JP4266339B2 - Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same - Google Patents

Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same Download PDF

Info

Publication number
JP4266339B2
JP4266339B2 JP2003367668A JP2003367668A JP4266339B2 JP 4266339 B2 JP4266339 B2 JP 4266339B2 JP 2003367668 A JP2003367668 A JP 2003367668A JP 2003367668 A JP2003367668 A JP 2003367668A JP 4266339 B2 JP4266339 B2 JP 4266339B2
Authority
JP
Japan
Prior art keywords
light
phosphor
wavelength
long
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367668A
Other languages
Japanese (ja)
Other versions
JP2005132870A (en
Inventor
礼治 大塚
Original Assignee
化成オプトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 化成オプトニクス株式会社 filed Critical 化成オプトニクス株式会社
Priority to JP2003367668A priority Critical patent/JP4266339B2/en
Publication of JP2005132870A publication Critical patent/JP2005132870A/en
Application granted granted Critical
Publication of JP4266339B2 publication Critical patent/JP4266339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は330〜390nmの波長域の長波長紫外線により高輝度の発光を呈する長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体並びにこの蛍光体を発光部に使用した高輝度な発光装置に関する。   The present invention relates to a long-wavelength ultraviolet excitation alkaline earth aluminate phosphor exhibiting high-luminance emission by long-wavelength ultraviolet light in the wavelength range of 330 to 390 nm, and a high-luminance light-emitting device using this phosphor in a light-emitting portion.

近年、発光ダイオード(LED)を用いたLEDランプが普及しつつある。半導体素子であるLEDは長寿命でかつ信頼性が高く、光源として用いた場合にその交換作業が軽減されることから、バックライト用光源や、携帯機器、PC周辺機器、OA機器など種々の機器の表示装置への応用が試みられている。
特にLEDランプを種々の用途に適用する場合には、青から赤の所望の各可視領域に発光ピークを持つカラーLEDのほかに、1個のLEDランプで白色発光を得ることがより重要となってきている。そのためLEDチップの表面に該チップからの発光を吸収して青色(B)、緑色(G)および赤色(R)に発光する蛍光体を塗布したり、あるいはLEDチップの発光を取り出す面にモールドされた、LEDランプを構成する樹脂中に該チップからの発光を吸収してそれぞれB、G、Rの各色に発光する蛍光体粉末の混合物を含有させることによって、1個のLEDから白色発光を取り出すことが提案されている(非特許文献1等参照)。また最近では各種表示装置にも高い色再現性(色純度)が要求されるようになってきていて、これらの各種表示装置の表示用素子として用いられるLEDランプに対する色再現性(色純度)のより一層の向上が望まれている。
In recent years, LED lamps using light emitting diodes (LEDs) are becoming widespread. LED, which is a semiconductor element, has a long lifetime and high reliability, and its replacement work is reduced when used as a light source. Therefore, various devices such as a light source for backlight, portable devices, PC peripheral devices, OA devices, etc. Application to a display device has been attempted.
In particular, when LED lamps are applied to various uses, it is more important to obtain white light emission with one LED lamp in addition to a color LED having a light emission peak in each desired visible region from blue to red. It is coming. Therefore, a phosphor that absorbs light emitted from the chip and emits blue (B), green (G), and red (R) light is applied to the surface of the LED chip, or is molded on the surface from which the light emitted from the LED chip is extracted. In addition, white light is extracted from a single LED by incorporating a mixture of phosphor powders that absorb light emitted from the chip into the resin constituting the LED lamp and emit light in the colors B, G, and R, respectively. Has been proposed (see Non-Patent Document 1, etc.). Recently, various display devices have been required to have high color reproducibility (color purity), and color reproducibility (color purity) for LED lamps used as display elements of these various display devices has been increased. Further improvement is desired.

青色発光や緑色発光などのカラーLEDのほか、上述したようなLEDチップと蛍光体とを組合せてなるLEDランプにおいては、蛍光体を励起するための光源として波長370nm前後の長波長紫外線を放射するLEDチップ(例えば発光層としてGaN系化合物半導体層を有するLEDチップ)が用いられている。このため、LEDチップと該チップからの発光を吸収して可視光に変換する蛍光体等の波長変換材料からなるLEDランプ用として、長波長紫外線をよく吸収し、かつ効率よく可視光を発光する波長変換材料が求められている。
ところで、この種の用途に用いられる波長変換材料の1つである長波長紫外線で励起される各色発光の蛍光体のうち、緑色発光蛍光体としては、特許文献1に記載の2価のユーロピウム(Eu2+)および2価のマンガン(Mn2+)共付活アルミン酸バリウムマグネシウム蛍光体{3(Ba,Mg)O・8Al23:Eu0.2,Mn0.4}が知られている。このようなEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体はユーロピウム(Eu2+)で増感することによって非常に効率よく色純度の高い緑色発光を呈する。これはこの蛍光体を波長180〜390nmの紫外線で励起すると、この紫外線をEu2+が効率的に吸収しMn2+にエネルギー伝達して可視光を発するためで、照明用あるいは複写機用の蛍光ランプの蛍光体としてしばしば実用されてきており、さらに近年ではこの蛍光体が波長370nm前後の長波長紫外線を効率的に吸収することから、LEDランプなどにも適用されようとしている。
In addition to color LEDs such as blue light emission and green light emission, LED lamps that combine LED chips and phosphors as described above emit long-wavelength ultraviolet light having a wavelength of around 370 nm as a light source for exciting the phosphors. LED chips (for example, LED chips having a GaN compound semiconductor layer as a light emitting layer) are used. For this reason, for LED lamps made of LED chips and wavelength conversion materials such as phosphors that absorb light emitted from the chips and convert them into visible light, they absorb long wavelength ultraviolet rays well and emit visible light efficiently. There is a need for wavelength conversion materials.
By the way, among the phosphors of each color emitting that are excited by long wavelength ultraviolet rays, which is one of the wavelength conversion materials used for this kind of application, as the green emitting phosphor, the divalent europium described in Patent Document 1 ( Eu 2+ ) and divalent manganese (Mn 2+ ) co-activated barium magnesium aluminate phosphor {3 (Ba, Mg) O.8Al 2 O 3 : Eu 0.2 , Mn 0.4 } are known. Such Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphors sensitize with europium (Eu 2+ ) and emit green light with high color purity very efficiently. This is because when this phosphor is excited with ultraviolet rays having a wavelength of 180 to 390 nm, Eu 2+ efficiently absorbs the ultraviolet rays and transmits energy to Mn 2+ to emit visible light. It has often been put to practical use as a fluorescent material for fluorescent lamps, and in recent years, this fluorescent material efficiently absorbs long-wavelength ultraviolet light having a wavelength of around 370 nm, and is therefore being applied to LED lamps and the like.

しかし特許文献1に記載のLEDランプ用のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体{(3(Ba,Mg)O・8Al23:Eu0.2,Mn0.4)や、特許文献2に記載の複写機用のEu2+およびMn2+共付活のマグネシウムとバリウムからなるアルミン酸塩蛍光体(0.7BaO・MgO・8Al23:0.05Eu,0.2Mn)、特許文献3に記載の蛍光ランプ用Eu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体(Ba0.9Eu0.1Mg1.8Mn0.2Al1627)等のEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体は、これらの蛍光体を波長変換材料としてLEDランプの発光部に使用した場合、発光輝度が低いという欠点を有している。また、これらのEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体は、430〜490nmの波長域に第1の発光ピークを有し、500〜540nmの波長域に第2の発光ピークをもった発光を呈するが、この第2の発光ピークの強度が低く、緑色蛍光体としては不十分である。 However, Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor {(3 (Ba, Mg) O.8Al 2 O 3 : Eu 0.2 , Mn 0.4 ) for LED lamps described in Patent Document 1 An aluminate phosphor composed of magnesium and barium co-activated with Eu 2+ and Mn 2+ for a copying machine described in Patent Document 2 (0.7 BaO · MgO · 8Al 2 O 3 : 0.05 Eu, 0.2 Mn ), fluorescent lamp Eu 2+ and Mn 2+ coactivated alkaline earth aluminate phosphor disclosed in Patent Document 3 (Ba 0.9 Eu 0.1 Mg 1.8 Mn 0.2 Al 16 O 27) or the like of the Eu 2+ and Mn 2+ Co-activated alkaline earth aluminate phosphors have the disadvantage that when these phosphors are used as a wavelength conversion material in the light emitting part of an LED lamp, the emission luminance is low. Further, these Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphors have a first emission peak in the wavelength range of 430 to 490 nm and a second in the wavelength range of 500 to 540 nm. It emits light having an emission peak, but the intensity of the second emission peak is low, which is insufficient as a green phosphor.

特開2003−160785号公報JP 2003-160785 A 特開昭56−152883号公報Japanese Patent Laid-Open No. 56-152883 特公昭52−228336号公報Japanese Examined Patent Publication No. 52-228336 「平成13年度照明学会全国大会講演論文集」、照明学会、20 01年9月、第287頁"Proceedings of the 2001 Annual Meeting of the Illuminating Society of Japan", The Illuminating Institute of Japan, September 2001, page 287

本発明は、前記状況に鑑みてなされたものであり、330〜390nmの波長域の長波長紫外線を照射したとき発光輝度の高いアルカリ土類アルミン酸塩蛍光体、および波長変換材料としてこの蛍光体を発光部に使用した輝度の高い発光装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an alkaline earth aluminate phosphor having high emission luminance when irradiated with long-wavelength ultraviolet light in the wavelength range of 330 to 390 nm, and the phosphor as a wavelength conversion material. An object of the present invention is to provide a light-emitting device with high luminance that uses a light-emitting part.

本発明者は、前記目的を達成するため、Eu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体について、母体を構成するアルカリ土類金属元素および2価金属元素の酸化物と酸化アルミニウムとの組成比率、付活剤のEuおよびMnの含有量等、その組成と発光輝度との相関について詳細に検討した結果、その母体組成および付活剤のEuおよびMnの濃度範囲を特定の範囲に選択することによって特に330〜390nmの波長域の長波長紫外線による励起によって発光輝度の高い蛍光体が得られ、この蛍光体を330〜390nmの波長域の長波長紫外線を放射する光源と、該光源により励起されてこれとは別の波長の発光に変換する波長変換材料からなる発光部を具備した発光装置の波長変換材料として使用した場合、特に輝度の高い発光装置が得られることを見出し本発明に至った。 In order to achieve the above object, the inventor of the present invention relates to Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphors, and oxides of alkaline earth metal elements and divalent metal elements constituting the matrix. As a result of detailed examination of the correlation between the composition and luminous intensity, such as the composition ratio with aluminum oxide, the contents of Eu and Mn in the activator, the matrix composition and the concentration range of Eu and Mn in the activator were specified. In particular, a phosphor having high emission luminance is obtained by excitation with long-wavelength ultraviolet light in the wavelength range of 330 to 390 nm, and this phosphor is used as a light source that emits long-wavelength ultraviolet light in the wavelength range of 330 to 390 nm. When used as a wavelength conversion material of a light emitting device having a light emitting portion made of a wavelength conversion material that is excited by the light source and converts to light having a wavelength different from that of the light source. High luminous device has reached the present invention found that the resulting.

即ち、本発明は以下の構成からなる。
(1)組成式がa(P1−xEu)O・(Mg 1−yMn)O・bAlで表され、330〜390nmの波長域の長波長紫外線を照射したとき緑色発光することを特徴とする長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体。(前記式中、PはBa、SrおよびCaの中の少なくとも1種のアルカリ土類金属元素を表し、a、b、xおよびyはそれぞれ0.8≦a≦1.2、4.0≦b≦6.0、0.10≦x≦0.35および0.15≦y≦0.50を満たす数を表す。ただし、a値が1.0であり、かつ、b値が5.0である場合を除く)。
(2)前記a値およびb値が0.36≦(1+a)/b≦0.44を満足する数であること特徴とする前記(1)に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体。
(3)前記x値が0.15≦x≦0.25の範囲にあることを特徴とする前記(1)に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体
(4)前記y値が0.25≦y≦0.45の範囲にあることを特徴とする前記(1)に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体
That is, the present invention has the following configuration.
(1) is represented by a compositional formula of a (P 1-x Eu x ) O · (Mg 1-y Mn y) O · bAl 2 O 3, green when irradiated with long-wave ultraviolet light in the wavelength range of 330~390nm An alkaline earth aluminate phosphor for long-wavelength ultraviolet excitation characterized by emitting light. (In the formula, P is Ba, represents at least one alkaline earth metal element in the Sr and Ca, a, b, x and y are 0.8 ≦ a ≦ 1.2,4.0 ≦ respectively It represents a number satisfying b ≦ 6.0, 0.10 ≦ x ≦ 0.35 and 0.15 ≦ y ≦ 0.50, provided that the a value is 1.0 and the b value is 5.0. Except when ).
(2) The alkaline earth aluminate for long wavelength ultraviolet excitation according to the above (1), wherein the a value and the b value are numbers satisfying 0.36 ≦ (1 + a) /b≦0.44 Salt phosphor.
(3) The alkaline earth aluminate phosphor for long wavelength ultraviolet excitation according to (1), wherein the x value is in a range of 0.15 ≦ x ≦ 0.25 .
(4) The alkaline earth aluminate phosphor for long-wavelength ultraviolet excitation according to (1), wherein the y value is in the range of 0.25 ≦ y ≦ 0.45 .

)330〜390nmの波長域の長波長紫外線を放射する光源と、該光源からの発光の少なくとも1部を吸収して該光源とは異なる波長の光を放射する波長変換材料を少なくとも具備した発光装置であって、前記波長変換材料が請求項前記(1)〜(4)のいずれかに記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体を含むことを特徴とする発光装置。
)前記光源が330〜390nmの波長域の長波長紫外線を放射する窒化物系化合物半導体層からなる発光チップを有する発光ダイオードであることを特徴とする前記(〜(4)のいずれかに記載の発光装置。
(7)前記光源が330〜390nmの波長域の長波長紫外線を放射するブラックライトであることを特徴とする前記(1)〜(4)のいずれかに記載の発光装置
( 5 ) At least a light source that emits long-wavelength ultraviolet light in a wavelength range of 330 to 390 nm, and a wavelength conversion material that absorbs at least a part of light emitted from the light source and emits light having a wavelength different from that of the light source. It is a light-emitting device, Comprising: The said wavelength conversion material contains the alkaline-earth aluminate fluorescent substance for long wavelength ultraviolet excitation in any one of said (1) -(4), The light-emitting device characterized by the above-mentioned.
( 6 ) Any one of the above ( 1 ) to (4), wherein the light source is a light emitting diode having a light emitting chip made of a nitride compound semiconductor layer that emits long wavelength ultraviolet rays in a wavelength range of 330 to 390 nm. the light emitting device according to any.
(7) The light-emitting device according to any one of (1) to (4), wherein the light source is a black light that emits long-wavelength ultraviolet light in a wavelength range of 330 to 390 nm .

本発明のアルカリ土類アルミン酸塩蛍光体は前記構成としたので、330〜390nmの波長域の長波長紫外線励起下で高輝度の緑色の発光を呈し、この蛍光体をLEDランプなどの発光装置の発光部に用いると輝度の高い発光装置が得られる。 Since the alkaline earth aluminate phosphor of the present invention was the construction exhibits light emission with high luminance green in the long wavelength ultraviolet excitation of a wavelength range of 330~390Nm, luminescence, such as an LED lamp phosphor When used in the light emitting portion of the device, a light emitting device with high luminance can be obtained.

本発明の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体(以下、本発明のEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体、もしくは単に本発明の蛍光体ともいう)は、所定の組成になるように蛍光体原料を配合して調製する以外は従来のEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体と同様にして製造することができる。
すなわち、本発明の蛍光体は化学量論的に組成式a(P1−xEu)O・(Q1−yMn)O・bAl前記式中、PはBa、SrおよびCaの中の少なくとも1種のアルカリ土類金属元素を表し、QはMgおよびZnのうちの少なくとも1種の2価金属元素を表し、a、b、xおよびyはそれぞれ0.8≦a≦1.2、4.0≦b≦6.0、0.10≦x≦0.35および0.15≦y≦0.50を満たす数を表す。ただし、a値が1.0であり、かつ、b値が5.0である場合を除く。以下同様である)となる割合で、1)Pの酸化物、もしくはPの硝酸塩、硫酸塩、炭酸塩、ハロゲン化物、水酸化物などの高温でPの酸化物に変わり得るPの化合物と、2)Qの酸化物、もしくはQの硝酸塩、硫酸塩、炭酸塩、ハロゲン化物、水酸化物などの高温でQの酸化物に変わり得るQの化合物と、3)Alの酸化物、もしくはAlの硝酸塩、硫酸塩、炭酸塩、ハロゲン化物、水酸化物などの高温でAlの酸化物に変わり得るAlの化合物と、4)Euの酸化物、もしくはEuの硝酸塩、硫酸塩、炭酸塩、ハロゲン化物、水酸化物などの高温でEuの酸化物に変わり得るEuの化合物と、5)Mnの酸化物、もしくはMnの硝酸塩、硫酸塩、炭酸塩、ハロゲン化物、水酸化物などの高温でMnの酸化物に変わり得るMnの化合物との混合物、即ち、前記1)〜5)の各群からそれぞれ選ばれる少なくとも1種の化合物からなる蛍光体原料化合物を耐熱性容器に詰めてアルゴンガスや窒素ガスなどの中性ガス雰囲気あるいは少量の水素ガスを含む窒素ガスや一酸化炭素ガスなどの還元性雰囲気中において1200〜1700℃で1回もしくは複数回焼成する方法によって、組成式がa(P1−xEu)O・(Q1−yMn)O・bAlで表される本発明のアルカリ土類アルミン酸塩蛍光体を製造することができる。なお、本発明において、組成式がa(P1−xEu)O・(Q1−yMn)O・bAlで表されるアルカリ土類アルミン酸塩蛍光体とは、得られる蛍光体中に含まれる各金属元素の構成比が前記組成式を満足する蛍光体をいう。
The alkaline earth aluminate phosphor for exciting long wavelength ultraviolet light of the present invention (hereinafter also referred to as Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphor of the present invention, or simply the phosphor of the present invention) They can be produced in the same manner as conventional Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphors except that they are prepared by blending phosphor raw materials so as to have a predetermined composition.
That is, the phosphor of the present invention has a stoichiometric composition formula a (P 1−x Eu x ) O · (Q 1−y Mn y ) O · bAl 2 O 3 ( wherein P is Ba, Sr And at least one alkaline earth metal element in Ca, Q represents at least one divalent metal element of Mg and Zn, and a, b, x, and y are each 0.8 ≦ a ≦ 1.2, 4.0 ≦ b ≦ 6.0, 0.10 ≦ x ≦ 0.35 and 0.15 ≦ y ≦ 0.50 , where a value is 1.0 1) P oxide, or P nitrate, nitrate, sulfate, carbonate, halide, hydroxide, etc. , except for the case where b value is 5.0, and the same applies hereinafter) A compound of P that can be converted to an oxide of P at high temperatures, 2) an oxide of Q, or a nitrate, sulfate, carbonate, halo of Q Q compounds that can be converted to Q oxides at high temperatures such as nitrides and hydroxides, and 3) Al oxides or Al nitrates, sulfates, carbonates, halides, hydroxides, etc. at high temperatures Al compounds that can be converted to Al oxides and 4) Eu oxides, or Eu compounds that can be converted to Eu oxides at high temperatures such as Eu nitrates, sulfates, carbonates, halides, hydroxides, etc. And 5) Mn oxides or mixtures of Mn nitrates, sulfates, carbonates, halides, hydroxides, and other Mn compounds that can be converted to Mn oxides at high temperatures, that is, the above 1) to 5) A phosphor raw material compound composed of at least one compound selected from each group of 5) is packed in a heat-resistant container, and a neutral gas atmosphere such as argon gas or nitrogen gas, or nitrogen gas or monoxide containing a small amount of hydrogen gas. carbon By a method for firing one or more times at 1200 to 1700 ° C. in a reducing atmosphere such as scan, composition formula a (P 1-x Eu x ) O · (Q 1-y Mn y) O · bAl 2 O The alkaline earth aluminate phosphor of the present invention represented by 3 can be produced. In the present invention, a composition formula a (P 1-x Eu x ) O · (Q 1-y Mn y) O · bAl 2 alkaline earth aluminate phosphor represented by O 3 is obtained The phosphor in which the constituent ratio of each metal element contained in the phosphor satisfies the composition formula.

また前記原料化合物を焼成する際、この原料化合物中にさらにフッ素を含む化合物や硼素を含む化合物などをフラックスとして加えておいて焼成してもよい。なお本発明の蛍光体の製造方法は上述の方法に限定されるものではなく、組成が前記化学量論量の範囲内にあれば従来から知られているいずれの方法によっても製造することができる。
次に組成式がa(Ba1-xEux)O・(Mg1-yMny)O・bAl23で表される、Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を例に、蛍光体の母体組成および付活剤(Eu2+およびMn2+)の濃度と発光輝度との相関について検討した結果について示す。なお以下に示す相対輝度とは、各蛍光体をそれぞれ波長365nmの紫外線で励起し、特許文献1に記載されている、組成式が3(Ba,Mg)O・8Al23:Eu0.2,Mn0.4で表されるEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度を100とした時の相対値で表した値である。
Further, when the raw material compound is fired, a fluorine-containing compound or boron-containing compound may be added to the raw material compound as a flux and fired. In addition, the manufacturing method of the phosphor of the present invention is not limited to the above-described method, and can be manufactured by any conventionally known method as long as the composition is in the stoichiometric range. .
Then the composition formula of a (Ba 1-x Eu x ) O · (Mg 1-y Mn y) O · bAl 2 O 3, Eu 2+ and Mn 2+ coactivated barium magnesium aluminate phosphor Taking the body as an example, the results of studying the correlation between the matrix composition of the phosphor and the concentrations of the activators (Eu 2+ and Mn 2+ ) and the emission luminance are shown. The relative luminance shown below means that each phosphor is excited by ultraviolet rays having a wavelength of 365 nm, and the composition formula described in Patent Document 1 is 3 (Ba, Mg) O.8Al 2 O 3 : Eu 0.2 , This is a value expressed as a relative value when the emission luminance of the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphors represented by Mn 0.4 is 100.

図1および図2はそれぞれEu濃度が0.20(x=0.20)でMn濃度が0.35(y=0.35)であるEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体{a(Ba0.80Eu0.20)O・(Mg0.65Mn0.35)O・bAl23}を例に、この蛍光体の酸化バリウム・ユーロピウム{(Ba0.80Eu0.20)O}のモル数(a値)をパラメータとして酸化アルミニウムのモル数(b値)と波長365nmの紫外線で励起したときの相対輝度との関係、および酸化アルミウム1モルに対する酸化バリウム・ユーロピウム{(Ba0.80Eu0.20)O}と酸化マグネシウム・マンガン{(Mg0.65Mn0.35)O}の総モル数{(1+a)/b}値}と波長365nmの紫外線で励起したときの相対輝度との関係をそれぞれ例示したグラフである。図1および図2において曲線A、BおよびCはそれぞれ酸化バリウム・ユーロピウムが0.5モル(a=0.5)、1モル(a=1)および1.5モル(a=1.5)の場合について示す曲線である。図1において横軸は酸化アルミニウムのモル数(b値)であり、図2において横軸は{(1+a)/b}値であり、縦軸はともに相対輝度である。 1 and 2 respectively show Eu 2+ and Mn 2+ co-activated barium magnesium aluminate with an Eu concentration of 0.20 (x = 0.20) and an Mn concentration of 0.35 (y = 0.35). Taking the phosphor {a (Ba 0.80 Eu 0.20 ) O. (Mg 0.65 Mn 0.35 ) O.bAl 2 O 3 } as an example, the number of moles of barium europium oxide {(Ba 0.80 Eu 0.20 ) O} in this phosphor ( The relationship between the number of moles of aluminum oxide (b value) and the relative luminance when excited with ultraviolet light having a wavelength of 365 nm, and barium europium oxide {(Ba 0.80 Eu 0.20 ) O} per mole of aluminum oxide magnesium oxide, manganese {(Mg 0.65 Mn 0.35) O } total moles of {(1 + a) / b } value} and the relationship between the relative luminance when excited at a wavelength 365nm UV illustrate respectively It is a graph. 1 and 2, curves A, B and C are 0.5 mol (a = 0.5), 1 mol (a = 1) and 1.5 mol (a = 1.5) of barium europium oxide, respectively. It is a curve shown about the case of. In FIG. 1, the horizontal axis represents the number of moles of aluminum oxide (b value), the horizontal axis in FIG. 2 represents the {(1 + a) / b} value, and the vertical axis represents the relative luminance.

図1からわかるように、Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度はその組成に大きく依存する。酸化バリウム・ユーロピウムのモル数(a値)が一定の場合では酸化バリウムがほぼ4〜6モル(b=4〜6)の時に発光輝度が最大となり、b値がそれより大きくなっても小さくなっても発光輝度は急激に低下する。また、酸化アルミニウムのモル数が(b値)が一定の場合では酸化バリウム・ユーロピウムが1モル(a=1)の場合は発光輝度が最大で、a値がそれより大きくなっても小さくなっても発光輝度は急激に低下する。特に発光輝度は酸化バリウム・ユーロピウムが1モル(a=1)で酸化アルミニウムが5モル(b=5)の時(図1の点E)最も高くなった。 As can be seen from FIG. 1, the emission luminance of the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor greatly depends on its composition. When the number of moles (a value) of barium and europium oxide is constant, the light emission luminance becomes maximum when the barium oxide is about 4 to 6 moles (b = 4 to 6), and it becomes smaller even if the b value is larger than that. Even in this case, the light emission luminance decreases rapidly. In addition, when the number of moles of aluminum oxide (b value) is constant, the emission luminance is maximum when 1 mole (a = 1) of barium oxide and europium, and decreases even when the a value is larger than that. However, the light emission luminance decreases rapidly. In particular, the emission luminance was highest when barium and europium oxide were 1 mol (a = 1) and aluminum oxide was 5 mol (b = 5) (point E in FIG. 1).

また、図2からわかるように、Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度は酸化バリウム・ユーロピウムのモル数が1(a=1)で、酸化アルミニウム1モルに対する酸化バリウム・ユーロピウム{(Ba0.80Eu0.20)O}と酸化マグネシウム・マンガン{(Mg0.65Mn0.35)O}の総モル数が0.4{(1+a)/b=0.4、即ち、図2の曲線B上の点E}のとき最大となり、{(1+a)/b}値がそれより大きくなっても小さくなっても発光輝度は低下する。また、酸化バリウム・ユーロピウムのモル数が1(a=1)の時に発光輝度が高く、a値がそれより大きくなっても小さくなっても発光輝度は低下する。
一方アルミン酸バリウムマグネシウムにおいては、酸化バリウムのモル数が1(a=1)で、酸化アルミニウム1モルに対する酸化バリウム(BaO)と酸化マグネシウム(MgO)の総モル数が0.4{(1+a)/b=0.4}のとき、すなわち酸化バリウムのモル数が1(a=1)で、酸化アルミニウムのモル数が5(b=5)のとき結晶学的に安定な単一相のアルミン酸バリウムマグネシウムを生成する。このことからEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体においても酸化バリウム・ユーロピウムのモル数が1(a=1)で、酸化アルミニウム1モルに対する酸化バリウム・ユーロピウムと酸化マグネシウム・マンガンの総モル数が0.4{(1+a)/b=0.4}のとき、すなわち酸化バリウム・ユーロピウムのモル数が1モル(a=1)で酸化アルミニウムのモル数が5(b=5)のとき、結晶学的に安定な単一相のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体が得られたので発光輝度が高くなったと考えられる。
Further, as can be seen from FIG. 2, the emission luminance of the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor is 1 (a = 1) in terms of the number of moles of barium and europium oxide, and is 1 mole of aluminum oxide. The total number of moles of barium europium oxide {(Ba 0.80 Eu 0.20 ) O} and magnesium oxide manganese {(Mg 0.65 Mn 0.35 ) O} is 0.4 {(1 + a) /b=0.4, that is, FIG. The maximum is obtained at the point E} on the curve B, and the luminance is lowered regardless of whether the {(1 + a) / b} value is larger or smaller. In addition, the emission luminance is high when the number of moles of barium / europium oxide is 1 (a = 1), and the emission luminance decreases even if the a value is larger or smaller.
On the other hand, in barium magnesium aluminate, the number of moles of barium oxide is 1 (a = 1), and the total number of moles of barium oxide (BaO) and magnesium oxide (MgO) per mole of aluminum oxide is 0.4 {(1 + a). /B=0.4}, that is, when the number of moles of barium oxide is 1 (a = 1) and the number of moles of aluminum oxide is 5 (b = 5), the crystallographically stable single-phase alumina Produces barium magnesium acid. Therefore, in the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor, the number of moles of barium oxide and europium is 1 (a = 1), and barium oxide, europium and magnesium oxide. When the total number of moles of manganese is 0.4 {(1 + a) /b=0.4}, that is, the number of moles of barium and europium is 1 mole (a = 1) and the number of moles of aluminum oxide is 5 (b = In the case of 5), it is considered that since the crystallographically stable single-phase Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor was obtained, the emission luminance was increased.

特許文献1において提案されている蛍光体は前記組成式でいうと{(1+a)/b}値が0.45に相当し、特許文献2において提案されている蛍光体は前記組成でいうと、酸化バリウム・ユーロピウムのモル数が0.625(a=0.625)、酸化アルミニウムのモル数が6.67(b=6.67)、{(1+a)/b}値が0.244に相当し、特許文献3において提案されている蛍光体は前記組成式でいうと、酸化バリウム・ユーロピウムのモル数が0.5(a=0.5)、酸化アルミニウムのモル数が4(b=4)で、{(1+a)/b}値が0.375で、図1および図2上の点Dにそれぞれ相当する。これを図1および図2上において蛍光体の発光輝度を比較すると、酸化バリウム・ユーロピウムのモル数が1(a=1)、酸化アルミニウムのモル数が5(b=5)、{(1+a)/b}値が0.4の本発明の蛍光体(図1および図2上の点E)よりもかなり劣っている。
これは、これら前記各特許文献において提案されているEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体の場合は、その母体であるアルカリ土類アルミン酸塩の組成が結晶学的に安定な単一相を生成するアルカリ土類アルミン酸塩の組成からずれているため結晶学的に不純物を含んだアルカリ土類アルミン酸塩を生成しているためである。特に特許文献1など、以前よりその組成式を3(Ba,Mg)O・8Al23やBaMg2Al1627と表現してきたアルカリ土類アルミン酸塩(アルミン酸バリウム・マグネシウム)は、組成式BaO・2MgO・8Al23を意味しており、本発明の蛍光体組成とは異なり結晶学的に不純物を含んだアルカリ土類アルミン酸塩(アルミン酸バリウム・マグネシウム)である。
The phosphor proposed in Patent Document 1 corresponds to a {(1 + a) / b} value of 0.45 in the above composition formula, and the phosphor proposed in Patent Document 2 has the above composition. The number of moles of barium europium oxide is 0.625 (a = 0.625), the number of moles of aluminum oxide is 6.67 (b = 6.67), and the {(1 + a) / b} value is 0.244. In the phosphor composition proposed in Patent Document 3, the number of moles of barium and europium oxide is 0.5 (a = 0.5) and the number of moles of aluminum oxide is 4 (b = 4). ), The {(1 + a) / b} value is 0.375, which corresponds to the point D on FIGS. Comparing the emission luminance of the phosphors in FIGS. 1 and 2, the number of moles of barium and europium is 1 (a = 1), the number of moles of aluminum oxide is 5 (b = 5), and {(1 + a) / B} value is considerably inferior to the phosphor of the present invention having a 0.4 value (point E on FIGS. 1 and 2).
This is because, in the case of the Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphors proposed in each of the above-mentioned patent documents, the composition of the base alkaline earth aluminate is crystallography. This is because the alkaline earth aluminate containing crystallographic impurities is generated because it deviates from the composition of the alkaline earth aluminate that produces a stable single phase. In particular, the alkaline earth aluminate (barium magnesium aluminate) whose composition formula has been expressed as 3 (Ba, Mg) O.8Al 2 O 3 or BaMg 2 Al 16 O 27 from the past, such as Patent Document 1, composition formula means a BaO · 2MgO · 8Al 2 O 3 , a phosphor different from the composition crystallographically impure alkaline earth aluminate of the present invention (barium magnesium aluminate).

従って、アルカリ土類アルミン酸塩を母体としユーロピウムおよびマンガンで付活した蛍光体として特に長波長紫外線による励起下での優れた発光特性を得るためには、結晶学的に安定で不純物相の少ない単一相であることが重要であり、蛍光体組成としては{(1+a)/b}値を0.4、すなわち酸化バリウム・ユーロピウムのモル数が1(a=1)で、酸化アルミニウムモル数が5(b=5)に極力近づくような母体組成とすることが重要である。   Therefore, in order to obtain excellent emission characteristics under excitation by long-wavelength ultraviolet light as a phosphor activated with alkaline earth aluminate as a base and europium and manganese, it is crystallographically stable and has few impurity phases. It is important to have a single phase, and the phosphor composition has a {(1 + a) / b} value of 0.4, that is, the number of moles of barium and europium is 1 (a = 1), and the number of moles of aluminum oxide. It is important to make the matrix composition as close as possible to 5 (b = 5).

なお図1および図2には、組成式がa(Ba1-xEux)O・(Mg1-yMny)O・bAl23で表されるEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の中、Eu濃度が0.20(x=0.20)でMn濃度が0.35(y=0.35)である{a(Ba0.80Eu0.20)O・(Mg0.65Mn0.35)O・bAl23}について、酸化バリウム・ユーロピウムのモル数(a値)をパラメータとして、酸化アルミニウムのモル数(b値)と365nmの紫外線で励起した時の相対輝度の関係、および酸化アルミニウム1モルに対する酸化バリウム・ユーロピウムと酸化マグネシウム・マンガンの総モル数{(1+a)/b値}と波長365nmの紫外線で励起したときの相対発光輝度との関係をそれぞれ例示したが、波長365nmの紫外線で励起したときの相対発光輝度とb値との相関関係、および相対発光輝度と{(1+a)/b}値との相関関係はEu濃度(x値)並びにMn濃度(y値)が変化しても図1とほぼ同様の相関関係にあることが確認された。 In FIGS. 1 and 2, Eu 2+ and Mn 2+ whose composition formula is represented by a (Ba 1−x Eu x ) O · (Mg 1−y M n y ) O · bAl 2 O 3 Among the active barium magnesium aluminate phosphors, Eu concentration is 0.20 (x = 0.20) and Mn concentration is 0.35 (y = 0.35) {a (Ba 0.80 Eu 0.20 ) O. ( Mg 0.65 Mn 0.35 ) O · bAl 2 O 3 }, with the number of moles of barium and europium (a value) as a parameter, the number of moles of aluminum oxide (b value) and the relative luminance when excited by 365 nm ultraviolet light The relationship and the relationship between the total number of moles of barium / europium oxide and magnesium oxide / manganese {(1 + a) / b value} relative to 1 mole of aluminum oxide and the relative emission luminance when excited with ultraviolet light having a wavelength of 365 nm are illustrated. ,wavelength The correlation between the relative emission luminance and the b value when excited with 65 nm ultraviolet light, and the correlation between the relative emission luminance and the {(1 + a) / b} value are Eu concentration (x value) and Mn concentration (y value). It was confirmed that the correlation was almost the same as in FIG.

図3はEu濃度が0.2モル(x=0.2)で、酸化バリウム・ユーロピウムのモル数が1(a=1)で、酸化アルミニウムのモル数が5(b=5)であるEu2+およびMn2+共付活アルカリ土類アルミン酸バリウムマグネシウム蛍光体{(Ba0.80Eu0.20)O・(Mg1-yMny)O・5Al23}を例に、この蛍光体のMn濃度(y値)と365nmの紫外線で励起した時の発光輝度(相対値)との関係を示したグラフである。なお横軸はMnのモル数(y値)であり、縦軸は相対輝度である。
図3からわかるように、このEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度はMn濃度が0.15〜0.5モル(y=0.15〜0.5)でより高く、0.25〜0.45モル(y=0.25〜0.45)で特に高く、Mn濃度が0.5モルより高くなっても0.15モルより低くなっても発光輝度は低下する。これはMn濃度が低いと発光中心の数が少ないため輝度が低くなり、逆にMn濃度が高すぎると濃度消光により輝度が低下するためである。
FIG. 3 shows that the Eu concentration is 0.2 mol (x = 0.2), the number of moles of barium europium oxide is 1 (a = 1), and the number of moles of aluminum oxide is 5 (b = 5). 2+ and Mn 2+ coactivated alkaline earth barium magnesium aluminate phosphor of {(Ba 0.80 Eu 0.20) O · (Mg 1-y Mn y) O · 5Al 2 O 3} as an example, the phosphor It is the graph which showed the relationship between Mn density | concentration (y value) and the luminescent brightness | luminance (relative value) when excited by 365-nm ultraviolet rays. The horizontal axis represents the number of moles of Mn (y value), and the vertical axis represents the relative luminance.
As can be seen from FIG. 3, the emission brightness of the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor is 0.15 to 0.5 mol of Mn concentration (y = 0.15 to 0.5). And higher, especially at 0.25 to 0.45 mol (y = 0.25 to 0.45), and the emission brightness even when the Mn concentration is higher than 0.5 mol or lower than 0.15 mol Will decline. This is because when the Mn concentration is low, the luminance is low because the number of emission centers is small, and conversely, when the Mn concentration is too high, the luminance is reduced due to concentration quenching.

これらのEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体は330〜390nmの波長域の長波長紫外線を照射したときに、445〜455nmの波長域に第1の発光ピークをもち、510〜520nmの波長域に第2の発光ピークをもった発光を呈する。これらの蛍光体においてMn濃度が高くなるとEuからMnへ伝達されたエネルギーを容易に可視光に変換できるので、波長510〜520nmの間の第2の発光ピークの強度は急激に高くなる。
なお図3には、組成式がa(Ba1-xEux)O・(Mg1-yMny)O・bAl23で表されるEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の中、Eu濃度が0.20(x=0.20)で、a値およびb値がそれぞれ1および5である組成のアルミン酸バリウムマグネシウム蛍光体におけるMn濃度(y値)と365nmの波長域の長波長紫外線を照射したときの発光輝度との関係を例示したが、この相関関係はユーロピウム濃度(x値)、a値およびb値が変わってもほぼ同様であった。
These Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphors have a first emission peak in the wavelength region of 445 to 455 nm when irradiated with long-wave ultraviolet light in the wavelength region of 330 to 390 nm, It emits light having a second emission peak in the wavelength range of 510 to 520 nm. In these phosphors, when the Mn concentration is high, the energy transmitted from Eu to Mn can be easily converted into visible light, so that the intensity of the second emission peak between wavelengths 510 to 520 nm increases rapidly.
In FIG. 3, Eu 2+ and Mn 2+ co-activated aluminate whose composition formula is represented by a (Ba 1−x Eu x ) O · (Mg 1−y M n y ) O · bAl 2 O 3 Among barium magnesium phosphors, the Eu concentration is 0.20 (x = 0.20), and the Mn concentration (y value) in the barium magnesium aluminate phosphor having a composition of a and b values of 1 and 5, respectively. The relationship with the emission luminance when irradiated with long wavelength ultraviolet rays in the wavelength range of 365 nm was exemplified, but this correlation was substantially the same even when the europium concentration (x value), a value, and b value changed.

図4はMn濃度が0.35モル(y=0.35)で酸化バリウム・ユーロピウムのモル数が1(a=1)で酸化アルミニウムのモル数が5(b=5)であるEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体{(Ba1-xEux)O・(Mg0.65Mn0.35)O・5Al23}を例に、この蛍光体のEu濃度と365nmの紫外線で励起した時の発光輝度(相対値)の関係を示したグラフである。なお、横軸はEu濃度(x値)であり、縦軸は相対輝度である。
図4からわかるように、Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度はEu濃度が0.1〜0.35モル(x=0.1〜0.35)でより高く、特に0.15〜0.25モル(x=0.15〜0.25)でさらに高く、Eu濃度が0.35モルより高くなっても0.1モルより低くなっても発光輝度は低下する。これはEu濃度が低いとエネルギーを吸収・伝達する点が少ないため輝度が低くなり、逆にEu濃度が高すぎると濃度消光により輝度が低下するためである。
FIG. 4 shows Eu 2+ in which the Mn concentration is 0.35 mol (y = 0.35), the number of moles of barium europium oxide is 1 (a = 1), and the number of moles of aluminum oxide is 5 (b = 5). And an Mn 2+ co-activated barium magnesium aluminate phosphor {(Ba 1-x Eu x ) O · (Mg 0.65 Mn 0.35 ) O · 5Al 2 O 3 } as an example, the Eu concentration of this phosphor and 365 nm It is the graph which showed the relationship of the luminescence brightness (relative value) when excited with ultraviolet rays. The horizontal axis is Eu concentration (x value), and the vertical axis is relative luminance.
As can be seen from FIG. 4, the emission intensity of the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor is 0.1 to 0.35 mol Eu (x = 0.1 to 0.35). Higher, especially at 0.15 to 0.25 mol (x = 0.15 to 0.25), even if the Eu concentration is higher than 0.35 mol or lower than 0.1 mol Will decline. This is because if the Eu concentration is low, the number of points that absorb and transmit energy is small, so that the luminance is low. Conversely, if the Eu concentration is too high, the luminance is reduced due to concentration quenching.

これらEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の付活剤濃度に関して、Euのモル数に対するMnのモル数の比(y/x)を一定にして付活剤濃度(EuとMnの合計)を高くすると、510〜520nmの波長域に現れる第2の発光ピークの強度が相対的に高くなる。このことからEuは青色発光のサイトとしてよりもエネルギーを吸収し伝達するサイトとして存在していることを意味し、付活剤であるEuのモル数に対するMnのモル数の比(y/x)を規定することは意味がなく、Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体においてマンガンおよびユーロピウムは濃度消光を生じない程度に高濃度にすることが好ましい。 Regarding the activator concentration of these Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphors, the ratio of the number of moles of Mn to the number of moles of Eu (y / x) is kept constant, and the concentration of activator (Eu If the total of Mn and Mn is increased, the intensity of the second emission peak appearing in the wavelength range of 510 to 520 nm is relatively high. This means that Eu exists as a site that absorbs and transmits energy rather than as a blue light emitting site, and the ratio of the number of moles of Mn to the number of moles of Eu as an activator (y / x) In the Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor, it is preferable to make manganese and europium so high that concentration quenching does not occur.

なお図4には、組成式がa(Ba1-xEux)O・(Mg1-yMny)O・bAl23で表されるEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の中、Mn濃度が0.35(y=0.35)で、a値およびb値がそれぞれ1および5である組成のアルミン酸バリウムマグネシウム蛍光体におけるEu濃度(x値)と365nmの波長域の長波長紫外線を照射したときの発光輝度との関係を例示したが、この相関関係もマンガン濃度(y)、a値およびb値が変わってもほぼ同様であった。
また、これらa値、b値、{(1+a)/b}値、x値およびy値と相対輝度との相関関係はPがBa以外のアルカリ土類金属元素、またはBaを含むアルカリ土類金属元素であっても、QがZnまたはMgとZnであてもほぼ同様の傾向にあることが確認された。
FIG. 4 shows Eu 2+ and Mn 2+ co-activated aluminate whose composition formula is represented by a (Ba 1−x Eu x ) O · (Mg 1−y M n y ) O · bAl 2 O 3 Among barium magnesium phosphors, Eu concentration (x value) in a barium magnesium aluminate phosphor having a composition in which the Mn concentration is 0.35 (y = 0.35) and the a value and the b value are 1 and 5, respectively. The relationship with the emission luminance when irradiated with long wavelength ultraviolet rays in the wavelength range of 365 nm was exemplified, but this correlation was almost the same even when the manganese concentration (y), a value, and b value were changed.
Further, the correlation between the a value, the b value, the {(1 + a) / b} value, the x value and the y value, and the relative luminance indicates that P is an alkaline earth metal element other than Ba, or an alkaline earth metal containing Ba. Even if it is an element, it has been confirmed that even if Q is Zn or Mg and Zn, the tendency is almost the same.

上述の結果から、本発明の蛍光体は、波長365nmの紫外線による励起下での発光輝度の点において、{(Q1-yMny)O}に対する{(P1-xEux)O}のモル比aが0.8〜1.2の範囲(0.8≦a≦1.2)にあり、{(Q1-yMny)O}に対する酸化アルミニウムのモル比bが4.0〜6.0の範囲(4.0≦b≦6.0)、特に4.5〜5.5の範囲(4.5≦b≦5.5)にあることが好ましい。そして、その組成範囲内にあっても更に酸化アルミニウムのモル数(b値)に対する{(P1-xEux)O}と{(Q1-yMny)O}の総モル数(a+1)の比{(a+1)/b}が0.36〜0.44の範囲(0.36≦(a+1)/b≦0.44)にあることが発光輝度の点でより好ましい。また前記母体組成に加え、Euのモル比(x)およびMnのモル比(y)がそれぞれ0.10〜0.35の範囲(0.10≦x≦0.35)および0.15〜0.50の範囲(0.35≦y≦0.50)にあることが好ましく、特にx値およびy値がそれぞれ0.15〜0.25の範囲(0.15≦x≦0.25)および0.25〜0.45の範囲(0.25≦y≦0.45)にあることが発光輝度の点でより好ましい。
なお、前記a値、b値、x値及びy値の数値範囲内に含まれる組成を有する本発明のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体は、ほぼ330〜390nmの波長域の紫外線で励起した場合、波長365nmの紫外線で励起した場合と同様に高輝度の青緑色ないし緑色発光を呈する。従って、本発明の蛍光体は、例えば、330〜390nmの長波長紫外線で励起して可視光を得るような発光装置用蛍光体として好適に用いられる。
From the above results, the phosphor of the present invention, in terms of light emission luminance under excitation with ultraviolet rays having a wavelength of 365nm, {(Q 1-y Mn y) O} for {(P 1-x Eu x ) O} in the range molar ratio a is 0.8 to 1.2 of (0.8 ≦ a ≦ 1.2), the molar ratio b of aluminum oxide to {(Q 1-y Mn y ) O} is 4.0 ˜6.0 (4.0 ≦ b ≦ 6.0), particularly 4.5 to 5.5 (4.5 ≦ b ≦ 5.5). Even in the composition range, the total number of moles (a + 1) of {(P 1−x Eu x ) O} and {(Q 1−y M n y ) O} with respect to the number of moles (b value) of aluminum oxide. ) Ratio {(a + 1) / b} is more preferably in the range of 0.36 to 0.44 (0.36 ≦ (a + 1) /b≦0.44) in terms of light emission luminance. In addition to the matrix composition, the molar ratio (x) of Eu and the molar ratio (y) of Mn are in the range of 0.10 to 0.35 (0.10 ≦ x ≦ 0.35) and 0.15 to 0, respectively. .50 (0.35 ≦ y ≦ 0.50), and in particular, the x and y values are in the range of 0.15 to 0.25 (0.15 ≦ x ≦ 0.25) and A range of 0.25 to 0.45 (0.25 ≦ y ≦ 0.45 ) is more preferable in terms of light emission luminance.
The Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphor of the present invention having a composition included in the numerical values of the a value, b value, x value and y value is approximately 330 to 390 nm. When excited with ultraviolet rays in the wavelength band, it emits high-brightness blue-green to green light as in the case of excitation with ultraviolet rays with a wavelength of 365 nm. Therefore, the phosphor of the present invention is suitably used as a phosphor for a light emitting device that obtains visible light by being excited with, for example, long wavelength ultraviolet rays of 330 to 390 nm.

次に、本発明の発光装置について説明する。
本発明の発光装置は基本的に波長330〜390nmの長波長紫外線を放射する光源と、この光源からの発光を受光し得る位置に設けられた本発明の前記Eu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体を含有する波長変換材料により形成された発光面とからなり、この発光面は用途に応じて点状、面状等各種の形状とすることができる。また、発光面が点状である発光装置を2次元的に多数配列して面状のディスプレイとすることも可能である。
Next, the light emitting device of the present invention will be described.
The light-emitting device of the present invention basically has a light source that emits long-wavelength ultraviolet light having a wavelength of 330 to 390 nm and the Eu 2+ and Mn 2+ of the present invention provided at a position where light emitted from the light source can be received. It consists of a light emitting surface formed of a wavelength conversion material containing an active alkaline earth aluminate phosphor, and this light emitting surface can have various shapes such as a dot shape and a planar shape depending on the application. It is also possible to form a planar display by two-dimensionally arranging a large number of light emitting devices each having a pointed light emitting surface.

図5は本発明の発光装置の1つであるLEDランプの概略断面図を例示したものであり、例えば、一方の電極と電気的に接続された板状のマウントリード1の片面に接着材層6を介して光源であるGaN活性層を有し、中心波長370nmの紫外線を放射する紫外LEDチップ3を積層し、その側面にマウントリード1とは非接触状態で他方の電極と電気的に接続されたインナーリード2を並置し、マウントリード1と紫外LEDチップ3との間、及びインナーリード2と紫外LEDチップ3との間をそれぞれボンディングワイヤ4により短絡しておく。そして、本発明のEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体を分散・含有させた透明エポキシ樹脂などからなる、例えばレンズ状に成形された蛍光体含有樹脂レンズ5をマウントリード1およびインナーリード2と共に紫外LEDチップ3の発光面全体を覆うように固定するとか、該蛍光体を分散させた前記透明樹脂溶液中にマウントリード1およびインナーリード2と共に紫外LEDチップ3の発光面全体を浸漬し、次いでこれを引き上げて加熱する等の方法によってレンズ状に重合させて紫外LEDチップ3の発光面上に蛍光体含有樹脂レンズ5を形成することによって製造される。 FIG. 5 illustrates a schematic cross-sectional view of an LED lamp which is one of the light emitting devices of the present invention. For example, an adhesive layer is formed on one surface of a plate-like mount lead 1 electrically connected to one electrode. 6, an ultraviolet LED chip 3 having a GaN active layer as a light source and emitting ultraviolet light having a center wavelength of 370 nm is laminated, and electrically connected to the other electrode in a non-contact state with the mount lead 1 on its side surface The inner leads 2 are juxtaposed, and the mounting lead 1 and the ultraviolet LED chip 3 and the inner lead 2 and the ultraviolet LED chip 3 are short-circuited by bonding wires 4 respectively. Then, the phosphor-containing resin lens 5 made of, for example, a lens is made of a transparent epoxy resin in which the Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphor of the present invention is dispersed and contained. The ultraviolet LED chip 3 is fixed together with the mount lead 1 and the inner lead 2 together with the mount lead 1 and the inner lead 2 together with the mount lead 1 and the inner lead 2 in the transparent resin solution. It is manufactured by immersing the entire light emitting surface and then polymerizing it into a lens shape by a method such as heating it up and heating to form the phosphor-containing resin lens 5 on the light emitting surface of the ultraviolet LED chip 3.

本例の発光装置(LEDランプ)は該装置の電極に通電することにより光源である紫外LEDチップ3を発光させ、紫外LEDチップ3の発光を蛍光体含有樹脂レンズ5中に分散されている蛍光体が吸収して青緑もしくは緑色の点状または面状の発光を呈する。
この場合、本発明の蛍光体と共に、同じく波長370nmの紫外LEDチップ3からの発光を吸収して青色および赤色に発光する蛍光体を、これら各蛍光体が同時に発光した場合に白色発光を呈し得る割合で混合し、この混合蛍光体を蛍光体含有樹脂レンズ5中に分散させておけば、白色発光の点状発光を有するLEDランプとすることができる。なお、紫外LEDチップ3としては波長370nmの紫外線を発光するものも含め、330〜390nmの波長域の紫外線を発光する紫外LEDチップであればいずれも用いられ得ることはいうまでもない。
The light emitting device (LED lamp) of this example causes the ultraviolet LED chip 3 as a light source to emit light by energizing the electrode of the device, and the fluorescence emitted from the ultraviolet LED chip 3 is dispersed in the phosphor-containing resin lens 5. The body absorbs and exhibits blue-green or green dot-like or planar light emission.
In this case, together with the phosphor of the present invention, a phosphor that similarly absorbs light emitted from the ultraviolet LED chip 3 having a wavelength of 370 nm and emits blue and red light can emit white light when these phosphors emit light simultaneously. If the mixed phosphors are mixed at a ratio and dispersed in the phosphor-containing resin lens 5, an LED lamp having a point emission of white light emission can be obtained. Needless to say, any ultraviolet LED chip that emits ultraviolet light in the wavelength range of 330 to 390 nm can be used as the ultraviolet LED chip 3, including those that emit ultraviolet light having a wavelength of 370 nm.

また、本発明のEu2+およびMn2+共付活アルカリ土類アルミン酸塩蛍光体を結合剤を含む溶媒中に分散させてなる蛍光体塗布液を、ガラス、透明プラスチック板などの透明な板に塗布して蛍光膜を形成し、その蛍光膜に透明アクリル樹脂等、導光性のある材料からなる導光板を密着させておき、該導光板の側面に波長330〜390nmの長波長紫外線を放射する紫外LEDチップやブラックライトを光源として光学的に接触もしくは近接させて配置すると共に、該導光板の蛍光膜側とは反対の面には光の拡散面を形成し、蛍光面を除く周囲を遮光しておき、光源からの発光を導光板を介して蛍光面に照射して該蛍光面を発光させることによって面状蛍光面を有する本発明の発光装置が得られる。なお本例発光装置の場合も、蛍光膜として本発明の蛍光体と共に、同じく波長330〜390nmの長波長紫外線を放射する紫外LEDチップからの発光を吸収して青色および赤色に発光する蛍光体を、これら各蛍光体が同時に発光した場合に白色発光を呈し得る割合で混合した混合蛍光体により形成しておけば、白色の面状蛍光面をもった発光装置とすることができる。 In addition, a phosphor coating solution obtained by dispersing the Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphor of the present invention in a solvent containing a binder is used as a transparent material such as glass or a transparent plastic plate. A fluorescent film is formed by coating on a plate, and a light guide plate made of a light guiding material such as a transparent acrylic resin is adhered to the fluorescent film, and a long wavelength ultraviolet ray having a wavelength of 330 to 390 nm is attached to the side surface of the light guide plate. An ultraviolet LED chip or black light that emits light is placed in optical contact or proximity as a light source, and a light diffusion surface is formed on the surface opposite to the fluorescent film side of the light guide plate, excluding the fluorescent surface The light-emitting device of the present invention having a planar phosphor screen is obtained by shielding the surroundings and irradiating the phosphor screen with light emitted from the light source through the light guide plate to emit light. In the case of the light-emitting device of this example, a phosphor that emits blue and red light by absorbing light emitted from an ultraviolet LED chip that emits long-wavelength ultraviolet light having a wavelength of 330 to 390 nm together with the phosphor of the present invention as a fluorescent film. If the phosphors are formed of mixed phosphors mixed at a ratio capable of emitting white light when the phosphors emit light simultaneously, a light emitting device having a white planar phosphor screen can be obtained.

更に、本発明のEu2+およびMn2+共付活アルカリ土類アルミン塩蛍光体、または本発明の蛍光体とこれとは異なる発光色に発光する蛍光体との混合蛍光体からなる面状の蛍光膜と波長330〜370nmの波長域に発光する紫外LEDチップやブラックライト等の励起用光源とを一定間隔で対峙させて配置し、該蛍光膜面を除くその周囲を内面が光の散乱面となっているケースで覆う構造とすることもできる。 Furthermore, the planar shape comprising the Eu 2+ and Mn 2+ co-activated alkaline earth aluminate phosphor of the present invention, or a mixed phosphor of the phosphor of the present invention and a phosphor emitting light of a different emission color. The fluorescent film and an excitation light source such as an ultraviolet LED chip or a black light that emits light in the wavelength range of 330 to 370 nm are arranged facing each other at regular intervals, and the inner surface scatters light except for the fluorescent film surface. It can also be set as the structure covered with the case which is a surface.

次に実施例により本発明を説明する。
参考例1〕
BaCO 0.80 mol
Eu2 0.10 mol
3MgCO3・Mg(OH) 0.1625 mol
MnO 0.35 mol
Al (アルファタイプ) 5.0 mol
AlF 0.010 mol
蛍光体原料として上記各化合物を十分に混合し、坩堝に充填し、さらに黒鉛の塊を原料の上に乗せ蓋をして水蒸気を含んだ窒素水素雰囲気中で最高温度1450℃で昇降温時間を含めて24時間かけて焼成した。
次いで、焼成粉を分散、洗浄、乾燥、篩の処理を行い、フィッシャーサブシーズサイザーで測定したときの平均粒径が2.7μmであり、その組成式が(Ba0.8Eu0.2)・(Mg0.65Mn0.35)・5Alで表される実施例1のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を得た。なお、AlFは蛍光体の製造にしばしば用いられるフラックスである。
この参考例1の蛍光体に365nmの紫外線を照射してそのときの発光輝度を測定したところ、これと同一の条件で測定した下記比較例1の蛍光体の133%であった。
Next, an example explains the present invention.
[ Reference Example 1]
BaCO 3 0.80 mol
Eu 2 O 3 0.10 mol
3MgCO 3 .Mg (OH) 2 0.1625 mol
MnO 2 0.35 mol
Al 2 O 3 (alpha type) 5.0 mol
AlF 3 0.010 mol
The above compounds are sufficiently mixed as a phosphor raw material, filled in a crucible, and a lump of graphite is placed on the raw material and covered, and the temperature is raised and lowered at a maximum temperature of 1450 ° C in a nitrogen-hydrogen atmosphere containing water vapor. It baked over 24 hours including.
Next, the calcined powder is dispersed, washed, dried and sieved, and the average particle size is 2.7 μm as measured by the Fisher Subsizer. Its composition formula is (Ba 0.8 Eu 0.2 ). The Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphors of Example 1 represented by (Mg 0.65 Mn 0.35 ) · 5Al 2 O 3 were obtained. AlF 3 is a flux that is often used in the manufacture of phosphors.
When the phosphor of Reference Example 1 was irradiated with 365 nm ultraviolet light and the emission luminance at that time was measured, it was 133% of the phosphor of Comparative Example 1 below measured under the same conditions.

次に参考例1の蛍光体(緑色発光成分蛍光体)と3価のユーロピウム(Eu3+)付活酸硫化ランタン蛍光体(赤色発光成分蛍光体)とEu2+付活アルミン酸バリウムマグネシウム蛍光体(青色発光成分蛍光体)との混合蛍光体をエポキシポリマー前駆体中に分散させ、そのスラリー中に370nmの紫外線を放射するGaN系化合物半導体LEDチップをディップしてそのスラリーで該LEDチップを覆い、その後LEDチップと共に加熱しレンズ状に重合させ、該LEDチップと蛍光体を樹脂カプセル中に封入した、図5に例示する構造の参考例1AのLEDランプを製造した。
なお前記混合蛍光体中の参考例1の蛍光体とEu3+付活酸硫化ランタン蛍光体とEu2+付活アルミン酸バリウムマグネシウム蛍光体との混合割合は、使用したGaN系化合物半導体LEDチップからの発光により、CIE表色系による発光色度がx=0.310、y=0.320の白色発光を呈するようにその混合比を調整した。
この参考例1AのLEDランプの輝度は、同一条件で点灯させた場合、緑色発光成分蛍光体として実施例1の蛍光体に代えて下記比較例1の蛍光体を使用した以外はこれと同様にして製造された下記比較例1AのLEDランプの輝度の112.5%であった。
Next, the phosphor of Reference Example 1 (green light emitting component phosphor), trivalent europium (Eu 3+ ) activated lanthanum oxysulfide phosphor (red light emitting component phosphor) and Eu 2+ activated barium magnesium aluminate phosphor ( A phosphor mixed with a blue light-emitting component phosphor) is dispersed in an epoxy polymer precursor, and a GaN-based compound semiconductor LED chip that emits ultraviolet light of 370 nm is dipped in the slurry, and the LED chip is covered with the slurry, Thereafter, the LED chip was heated together with the LED chip to be polymerized into a lens shape, and the LED lamp of Reference Example 1A having the structure illustrated in FIG. 5 in which the LED chip and the phosphor were sealed in a resin capsule was manufactured.
The mixing ratio of the phosphor of Reference Example 1, the Eu 3+ activated lanthanum oxysulfide phosphor and the Eu 2+ activated barium magnesium aluminate phosphor in the mixed phosphor was determined from the GaN-based compound semiconductor LED chip used. The mixture ratio was adjusted such that the light emission emitted white light having a light emission chromaticity of x = 0.310 and y = 0.320 according to the CIE color system.
The brightness of the LED lamp of Reference Example 1A is the same as that of Example 1 except that the phosphor of Example 1 was used instead of the phosphor of Example 1 as the green light-emitting component phosphor when lit under the same conditions. It was 112.5% of the brightness | luminance of the LED lamp of the following comparative example 1A manufactured by this.

またこれとは別に、参考例1の蛍光体(緑色発光成分蛍光体)と3価のユーロピウム(Eu3+)付活酸硫化ランタン蛍光体(赤色発光成分蛍光体)とEu2+付活アルミン酸バリウムマグネシウム蛍光体(青色発光成分蛍光体)との混合物100重量部と1.1%のニトロセルロースを含む酢酸ブチル200重量部とを十分に混合して蛍光体スラリーを調製し、この蛍光体スラリーをガラス表面に塗布乾燥させて蛍光膜を形成し、一定の間隔を隔てて該蛍光膜と対面する位置にブラックライトを配置し、次いで内表面が光反射性の金属板からなる外囲器でブラックライトが配置される側とは反対側の蛍光膜面を除く該蛍光膜とブラックライトとの周囲を覆い、ブラックライトからの長波長紫外線の照射を受けて蛍光膜を発光させる、ブラックライトを光源とする参考例1Bの発光装置を製造した。
この参考例1Bの発光装置においても同一条件で点灯させた場合、緑色発光成分蛍光体として参考例1の蛍光体に代えて下記比較例1の蛍光体を使用した以外はこれと同様にして製造されたブラックライトを光源とする下記比較例1Bの発光装置の輝度は110.3%と、LEDランプ同様良好な結果が得られた。
Separately from this, the phosphor of Reference Example 1 (green light emitting component phosphor), trivalent europium (Eu 3+ ) activated lanthanum oxysulfide phosphor (red light emitting component phosphor) and Eu 2+ activated barium aluminate. A phosphor slurry was prepared by thoroughly mixing 100 parts by weight of a mixture of magnesium phosphor (blue light emitting component phosphor) and 200 parts by weight of butyl acetate containing 1.1% nitrocellulose. A fluorescent film is formed by coating and drying on the glass surface, and a black light is arranged at a position facing the fluorescent film at a certain interval, and then the inner surface is black with an envelope made of a light-reflective metal plate. A brace that covers the periphery of the fluorescent film except the fluorescent film surface opposite to the side where the light is disposed and the black light, and emits the fluorescent film upon receiving irradiation of long wavelength ultraviolet light from the black light. A scaling to produce a light-emitting device of Reference Example 1B which a light source.
When the light emitting device of Reference Example 1B was also lit under the same conditions, it was manufactured in the same manner as above except that the phosphor of Reference Example 1 was used instead of the phosphor of Reference Example 1 as the green light emitting component phosphor. The luminance of the light emitting device of Comparative Example 1B using the black light as the light source was 110.3%, which was as good as that of the LED lamp.

〔実施例
BaCO 0.8075 mol
Eu 0.07125 mol
3MgCO3・Mg(OH) 0.1375 mol
MnO 0.45 mol
Al(アルファタイプ) 4.75 mol
AlF 0.020 mol
蛍光体原料として上記各化合物を用いる以外は参考例1と同様にして、フィッシャーサブシーズサイザーで測定したときの平均粒径が4.8μmであり、その組成式が0.95(Ba0.85Eu0.15)(Mg0.55Mn0.45)・4.75Alで表される実施例のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を得た。
この実施例の蛍光体に365nmの紫外線を照射してそのときの輝度を測定したところ、これと同一の条件で測定した下記比較例1の蛍光体の121%の発光輝度であった。
次に、参考例1の蛍光体に代えて、実施例の蛍光体を用いた以外は参考例1AのLEDランプと同様にしてCIE表色系による発光色度がx=0.310、y=0.320である実施例のLEDランプを製造した。
この実施例のLEDランプの輝度は、同一条件で点灯させた場合、緑色発光成分蛍光体として実施例の蛍光体に代えて下記比較例1の蛍光体を使用した以外はこれと同様にして製造された下記比較例1AのLEDランプの輝度の110.8%であった。
[Example 1 ]
BaCO 3 0.8075 mol
Eu 2 O 3 0.07125 mol
3MgCO 3 .Mg (OH) 2 0.1375 mol
MnO 2 0.45 mol
Al 2 O 3 (alpha type) 4.75 mol
AlF 3 0.020 mol
Except for using each of the above compounds as the phosphor material, the average particle size was 4.8 μm as measured by the Fisher Subsizer in the same manner as in Reference Example 1, and the composition formula was 0.95 (Ba 0.85). Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphors of Example 1 represented by Eu 0.15 ) (Mg 0.55 Mn 0.45 ) · 4.75Al 2 O 3 were obtained.
When the phosphor of this Example 1 was irradiated with ultraviolet rays of 365 nm and the luminance at that time was measured, it was 121% of the emission luminance of the phosphor of the following Comparative Example 1 measured under the same conditions.
Next, instead of the phosphor of Reference Example 1, the emission chromaticity by the CIE color system is x = 0.310, y as in the LED lamp of Reference Example 1A, except that the phosphor of Example 1 is used. The LED lamp of Example 1 with == 0.320 was manufactured.
The brightness of the LED lamp of Example 1 is the same as that of Example 1 except that the phosphor of Example 1 is used instead of the phosphor of Example 1 as the green light-emitting component phosphor when lit under the same conditions. It was 110.8% of the brightness | luminance of the LED lamp of the following comparative example 1A manufactured.

〔実施例
BaCO 0.7875 mol
Eu 0.13125 mol
3MgCO・Mg(OH) 0.1875 mol
MnO 0.25 mol
Al(アルファタイプ) 5.25 mol
AlF 0.010 mol
蛍光体原料として上記各化合物を用いる以外は前記参考例1と同様にして、フィッシャーサブシーズサイザーで測定したときの平均粒径が3.2μmであり、その組成式が1.05(Ba0.75Eu0.25)・(Mg0.75Mn0.25)・5.25Alで表される実施例のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を得た。
この実施例の蛍光体に365nmの紫外線を照射してそのときの輝度を測定したところ、これと同一の条件で測定した下記比較例1の蛍光体の119%の発光輝度であった。
次に、参考例1の蛍光体に代えて、実施例の蛍光体を用いた以外は参考例1AのLEDランプと同様にしてCIE表色系による発光色度がx=0.310、y=0.320である実施例3のLEDランプを製造した。
この実施例のLEDランプの輝度は、同一条件で点灯させた場合、緑色発光成分蛍光体として実施例の蛍光体に代えて下記比較例1の蛍光体を使用した以外はこれと同様にして製造された下記比較例1AのLEDランプの輝度の108.2%であった。
[Example 2 ]
BaCO 3 0.7875 mol
Eu 2 O 3 0.13125 mol
3MgCO 3 .Mg (OH) 2 0.1875 mol
MnO 2 0.25 mol
Al 2 O 3 (alpha type) 5.25 mol
AlF 3 0.010 mol
Except for using each of the above compounds as the phosphor raw material, the average particle size was 3.2 μm as measured by the Fisher Subsizer in the same manner as in Reference Example 1, and the composition formula was 1.05 (Ba 0. The Eu 2+ and Mn 2+ co-activated barium magnesium aluminate phosphors of Example 2 represented by 75 Eu 0.25 ) · (Mg 0.75 Mn 0.25 ) · 5.25 Al 2 O 3 were obtained.
When the phosphor of Example 2 was irradiated with ultraviolet rays of 365 nm and the luminance at that time was measured, the emission luminance was 119% of the phosphor of Comparative Example 1 below measured under the same conditions.
Next, instead of the phosphor of Reference Example 1, the emission chromaticity by the CIE color system is x = 0.310, y as in the LED lamp of Reference Example 1A, except that the phosphor of Example 2 is used. An LED lamp of Example 3 with == 0.320 was produced.
The brightness of the LED lamp of Example 2 was the same as that of Example 2 except that the phosphor of Example 2 was used instead of the phosphor of Example 2 as the green light-emitting component phosphor when lit under the same conditions. It was 108.2% of the brightness | luminance of the LED lamp of the following comparative example 1A manufactured.

〔比較例1〕
BaCO 0.416 mol
Eu 0.042 mol
3MgCO・Mg(OH) 0.208 mol
MnO 0.168 mol
Al(アルファタイプ) 3.33 mol
AlF 0.015 mol
蛍光体原料として上記各化合物を用いる以外は前記実施例1と同様にして、フィッシャーサブシーズサイザーで測定したときの平均粒径が4.1μmであり、その組成式が特許文献1に記載されている0.5(Ba0.832Eu0.168)・(Mg0.832Mn0.168)・3.33Alで表される比較例1のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を製造し、本発明の蛍光体との発光特性の比較に供した。
次に、参考例1の蛍光体に代えて、比較例1の蛍光体を用いた以外は参考例1AのLEDランプと同様にしてCIE表色系による発光色度がx=0.310、y=0.320である比較例1AのLEDランプを製造して、本発明のLEDランプとの発光特性の比較に供した。
また、蛍光膜として参考例1の蛍光体に代えて比較例1の蛍光体を用いた以外はブラックライトを光源とする参考例1Bの発光装置と同様にしてブラックライトを光源とする比較例1Bの発光装置を製造して、本願発明のバックライトを光源とする発光装置との発光特性の比較に供した。
[Comparative Example 1]
BaCO 3 0.416 mol
Eu 2 O 3 0.042 mol
3MgCO 3 .Mg (OH) 2 0.208 mol
MnO 2 0.168 mol
Al 2 O 3 (alpha type) 3.33 mol
AlF 3 0.015 mol
Except for using each of the above compounds as the phosphor raw material, the average particle diameter was 4.1 μm as measured by the Fisher Subsizer, as in Example 1, and the composition formula is described in Patent Document 1. Eu2 + and Mn2 + co-activated aluminate of Comparative Example 1 represented by 0.5 (Ba 0.832 Eu 0.168 ) · (Mg 0.832 Mn 0.168 ) · 3.33Al 2 O 3 A barium magnesium phosphor was manufactured and subjected to comparison of light emission characteristics with the phosphor of the present invention.
Next, in place of the phosphor of Reference Example 1, the emission chromaticity according to the CIE color system is x = 0.310, y as in the LED lamp of Reference Example 1A, except that the phosphor of Comparative Example 1 is used. An LED lamp of Comparative Example 1A with == 0.320 was manufactured and subjected to comparison of light emission characteristics with the LED lamp of the present invention.
Comparative Example 1B using black light as a light source in the same manner as the light emitting device of Reference Example 1B using black light as a light source, except that the phosphor of Comparative Example 1 was used instead of the phosphor of Reference Example 1 as the fluorescent film. The light emitting device was manufactured and used for comparison of light emission characteristics with the light emitting device using the backlight of the present invention as a light source.

〔比較例2〕
BaCO 0.5825 mol
Eu 0.02125 mol
3MgCO・Mg(OH) 0.208 mol
MnO 0.168 mol
Al(アルファタイプ) 6.67 mol
AlF 0.010 mol
蛍光体原料として上記各化合物を用いる以外は前記参考例1と同様にして、フィッシャーサブシーズサイザーで測定したときの平均粒径が2.9μmであり、その組成式が特許文献2に記載されている0.625(Ba0.932Eu0.068)・(Mg0.832Mn0.168)6.67Al23で表される比較例2のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を得た。
この比較例2の蛍光体に365nmの紫外線を照射してそのときの輝度を測定したところ、これと同一の条件で測定した前記比較例1の蛍光体の70%の発光輝度であった。
次に、参考例1の蛍光体に代えて、比較例2の蛍光体を用いた以外は参考例1AのLEDランプと同様にしてCIE表色系による発光色度がx=0.310、y=0.320である比較例2のLEDランプを製造した。
この比較例2のLEDランプの輝度は、同一条件で点灯させた場合、緑色発光成分蛍光体として比較例2の蛍光体に代えて前記比較例1の蛍光体を使用した以外はこれと同様にして製造された前記比較例1AのLEDランプの輝度の86.9%であった。
[Comparative Example 2]
BaCO 3 0.5825 mol
Eu 2 O 3 0.02125 mol
3MgCO 3 .Mg (OH) 2 0.208 mol
MnO 2 0.168 mol
Al 2 O 3 (alpha type) 6.67 mol
AlF 3 0.010 mol
Except for using each of the above compounds as the phosphor raw material, the average particle diameter was 2.9 μm as measured by the Fisher Subseize Sizer in the same manner as in Reference Example 1, and the composition formula is described in Patent Document 2. Eu2 + and Mn2 + co-activated barium aluminate of Comparative Example 2 represented by 0.625 (Ba 0.932 Eu 0.068 ) · (Mg 0.832 Mn 0.168 ) 6.67Al 2 O 3 A magnesium phosphor was obtained.
When the phosphor of Comparative Example 2 was irradiated with 365 nm ultraviolet light and the luminance at that time was measured, the emission luminance of the phosphor of Comparative Example 1 measured under the same conditions was 70%.
Next, in place of the phosphor of Reference Example 1, the emission chromaticity by the CIE color system is x = 0.310, y as in the LED lamp of Reference Example 1A, except that the phosphor of Comparative Example 2 is used. An LED lamp of Comparative Example 2 where == 0.320 was produced.
The brightness of the LED lamp of Comparative Example 2 is the same as that of Example 1 except that the phosphor of Comparative Example 1 is used instead of the phosphor of Comparative Example 2 as the green light-emitting component phosphor when lit under the same conditions. It was 86.9% of the brightness | luminance of the LED lamp of the said comparative example 1A manufactured by this.

〔比較例3〕
BaCO 0.45 mol
Eu 0.025 mol
3MgCO・Mg(OH) 0.225 mol
MnO 0.1 mol
Al (アルファタイプ) 4.0 mol
AlF 0.005 mol
蛍光体原料として前記各化合物を用いる以外は前記実施例1と同様にして、フィッシャーサブシーズサイザーで測定したときの平均粒径が1.9μmであり、その組成式が特許文献3に記載されている0.5(Ba0.9Eu0.1)・(Mg0.9Mn0.1)・4Alで表される比較例3のEu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体を得た。
この比較例3の蛍光体に365nmの紫外線を照射してそのときの輝度を測定したところ、これと同一の条件で測定した前記比較例1の蛍光体の93%の発光輝度であった。
次に、参考例1の蛍光体に代えて、比較例3の蛍光体を用いた以外は参考例1AのLEDランプと同様にしてCIE表色系による発光色度がx=0.310、y=0.320である比較例3のLEDランプを製造した。
この比較例3のLEDランプの輝度は、緑色発光成分蛍光体として比較例3の蛍光体に代えて前記比較例1の蛍光体を使用した以外はこれと同様にして製造された前記比較例1AのLEDランプの輝度の100.1%であった。
[Comparative Example 3]
BaCO 3 0.45 mol
Eu 2 O 3 0.025 mol
3MgCO 3 .Mg (OH) 2 0.225 mol
MnO 2 0.1 mol
Al 2 O 3 (alpha type) 4.0 mol
AlF 3 0.005 mol
The average particle diameter when measured with a Fisher Subsizer is 1.9 μm in the same manner as in Example 1 except that each compound is used as a phosphor raw material, and its composition formula is described in Patent Document 3. Eu2 + and Mn2 + co-activated barium magnesium aluminate of Comparative Example 3 represented by 0.5 (Ba 0.9 Eu 0.1 ) · (Mg 0.9 Mn 0.1 ) · 4Al 2 O 3 A phosphor was obtained.
When the phosphor of Comparative Example 3 was irradiated with 365 nm ultraviolet rays and the luminance at that time was measured, the emission luminance was 93% of the phosphor of Comparative Example 1 measured under the same conditions.
Next, instead of the phosphor of Reference Example 1, the emission chromaticity according to the CIE color system is x = 0.310, y as in the LED lamp of Reference Example 1A except that the phosphor of Comparative Example 3 is used. An LED lamp of Comparative Example 3 where == 0.320 was produced.
The brightness of the LED lamp of Comparative Example 3 was the same as that of Comparative Example 1A manufactured in the same manner as above except that the phosphor of Comparative Example 1 was used instead of the phosphor of Comparative Example 3 as the green light-emitting component phosphor. It was 100.1% of the brightness | luminance of this LED lamp.

Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度と蛍光体母体組成との相関を例示する図である。It is a figure which illustrates the correlation with the light-emission brightness | luminance of a Eu2 + and Mn2 + co-activation barium magnesium aluminate fluorescent substance, and fluorescent substance base composition. Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度と蛍光体母体組成との相関を例示する図である。It is a figure which illustrates the correlation with the light-emission brightness | luminance of a Eu2 + and Mn2 + co-activation barium magnesium aluminate fluorescent substance, and fluorescent substance base composition. Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度と付活剤Mnのモル数との相関を例示する図である。It is a diagram illustrating the correlation between the number of moles of emission luminance and activator Mn of Eu 2+ and Mn 2+ coactivated barium magnesium aluminate phosphor. Eu2+およびMn2+共付活アルミン酸バリウムマグネシウム蛍光体の発光輝度と付活剤Euのモル数との相関を例示する図である。Is a diagram illustrating the correlation between the number of moles of emission luminance and activator Eu of Eu 2+ and Mn 2+ coactivated barium magnesium aluminate phosphor. 本発明の発光装置の1例を示す概略断面図であるIt is a schematic sectional drawing which shows one example of the light-emitting device of this invention.

符号の説明Explanation of symbols

1 マウントリード 2 インナーリード
3 紫外LEDチップ 4 ボンディングワイヤー
5 蛍光体含有樹脂レンズ 6 接着剤層

DESCRIPTION OF SYMBOLS 1 Mount lead 2 Inner lead 3 Ultraviolet LED chip 4 Bonding wire 5 Phosphor containing resin lens 6 Adhesive layer

Claims (7)

組成式がa(P1−xEu)O・(Mg 1−yMn)O・bAlで表され、330〜390nmの波長域の長波長紫外線を照射したとき緑色発光することを特徴とする長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体。(前記式中、PはBa、SrおよびCaの中の少なくとも1種のアルカリ土類金属元素を表し、a、b、xおよびyはそれぞれ0.8≦a≦1.2、4.0≦b≦6.0、0.10≦x≦0.35および0.15≦y≦0.50を満たす数を表す。ただし、a値が1.0であり、かつ、b値が5.0である場合を除く)。 The composition formula is represented by a (P 1-x Eu x ) O · (Mg 1-y Mn y) O · bAl 2 O 3, emits green light when irradiated with long-wave ultraviolet light in the wavelength range of 330~390nm An alkaline earth aluminate phosphor for exciting long wavelength ultraviolet light. (In the formula, P is Ba, represents at least one alkaline earth metal element in the Sr and Ca, a, b, x and y are 0.8 ≦ a ≦ 1.2,4.0 ≦ respectively It represents a number satisfying b ≦ 6.0, 0.10 ≦ x ≦ 0.35 and 0.15 ≦ y ≦ 0.50, provided that the a value is 1.0 and the b value is 5.0. Except when ). 前記a値およびb値が0.36≦(1+a)/b≦0.44を満足する数であること特徴とする請求項1に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体。 2. The alkaline earth aluminate phosphor for long wavelength ultraviolet excitation according to claim 1, wherein the a value and the b value are numbers satisfying 0.36 ≦ (1 + a) /b≦0.44. 前記x値が0.15≦x≦0.25の範囲にあることを特徴とする請求項1に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体 2. The alkaline earth aluminate phosphor for long wavelength ultraviolet excitation according to claim 1, wherein the x value is in a range of 0.15 ≦ x ≦ 0.25 . 前記y値が0.25≦y≦0.45の範囲にあることを特徴とする請求項に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体2. The alkaline earth aluminate phosphor for long-wavelength ultraviolet excitation according to claim 1 , wherein the y value is in the range of 0.25 ≦ y ≦ 0.45 . 330〜390nmの波長域の長波長紫外線を放射する光源と、該光源からの発光の少なくとも1部を吸収して該光源とは異なる波長の光を放射する波長変換材料を少なくとも具備した発光装置であって、前記波長変換材料が請求項1〜4のいずれか1項に記載の長波長紫外線励起用アルカリ土類アルミン酸塩蛍光体を含むことを特徴とする発光装置。 A light emitting device comprising at least a light source that emits long-wavelength ultraviolet light in a wavelength range of 330 to 390 nm and a wavelength conversion material that absorbs at least a part of light emitted from the light source and emits light having a wavelength different from that of the light source. A light-emitting device, wherein the wavelength converting material includes the alkaline earth aluminate phosphor for long-wavelength ultraviolet excitation according to any one of claims 1 to 4 . 前記光源が330〜390nmの波長域の長波長紫外線を放射する窒化物系化合物半導体層からなる発光チップを有する発光ダイオードであることを特徴とする請求項1〜4のいずれか1項に記載の発光装置。 It said light source according to any one of claims 1-4, characterized in that the long-wave ultraviolet light in the wavelength region is a light emitting diode having a light emitting chip of a nitride-based compound semiconductor layer that emits the 330~390nm Light emitting device. 前記光源が330〜390nmの波長域の長波長紫外線を放射するブラックライトであることを特徴とする請求項1〜4のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1-4, wherein the light source is a black light that emits long-wave ultraviolet light in the wavelength range 330~390Nm.
JP2003367668A 2003-10-28 2003-10-28 Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same Expired - Fee Related JP4266339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367668A JP4266339B2 (en) 2003-10-28 2003-10-28 Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367668A JP4266339B2 (en) 2003-10-28 2003-10-28 Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2005132870A JP2005132870A (en) 2005-05-26
JP4266339B2 true JP4266339B2 (en) 2009-05-20

Family

ID=34645608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367668A Expired - Fee Related JP4266339B2 (en) 2003-10-28 2003-10-28 Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4266339B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186687B2 (en) * 2007-10-23 2013-04-17 独立行政法人 国立印刷局 Afterglow luminescent material, method for producing the same and luminescent printed material
JP6583201B2 (en) * 2016-09-29 2019-10-02 日亜化学工業株式会社 Light emitting device
JP6540784B2 (en) * 2017-03-15 2019-07-10 日亜化学工業株式会社 Method for producing aluminate phosphor, aluminate phosphor and light emitting device
JP6923804B2 (en) * 2017-12-08 2021-08-25 日亜化学工業株式会社 Wavelength conversion member and its manufacturing method

Also Published As

Publication number Publication date
JP2005132870A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP5592602B2 (en) Phosphor and light emitting device using the same
JP5190475B2 (en) Phosphor and light emitting device using the same
US7329371B2 (en) Red phosphor for LED based lighting
JP5138145B2 (en) Phosphor laminate structure and light source using the same
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
JP5127965B2 (en) Phosphor and light emitting device using the same
JP4896129B2 (en) Light emitting device and alkaline earth metal sulfide phosphor for the same
JP4868685B2 (en) Phosphor
JP4880892B2 (en) Phosphor, phosphor manufacturing method, and light emitting device using the same
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
TWI491706B (en) Green luminescent phosphor and light emitting device
JP2008163259A (en) Nitride fluorescent material and light emitting apparatus using the same
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP5592729B2 (en) Phosphor and light emitting device using the same
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP4931372B2 (en) Light emitting device
KR20120103418A (en) Fluorescent substance and light-emitting device employing the same
JP4619509B2 (en) Light emitting device
CN107636113B (en) Phosphor, method for producing same, and LED lamp
JP5590092B2 (en) Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device
JP2005146172A (en) Light emitter and phosphor for light emitter
JP4266339B2 (en) Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same
JP6460141B2 (en) Aluminate phosphor, light emitting device, and method for producing aluminate phosphor
JP4492189B2 (en) Light emitting device
US10208247B2 (en) Aluminate fluorescent material, light emitting device using the same, and method of producing aluminate fluorescent material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

R150 Certificate of patent or registration of utility model

Ref document number: 4266339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees