JP5186687B2 - Afterglow luminescent material, method for producing the same and luminescent printed material - Google Patents

Afterglow luminescent material, method for producing the same and luminescent printed material Download PDF

Info

Publication number
JP5186687B2
JP5186687B2 JP2007274860A JP2007274860A JP5186687B2 JP 5186687 B2 JP5186687 B2 JP 5186687B2 JP 2007274860 A JP2007274860 A JP 2007274860A JP 2007274860 A JP2007274860 A JP 2007274860A JP 5186687 B2 JP5186687 B2 JP 5186687B2
Authority
JP
Japan
Prior art keywords
light
luminescent
printing
bao
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007274860A
Other languages
Japanese (ja)
Other versions
JP2009102497A (en
Inventor
英司 河村
直子 藤澤
Original Assignee
独立行政法人 国立印刷局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 国立印刷局 filed Critical 独立行政法人 国立印刷局
Priority to JP2007274860A priority Critical patent/JP5186687B2/en
Publication of JP2009102497A publication Critical patent/JP2009102497A/en
Application granted granted Critical
Publication of JP5186687B2 publication Critical patent/JP5186687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、単一母体で、可視波長域に二つの顕著なピークがある蛍光スペクトルを持ち、かつ、可視波長域に一つの顕著なスペクトルピークを持ち残光特性を有する、残光性発光体とその製造方法及び発光印刷物に関するものである。   The present invention relates to an afterglow illuminant having a fluorescence spectrum having two prominent peaks in the visible wavelength region and an afterglow characteristic having one prominent spectral peak in the visible wavelength region. And its manufacturing method and luminescent printed matter.

スキャナー、プリンター、カラーコピーなどのデジタル機器の発展により、セキュリティ印刷物の精巧な複製物を容易に作製することが可能となっている。それに対抗するために、真偽判別の一手段として蛍光、りん光等の特定の発光体を一部または全面に付与することが有効な手段として提案されている。   Advances in digital devices such as scanners, printers, and color copies have made it possible to easily produce sophisticated copies of security prints. In order to counter this, it has been proposed as an effective means to apply a specific light emitter such as fluorescence or phosphorescence to a part or the entire surface as a means of authenticity determination.

これらの発光インキが付与されたセキュリティ印刷物の真偽判別方法としては、印刷物に対し発光材料を励起できるエネルギーを含む光等の電磁波、放射線の照射、あるいは電界印加、化学反応で付与された発光素子の発光現象、及び/又はりん光体においては、励起エネルギーの印加停止後減衰しながら放出していく残光現象を、目視またはセンサーで検知する方法がとられている。   As a method for determining the authenticity of security prints to which these luminescent inks are applied, light-emitting elements provided by electromagnetic waves such as light containing energy that can excite the luminescent material, radiation, electric field application, or chemical reaction are applied to the prints. In the phosphor luminescence phenomenon and / or phosphor, a method of detecting the afterglow phenomenon that is emitted while being attenuated after the application of excitation energy is stopped is detected visually or with a sensor.

このような光学機能を利用した材料に関するものとして、蛍光インクもしくは透明赤外吸収インクを用いた偽造防止性に優れる定期券が提案されている(例えば、特許文献1参照)。また、透明蛍光インクにより形成した文字などの秘密情報を有する偽造防止用シートが提案されている(例えば、特許文献2参照)。   As materials relating to such optical functions, a commuter pass excellent in anti-counterfeiting using a fluorescent ink or a transparent infrared absorbing ink has been proposed (for example, see Patent Document 1). In addition, a forgery prevention sheet having secret information such as characters formed with transparent fluorescent ink has been proposed (for example, see Patent Document 2).

セキュリティ用途のように、より精度の高い検知、判別が必要とされる用途に使用できるような特徴的な発光特性を持つ発光体としては、電磁波などを照射する励起波長に応じて発光色が変化する発光体、観測波長により発光強度の分布が極端に異なる発光体等が一例として挙げられる。また、蛍光発光のみならず残光を有し、残光においても特徴的な特性を有する発光体がより有効である。   As a light emitter with characteristic emission characteristics that can be used for applications that require more accurate detection and discrimination, such as security applications, the emission color changes according to the excitation wavelength irradiated with electromagnetic waves. Examples of such illuminants, and illuminants with extremely different emission intensity distributions depending on the observation wavelength. Further, a luminescent material that has not only fluorescence but also afterglow and has characteristic characteristics in afterglow is more effective.

上記特性を持つ発光体は、励起特性の異なる異種の発光体を混合することで照射する励起波長に応じて発光色が変化する発光体(例えば、特許文献3参照)や、青色発光体(一例として、BaMgAl1017:Eu)及び緑色発光体(一例として、BaMgAl1017:Eu、Mn)を混合することで、可視光領域で青及び緑色の二つの発光スペクトルピークを持ち、かつ、緑色の一つのピークを持つ発光体混合物を得ることができる。 The illuminant having the above characteristics is a illuminant whose emission color changes according to the excitation wavelength irradiated by mixing different illuminants having different excitation characteristics (for example, see Patent Document 3), or a blue illuminant (an example). As a mixture of BaMgAl 10 O 17 : Eu) and a green light emitter (for example, BaMgAl 10 O 17 : Eu, Mn), it has two emission spectrum peaks of blue and green in the visible light region, and A phosphor mixture with one green peak can be obtained.

また、セキュリティ用途のみならず、他分野への応用として提案されている発光体の一例として、蛍光ランプのような照明装置、プラズマディスプレイパネル(PDP)のようなガス放電表示装置に使用可能な発光体で、低エネルギー(長波長)の光に変換し得るLa・Al・Mg複合酸化物系発光体が提案されている(例えば、特許文献4参照)。   Moreover, as an example of a light emitter proposed not only for security applications but also for other fields, light emission usable for lighting devices such as fluorescent lamps and gas discharge display devices such as plasma display panels (PDP). A La.Al.Mg composite oxide light emitter that can be converted into low energy (long wavelength) light has been proposed (for example, see Patent Document 4).

特開平6−227192号公報JP-A-6-227192 特開平9−183288号公報JP 9-183288 A 特開平10−251570号公報JP-A-10-251570 特許第3861125号公報Japanese Patent No. 3861125

発光体は、セキュリティ用途のみならずディスプレイ用、意匠用等、発光材料は多くの用途に使用されており、その中で意匠用途のものは比較的容易に入手できる。よって、発光の有無を確認するだけの判別、すなわち励起光照射中に可視光の全波長域の発光又は1つの特定波長域の発光強度の数値や残光強度の数値のみによる判別においては、一般的な発光材料を利用した偽造の可能性がある。また、発光の有無検知のような簡単な検知では誤認知が発生する可能性がある   Luminescent materials are used not only for security purposes, but also for displays, designs, etc., and luminescent materials are used for many purposes. Among them, those for design purposes are relatively easily available. Therefore, in the determination only to confirm the presence or absence of light emission, that is, in the determination based on the light emission of all wavelengths of visible light or only the numerical value of the light emission intensity or afterglow intensity of one specific wavelength region during excitation light irradiation, There is a possibility of counterfeiting using typical luminescent materials. In addition, simple detection such as detection of the presence or absence of light emission may cause misrecognition.

すなわち、単純な使用法による蛍光材料やりん光材料では、市販の材料を使用して発光色を模倣することが比較的容易であり、発光現象の有無だけに頼った真偽判別法には限界がある。   In other words, it is relatively easy to imitate the luminescent color using commercially available materials with fluorescent materials and phosphorescent materials by simple usage, and there is a limit to the authenticity discrimination method that relies solely on the presence or absence of the luminescence phenomenon. There is.

上述したように複数種類の発光体を混合して使用する場合、発光特性としては、混合材料とその割合に応じて単一母体では得られがたい特異的な発光特性が得られるが、数種の異なる発光体同士を混合する際及び基材に付与するためにバインダーと混合する際の混合条件によって異種発光体の発光強度のバランスが変動するという不安定要素が生じる。よって、発光の有無のみでなく、発光強度を判定要素とし、かつ、高精度判別のための発光印刷物として利用する場合、単体の材料を使用した場合より誤判別の可能性が高くなる。また、誤判別の可能性を小さくするために発光印刷物の発光特性を調整しようとした場合、異種発光体の混合条件や混合割合等をあらかじめ試験しておく必要が生じ、工程が増え煩雑になる。   As described above, when a plurality of types of light emitters are used in combination, specific light emission characteristics that cannot be obtained with a single matrix depending on the mixed material and its proportion can be obtained. An unstable element occurs in which the balance of the emission intensity of the different types of light emitters varies depending on the mixing conditions when the light emitters having different light sources are mixed with each other and when they are mixed with the binder to be applied to the substrate. Therefore, in the case of using not only the presence / absence of light emission but also the light emission intensity as a determination element and the light-emitting printed matter for high-accuracy determination, the possibility of erroneous determination becomes higher than when a single material is used. In addition, when trying to adjust the light emission characteristics of the luminescent printed matter in order to reduce the possibility of misjudgment, it becomes necessary to test the mixing conditions and mixing ratios of different types of light emitters in advance, which increases the number of processes and becomes complicated. .

また、異種発光体混合物をバインダーと混練し基材に付与しようとする場合、各発光体とバインダーとの親和性や混合状態、粒子径の違いなどのために印刷等のプロセスにおける基材への転移挙動が変化し、発光材料付与開始時の発光体付与物と経時における印刷等の付与物の発光特性が変化する可能性があり、読取装置等で精度の高い判別を行う目的の場合、印刷等の付与物を常に検査しなければ、誤判別の可能性が高くなる。   In addition, when a mixture of different phosphors is kneaded with a binder and applied to a substrate, due to differences in affinity, mixing state, particle size, etc. between each phosphor and binder, If the transition behavior changes and the luminescent properties of the luminescent material applied at the start of the application of the luminescent material and the applied material such as printing over time may change, if the purpose is to make a high-precision discrimination with a reader, etc. The possibility of misjudgment is increased if the grants such as are not always inspected.

したがって、本発明が解決しようとする課題は、母体材料の組成をp(BaO)・q(MgO)・r(Al)とし、付活剤としてEu、Mn及び/又はNd共付活のアルカリ土類アルミン酸塩蛍光体を用いる残光性発光体とその製造方法及び発光印刷物を作製することを目的とする。 Accordingly, the problem to be solved by the present invention is that the composition of the base material is p (BaO) · q (MgO) · r (Al 2 O 3 ) and Eu, Mn and / or Nd co-activators are used as activators. It is an object of the present invention to produce an afterglow phosphor using the alkaline earth aluminate phosphor of the present invention, a production method thereof, and a luminescent printed material.

本発明における残光性発光体は、p(BaO)・q(MgO)・r(Al)からなる母体材料に、付活剤であるEu及びMnを添加してなり、化学組成が一般式p(BaO)・q(MgO)・r(Al):xEu・yMnで表され、p、q、r、x、yは、それぞれ(0.4n≦p≦1.1n)、(0.4n≦q≦1.1n)、(2.0n≦r≦7.0n)、(0.005n≦x≦0.15n)、(0.025n≦y≦0.75n)の範囲(nは倍数)にあることを特徴とする。 The afterglow phosphor in the present invention is obtained by adding Eu and Mn as activators to a base material made of p (BaO) · q (MgO) · r (Al 2 O 3 ), and has a chemical composition. General formula p (BaO) · q (MgO) · r (Al 2 O 3 ): represented by xEu · yMn, where p, q, r, x, and y are (0.4n ≦ p ≦ 1.1n), respectively. , (0.4n ≦ q ≦ 1.1n), (2.0n ≦ r ≦ 7.0n), (0.005n ≦ x ≦ 0.15n), (0.025n ≦ y ≦ 0.75n) (N is a multiple).

本発明における残光性発光体は、p(BaO)・q(MgO)・r(Al)からなる母体材料に、付活剤であるEu、Mn及びNdを添加してなり、化学組成が一般式p(BaO)・q(MgO)・r(Al2):xEu・yMn・zNdで表され、p、q、r、x、y、zは、それぞれ(0.4n≦p≦1.1n)、(0.4n≦q≦1.1n)、(2.0n≦r≦7.0n)、(0.005n≦x≦0.15n)、(0.025n≦y≦0.75n)、(0.005n≦z≦0.15n)の範囲(nは倍数)にあることを特徴とする。 Afterglow luminescent material according to the present invention, the base material consisting of p (BaO) · q (MgO ) · r (Al 2 O 3), Eu, with the addition of Mn and Nd becomes a activator, chemical The composition is represented by the general formula p (BaO) · q (MgO) · r (Al 2 O 3 ): xEu · yMn · zNd, and p, q, r, x, y, and z are (0.4n ≦ p ≦ 1.1n), (0.4n ≦ q ≦ 1.1n), (2.0n ≦ r ≦ 7.0n), (0.005n ≦ x ≦ 0.15n), (0.025n ≦ y ≦ 0.75n) and (0.005n ≦ z ≦ 0.15n) (n is a multiple).

本発明における残光性発光体の製造方法は、p(BaO)・q(MgO)・r(Al2)で表される母体材料に対し、付活剤であるEu及びMnを添加して混合物を製造し、混合物を、第1段目焼成として、大気雰囲気下において800℃〜1450℃で2〜6時間焼成し、その後、第2段目焼成として、還元雰囲気下において1500℃〜1700℃で0.25〜4時間焼成することを特徴とする。 In the method for producing an afterglow phosphor in the present invention, Eu and Mn as activators are added to a base material represented by p (BaO) · q (MgO) · r (Al 2 O 3 ). The mixture is fired at 800 ° C. to 1450 ° C. for 2 to 6 hours in the air atmosphere as the first stage firing, and then 1500 ° C. to 1700 in the reducing atmosphere as the second stage firing. It is characterized by baking at 0.25 to 4 hours.

本発明における残光性発光体の製造方法は、p(BaO)・q(MgO)・r(Al2)で表される母体材料に対し、付活剤であるEu、Mn及びNdを添加して混合物を製造し、混合物を、第1段目焼成として、大気雰囲気下において800℃〜1450℃で2〜6時間焼成し、その後、第2段目焼成として、還元雰囲気下において1500℃〜1700℃で0.25〜4時間焼成することを特徴とする。 In the method for producing an afterglow luminescent material in the present invention, Eu, Mn and Nd which are activators are formed on a base material represented by p (BaO) · q (MgO) · r (Al 2 O 3 ). The mixture is added to produce a mixture, and the mixture is fired at 800 ° C. to 1450 ° C. for 2 to 6 hours in the air atmosphere as the first stage firing, and then 1500 ° C. in the reducing atmosphere as the second stage firing. It is characterized by firing at ˜1700 ° C. for 0.25 to 4 hours.

本発明における発光印刷物は、残光性発光体を含有したインキを、基材に固着してなることを特徴とする。   The luminescent printed material according to the present invention is characterized in that an ink containing an afterglow luminescent material is fixed to a substrate.

本発明における発光体は、単一母体であるため、数種の異なる発光体の混合物をバインダーと混練し基材に付与する際に起こっていた発光強度のバランス変動がなく、安定した発光強度バランスが保たれ、発光強度バランスが崩れたことに起因する誤判別のない精度の高い判別が可能である。   Since the illuminant in the present invention is a single base material, there is no fluctuation in the luminescence intensity balance that occurs when a mixture of several different illuminants is kneaded with a binder and applied to a substrate, and a stable luminescence intensity balance is achieved. Is maintained, and it is possible to perform highly accurate discrimination without erroneous discrimination due to the loss of the emission intensity balance.

本発明における発光体は、単一母体であるため、バインダーと混練し基材に付与する際、バインダーとの親和性も一定であり、印刷等のプロセスにおける基材への転移挙動の違いにより発生する発光強度のバランスの変動も起こらず、印刷等の付与プロセス中、最適な印刷物等が得られる。   Since the illuminant in the present invention is a single matrix, when kneaded with a binder and applied to a substrate, the affinity with the binder is also constant, and is generated due to the difference in the transfer behavior to the substrate in processes such as printing. Therefore, an optimal printed matter or the like can be obtained during the application process such as printing.

本発明における発光体は、可視波長域に同等の高さを有する二つの顕著なピークがある蛍光スペクトルを持ち、かつ、可視波長域に一つの顕著なスペクトルピークを持つ残光特性を有する発光体を使用した発光印刷物を得ることができ、本発明の発光体の発光特性を利用した精度の高い判別が可能である。   The illuminant in the present invention has a fluorescence spectrum having two prominent peaks having the same height in the visible wavelength region, and an afterglow characteristic having one prominent spectral peak in the visible wavelength region. Can be obtained, and can be discriminated with high accuracy using the light emission characteristics of the light emitter of the present invention.

以下に、本発明の幾つかの実施の形態による複合発光体及びその発光印刷物について説明するが、本発明はこれに限定されるものではない。   Although the composite light-emitting body and its luminescent printed material according to some embodiments of the present invention will be described below, the present invention is not limited to this.

図1(a)は、本発明の一実施例における、発光体の蛍光スペクトルを示す図であり、(b)は、発光体のりん光スペクトルを示す図である。図2(a)は、本発明の一実施例における、発光体Aの365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。図3は、本発明の一実施例における、発光体AのX線回折パターンを示す図である。図4(a)は、本発明の一実施例における、発光体印刷物Aの365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。図5(a)は、本発明の一実施例における、発光体印刷物Bの365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。図6は、本発明の一実施例における、発光印刷物Cの発光波長460nm及び520nmにおける励起スペクトルを示す図である。図7(a)は、本発明の一実施例における、発光印刷物Cの254nm、302nm及び365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。図8は、本発明の比較例における、発光体印刷物D及びEの365nm紫外光励起の蛍光スペクトルを示す図である。   FIG. 1A is a diagram showing a fluorescence spectrum of a light emitter in one example of the present invention, and FIG. 1B is a diagram showing a phosphorescence spectrum of the light emitter. FIG. 2A is a diagram showing a fluorescence spectrum of phosphor A excited by 365 nm ultraviolet light in one example of the present invention, and FIG. 2B is a diagram showing a phosphorescence spectrum. FIG. 3 is a diagram showing an X-ray diffraction pattern of the luminous body A in an example of the present invention. Fig.4 (a) is a figure which shows the fluorescence spectrum of 365 nm ultraviolet light excitation of the light-emitting printed matter A in one Example of this invention, (b) is a figure which shows a phosphorescence spectrum. Fig.5 (a) is a figure which shows the fluorescence spectrum of 365 nm ultraviolet light excitation of the light-emitting body printed matter B in one Example of this invention, (b) is a figure which shows a phosphorescence spectrum. FIG. 6 is a diagram showing an excitation spectrum of the luminescent printed material C at an emission wavelength of 460 nm and 520 nm in an example of the present invention. FIG. 7A is a diagram showing fluorescence spectra of the luminescent printed material C excited by 254 nm, 302 nm, and 365 nm ultraviolet light in one example of the present invention, and FIG. 7B is a diagram showing phosphorescence spectra. FIG. 8 is a diagram showing fluorescence spectra of phosphor printed materials D and E excited by 365 nm ultraviolet light in a comparative example of the present invention.

本発明の発光材料における発光特性は、可視波長域に二つの顕著なピークがある蛍光スペクトルを持ち、かつ、可視波長域に一つの顕著なピークがあり残光特性を有するりん光スペクトルを持つ。   The light emitting characteristics of the light emitting material of the present invention have a fluorescence spectrum having two prominent peaks in the visible wavelength region and a phosphorescence spectrum having one prominent peak in the visible wavelength region and having afterglow characteristics.

このような発光特性を持つ発光体の組成は、母体材料の組成をpBaO・qMgO・r(Al)とし、付活剤としてEu、Mn及び/又はNd共付活の蛍光体を用いることで、限定された組成範囲において適切な焼成条件を以って前述の発光特性を有する単一母体の発光体が作製できる。 The composition of the phosphor having such light emission characteristics is that the composition of the base material is pBaO · qMgO · r (Al 2 O 3 ), and Eu, Mn and / or Nd co-activated phosphor is used as the activator. Thus, a single-base light-emitting body having the above-described light-emitting characteristics can be manufactured with appropriate firing conditions in a limited composition range.

発光体の発光輝度や蛍光発光スペクトルにおける二つのピーク強度比は、EuとMnの組成比や濃度、及びEu、Mn及びAlの組成比をはじめとして製造方法及び条件に依存するが、本発明において、次の組成を中心とした組成が効果的であることを見出した。化学組成が一般式p(BaO)・q(MgO)・r(Al):xEu・yMnで表され、p、q、r、x、yは、それぞれ(0.4n≦p≦1.1n)、(0.4n≦q≦1.1n)、(2.0n≦r≦7.0n)、(0.005n≦x≦0.15n)、(0.025n≦y≦0.75n)の範囲(nは倍数)にある。 The two peak intensity ratios in the luminous intensity and fluorescence emission spectrum of the luminescent material depend on the production method and conditions including the composition ratio and concentration of Eu and Mn, and the composition ratio of Eu, Mn and Al 2 O 3 . In the present invention, it has been found that a composition centered on the following composition is effective. The chemical composition is represented by the general formula p (BaO) · q (MgO) · r (Al 2 O 3 ): xEu · yMn, and p, q, r, x, and y are (0.4n ≦ p ≦ 1), respectively. .1n), (0.4n ≦ q ≦ 1.1n), (2.0n ≦ r ≦ 7.0n), (0.005n ≦ x ≦ 0.15n), (0.025n ≦ y ≦ 0.75n) ) (Where n is a multiple).

発光体の発光輝度や蛍光発光スペクトルにおける二つのピーク強度比は、EuとMnの組成比や濃度、Eu、Mn及びAlの組成比に依存し、440〜470nm近傍の青色ピークをより高くしたい場合はMnに対するEuのモル比率を高く処方すれば良く、500〜550nm近傍の緑色のピーク強度及び残光強度をより高く、かつ、長くしたい場合はEuに対するMnのモル比率を高く処方すれば良い。 The two peak intensity ratios in the luminous intensity and fluorescence emission spectrum of the phosphor depend on the composition ratio and concentration of Eu and Mn, the composition ratio of Eu, Mn and Al 2 O 3 , and the blue peak near 440 to 470 nm is more If it is desired to increase the molar ratio of Eu with respect to Mn, it should be prescribed high. If the green peak intensity and afterglow intensity in the vicinity of 500 to 550 nm are higher, and if it is desired to be longer, the molar ratio of Mn to Eu should be increased. It ’s fine.

本発明にかかわる母体材料において、付活剤としてNdを追加することで発光体の残光時間を長くすることができる。残光時間を長くした発光体は、次の組成を中心とした組成が効果的であることを見いだした。化学組成が一般式p(BaO)・q(MgO)・r(Al2):xEu・yMn・zNdで表され、p、q、r、x、y、zは、それぞれ(0.4n≦p≦1.1n)、(0.4n≦q≦1.1n)、(2.0n≦r≦7.0n)、(0.005n≦x≦0.15n)、(0.025n≦y≦0.75n)、(0.005n≦z≦0.15n)の範囲(nは倍数)にある。 In the base material according to the present invention, the afterglow time of the light emitter can be increased by adding Nd as an activator. It has been found that a phosphor centering on the following composition is effective for a phosphor with a long afterglow time. Chemical composition formula p (BaO) · q (MgO ) · r (Al 2 O 3): represented by xEu · yMn · zNd, p, q, r, x, y, z are each (0.4 n ≦ p ≦ 1.1n), (0.4n ≦ q ≦ 1.1n), (2.0n ≦ r ≦ 7.0n), (0.005n ≦ x ≦ 0.15n), (0.025n ≦ y ≦ 0.75n) and (0.005n ≦ z ≦ 0.15n) (n is a multiple).

上記発光体を作製する原料は、高温焼成を行った後に酸化物となり得る材料であれば良く、炭酸塩、水酸化物、酸化物などを使用することができる。   The raw material for producing the light emitter may be any material that can be converted into an oxide after high-temperature firing, and carbonates, hydroxides, oxides, and the like can be used.

また、上記発光体を焼成する際、粒子成長をコントロールする目的でフッ素やホウ素を含む化合物を加えてもよく、本発明の発光輝度の向上等に関する効果または発光印刷物の作製の妨げにならない範囲内で使用することができる。   In addition, when firing the phosphor, a compound containing fluorine or boron may be added for the purpose of controlling particle growth, and within the range that does not interfere with the effects relating to the improvement of the light emission luminance of the present invention or the production of a light-emitting printed matter. Can be used in

本発明の発光体は、水素ガスを含む窒素ガス、アルゴンガスなどの還元性雰囲気中において1〜複数回の焼成で作製することができる。本発明においては、2段階の焼成により作製し、1段階目は大気雰囲気中において800℃〜1450℃の範囲で焼成を行い、2段階目は還元雰囲気中において1200℃〜1700℃の範囲で焼成を行う。   The light emitter of the present invention can be produced by firing one or more times in a reducing atmosphere such as nitrogen gas containing hydrogen gas or argon gas. In the present invention, it is produced by two-step firing, the first step is firing in the range of 800 ° C. to 1450 ° C. in the air atmosphere, and the second step is firing in the range of 1200 ° C. to 1700 ° C. in the reducing atmosphere. I do.

焼成時の反応時間は、蛍光発光スペクトルにおける二つのピークのピーク強度比に影響し、反応時間が長い場合は450〜480nm付近の青色のピークPがより高くなり、反応時間が短い場合は500〜550nm付近の緑色のピークPがより高くなる。また、残光強度は反応時間が短いほど高くなり、必要とする発光特性に応じてガス流量、反応時間等を設定することができる。 The reaction time during firing affects the peak intensity ratio of the two peaks in the fluorescence emission spectrum. When the reaction time is long, the blue peak P B near 450 to 480 nm is higher, and when the reaction time is short, 500 green peak P G in the vicinity of ~550nm becomes higher. Further, the afterglow intensity increases as the reaction time becomes shorter, and the gas flow rate, reaction time, etc. can be set according to the required light emission characteristics.

図1(a)に、青色のピーク強度と緑色のピーク強度が同等(P/P=1)となるように作製した発光体における蛍光スペクトルを示し、図1(b)に、作製した発光体におけるりん光スペクトルを示す。図1(a)に示す蛍光スペクトルは、可視波長域に明確な二つのピークを有し、かつ、二つのピークの強度がほぼ同等であることが分かる。また、図1(b)に示すりん光スペクトルは、明確な一つのピークを有していることが分かる。 FIG. 1 (a) shows the fluorescence spectrum of the luminescent material prepared so that the blue peak intensity and the green peak intensity are equivalent (P B / P G = 1), and FIG. The phosphorescence spectrum in a light-emitting body is shown. It can be seen that the fluorescence spectrum shown in FIG. 1 (a) has two distinct peaks in the visible wavelength region, and the two peaks have almost the same intensity. Moreover, it turns out that the phosphorescence spectrum shown in FIG.1 (b) has one clear peak.

作製した発光体を、用途に応じて公知の方法で洗浄、粉砕、分級を行う。印刷インキとして印刷によって基材に付与する場合、発光体は平均粒子径20μm以下の粒径とすることが望ましい。   The produced phosphor is washed, pulverized, and classified by a known method according to the application. When the printing ink is applied to the substrate by printing, it is desirable that the luminous body has a mean particle size of 20 μm or less.

作製した発光体を付与する方法に応じて、バインダー、助剤等と十分に混合し付与に適した特性を持つよう粘度等を調整し、インキ化又はペースト化する(以下、発光インキという。)。付与方式によって異なるが、発光体の配合割合は、1〜60重量%程度とすれば良い。発光強度と経済性の観点から見ると、10〜40重量%にすることがより望ましい。   Depending on the method of applying the produced phosphor, it is mixed with a binder, an auxiliary agent, etc., and the viscosity and the like are adjusted so as to have characteristics suitable for application, and it is converted into an ink or paste (hereinafter referred to as a luminescent ink). . Although it depends on the application method, the blending ratio of the light emitters may be about 1 to 60% by weight. From the viewpoint of light emission intensity and economy, it is more desirable that the content be 10 to 40% by weight.

発光インキは、発光を妨げない範囲で他の色材または機能性材料を混合してインキ化またはペースト化してもよく、あらかじめ基材上に付与された下地上に重ねて付与しても良い。   The luminescent ink may be formed into an ink or paste by mixing other color materials or functional materials within a range that does not interfere with light emission, or may be applied in a layered manner on a base previously provided on the substrate.

発光インキに使用するバインダーを適切に選択することで、紫外線の照射波長によって発光特性の異なる発光印刷物を作製することができる。バインダーとしては、例えば、(株)セイコーアドバンス製UV硬化型メジュームUVA9117が挙げられる。   By appropriately selecting the binder used in the luminescent ink, it is possible to produce a luminescent printed material having different luminescent properties depending on the irradiation wavelength of ultraviolet rays. Examples of the binder include UV curable medium UVA 9117 manufactured by Seiko Advance Co., Ltd.

発光インキを基材に印刷又はコーティング等により付与する方式としては、一般に公知の凹版、凸版、オフセット、スクリーン、グラビア、フレキソによる印刷もしくはインキジェット印刷又はコーティング等の方式を用いることができ、また、これらの印刷方式の組み合わせにより付与してもよい。このように作製した発光インキ塗布物を発光印刷物とする。   As a method for applying the luminescent ink to the substrate by printing or coating, generally known methods such as intaglio, letterpress, offset, screen, gravure, flexographic printing or ink jet printing or coating can be used. You may provide by the combination of these printing systems. Let the luminescent ink coating material produced in this way be a luminescent printed matter.

作製した発光印刷物を、電磁波などを照射することによる発光状態によって判別する方法には、簡易的な器具を用いる方法と機械を用いる方法が挙げられる。   Examples of the method for discriminating the produced luminescent printed material by the light emission state by irradiating electromagnetic waves or the like include a method using a simple instrument and a method using a machine.

電磁波などを照射することによる発光状態によって判別する方法の中の簡易的な器具を用いる方法として、紫外線照射装置により紫外光を照射し蛍光発光を目視によって観察する方法、残光検出装置(例えば、郵便切手用発光検出器)により紫外光照射停止後数msec後の残光出力測定を行い、残光出力の有無すなわち、あらかじめ定めておいた閾値範囲の出力を検知することで判別する方法が挙げられる。   As a method of using a simple instrument among methods for discriminating according to a light emission state by irradiating electromagnetic waves, a method of irradiating ultraviolet light with an ultraviolet irradiation device and visually observing fluorescence emission, an afterglow detection device (for example, A method of determining by measuring the afterglow output after a few msec after stopping the ultraviolet light irradiation and detecting the presence or absence of the afterglow output, that is, the output of a predetermined threshold range. It is done.

また、電磁波などを照射することによる発光状態によって判別する方法の中の機械を用いる方法として、例えば、特開2006−266810号公報で提案されている装置で判別することができる。この装置による判別方法は、一つの波長域の励起光を照射し、異なる二つの波長域(λ及びλ)を二つの受光部で、それぞれ励起光照射中(T)及び励起光照射停止後数msec後(T)に受光し、Tλ、Tλ、Tλ及びTλの発光強度をあらかじめ指定しておいた発光強度値と比較することで判別する方法である。 In addition, as a method using a machine among methods for discriminating according to a light emission state by irradiating electromagnetic waves or the like, it can be discriminated by, for example, an apparatus proposed in Japanese Patent Application Laid-Open No. 2006-266810. The discrimination method by this apparatus irradiates excitation light of one wavelength region, and irradiates two different wavelength regions (λ 1 and λ 2 ) with two light receiving units during excitation light irradiation (T 0 ) and excitation light irradiation, respectively. By receiving light a few milliseconds after the stop (T 1 ), and comparing the emission intensity of T 0 λ 1 , T 0 λ 2 , T 1 λ 1 and T 1 λ 2 with the emission intensity values specified in advance It is a method of discrimination.

また、別の機械を用いる判別方法として、例えば、特開2006−275578号公報で提案されている装置で判別することができる。この装置による判別方法は、一つの波長域の励起光を照射し、励起光照射中(T)及び励起光照射停止後数msec後(T)に受光し、TのスペクトルSが二つの異なる顕著なピークを有し、TのスペクトルSが一つのピークを有するスペクトルを示したことを確認し、判別することができる。また、励起光照射停止後の経過時間(T01、T02、T03、・・・)に従ってスペクトルを測定し、唯一のピークλの出力強度変化を追うこともできる。なお、得られたスペクトルの分光分布をさらにコンピューターで演算し、表色値(x,y,YまたはL,a,b)として比較し、判別することもできる。 Further, as a determination method using another machine, for example, the determination can be performed by an apparatus proposed in Japanese Patent Application Laid-Open No. 2006-275578. The discrimination method by this apparatus irradiates excitation light of one wavelength region, receives light during excitation light irradiation (T 0 ) and several msec after stopping the excitation light irradiation (T 1 ), and the spectrum S 0 of T 0 is obtained. It can be discriminated by confirming that the spectrum S 1 of T 1 has two different prominent peaks and the spectrum having one peak. Further, the spectrum can be measured according to the elapsed time (T 01 , T 02 , T 03 ,...) After stopping the excitation light irradiation, and the change in the output intensity of the only peak λ 2 can be followed. The spectral distribution of the obtained spectrum can be further calculated by a computer and compared as colorimetric values (x, y, Y or L * , a * , b * ) for discrimination.

発光印刷物の判別を、例えば、特開2006−266810号公報で提案されている装置で判別する場合、受光側で二つの波長域λ、λを選択して判別できるだけでなく、照射波長も選択することができる。照射波長域のうち、一つの波長域λを200nm〜300nmの間の波長とし、他を300nm〜400nmから一つまたは複数の波長域λ、λ…を選択し、それぞれの照射波長域における蛍光及び/または発光強度値を比較する。受光波長域は、λ=460nm±α及びλ=520nm±αの両方でもいずれか一方でもよい。200nm〜300nmの間のある波長λを照射したときの発光強度値と、300nm〜400nmの波長域から選択したλ、λ…を照射したときの発光強度値の差が決められた値より大きい場合に真正物とすることができる。 When discriminating the light-emitting printed matter, for example, with the apparatus proposed in Japanese Patent Application Laid-Open No. 2006-266810, not only can the two wavelength regions λ 1 and λ 2 be selected on the light receiving side, but also the irradiation wavelength You can choose. Among the irradiation wavelength regions, one wavelength region λ 3 is set to a wavelength between 200 nm and 300 nm, and the other is selected from one of a plurality of wavelength regions λ 4 , λ 5 . The fluorescence and / or emission intensity values at are compared. The light receiving wavelength range may be either λ 1 = 460 nm ± α and λ 1 = 520 nm ± α. A value in which the difference between the emission intensity value when irradiated with a certain wavelength λ 3 between 200 nm and 300 nm and the emission intensity value when irradiated with λ 4 , λ 5 ... Selected from the wavelength range of 300 nm to 400 nm is determined. If it is larger, it can be considered authentic.

本発明の発光体の使用に加えて、本発明の発光を妨げない範囲で他の色材または機能性材料を混合してインキ化またはペースト化して発光インキとした場合や、あらかじめ基材に付与された下地上に重ねて発光インキを付与した場合は、本発明の発光体以外の要素を別の方法で読み取り、本発明の発光体の判別結果と合わせ総合的に真偽を判別することができる。   In addition to the use of the phosphor of the present invention, other color materials or functional materials are mixed within the range that does not interfere with the light emission of the present invention to form an ink or paste to obtain a luminescent ink, or previously applied to a substrate. When the luminescent ink is applied on the base layer, the elements other than the illuminant of the present invention are read by another method, and the authenticity can be comprehensively determined together with the determination result of the illuminant of the present invention. it can.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these examples.

表1に示す配合の原料を十分に混合し、混合した試料を大気雰囲気中において、1400℃で4時間焼成した。焼成後の試料を再び混合し、還元雰囲気(N+H(4%) )中において、1650℃で2時間焼成した。この反応により得られた焼成物を発光体Aとする。発光体Aの組成は、0.95(BaO)・0.775(MgO)・5Al:0.05Eu・0.225Mnで表される。 The raw materials having the composition shown in Table 1 were sufficiently mixed, and the mixed sample was fired at 1400 ° C. for 4 hours in the air atmosphere. The fired sample was mixed again and fired at 1650 ° C. for 2 hours in a reducing atmosphere (N 2 + H 2 (4%)). The fired product obtained by this reaction is referred to as a luminous body A. The composition of the luminous body A is represented by 0.95 (BaO) · 0.775 (MgO) · 5Al 2 O 3 : 0.05Eu · 0.225Mn.

Figure 0005186687
Figure 0005186687

得られた発光体Aを、分光蛍光光度計((株)日立製作所製F−4500)で測定した。励起波長を365nmとした。図2(a)に、蛍光スペクトルを示し、図2(b)に、りん光スペクトルを示した。図2(a)に示すように、蛍光は460nmと520nmに顕著な蛍光発光ピークを示し、図2(b)に示すように、りん光は520nmに単一のピークを示した。発光色は、蛍光色は青緑色であり、りん光スペクトルモードではりん光色は緑色であった。   The obtained phosphor A was measured with a spectrofluorometer (F-4500, manufactured by Hitachi, Ltd.). The excitation wavelength was 365 nm. FIG. 2A shows a fluorescence spectrum, and FIG. 2B shows a phosphorescence spectrum. As shown in FIG. 2 (a), fluorescence showed significant fluorescence emission peaks at 460 nm and 520 nm, and as shown in FIG. 2 (b), phosphorescence showed a single peak at 520 nm. As for the emission color, the fluorescent color was blue-green, and the phosphorescence color was green in the phosphorescence spectrum mode.

図3に、得られた発光体AのX線回折パターンを示す。発光体AはBa0.956Mg0.912Al10.00817から成っていることが分かった。 In FIG. 3, the X-ray-diffraction pattern of the obtained light emitter A is shown. The illuminant A was found to consist of Ba 0.956 Mg 0.912 Al 10.008 O 17 .

得られた発光体Aを使用し、表2に示す配合で、T.K.ホモディスパー(特殊機械工業(株)製)を使用し撹拌混合により発光スクリーンインキAを作製した。スクリーン印刷により、200メッシュの版面を使用し模様状の図柄で上質紙に印刷した。印刷後は紫外線照射装置により紫外線を照射し、発光スクリーンインキAを乾燥させ発光印刷物Aを作製した。図4(a)に、発光体印刷物Aの365nm紫外光励起の蛍光スペクトルを示し、(b)に、りん光スペクトルを示す。   Using the obtained phosphor A, the composition shown in Table 2 K. Luminescent screen ink A was prepared by stirring and mixing using a homodisper (manufactured by Special Machinery Co., Ltd.). By screen printing, a 200-mesh printing plate was used and printed on high-quality paper with a patterned pattern. After printing, ultraviolet light was irradiated by an ultraviolet irradiation device, and the light emitting screen ink A was dried to produce a light emitting printed matter A. FIG. 4A shows a fluorescence spectrum of the phosphor printed matter A excited by 365 nm ultraviolet light, and FIG. 4B shows a phosphorescence spectrum.

Figure 0005186687
Figure 0005186687

得られた発光体Aを使用し、表3に示す配合で発光フレキソインキA´を遊星型ボールミル(フリッチュ社製)で作製した。フレキソ印刷方式にて、アニロックス線数80Line/cmとし、べた部分を含む線画状の図柄で上質紙及び蛍光増白されていない塗工紙上に発光フレキソインキA´を付与したのち紫外線照射を行い、インキを乾燥させ発光印刷物A´を作製した。発光印刷物A´の蛍光スペクトル及びりん光スペクトルは、図4に示した発光印刷物Aの蛍光スペクトル及びりん光スペクトルと同様であった。   Using the obtained phosphor A, a light-emitting flexographic ink A ′ having the composition shown in Table 3 was produced with a planetary ball mill (manufactured by Fritsch). With flexographic printing method, the number of anilox lines is 80 Line / cm, and after applying light emitting flexographic ink A ′ on high quality paper and non-fluorescent white coated paper with a line drawing pattern including solid parts, ultraviolet irradiation is performed, The ink was dried to produce a luminescent printed material A ′. The fluorescence spectrum and phosphorescence spectrum of the luminescent printed matter A ′ were the same as the fluorescence spectrum and phosphorescent spectrum of the luminescent printed matter A shown in FIG.

Figure 0005186687
Figure 0005186687

発光印刷物A及びA´に254nm、302nm及び365nmの紫外光を照射し、それぞれ青緑色の蛍光発光をすることを観察し、目視による判別を行った。   The luminescent printed materials A and A ′ were irradiated with ultraviolet light of 254 nm, 302 nm, and 365 nm, and observed to emit blue-green fluorescent light, respectively.

次に、発光印刷物A及びA´を、郵便切手用発光検出器を使用して3m/sで搬送し、画線部の緑発光の残光を検知したところ発光印刷物A及びA´ともに10msec後にも発光出力が得られ、発光体Aを付与した発光印刷物A及びA´が機械検知により判別できることを確認した。   Next, the luminescent printed materials A and A ′ were conveyed at 3 m / s using a light emission detector for postage stamps, and the afterglow of green light emission in the image area was detected. Further, it was confirmed that the light emitting output was obtained, and the light emitting printed materials A and A ′ provided with the light emitting body A could be discriminated by machine detection.

発光印刷物A及びA´を特開2006−266810号公報記載の真偽判別装置及び判別方法を利用して判別を行った。365nmを中心波長とした励起光を照射し、460nm±3nm(λ)及び520nm±3nm(λ)の二つの波長域における発光出力を二つの受光部で取得した。取得タイミングを励起光照射中(T)及び照射停止10msec後(T)としたとき、Tにおいてλ及びλの両方で十分な出力値が得られ、Tではλのみ十分な出力値が得られ、λの出力が0Vに近かった。この結果から、λ及びλの二つの蛍光発光ピークとλの一つのりん光ピークを有する発光体が付与されていることを確認できた。 The luminescent printed materials A and A ′ were determined using the authenticity determination device and the determination method described in JP-A-2006-266810. Excitation light having a central wavelength of 365 nm was irradiated, and light emission outputs in two wavelength regions of 460 nm ± 3 nm (λ 1 ) and 520 nm ± 3 nm (λ 2 ) were acquired by the two light receiving units. When the acquisition timing is during excitation light irradiation (T 1 ) and 10 msec after irradiation stop (T 2 ), sufficient output values are obtained at both λ 1 and λ 2 at T 1 , and only λ 2 is sufficient at T 2. Output value was obtained, and the output of λ 1 was close to 0V. From this result, it was confirmed that a phosphor having two fluorescent emission peaks of λ 1 and λ 2 and one phosphorescent peak of λ 2 was given.

発光印刷物A及びA´を特開2006−275578号公報記載の識別装置及び識別方法を利用し、365nmの励起光照射中及び照射停止10msec後のスペクトルを比較した。励起光照射中は同等の高さの二つの発光ピークを持つスペクトルが、照射を停止してから10msec後は、一つのピークを持つスペクトルが検出され、判別することができた。さらにこれをCIE、L表色系で表すと、発光印刷物Aにおいて、励起光照射中の発光色はL=79.85、a=−67.4、b=−34.2で表され、照射停止後は、L=470.48、a=−51.15、b=80.1で表された。 Using the identification device and identification method described in Japanese Patent Application Laid-Open No. 2006-275578, the spectra of the luminescent printed materials A and A ′ were compared during irradiation with excitation light of 365 nm and after 10 msec of irradiation stop. During excitation light irradiation, a spectrum having two emission peaks having the same height was detected and discriminated after 10 msec after the irradiation was stopped. Further, when this is expressed by CIE, L * a * b * color system, in the luminescent printed matter A, the luminescent color during excitation light irradiation is L * = 79.85, a * = − 67.4, b * = − It was represented by 34.2, and after irradiation was stopped, L * = 470.48, a * = − 51.15, and b * = 80.1.

表4に示す配合の原料を十分に混合し、混合した試料を大気雰囲気中において、1400℃で4時間焼成した。焼成後の試料を再び混合し、還元雰囲気(N+H(4%) )中において、1650℃で45分間焼成した。この反応により得られた焼成物を発光体Bとする。発光体B組成は、0.9(BaO)・0.775(MgO)・5Al:0.05Eu・0.225Mn・0.05Nd・で表される。 The raw materials having the composition shown in Table 4 were sufficiently mixed, and the mixed sample was fired at 1400 ° C. for 4 hours in the air atmosphere. The fired sample was mixed again and fired at 1650 ° C. for 45 minutes in a reducing atmosphere (N 2 + H 2 (4%)). The fired product obtained by this reaction is referred to as a luminous body B. The composition of the luminous body B is represented by 0.9 (BaO) · 0.775 (MgO) · 5Al 2 O 3 : 0.05Eu · 0.225Mn · 0.05Nd ·.

Figure 0005186687
Figure 0005186687

残光特性の評価法の一つとして活性度が使用でき、活性度が大きい方が残光の減衰速度が速いことを示す。発光体A及び発光体Bの残光減衰(Decay)を分光蛍光光度計((株)日立製作所製F−4500)で測定し、活性度を算出評価した。励起光を365nmとし、1000msまでの減衰を測定し算出した活性度は、発光体Aが−202.4であったのに対し、発光体Bは−140.9であり、発光体Aよりも発光体Bの方が、残光保持時間が長くなっていることが数字から分かる。   Activity can be used as one method for evaluating afterglow characteristics, and the greater the activity, the faster the decay rate of afterglow. Afterglow decay (Decay) of the illuminant A and the illuminant B was measured with a spectrofluorometer (F-4500, manufactured by Hitachi, Ltd.), and the activity was calculated and evaluated. The activity calculated by measuring the attenuation up to 1000 ms with the excitation light at 365 nm was -202.4 for the illuminant A, whereas it was -140.9 for the illuminant B. It can be seen from the figures that the luminous body B has a longer afterglow retention time.

得られた発光体Bを使用し、表5に示す配合で、T.K.ホモディスパー(特殊機械工業(株)製)を使用し撹拌混合により発光スクリーンインキBを作製した。スクリーン印刷により、200メッシュの版面を使用し模様状の図柄で上質紙に印刷した。印刷後は紫外線照射装置により紫外線を照射し、発光スクリーンインキBを乾燥させ発光印刷物Bを作製した。図5(a)に、発光体印刷物Bの365nm紫外光励起の蛍光スペクトルを示し、(b)に、りん光スペクトルを示した。   Using the obtained phosphor B, the composition shown in Table 5 K. Luminescent screen ink B was prepared by stirring and mixing using a homodisper (manufactured by Tokushu Kikai Kogyo Co., Ltd.). By screen printing, a 200-mesh printing plate was used and printed on high-quality paper with a patterned pattern. After printing, ultraviolet light was irradiated by an ultraviolet irradiation device, and the light emitting screen ink B was dried to produce a light emitting printed matter B. FIG. 5A shows a fluorescence spectrum of the phosphor printed matter B excited by 365 nm ultraviolet light, and FIG. 5B shows a phosphorescence spectrum.

Figure 0005186687
Figure 0005186687

得られた発光体Bを使用し、表5に示す配合で発光フレキソインキB´を遊星型ボールミル(フリッチュ社製)で作製した。フレキソ印刷方式にて、アニロックス線数80Line/cmとし、べた部分を含む線画状の図柄で上質紙及び蛍光増白されていない塗工紙上に発光フレキソインキB´を付与したのち紫外線照射を行い、インキを乾燥させ発光印刷物B´を作製した。発光印刷物B´の蛍光スペクトル及びりん光スペクトルは、図5に示した発光印刷物Bの蛍光スペクトル及びりん光スペクトルと同様であった。   Using the obtained phosphor B, a light-emitting flexographic ink B ′ having the composition shown in Table 5 was produced with a planetary ball mill (manufactured by Fritsch). With flexographic printing method, the number of anilox lines is 80 Line / cm, and after applying light emitting flexo ink B ′ on high quality paper and coated paper that is not fluorescent whitened with a line drawing pattern including a solid part, ultraviolet irradiation is performed, The ink was dried to produce a luminescent printed material B ′. The fluorescence spectrum and phosphorescence spectrum of the luminescent printed matter B ′ were the same as the fluorescence spectrum and phosphorescent spectrum of the luminescent printed matter B shown in FIG.

Figure 0005186687
Figure 0005186687

発光印刷物B及びB´に254nm、302nm及び365nmの紫外光を照射し、それぞれ青緑色の蛍光発光をすることを観察し、目視による判別を行った。   The luminescent printed materials B and B ′ were irradiated with ultraviolet light of 254 nm, 302 nm, and 365 nm, and observed to emit blue-green fluorescent light, respectively.

次に、発光印刷物B及びB´を、郵便切手用発光検出器を使用して2m/sで搬送し、画線部の緑発光の残光を検知したところ発光印刷物B及びB´ともに十分な出力が得られ、発光体Bを付与した発光印刷物B及びB´が機械検知により判別できることを確認した。なお、励起光消灯後の測定タイミングは、15msec後である。   Next, the luminescent printed materials B and B ′ are conveyed at 2 m / s using a light emission detector for postage stamps, and when the afterglow of green light emission in the image area is detected, both the luminescent printed materials B and B ′ are sufficient. An output was obtained, and it was confirmed that the luminescent printed materials B and B ′ provided with the luminescent material B could be discriminated by machine detection. Note that the measurement timing after the excitation light is extinguished is 15 msec later.

発光体B付与部分は、励起光照射停止10msec後に測定した残光強度より搬送速度をゆっくりとし、15msec後に測定した残光強度の方が、出力が高かった。装置の特性上、搬送速度を遅くすることで励起時間が長くなっており、本発明の発光体Bは飽和励起時間が長くなったと考えられるが、15msec後でも十分に判別することが可能であった。   The light-emitting body B application part made the conveyance speed slower than the afterglow intensity measured 10 msec after stopping the excitation light irradiation, and the output was higher in the afterglow intensity measured after 15 msec. Due to the characteristics of the apparatus, the excitation time is prolonged by slowing the conveying speed, and it is considered that the phosphor B of the present invention has a longer saturation excitation time, but it can be sufficiently discriminated even after 15 msec. It was.

発光印刷物B及びB´を特開2006−275578号公報記載の識別装置及び識別方法を利用し、254nmの励起光照射中及び照射停止15msec後のスペクトルを比較した。励起光照射中は同等の高さの二つの発光ピークを持つスペクトルが、照射停止15msec後は、一つのピークを持つスペクトルが検出され、判別することができた。   Using the identification device and the identification method described in Japanese Patent Application Laid-Open No. 2006-275578, spectra of the luminescent printed materials B and B ′ were compared during irradiation with excitation light of 254 nm and after 15 msec of irradiation stop. During excitation light irradiation, a spectrum having two emission peaks with the same height was detected and discriminated after 15 msec after the irradiation was stopped.

上記実施例1で作製した発光体Aを、表7に示す配合で、T.K.ホモディスパー(特殊機械工業(株)製)を使用し撹拌混合によりスクリーンインキ化し、200メッシュの模様状版面を使用してスクリーン印刷物を作製し、これを発光印刷物Cとした。   The luminescent material A produced in Example 1 was formulated with the formulation shown in Table 7 and T.P. K. Using a homodisper (manufactured by Tokki Kikai Kogyo Co., Ltd.), a screen ink was formed by stirring and mixing, and a screen printed material was produced using a 200-mesh patterned printing plate.

Figure 0005186687
Figure 0005186687

図6に、発光印刷物Cの発光波長460nm及び520nmにおける励起スペクトルを示した。このように、200nm〜300nmにかけて感度が低下した発光印刷物を作製できることが分かった。図7(a)に、発光印刷物Cの254nm、302nm及び365nm紫外光励起の蛍光スペクトルを示し、(b)に、りん光スペクトルを示した。302nm及び365nmの励起光を照射し場合と比較し、254nmの発光強度が大幅に小さくなっていることが分かる。   FIG. 6 shows excitation spectra of the luminescent printed material C at emission wavelengths of 460 nm and 520 nm. As described above, it was found that a light-emitting printed material having reduced sensitivity from 200 nm to 300 nm can be produced. FIG. 7A shows fluorescence spectra of the luminescent printed material C excited by ultraviolet light at 254 nm, 302 nm, and 365 nm, and FIG. 7B shows a phosphorescence spectrum. It can be seen that the emission intensity at 254 nm is significantly smaller than when irradiated with excitation light at 302 nm and 365 nm.

発光印刷物Cを、特開2006−266810号公報記載の真偽判別装置及び判別方法を利用して判別した。まず、励起光1として254nmの紫外光を照射し、励起光照射停止直後(T)の460nm±3nm(λ)及び520nm±3nm(λ)の発光強度と照射停止10msec後(T)の460nm±3nm(λ)及び520nm±3nm(λ)の発光強度値を測定した。次に、励起光2として365nmの紫外光を照射し、同様に発光強度を測定した。励起光1及び励起光2それぞれにおいて、T及びTの発光強度は、λでは十分高い出力値を示したのに対し、λではほとんど出力がなかった。また、励起光1照射停止直後のλの発光強度出力値(O)と励起光2照射停止直後のλの発光強度出力値(O)は、2.5倍以上の差が出ていた。励起光1及び励起光2の励起光照射中及び照射停止後のλとλの出力値の比較及びOとOを比較することで判別を行うことができた。なお、あらかじめ多数の印刷物によって出力を測定し基準値を定め、判定の閾値を定めておくことで、「真」または「偽」の判定を得ることも可能である。 The luminescent printed material C was determined using the authenticity determination device and the determination method described in JP-A-2006-266810. First, ultraviolet light of 254 nm is irradiated as excitation light 1 , emission intensity of 460 nm ± 3 nm (λ 1 ) and 520 nm ± 3 nm (λ 2 ) immediately after stopping excitation light irradiation (T 0 ), and 10 msec after stopping irradiation (T 1 ) Of 460 nm ± 3 nm (λ 1 ) and 520 nm ± 3 nm (λ 2 ). Next, the excitation light 2 was irradiated with 365 nm ultraviolet light, and the emission intensity was measured in the same manner. In each of the excitation light 1 and the excitation light 2, the emission intensity of T 0 and T 1 showed a sufficiently high output value at λ 1 , whereas there was almost no output at λ 2 . Further, the difference between the emission intensity output value (O 1 ) of λ 1 immediately after the stop of the excitation light 1 irradiation and the emission intensity output value (O 2 ) of λ 1 immediately after the stop of the excitation light 2 irradiation is 2.5 times or more. It was. It was possible to discriminate by comparing the output values of λ 1 and λ 2 during the irradiation of the excitation light of the excitation light 1 and the excitation light 2 and after stopping the irradiation, and comparing O 1 and O 2 . It is also possible to obtain a “true” or “false” determination by measuring output in advance using a large number of printed materials, determining a reference value, and determining a determination threshold value.

(比較例1)
青色発光体及び緑色蛍光・りん光体を混合使用し、表8に示す配合で発光スクリーンインキDをT.K.ホモディスパー(特殊機械工業(株)製)を使用し撹拌混合により作製し、発光フレキソインキEを、遊星型ボールミル(フリッチュ社製)を使用して作製した。
(Comparative Example 1)
A blue luminescent material and a green fluorescent / phosphor material are mixed and used, and the luminescent screen ink D is prepared by T.I. K. A homodisper (manufactured by Tokugi Koki Kogyo Co., Ltd.) was used for stirring and mixing, and a light emitting flexo ink E was prepared using a planetary ball mill (manufactured by Fritsch).

Figure 0005186687
Figure 0005186687

発光スクリーンインキCにより、200メッシュの模様状の版面を使用してスクリーン印刷により発光印刷物Cを作製し、発光フレキソインキDにより発光印刷物Dを、アニロックス線数80Line/cmとし、べた部分を含む線画状の図柄でフレキソ印刷によって作製した。図8に、励起波長365nmとしたときの、発光印刷物D及び発光印刷物Eの蛍光スペクトルを示した。発光印刷物D及び発光印刷物Eは、2種の発光体の配合比率及び全体に対する配合割合が同じであるにも関わらず、発光インキ作製方法等の条件が異なるため、二つの蛍光スペクトルピーク強度に違いが生じている。   A light-emitting printed material C is produced by screen printing using a 200-mesh patterned plate surface with light-emitting screen ink C, and light-emitting printed material D is formed with light-emitting flexo ink D with an anilox line number of 80 Line / cm, and includes a solid image. It was prepared by flexographic printing with a pattern of shapes. FIG. 8 shows fluorescence spectra of the luminescent printed material D and the luminescent printed material E when the excitation wavelength is 365 nm. The luminescent printed material D and the luminescent printed material E are different in the two fluorescent spectrum peak intensities because the mixing ratio of the two types of luminescent materials and the mixing ratio to the whole are the same, but the conditions such as the luminescent ink preparation method are different. Has occurred.

(a)は、本発明の一実施例における、発光体の蛍光スペクトルを示す図であり、(b)は、発光体のりん光スペクトルを示す図である。(A) is a figure which shows the fluorescence spectrum of the light-emitting body in one Example of this invention, (b) is a figure which shows the phosphorescence spectrum of a light-emitting body. (a)は、本発明の一実施例における、発光体Aの365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。(A) is a figure which shows the fluorescence spectrum of 365 nm ultraviolet light excitation of the light-emitting body A in one Example of this invention, (b) is a figure which shows a phosphorescence spectrum. 本発明の一実施例における、発光体AのX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the light-emitting body A in one Example of this invention. (a)は、本発明の一実施例における、発光体印刷物Aの365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。(A) is a figure which shows the fluorescence spectrum of 365 nm ultraviolet light excitation of the light-emitting body printed matter A in one Example of this invention, (b) is a figure which shows a phosphorescence spectrum. (a)は、本発明の一実施例における、発光体印刷物Bの365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。(A) is a figure which shows the fluorescence spectrum of 365 nm ultraviolet light excitation of the light-emitting body printed matter B in one Example of this invention, (b) is a figure which shows a phosphorescence spectrum. 本発明の一実施例における、発光印刷物Cの発光波長460nm及び520nmにおける励起スペクトルを示す図である。It is a figure which shows the excitation spectrum in the light emission wavelength 460nm and 520nm of the luminescent printed matter C in one Example of this invention. (a)は、本発明の一実施例における、発光印刷物Cの254nm、302nm及び365nm紫外光励起の蛍光スペクトルを示す図であり、(b)は、りん光スペクトルを示す図である。(A) is a figure which shows the fluorescence spectrum of 254 nm, 302 nm, and 365 nm ultraviolet light excitation of the luminescent printed matter C in one Example of this invention, (b) is a figure which shows a phosphorescence spectrum. 本発明の比較例における、発光体印刷物D及びEの365nm紫外光励起の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of 365 nm ultraviolet light excitation of the light-emitting body printed matter D and E in the comparative example of this invention.

符号の説明Explanation of symbols

1 発光印刷物Dの蛍光スペクトル
2 発光印刷物Eの蛍光スペクトル
1 Fluorescence spectrum of luminescent printed matter D 2 Fluorescent spectrum of luminescent printed matter E

Claims (5)

p(BaO)・q(MgO)・r(Al)からなる母体材料に、付活剤であるEu及びMnを添加してなり、
化学組成が一般式p(BaO)・q(MgO)・r(Al):xEu・yMnで表され、
p、q、r、x、yは、それぞれ
0.4n≦p≦1.1n
0.4n≦q≦1.1n
2.0n≦r≦7.0n
0.005n≦x≦0.15n
0.025n≦y≦0.75nの範囲(nは倍数)にあり、
可視波長域に二つの顕著なピークがある蛍光スペクトルを持ち、かつ、長波長側のピークが残光特性を有することを特徴とする残光性発光体。
Eu and Mn which are activators are added to a base material made of p (BaO) · q (MgO) · r (Al 2 O 3 ),
The chemical composition is represented by the general formula p (BaO) · q (MgO) · r (Al 2 O 3 ): xEu · yMn,
p, q, r, x, and y are 0.4n ≦ p ≦ 1.1n, respectively.
0.4n ≦ q ≦ 1.1n
2.0n ≦ r ≦ 7.0n
0.005n ≦ x ≦ 0.15n
Range 0.025n ≦ y ≦ 0.75n Ri (n is a multiple) near,
Has a fluorescence spectrum there are two prominent peaks in the visible wavelength range, and afterglow luminescent material peak on the long wavelength side is characterized Rukoto which have a decay characteristic.
p(BaO)・q(MgO)・r(Al)からなる母体材料に、付活剤であるEu、Mn及びNdを添加してなり、
化学組成が一般式p(BaO)・q(MgO)・r(Al):xEu・yMn・zNdで表され、
p、q、r、x、y、zは、それぞれ
0.4n≦p≦1.1n
0.4n≦q≦1.1n
2.0n≦r≦7.0n
0.005n≦x≦0.15n
0.025n≦y≦0.75n
0.005n≦z≦0.15nの範囲(nは倍数)にあり、
可視波長域に二つの顕著なピークがある蛍光スペクトルを持ち、かつ、長波長側のピークが残光特性を有することを特徴とする残光性発光体。
Eu, Mn and Nd as activators are added to a base material made of p (BaO) · q (MgO) · r (Al 2 O 3 ),
The chemical composition is represented by the general formula p (BaO) · q (MgO) · r (Al 2 O 3 ): xEu · yMn · zNd,
p, q, r, x, y, and z are 0.4n ≦ p ≦ 1.1n, respectively.
0.4n ≦ q ≦ 1.1n
2.0n ≦ r ≦ 7.0n
0.005n ≦ x ≦ 0.15n
0.025n ≦ y ≦ 0.75n
In the range of 0.005n ≦ z ≦ 0.15n (n is a multiple),
Has a fluorescence spectrum there are two prominent peaks in the visible wavelength range, and afterglow luminescent material peak on the long wavelength side is characterized Rukoto which have a decay characteristic.
p(BaO)・q(MgO)・r(Al)で表される母体材料に対し、付活剤であるEu及びMnを添加して混合物を製造し、
前記混合物を、第1段目焼成として、大気雰囲気下において800℃〜1450℃で2〜6時間焼成し、その後、第2段目焼成として、還元雰囲気下において1500℃〜1700℃で0.25〜4時間焼成することを特徴とする残光性発光体の製造方法。
Eu and Mn as activators are added to the base material represented by p (BaO) · q (MgO) · r (Al 2 O 3 ) to produce a mixture,
The mixture is fired at 800 ° C. to 1450 ° C. for 2 to 6 hours in the air atmosphere as the first stage firing, and then 0.25 at 1500 ° C. to 1700 ° C. in the reducing atmosphere as the second stage firing. A method for producing an afterglow luminescent material, which is baked for 4 hours.
p(BaO)・q(MgO)・r(Al)で表される母体材料に対し、付活剤であるEu、Mn及びNdを添加して混合物を製造し、
前記混合物を、第1段目焼成として、大気雰囲気下において800℃〜1450℃で2〜6時間焼成し、その後、第2段目焼成として、還元雰囲気下において1500℃〜1700℃で0.25〜4時間焼成することを特徴とする残光性発光体の製造方法。
Activating agents Eu, Mn and Nd are added to the base material represented by p (BaO) · q (MgO) · r (Al 2 O 3 ) to produce a mixture,
The mixture is fired at 800 ° C. to 1450 ° C. for 2 to 6 hours in the air atmosphere as the first stage firing, and then 0.25 at 1500 ° C. to 1700 ° C. in the reducing atmosphere as the second stage firing. A method for producing an afterglow luminescent material, which is baked for 4 hours.
請求項1又は2記載の残光性発光体を含有したインキを、凹版印刷、スクリーン印刷、グラビア印刷、フレキソ印刷、凸版印刷、オフセット印刷又はコーティング印刷のいずれか一つ以上の印刷方式により基材に固着してなることを特徴とする発光印刷物。 The ink containing the afterglow illuminant according to claim 1 or 2 is printed on a substrate by any one or more printing methods of intaglio printing, screen printing, gravure printing, flexographic printing, letterpress printing, offset printing or coating printing. A light-emitting printed matter, characterized by being fixed to
JP2007274860A 2007-10-23 2007-10-23 Afterglow luminescent material, method for producing the same and luminescent printed material Expired - Fee Related JP5186687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274860A JP5186687B2 (en) 2007-10-23 2007-10-23 Afterglow luminescent material, method for producing the same and luminescent printed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274860A JP5186687B2 (en) 2007-10-23 2007-10-23 Afterglow luminescent material, method for producing the same and luminescent printed material

Publications (2)

Publication Number Publication Date
JP2009102497A JP2009102497A (en) 2009-05-14
JP5186687B2 true JP5186687B2 (en) 2013-04-17

Family

ID=40704517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274860A Expired - Fee Related JP5186687B2 (en) 2007-10-23 2007-10-23 Afterglow luminescent material, method for producing the same and luminescent printed material

Country Status (1)

Country Link
JP (1) JP5186687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464540B2 (en) * 2008-11-26 2014-04-09 独立行政法人 国立印刷局 Printed matter with mixed color fluorescence
JP5610121B2 (en) * 2010-01-13 2014-10-22 独立行政法人 国立印刷局 Afterglow luminescent composition, afterglow ink composition, and authenticity printed matter
JP5610122B2 (en) * 2010-01-13 2014-10-22 独立行政法人 国立印刷局 Afterglow luminescent material and method for producing the same, afterglow luminescent ink composition, and authenticity printed matter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003835A (en) * 2000-04-17 2002-01-09 Konica Corp Inorganic fluorescent substance, dispersing substance of inorganic fluorescent substance and ink for ink jet printer, toner for laser printer, plasma display, electroluminescence apparatus, active luminous liquid crystal apparatus, and image
JP2002180043A (en) * 2000-12-08 2002-06-26 Nemoto & Co Ltd Vacuum ultraviolet excitation-type phosphor
JP2003124526A (en) * 2001-10-11 2003-04-25 Taiwan Lite On Electronics Inc White light source manufacturing method
JP2004075892A (en) * 2002-08-20 2004-03-11 Konica Minolta Holdings Inc Inkjet recording ink and image formation method
JP2004091623A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Plasma display panel
JP2004269870A (en) * 2003-02-20 2004-09-30 Matsushita Electric Ind Co Ltd Plasma display panel and method for producing phosphor
FR2855169B1 (en) * 2003-05-23 2006-06-16 Rhodia Elect & Catalysis PRECURSOR COMPOUNDS OF ALKALINO-EARTH OR RARE EARTH ALUMINATES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS A LUMINOPHORE PRECURSOR, IN PARTICULAR
JP4561194B2 (en) * 2003-08-01 2010-10-13 三菱化学株式会社 Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
JP4266339B2 (en) * 2003-10-28 2009-05-20 化成オプトニクス株式会社 Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same
US7674400B2 (en) * 2004-10-05 2010-03-09 Nippon Sheet Glass Company, Limited Light-emitting body dispersed with phosphor particles, method for producing same and material or article containing such light-emitting body
JP4794235B2 (en) * 2005-08-02 2011-10-19 シャープ株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2009102497A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US10457087B2 (en) Security element formed from at least two materials present in partially or fully overlapping areas, articles carrying the security element, and authentication methods
US4451530A (en) Security paper with authenticity features in the form of luminescing substances
US8092713B2 (en) Method for marking a material and resulting marked material
CN1306001C (en) Security printing liquid and method using nanoparticles
GB2258659A (en) An anti-stokes luminescent material
Fu Orange and Red Emitting Long‐Lasting Phosphors MO: Eu3+(M= Ca, Sr, Ba)
US8329062B2 (en) Waterproof multiple rare-earth co-activated long-afterglow luminescent material
KR20120115313A (en) Controlling the detectability of an article and method for authenticating the article
US20160312115A1 (en) Zinc sulphide phosphor having photo-and electroluminescent properties, process for producing same, and security document, security feature and method for detecting same
JP5610122B2 (en) Afterglow luminescent material and method for producing the same, afterglow luminescent ink composition, and authenticity printed matter
US8404153B2 (en) White persistent phosphor blend or layered structure
KR102355891B1 (en) A checking method of forgery and alteration of security printed matter with security ink
JP5186687B2 (en) Afterglow luminescent material, method for producing the same and luminescent printed material
JP5610121B2 (en) Afterglow luminescent composition, afterglow ink composition, and authenticity printed matter
DE102008050605A1 (en) coating process
JP5799434B2 (en) Afterglow luminescent material and method for producing the same, afterglow luminescent ink composition, and authenticity printed matter
JP5186686B2 (en) Multifunctional illuminant, method for producing the same and luminescent printed material
JP5881010B2 (en) Afterglow illuminant
CN102597159B (en) For the luminescent material synthetics of low-pressure discharge lamp
KR19980027003A (en) Invisible light emitting material and manufacturing method
KR101978366B1 (en) Infrared luminescent material excited by infrared ray and method of manufacturing the same
JP6562401B2 (en) Afterglow illuminant and method for determining authenticity of printed matter using afterglow illuminant
JP5610154B2 (en) Luminous body
WO2018211829A1 (en) Afterglowing acid sulfide fluorescent body, and luminescent composition for authentication
JP2017114095A (en) Forgery-proof printed matter, light emission ink for printing the same, and authenticity determination method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees