polishing
JP4266882B2 (en) Magnesium hydroxide flame retardant and flame retardant resin composition
JP5862848B2 (en) Production method of functional inorganic particle powder
JP5394380B2 (en) Flame retardant resin composition
WO2014077165A1 (en) Magnesium hydroxide particle and resin composition containing same
JP2008273767A (en) Method for producing zinc oxide and zinc oxide
JP3499716B2 (en) Acid resistant magnesium hydroxide particle flame retardant and flame retardant resin composition
JPS5969425A (en) Manufacture of calcitic calcium carbonate
JP3778492B2 (en) Magnesium hydroxide flame retardant and method for producing the same
JP2010512294A (en) Coated aluminum hydroxide particles produced by grinding and drying
CN1208496A (en) Ferromagnetic pigments
JP3781838B2 (en) Method for producing dry heavy calcium carbonate filler
JP4282508B2 (en) Method for producing calcium carbonate
JPH11157833A (en) Production of calcium carbonate
JP3607196B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition using the same
JP3786717B2 (en) Method for preparing calcium carbonate dispersion
JPS62151431A (en) Dispersion of precipitated calcium carbonate in glycol
JP2001160506A (en) Manufacturing method of ferrite magnetic powder
JP2812420B2 (en) Fibrous magnesium oxysulfate and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees