JP4265982B2 - Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system - Google Patents

Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system Download PDF

Info

Publication number
JP4265982B2
JP4265982B2 JP2004049585A JP2004049585A JP4265982B2 JP 4265982 B2 JP4265982 B2 JP 4265982B2 JP 2004049585 A JP2004049585 A JP 2004049585A JP 2004049585 A JP2004049585 A JP 2004049585A JP 4265982 B2 JP4265982 B2 JP 4265982B2
Authority
JP
Japan
Prior art keywords
state
state quantity
refrigerant
compressor
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004049585A
Other languages
Japanese (ja)
Other versions
JP2005241089A (en
Inventor
正樹 豊島
浩司 山下
重徳 川脇
記忠 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2004049585A priority Critical patent/JP4265982B2/en
Publication of JP2005241089A publication Critical patent/JP2005241089A/en
Application granted granted Critical
Publication of JP4265982B2 publication Critical patent/JP4265982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は冷凍装置や空調装置に使用される冷凍サイクル装置の圧縮機のような機器、冷凍サイクル装置の冷媒回路、送風機他の機器や装置類の故障診断に関する技術のものである。   The present invention relates to a technique relating to failure diagnosis of equipment such as a compressor of a refrigeration cycle apparatus used in a refrigeration apparatus or an air conditioner, a refrigerant circuit of a refrigeration cycle apparatus, a blower, or other equipment or devices.

従来の圧縮機の故障診断装置は、フィルタを通して音響信号を取りこみ、周波数分析し主成分を正常時のデータベースと比較して異常音を検出しようというものがある。特許文献1参照。又回転機器の異常診断を振動センサから波形データを取り出し周波数特徴量と時間特徴量とを抽出しこの両方のデータを基準データに照合させたりニューラルネットワークに入力して異常の有無と原因を特定するものがある。特許文献2参照。又空調機の故障診断として、センサーや設定値、異常信号などの制御データを取りこみ、更に圧力、温度などの運転データとで、各故障の動作状態のシーケンスをマイコンに記憶させて故障診断を行う技術が提案されている。特許文献3参照。一方、故障診断に多変量解析の手法であるマハラノビスの距離を使用する試みが度々行われている。古くは振動センサの信号を正常時と比較するもの、特許文献4参照、や最近では、多種類のセンサを用いて劣化の兆候を見つけようとするもの、特許文献5参照、などが知られている。   A conventional compressor failure diagnosis apparatus includes an acoustic signal obtained through a filter, frequency analysis, and comparison of a main component with a normal database to detect abnormal sound. See Patent Document 1. In order to diagnose abnormalities in rotating equipment, waveform data is extracted from the vibration sensor, and frequency and temporal feature values are extracted. Both data are collated with reference data and input to a neural network to identify the presence and cause of the abnormality. There is something. See Patent Document 2. For air conditioner failure diagnosis, control data such as sensors, setting values, and abnormal signals are taken in. Further, the operation status sequence of each failure is stored in the microcomputer with operation data such as pressure and temperature, and failure diagnosis is performed. Technology has been proposed. See Patent Document 3. On the other hand, many attempts have been made to use Mahalanobis distance, which is a method of multivariate analysis, for failure diagnosis. In the old days, there are known ones that compare vibration sensor signals with normal ones, see Patent Document 4, and recently, those that try to find signs of deterioration using many types of sensors, see Patent Document 5, etc. Yes.

又特許文献6に記載された従来の冷凍サイクル装置においては、液溜(受液タンク)と補助タンクとを連通管によって連通させることによって液溜と補助タンクとの液冷媒を同液面レベルとさせ、補助タンクに設置したフロート式レベルセンサにより液面レベルを検出し、検出した液溜の液面が予め定められた正常液面レベル以上か否かによって冷媒漏れの検知がなされていた。   Further, in the conventional refrigeration cycle apparatus described in Patent Document 6, the liquid refrigerant in the liquid reservoir and the auxiliary tank is set to the same liquid level by connecting the liquid reservoir (liquid receiving tank) and the auxiliary tank through the communication pipe. The liquid level is detected by a float type level sensor installed in the auxiliary tank, and the refrigerant leakage is detected depending on whether or not the detected liquid level is higher than a predetermined normal liquid level.

特開平11−117875号公報(図1、図7、0029欄)Japanese Patent Application Laid-Open No. 11-117875 (columns of FIGS. 1, 7, and 0029) 特開平10−274558号公報(0037欄、0049欄、図22)Japanese Patent Laid-Open No. 10-274558 (column 0037, column 0049, FIG. 22) 特開平2−110242号公報(第4図〜第11図)JP-A-2-110242 (FIGS. 4 to 11) 特開昭59−68643号公報(第23頁左上から右上欄)JP 59-68643 (page 23, upper left to upper right column) 特開2000−259222号公報(図3〜図9)JP 2000-259222 A (FIGS. 3 to 9) 特開平10−103820号公報JP-A-10-103820

従来の音や振動など特定の信号から故障を解析するという試みは極端な異常状態は判断できるが精度の良い装置にはならないという問題があった。例えば圧縮機近傍の騒音値、あるいは振動加速度を測定し、これらの値が予め設定された許容限界値を超えた場合に警報手段から異常信号を発生しようとしても、特定の運転状態量の閾値にしか注目しておらず、冷凍サイクル装置全体を含めた微妙なかつ複合的な状態量の変化を捉えることができないために、故障の予兆が表れた時点で異常の可能性検知をすることはできなかった。   Conventional attempts to analyze a failure from a specific signal such as sound or vibration have a problem that an extreme abnormal state can be determined, but an accurate apparatus cannot be obtained. For example, if the noise value near the compressor or vibration acceleration is measured, and if these values exceed the preset allowable limit value, an alarm signal is generated from the alarm means, the threshold value of the specific operating state amount is set. However, since it is not possible to capture the subtle and complex changes in the state quantity including the entire refrigeration cycle system, it is not possible to detect the possibility of an abnormality when a sign of failure appears. It was.

また、精度を上げようとするとあまりに多くのデータを取りこみ、且つ、さまざまな状態を仮定した判断が必要で、センサーのみならずマイコン容量の増大や対象機器が変わるたびにマイコンの変更など費用がかかりすぎるし、故障判定の閾値は設計値あるいは特定機の試験により決定するために、実機の個体差を考慮することができず誤検知の可能性が高かった。   In addition, when trying to improve accuracy, it takes too much data, and it is necessary to make judgments assuming various conditions, and it increases costs not only for sensors but also for microcomputer changes each time the target device changes and the capacity of the microcomputer increases. In addition, since the threshold for failure determination is determined by design values or specific machine tests, individual differences between actual machines cannot be taken into account, and the possibility of false detection is high.

また、多変量解析の手法を用いたとしても、閾値に対する判定が不充分か、あるいはそのための大量のデータが必要であるため、実用化できず、故障原因を特定することができず、故障に対するメンテナンスに迅速に応じることができなかった。   Even if a multivariate analysis method is used, it is not possible to determine the cause of the failure because the judgment on the threshold is insufficient or a large amount of data is required, and the cause of the failure cannot be specified. We were unable to respond quickly to maintenance.

また従来の冷凍サイクル装置は、液溜の液面のレベルを測定するために、特別なセンサを取り付ける必要があり、非常に高価な装置になってしまうという問題点があった。   In addition, the conventional refrigeration cycle apparatus has a problem that a special sensor needs to be attached in order to measure the level of the liquid level in the liquid reservoir, resulting in a very expensive apparatus.

また、従来の冷凍サイクル装置は、特別なセンサを装置に組み付けるため、既存の冷凍サイクル装置への設置が困難であるという問題点があった。   Further, the conventional refrigeration cycle apparatus has a problem that it is difficult to install the existing refrigeration cycle apparatus because a special sensor is assembled to the apparatus.

本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、機器、例えば圧縮機単体又は冷凍サイクルのように装置全体も含め複合的な状態量判定に基く、故障の早期予兆の検出を可能にするものを得ることである。又本発明の目的は、故障判定における実機個体差を吸収し、何時でも何処でも何にでも使える安くて実用的な製品を得ることである。又本発明の目的は、故障判定における故障原因を特定出来、精度良く信頼性の高い技術を得ることである。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is based on complex state quantity determination including equipment, for example, a compressor alone or the entire apparatus such as a refrigeration cycle. It is to obtain what makes it possible to detect early signs of failure. Another object of the present invention is to absorb a difference between actual machines in failure determination and to obtain a cheap and practical product that can be used anytime, anywhere. Another object of the present invention is to obtain a technology that can specify a cause of failure in failure determination and has high accuracy and high reliability.

またこの発明は、一般的な温度測定手段および圧力測定手段のみの情報で機器単体又は冷凍サイクル全体の異常を検知できる安価で信頼性の高い装置または診断や監視の技術を得ることを目的としている。また、この発明は、既存の機器又は装置への適用が容易な故障診断や監視の技術を得ることを目的としている。   Another object of the present invention is to obtain an inexpensive and highly reliable apparatus or diagnosis and monitoring technology that can detect an abnormality of a single device or the entire refrigeration cycle using only information on general temperature measurement means and pressure measurement means. . Another object of the present invention is to obtain a failure diagnosis and monitoring technique that can be easily applied to existing devices or apparatuses.

また、この発明は、複数のデータの相関関係を利用することで、各異常の判別を行い異常を早期に発見できる診断や監視の技術を得るだけでなく故障時期予測などが可能なものを得ること目的としている。   In addition, the present invention uses a correlation of a plurality of data to obtain not only a diagnosis and monitoring technology that can detect each abnormality and detect the abnormality early, but also a failure time prediction. That is the purpose.

本発明の機器診断装置は、機器の運転状態において運転の影響を受けて連続して発生する複数の波形データを計測し、この計測した波形データを各波形に関連した平均値、標準偏差など各波形データ毎に複数のパラメータに処理する波形データ処理手段と、波形データ処理手段にて得られた複数のパラメータを複数の変数として組み合わせ相互に関連させた演算にて機器運転時の状態量を算出する演算手段と、演算手段の演算した状態量が設定された範囲内かどうかを比較して機器が正常な運転状態かどうかを判断する判断手段と、を備え、複数の波形データは音、振動、回転トルクおよび電気量等異なる現象の波形データ、又は、近傍など関連する異なる位置の同一現象の波形データである。   The device diagnostic apparatus of the present invention measures a plurality of waveform data continuously generated under the influence of operation in the operation state of the device, and the measured waveform data is an average value, a standard deviation, and the like related to each waveform. Calculates the state quantity at the time of equipment operation by combining the waveform data processing means that processes into multiple parameters for each waveform data and the multiple parameters obtained by the waveform data processing means as a combination of variables And calculating means for comparing whether or not the state quantity calculated by the calculating means is within a set range, and determining whether or not the device is in a normal operating state. Waveform data of different phenomena such as rotational torque and electric quantity, or waveform data of the same phenomenon at different positions related to the vicinity.

本発明の機器診断装置は、機器が吸引し吐出する流体の物理量、機器を駆動する駆動力等から少なくとも1種類の計測値もしくは計測値から算出した平均値などの計測量を計測する計測手段と、計測手段にて計測中に音、振動、回転トルク及び電気量などから少なくとも1種類の波形データを計測する第2の計測手段と、この第2の計測手段から計測した波形データをその波形に関連した平均値、標準偏差等の数値データに処理する波形データ処理手段と、計測手段から得られた計測値もしくは計測量及び前記第2の計測手段の波形データを波形データ処理手段にて処理し得られた複数の数値データを、複数の変数として組み合わせ相互に関連させた演算にて機器運転時の状態量を算出する演算手段と、演算手段の演算した状態量が設定された範囲内かどうかを比較して機器が正常な運転状態かどうかを判断する判断手段と、を備えたものである。   The apparatus diagnostic apparatus according to the present invention includes a measuring unit that measures a measurement quantity such as a physical quantity of fluid sucked and discharged by the apparatus, a driving force that drives the apparatus, or the like, or an average value calculated from the measurement value. The second measuring means for measuring at least one type of waveform data from sound, vibration, rotational torque, electric quantity, etc. during measurement by the measuring means, and the waveform data measured from the second measuring means as the waveform Waveform data processing means for processing numerical data such as related average values, standard deviations, etc., and the waveform data processing means processes the measurement value or measurement amount obtained from the measurement means and the waveform data of the second measurement means. A calculation means for calculating a state quantity at the time of operation of the device by a calculation in which a plurality of obtained numerical data is combined as a plurality of variables and related to each other, and a state quantity calculated by the calculation means are set Device by comparing whether the range is one that was equipped with a determination unit that determines whether the normal operating condition.

本発明の冷凍サイクル装置は、圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させて冷凍サイクルを形成し、圧縮機の吐出側から膨張手段に至る流路のいずれかの位置の冷媒の高圧圧力、高圧圧力位置での凝縮温度、圧縮機の吐出側から凝縮機に至る流路のいずれかの位置の冷媒の吐出温度、のうちの少なくとも1つの状態量、及び、膨張手段から圧縮機の吸入側に至る流路のいずれかの位置の冷媒の低圧圧力、低圧圧力位置での冷媒の蒸発温度、圧縮機の吸入側から蒸発器にいたるいずれかの位置の冷媒の吸入温度のうちの少なくとも1つの状態量、の2つの状態量の少なくとも一方を測定する冷媒状態量測定手段と、圧縮機の筐体もしくは吐出側の配管もしくは吸入側の配管のいずれかの位置の振動、圧縮機の周囲のいずれかの位置の空気の音圧、圧縮機を駆動する電気量、の内の少なくとも1つの脈動状態を測定する脈動状態量測定手段と、冷媒状態量測定手段及び脈動状態量測定手段により測定される複数の状態量から得られる複数の数値を複数の変数として組合せ相互に関連する集合体を演算し演算結果を算出する演算手段と、を備え、各演算手段の演算結果から冷凍サイクルの運転状態を判断するものである。   In the refrigeration cycle apparatus of the present invention, a compressor, a condenser, an expansion means, and an evaporator are connected by piping, a refrigerant is circulated therein to form a refrigeration cycle, and a flow from the discharge side of the compressor to the expansion means. State of at least one of the high pressure of the refrigerant at any position of the passage, the condensation temperature at the high pressure position, and the discharge temperature of the refrigerant at any position of the flow path from the discharge side of the compressor to the condenser The amount of refrigerant, the low pressure of the refrigerant at any position in the flow path from the expansion means to the suction side of the compressor, the evaporation temperature of the refrigerant at the low pressure position, and any one from the suction side of the compressor to the evaporator Refrigerant state quantity measuring means for measuring at least one of the two state quantities of the refrigerant suction temperature at the position, and either the compressor casing, the discharge side pipe or the suction side pipe Position vibration, compressor A pulsation state quantity measuring means for measuring at least one pulsation state of the sound pressure of air at any of the surrounding positions and an electric quantity for driving the compressor, a refrigerant state quantity measuring means, and a pulsation state quantity measurement means; A plurality of numerical values obtained from a plurality of state quantities to be measured as a plurality of variables, and a calculation means for calculating a set associated with each other and calculating a calculation result, and from the calculation result of each calculation means, This is to judge the driving state.

本発明の冷凍サイクル装置は、圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させる冷凍サイクルと、圧縮機の吐出側から膨張手段に至る流路のいずれかの位置の冷媒の高圧圧力、高圧圧力位置の冷媒の凝縮温度、圧縮機の吐出側から凝縮器に至る流路のいずれかの位置の冷媒の吐出温度、の内の少なくとも1つの状態量、および、膨張手段から圧縮機の吸入側に至る流路のいずれかの位置の冷媒の低圧圧力、低圧圧力の蒸発温度、圧縮機の吸入側から蒸発器に至る流路のいずれかの位置の冷媒の吸入温度、の内の少なくとも1つの状態量、の2つの状態量の少なくとも一方を測定する冷媒状態量測定手段と、圧縮機の筐体もしくは圧縮機の吐出側配管もしくは圧縮機の吸入側配管のいずれかの位置の振動を測定する第一の脈動状態量測定手段、圧縮機の周囲のいずれかの位置の空気の音圧を測定する第二の脈動状態量測定手段、圧縮機を駆動する電流を測定する第三の脈動状態量測定手段、の内の少なくとも2つの脈動状態量測定手段と、を備え、冷媒状態量測定手段から得られた冷媒状態量、及び、少なくとも2つの脈動状態量測定手段から得られた状態量とを組み合わせ相互に関連させた演算にて前記冷凍サイクルの運転状態を判断するものである。   The refrigeration cycle apparatus of the present invention includes any one of a refrigeration cycle in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein, and a flow path from the discharge side of the compressor to the expansion means. At least one state quantity among the high pressure of the refrigerant at the position, the condensation temperature of the refrigerant at the high pressure position, the discharge temperature of the refrigerant at any position of the flow path from the discharge side of the compressor to the condenser, And the low pressure of the refrigerant at any position in the flow path from the expansion means to the suction side of the compressor, the evaporation temperature at the low pressure, the refrigerant at any position in the flow path from the suction side of the compressor to the evaporator Refrigerant state quantity measuring means for measuring at least one of two state quantities, and a compressor casing, a compressor discharge side pipe, or a compressor suction side pipe Measure vibration at any position of First pulsating state quantity measuring means, second pulsating state quantity measuring means for measuring the sound pressure of air at any position around the compressor, and third pulsating state for measuring the current driving the compressor And at least two pulsating state quantity measuring means of the quantity measuring means, and a refrigerant state quantity obtained from the refrigerant state quantity measuring means and a state quantity obtained from at least two pulsating state quantity measuring means The operation state of the refrigeration cycle is determined by a calculation that is associated with each other.

本発明の機器診断方法は、機器の運転状態において運転の影響を受けて連続して発生する複数の波形データを計測し、この計測した波形データを各波形に関連した平均値、標準偏差など各波形データ毎に複数の数値とする波形データ処理ステップと、複数の数値を複数の変数として組み合わせ相互に関連する集合体を演算し演算結果を算出する演算ステップと、演算結果が設定された閾値内かどうかを比較して機器が正常な運転状態かどうかを判断する判断ステップと、を備えたものである。   The device diagnosis method of the present invention measures a plurality of waveform data generated continuously under the influence of operation in the operation state of the device, and the measured waveform data is averaged, standard deviation, etc. related to each waveform. A waveform data processing step that sets a plurality of numerical values for each waveform data, a calculation step that calculates a calculation result by calculating an aggregate related to each other by combining a plurality of numerical values as a plurality of variables, and within a threshold value where the calculation result is set And a determination step for determining whether or not the device is in a normal operation state.

この発明は、機器の騒音や振動など異なる種類の波形データから機器が正常か異常かを診断したり、冷凍サイクル装置の運転状態を診断するもので、簡単で確実な診断、異常検知、更には故障時期予測などが可能となる。又本発明は精度が良く、実用的で、実機個体差の吸収、故障原因の特定が可能となる診断技術が得られる。又本発明は冷凍サイクルの監視が確実に行われる。   This invention diagnoses whether the equipment is normal or abnormal from different types of waveform data such as noise and vibration of the equipment, and diagnoses the operating state of the refrigeration cycle device. Simple and reliable diagnosis, abnormality detection, Failure time prediction is possible. In addition, the present invention provides a diagnostic technique that is highly accurate, practical, and capable of absorbing individual machine differences and identifying the cause of failure. In the present invention, the refrigeration cycle is reliably monitored.

実施の形態1.
本発明の実施の形態1の構成について図1〜図4を用いて説明する。図1は本発明の全体概念図であって、1は例えば冷凍機、空調機などの冷凍サイクル装置、2は冷凍サイクル装置1の運転状態量を検出し、検出結果の演算、記憶、表示画面もしくは警告ランプなどへの出力およびデータを外部と送受信する装置などを内蔵した基板やマイコン、3は電話回線またはLAN回線、無線などの外部との通信を行う手段、4は冷凍サイクル装置1の遠隔監視および制御などの集中管理を行なう遠隔監視室、5は遠隔監視室4内に設置された冷凍サイクル装置1とのデータ送受信を行なうための表示および演算機能を有するコンピュータ、6は冷凍サイクル装置1に設けられた液晶ディスプレイなどの表示装置、7はタッチパネルもしくはボタンなどの入力装置、8は異常発生を報知するための警告ランプ、9は異常発生を報知するための音を発生するスピーカーである。冷凍機、空調機などの冷凍サイクル装置1はビルに置かれた空調、スーパーなど大型店舗に設置された冷蔵庫や空調システム、あるいは小型店舗などの冷凍・空調装置、あるいは集合住宅の各家庭の空調装置などであり、遠隔監視室はそれらの複数の設備を監視するものであっても、個別の設備を監視するものであっても良い。あるいは各住宅から監視用コンピュータに接続されていても良い。
Embodiment 1 FIG.
The configuration of the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall conceptual diagram of the present invention, in which 1 is a refrigeration cycle apparatus such as a refrigerator or an air conditioner, 2 is an operation state quantity of the refrigeration cycle apparatus 1, and a detection result is calculated, stored, and displayed. Alternatively, a board or microcomputer incorporating a device for transmitting / receiving data to / from the warning lamp and the like, 3 is a means for communicating with the outside such as a telephone line or a LAN line, and wireless, 4 is a remote of the refrigeration cycle apparatus 1 A remote monitoring room for centralized management such as monitoring and control, 5 is a computer having a display and calculation function for transmitting and receiving data to and from the refrigeration cycle apparatus 1 installed in the remote monitoring room 4, and 6 is a refrigeration cycle apparatus 1. A display device such as a liquid crystal display provided on the touch panel, 7 is an input device such as a touch panel or buttons, 8 is a warning lamp for notifying the occurrence of abnormality, and 9 is a different device. Is a speaker that generates a sound for notifying the occurrence. The refrigeration cycle apparatus 1 such as a refrigerator or an air conditioner is an air conditioner installed in a building, a refrigerator or an air conditioning system installed in a large store such as a supermarket, a refrigeration / air conditioner such as a small store, or an air conditioner in an apartment house. The remote monitoring room may monitor the plurality of facilities, or may monitor individual facilities. Or you may connect to the computer for monitoring from each house.

図2は、図1の冷凍サイクル装置1の詳細を表した構成図である。11は圧縮機、12は凝縮器、13は膨張弁、14は蒸発器、15は圧縮機近傍の音圧を検出するマイクや直接圧縮機に接触させて圧縮機の振動などを検出する検知素子などの1つ又は複数の波形を測定する脈動状態量測定手段、16は冷凍サイクル1の圧力、温度などの冷媒状態を実行値、平均値、ピーク値などの数値として測定する冷媒状態量測定手段、17は測定した連続データである音圧信号等に対し増幅、A/D変換などの信号処理を行う信号処理手段、18は脈動状態量測定手段15および冷媒状態量測定手段16の測定データを基に各種演算を行なう演算手段、19は過去の演算結果、基準値などを記憶する記憶手段、20は演算結果と記憶内容を比較する比較手段、21は比較の結果を踏まえて判断を行なう判断手段、22は判断結果を表示装置や遠隔監視手段5に出力する出力手段である。なお図2の凝縮器12、蒸発器14には空冷用の送風機が設けられている。本発明の構成を圧縮機のような機器の診断装置とする場合は、図2の構成の測定手段、演算手段、記憶手段、比較手段などを圧縮機に取りつけた基板に設け、場合によっては出力された信号により警報する警報機なども圧縮機に取り付けることにより、機器は運転のみならず、自己診断して自分で後に述べる故障予知まで予測し放置できる自己完結型の機器が得られる。このような構成に対しては脈動状態量測定手段として音よりも振動や圧縮機駆動用モーターに供給される電源電流などの測定装置が簡単なものの方がコンパクトにまとまることになる。なお音圧については周波数毎の補正がなされていないフラットな特性のものを用いても、A特性や、C特性などの聴感補正が行われた後の脈動状態量信号を用いても構わない。又音圧はマイクで測定しても騒音計で測定しても良い。   FIG. 2 is a configuration diagram illustrating details of the refrigeration cycle apparatus 1 of FIG. 1. 11 is a compressor, 12 is a condenser, 13 is an expansion valve, 14 is an evaporator, 15 is a microphone that detects sound pressure in the vicinity of the compressor, or a detection element that directly contacts the compressor to detect vibrations of the compressor. A pulsating state quantity measuring means for measuring one or a plurality of waveforms such as 16, and 16 is a refrigerant state quantity measuring means for measuring a refrigerant state such as pressure and temperature of the refrigeration cycle 1 as numerical values such as an execution value, an average value, and a peak value. , 17 is a signal processing means for performing signal processing such as amplification and A / D conversion on the sound pressure signal or the like which is the measured continuous data, and 18 is the measurement data of the pulsation state quantity measuring means 15 and the refrigerant state quantity measuring means 16. Calculation means for performing various calculations based on the above, 19 is a storage means for storing past calculation results, reference values, etc., 20 is a comparison means for comparing the calculation results with the stored contents, and 21 is a determination for making a determination based on the comparison results. Means 22 This is an output means for outputting the determination result to the display device or the remote monitoring means 5. In addition, the condenser 12 and the evaporator 14 of FIG. 2 are provided with an air cooling fan. When the configuration of the present invention is a diagnostic device for equipment such as a compressor, the measurement means, calculation means, storage means, comparison means, etc. of the configuration of FIG. 2 are provided on a board attached to the compressor, and in some cases output By attaching an alarm device or the like that gives an alarm based on the received signal to the compressor, not only the device can be operated, but also a self-contained device that can self-diagnose and predict and predict the failure prediction that will be described later is obtained. For such a configuration, a simpler measuring device such as vibration and power supply current supplied to the compressor driving motor than the sound as the pulsation state quantity measuring means is more compactly collected. The sound pressure may be a flat characteristic that is not corrected for each frequency, or may be a pulsation state quantity signal that has been subjected to auditory correction such as the A characteristic or the C characteristic. The sound pressure may be measured with a microphone or a sound level meter.

図3は脈動状態量測定手段15および信号処理手段17の詳細を表した脈動状態量検出手段詳細図であり、圧縮機11近傍の音圧を検出するシステムの構成を表したもので、32はフィルタ−およびアンプ、33はA/D変換器、34はFFT演算器を表す。   FIG. 3 is a detailed view of the pulsation state quantity detection means showing details of the pulsation state quantity measurement means 15 and the signal processing means 17, and shows the configuration of a system for detecting the sound pressure in the vicinity of the compressor 11. A filter and an amplifier, 33 is an A / D converter, and 34 is an FFT calculator.

図4は圧縮機異常判定の制御ブロック図を表す。図において、41は冷凍サイクルの各部圧力、温度などの状態量A、42は圧縮機周辺の音圧(状態量B)であり、状態量AおよびBを基に演算手段18において複合変数演算処理を行う。そして過去のデータや設定閾値などが記憶されている記憶手段19、記憶データと現在値を比較する比較手段20、比較結果を基に総合的な判断を行う判断手段21、判断結果を出力する出力手段22、出力された判定結果は表示手段23にて表示、または遠隔地にて運転状態を監視する遠隔監視手段5へと情報伝達される。図1、図2の説明では、冷媒を循環させて暖房や冷房などの空調や冷蔵庫や冷凍倉庫などの冷凍を行う冷媒回路、この冷媒回路の運転状態を検出するセンサー類、演算などの制御に必要なマイコン、基板類を冷凍サイクル装置内に収納し、運転状態を計測し、演算し比較評価して判断するところまでをこの装置内で行う説明としている。しかしながら、冷凍サイクル近傍にはセンサー類15、16にて計測41、42するところまで、あるいは信号処理17、32、33、34まで設け、演算18以降は遠隔監視室4に設けても良い。   FIG. 4 shows a control block diagram of the compressor abnormality determination. In the figure, 41 is a state quantity A such as the pressure and temperature of each part of the refrigeration cycle, 42 is a sound pressure (state quantity B) around the compressor, and the composite variable calculation process in the calculation means 18 based on the state quantities A and B. I do. Then, storage means 19 storing past data and setting thresholds, comparison means 20 for comparing the stored data with the current value, determination means 21 for making a comprehensive determination based on the comparison result, and output for outputting the determination result The means 22 and the output determination result are displayed on the display means 23 or transmitted to the remote monitoring means 5 for monitoring the driving state at a remote place. In the description of FIGS. 1 and 2, a refrigerant circuit that circulates the refrigerant to perform air conditioning such as heating and cooling and refrigeration such as a refrigerator and a freezer warehouse, a sensor that detects the operating state of the refrigerant circuit, and a control of calculation, etc. Necessary microcomputers and substrates are housed in the refrigeration cycle apparatus, and the operation state is measured, calculated, compared, evaluated, and judged in this apparatus. However, in the vicinity of the refrigeration cycle, the sensors 15 and 16 may be provided up to the measurement 41 and 42, or the signal processing 17, 32, 33, and 34 may be provided, and the computation 18 and later may be provided in the remote monitoring room 4.

続いて、圧縮機異常判定の内容詳細について説明する。始めに図2にて冷凍サイクル装置の動作について説明する。冷凍サイクル装置1の冷媒回路内には冷媒が封入されており、冷媒は圧縮機11にて圧縮加圧され、凝縮器12にて高温高圧の冷媒は空冷ファンもしくは水冷などの液体冷却方式(図示せず)にて冷却液化され、膨張弁13にて減圧膨張されて低温低圧の冷媒となり、蒸発器14にて空冷ファンもしくは水などの液体熱媒体(図示せず)との熱交換により蒸発して加熱気化される。そして、気化した冷媒は圧縮機11の吸入側へ戻り、再び圧縮加圧工程へと移る。またこのとき凝縮器12にて冷媒と熱交換された空気もしくは液体は高温加熱され暖房熱源に利用されるか外気と熱交換され、蒸発器14にて冷媒と熱交換された空気もしくは液体は低温冷却され冷房もしくは冷蔵・冷凍熱源として利用されるか外気と熱交換をする。使用される冷媒は二酸化炭素、炭化水素、ヘリウムのような自然冷媒、HFC410A、HFC407cなどの代替冷媒など、塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒を使用し、冷媒を循環させる圧縮機などの流体機器は、レシプロ、ロータリー、スクロール、などの各種タイプとする。なお、本発明の異常判定は新規製品のみならず既存の既に設置されている製品に対しても、不足するセンサーを後付で追加することにより実現が可能である。   Next, details of the compressor abnormality determination will be described. First, the operation of the refrigeration cycle apparatus will be described with reference to FIG. A refrigerant is sealed in the refrigerant circuit of the refrigeration cycle apparatus 1, the refrigerant is compressed and pressurized by the compressor 11, and the high-temperature and high-pressure refrigerant is cooled by a liquid cooling system such as an air cooling fan or water cooling (see FIG. The refrigerant is cooled and liquefied by an expansion valve 13 to become a low-temperature and low-pressure refrigerant and evaporated by the evaporator 14 by heat exchange with an air cooling fan or a liquid heat medium (not shown) such as water. It is heated and vaporized. The vaporized refrigerant returns to the suction side of the compressor 11 and moves again to the compression and pressurization step. At this time, the air or liquid exchanged with the refrigerant in the condenser 12 is heated at a high temperature and used as a heating heat source or exchanged with the outside air, and the air or liquid exchanged with the refrigerant in the evaporator 14 has a low temperature. It is cooled and used as a cooling or refrigeration / freezing heat source or exchanges heat with the outside air. Refrigerants used include natural refrigerants such as carbon dioxide, hydrocarbons, and helium, refrigerants that do not contain chlorine, such as alternative refrigerants such as HFC410A and HFC407c, or fluorocarbon refrigerants such as R22 and R134a that are used in existing products. The fluid equipment such as a compressor that circulates the refrigerant is of various types such as a reciprocating, a rotary, and a scroll. The abnormality determination of the present invention can be realized not only for new products but also for existing products that are already installed by adding a deficient sensor later.

次に、脈動状態量検出の動作について図3に基き説明する。マイクや加速度素子などの脈動状態量測定手段15にて測定された脈動する音圧は電気信号に変換され32のローパスフィルターもしくはバンドパスフィルターにて判定に必要な周波数域の音圧等のみを取り出し、アンプにて信号の増幅を行なう。そして、A/D変換器33にてアナログ信号をデジタル信号に変換し、ここで変換結果の信号は2分岐され、一方の時系列音圧データは直接演算手段18へ、他方は、FFT演算器34により時系列音圧データを周波数毎の音圧データへ変換した後に演算手段18へデータが伝達される。なお、ここでFFTとは高速フーリエ変換の略称であり、信号波形を時間の関数から周波数の関数へ高速に変換する解析手法である。此処で脈動流検出として騒音の音圧信号のみで説明するが、後述するように音圧信号を複数箇所から拾ってきても良いし、振動、電圧、電流など各種の脈動流検出を行うことでもよいし、異なる種類の脈動流を複数検出させても良い。なおここでいう振動とは、可聴領域の振動だけでなく材料の亀裂の発生や進展に伴ってパルス状に発生する超音波領域の弾性波であるアコースティック・エミッション(AE)を感度の良い圧電物質(PZT、ジルコン酸チタン酸鉛など)のセンサーなどによって測定したものでも良い。このセンサーで圧縮機内の圧力逃がし弁などに発生する亀裂、回転装置の回転子と固定子とのこすれ、急激なトルク変化等による材料のひずみをパルスの数、パルスの大きさ、2個以上のセンサーのパルス到達時間の差から計算してパルス発生位置などを測定することができる。   Next, the operation of detecting the pulsation state quantity will be described with reference to FIG. The pulsating sound pressure measured by the pulsating state quantity measuring means 15 such as a microphone or an acceleration element is converted into an electric signal, and only the sound pressure in the frequency range necessary for determination is extracted by a 32 low-pass filter or band-pass filter. The signal is amplified by an amplifier. Then, the A / D converter 33 converts the analog signal into a digital signal. Here, the conversion result signal is branched into two, one time-series sound pressure data is directly sent to the computing means 18, and the other is the FFT computing unit. After the time-series sound pressure data is converted into sound pressure data for each frequency by 34, the data is transmitted to the calculation means 18. Here, FFT is an abbreviation for Fast Fourier Transform, and is an analysis technique for converting a signal waveform from a time function to a frequency function at high speed. Here, only the sound pressure signal of noise will be described as pulsating flow detection. However, as will be described later, sound pressure signals may be picked up from a plurality of locations, or various pulsating flow detections such as vibration, voltage, and current may be performed. Alternatively, a plurality of different types of pulsating flows may be detected. The term “vibration” as used herein refers to not only the vibration in the audible region but also acoustic emission (AE), which is an elastic wave in the ultrasonic region that is generated in a pulsed manner as the material cracks and propagates. What was measured with the sensor etc. (PZT, lead zirconate titanate, etc.) may be used. With this sensor, the number of pulses, the magnitude of the pulse, and two or more sensors can be used to check for material distortion caused by cracks in the pressure relief valve in the compressor, rubbing between the rotor and stator of the rotating device, and sudden torque changes. The pulse generation position and the like can be measured by calculating from the difference between the pulse arrival times.

なお、図2および図3に示した信号処理装置手段17から出力手段22の構成は、各手段一式を基板として冷凍サイクル装置1内に内蔵する方式について説明したものであり、この他、例えば演算手段18から出力手段22までの機能を図1の遠隔監視室4内に設けられたコンピュータ5に持たせ、コンピュータ5にて各手段の処理を行う方式にしても構わない。また図3のFFT34についてもFFT演算を前記コンピュータ5あるいは演算手段18にて計算を行う方法としてもよく、各手段の機能は冷凍サイクル装置1本体内あるいは遠隔監視室4のいずれに配置してもその機能を満たすことができればよい。なお、遠隔監視室4内に設けられたコンピュータ5として説明するが、これは複数の機器を集中監視するのに好都合であるからだが、特定機器を対象とする場合はモバイルのような移動用の監視装置を使用し、サービスマンが常に移動しながら監視できるようにしても良いことは当然である。   The configuration of the signal processing means 17 to the output means 22 shown in FIG. 2 and FIG. 3 is a description of a system in which each set of means is built in the refrigeration cycle apparatus 1 as a substrate. A function from the means 18 to the output means 22 may be provided in the computer 5 provided in the remote monitoring room 4 of FIG. 3 may be a method in which the FFT calculation is performed by the computer 5 or the calculation means 18, and the function of each means may be arranged either in the refrigeration cycle apparatus 1 main body or in the remote monitoring room 4. What is necessary is just to satisfy the function. In addition, although it demonstrates as the computer 5 provided in the remote monitoring room 4, since this is convenient for centralized monitoring of several apparatuses, when it targets a specific apparatus, it is for movement like a mobile. Of course, it is possible to use a monitoring device so that the service person can constantly monitor while moving.

次に、本発明の一例の機器である圧縮機の異常判定の動作について図4の制御ブロック図および図2に基き説明を行う。状態量Aすなわち冷凍サイクルの状態量41は、冷凍サイクルの運転状態を把握するために必要な冷媒回路を流れる冷媒の各部圧力、温度の状態量、あるいは圧縮機電流値、消費電力などの駆動力などであり、図2の冷媒状態量測定手段16にて状態量としての数値の測定が行なわれる。なお、冷凍サイクルの運転状態を把握するためには、図2において、圧縮機11の吐出側から膨張弁13に至る流路のいずれかの位置における冷媒の圧力すなわち高圧、高圧の飽和温度すなわち凝縮温度、圧縮機11の吐出側から凝縮器12に至るいずれかの位置の冷媒温度すなわち吐出温度のうちの少なくとも1つの状態量か、あるいは、膨張弁13から圧縮機11の吸入側に至る流路のいずれかの位置の冷媒圧力すなわち低圧、低圧の飽和温度すなわち蒸発温度、圧縮機11の吸入側から蒸発器14へ至る流路のいずれかの位置の冷媒温度すなわち吸入温度のうちの少なくとも1つの状態量の少なくともどちらかを測定すればよい。なお、冷温水を熱源とするチラーなどにおいて年間を通して熱源温度にほとんど変動がない場合には、影響を無視するか、高圧側もしくは低圧側の条件にほとんど変動がないため、変動が少ない状態量については計測を行わず固定入力値として扱うので1つの状態量測定で良いが、もし固定入力として扱うことが難しければ両方の状態量を測定すれば良い。圧力の測定は冷媒の圧力を電気信号へ変換する圧力変換器などを用いて行い、温度の測定はサーミスタ、熱電対などの温度検出手段を用いる。なお、圧力、温度測定位置については、対象とする冷凍サイクルの構成、動作特性に合わせて、位置の変更、測定位置の増設を行い、より的確に冷凍サイクル運転状態を把握するように構成してもよい。状態量Aの測定は、ある一定間隔例えば1分間隔などで測定が行われ、演算手段17へ情報伝達される。なお現地で簡易的な異常判定を行う場合などでは、状態量Aを機器付属の圧力メータ、温度計などから読み取り手入力で入力しても構わない。又高圧や低圧などの状態量の中にはほとんど値が変動しないものがあるような装置、機器では圧力や温度などの変動しない状態量を固定値としてあらかじめ設定しておくか測定値とは別に手入力とし、これらの数値と測定値を組み合わせる形としても構わない。すなわち冷媒状態量測定手段が測定する状態量の代わりに、あらかじめ設定された数値あるいは機器の運転状態から読み取りもしくは推測された数値を使用することも可能である。駆動トルクや電流を計測することについては後で説明する。   Next, the abnormality determination operation of the compressor which is an example of the present invention will be described based on the control block diagram of FIG. 4 and FIG. The state quantity A, that is, the state quantity 41 of the refrigeration cycle is the driving force such as the pressure of each part of the refrigerant flowing through the refrigerant circuit, the temperature state quantity, or the compressor current value, power consumption, etc. necessary for grasping the operating state of the refrigeration cycle. The numerical value as the state quantity is measured by the refrigerant state quantity measuring means 16 in FIG. In order to grasp the operating state of the refrigeration cycle, in FIG. 2, the refrigerant pressure, that is, the high pressure, the high pressure saturation temperature, that is, the condensation at any position in the flow path from the discharge side of the compressor 11 to the expansion valve 13. Temperature, at least one state quantity of refrigerant temperature at any position from the discharge side of the compressor 11 to the condenser 12, that is, the discharge temperature, or a flow path from the expansion valve 13 to the suction side of the compressor 11 At least one of the refrigerant pressure, i.e., the low pressure, the low-pressure saturation temperature, i.e., the evaporation temperature, and the refrigerant temperature, i.e., the intake temperature, at any position in the flow path from the suction side of the compressor 11 to the evaporator 14. What is necessary is just to measure at least one of the state quantities. In the case of a chiller that uses cold / hot water as the heat source, if there is almost no change in the heat source temperature throughout the year, the influence is neglected or there is almost no change in the conditions on the high-pressure side or low-pressure side. Since it is handled as a fixed input value without performing measurement, it is sufficient to measure one state quantity. However, if it is difficult to treat as a fixed input, both state quantities may be measured. The pressure is measured using a pressure converter that converts the refrigerant pressure into an electrical signal, and the temperature is measured using temperature detection means such as a thermistor or a thermocouple. The pressure and temperature measurement positions are configured so that the refrigeration cycle operation status can be grasped more accurately by changing the position and adding measurement positions according to the configuration and operating characteristics of the target refrigeration cycle. Also good. The measurement of the state quantity A is performed at a certain fixed interval, for example, 1 minute interval, and the information is transmitted to the calculation means 17. When a simple abnormality determination is performed locally, the state quantity A may be input manually by reading from a pressure meter, a thermometer, or the like attached to the device. Also, in some devices and equipment where the values of state quantities such as high pressure and low pressure do not fluctuate, set the state quantities that do not fluctuate such as pressure and temperature as fixed values in advance or separate from the measured values. Manual input may be used, and these numerical values and measured values may be combined. That is, instead of the state quantity measured by the refrigerant state quantity measuring means, it is also possible to use a preset numerical value or a numerical value read or estimated from the operating state of the device. Measuring drive torque and current will be described later.

状態量B例えば圧縮機周辺の音圧42は、圧縮機の運転状態を把握するために必要な情報であり、図2の脈動状態量測定手段15にて状態量の測定が行なわれる。ここで圧縮機周辺音圧の測定位置は、圧縮機11の筐体もしくは圧縮機吐出側配管、もしくは圧縮機吸入側配管のいずれかの位置の近傍である。情報量Bは、脈動する時系列波形データであり、例えば図5、図6のようなデータが得られる。図5、図6は音圧の時系列波形(上図)とFFT処理後の周波数ごとの振幅スペクトル(下図)を表す説明図である。図5、図6の詳細説明は後述する。情報量Bは波形データであるためサンプリング周期が例えば40kHzなどのように短く、情報量が膨大となる。このため、波形データは演算手段18へ送られたのち演算手段18にて波形の特徴を表す特徴量パラメータとして捉えるデータ処理をして一定期間の代表的な数値として取り出す。   The state quantity B, for example, the sound pressure 42 around the compressor, is information necessary for grasping the operating state of the compressor, and the state quantity is measured by the pulsating state quantity measuring means 15 in FIG. Here, the measurement position of the compressor peripheral sound pressure is in the vicinity of the position of either the casing of the compressor 11, the compressor discharge side pipe, or the compressor suction side pipe. The information amount B is pulsating time-series waveform data, and for example, data as shown in FIGS. 5 and 6 is obtained. 5 and 6 are explanatory diagrams showing a time-series waveform of sound pressure (upper diagram) and an amplitude spectrum (lower diagram) for each frequency after FFT processing. Detailed description of FIGS. 5 and 6 will be described later. Since the information amount B is waveform data, the sampling period is as short as 40 kHz, for example, and the information amount becomes enormous. For this reason, the waveform data is sent to the calculation means 18 and then processed by the calculation means 18 as a feature parameter representing the feature of the waveform, and is taken out as a representative numerical value for a certain period.

状態量Aと状態量Bは相互に関連している状態で計測されたものであり、同一時間帯又は関連した時間帯にて計測されたデータが使用される。状態量Bの波形データの特徴量パラメータには、大きく分けて時間波形データに基く特徴量パラメータと、周波数領域データに基く特徴量パラメータの2種類がある。以下、各パラメータについて説明する。時間波形データの時間波形全体に基く特徴量パラメータとしては、以下に挙げるようなものがある。式(1)は平均値、式(2)は標準偏差、式(3)は歪度、式(4)は尖度である。なお個々では状態量AとBの組合せで説明するが複数の状態量Aを測定し状態量Aだけで相関を纏めても良い。   The state quantity A and the state quantity B are measured in a mutually related state, and data measured in the same time zone or related time zones are used. The feature quantity parameters of the waveform data of the state quantity B are roughly classified into two types: feature quantity parameters based on time waveform data and feature quantity parameters based on frequency domain data. Hereinafter, each parameter will be described. Examples of the feature parameter based on the entire time waveform of the time waveform data include the following. Equation (1) is the average value, Equation (2) is the standard deviation, Equation (3) is the skewness, and Equation (4) is the kurtosis. In addition, although it demonstrates individually by the combination of state quantity A and B, you may measure several state quantity A and may summarize a correlation only with state quantity A.

Figure 0004265982
Figure 0004265982

Figure 0004265982
Figure 0004265982

Figure 0004265982
Figure 0004265982

Figure 0004265982
Figure 0004265982

ここで、Xは時系列データ、添字iは測定時間波形の時系列番号、Nは波形デジタルデータの合計数を表す。時間領域分析ではi=1〜Nまで全てのデータについてノイズ除去のために移動平均処理などの平均化演算処理を行なった後、各パラメータの計算を行なう。また、歪度とは波形の平均値に対する時間軸に関する非対称性を表し、尖度とは波形の衝撃度を表す特徴量である。続いて、FFT演算結果を用いた周波数領域データに基く特徴量パラメータとして、例えば以下に挙げるような交差頻度、極値頻度のものがある。   Here, X represents time series data, the suffix i represents the time series number of the measurement time waveform, and N represents the total number of waveform digital data. In the time domain analysis, all parameters from i = 1 to N are subjected to averaging calculation processing such as moving average processing for noise removal, and then each parameter is calculated. Further, the skewness represents asymmetry with respect to the time axis with respect to the average value of the waveform, and the kurtosis is a feature amount representing the impact level of the waveform. Subsequently, as the feature amount parameters based on the frequency domain data using the FFT calculation result, there are, for example, those having the intersection frequency and the extreme value frequency as described below.

Figure 0004265982
Figure 0004265982

Figure 0004265982
Figure 0004265982

ここで、fiは周波数、P(fi)はパワースペクトラム、iはFFT演算結果スペクトラムの番号(低周波数側が始点)、NはFFTのフレームサイズを表す。交差頻度は波形がゼロ点を単位時間に何回クロスしたかを表し、極値頻度は波形のピーク(極値)が単位時間に何回存在するかを表すパラメータである。   Here, fi is the frequency, P (fi) is the power spectrum, i is the FFT operation result spectrum number (low frequency side is the starting point), and N is the FFT frame size. The crossing frequency is a parameter that represents how many times the waveform has crossed the zero point per unit time, and the extreme value frequency is a parameter that represents how many times the peak (extreme value) of the waveform exists per unit time.

以上説明のように、状態量Bは演算手段18にて音圧波形データの特徴量パラメータとして扱うことにより、膨大な波形データの特徴、すなわち正常時でも異常時でも扱い易い特徴量を、上記(1)〜(6)の各式のように平均値、標準偏差、歪度、尖度、交差頻度、極値頻度などとして計算処理することが可能となる。また、上記に挙げた特徴量パラメータ以外の波形の特徴を表すパラメータについても正常時にはあまり現れず機器の損傷や劣化などの際に現れやすい特徴量を必要に応じて加えることも可能である。   As described above, the state quantity B is handled as the feature parameter of the sound pressure waveform data by the computing means 18, so that a huge amount of waveform data features, that is, feature quantities that are easy to handle in both normal and abnormal states, It is possible to perform calculation processing as an average value, a standard deviation, a skewness, a kurtosis, a crossing frequency, an extreme value frequency, and the like as in the equations 1) to (6). Further, parameters representing waveform features other than the above-described feature amount parameters can be added as necessary, and feature amounts that do not appear so much during normal operation and tend to appear when equipment is damaged or deteriorated.

なお、状態量Aと状態量Bは、同列のデータとして扱うために状態量Aの測定間隔に合わせて状態量Bの演算処理を行ない、一定時間間隔ごとに状態量Aと状態量Bの値が揃うように演算処理を行なう。例えばAが1分間隔であればBは1分間の波形データを全て用いて処理する、あるいは計算負荷を軽減するためにデータ量を減らし、例えば1分間の波形の最後の10秒のみを用いるなど、状態量Aの間隔と関連した計測量にする様に同一時間帯又は関連した時間帯から得られたものを採用する。   Note that the state quantity A and the state quantity B are processed in accordance with the measurement interval of the state quantity A in order to handle them as data in the same column, and the values of the state quantity A and the state quantity B are set at regular time intervals. The arithmetic processing is performed so that For example, if A is an interval of 1 minute, B is processed using all waveform data for 1 minute, or the amount of data is reduced to reduce calculation load, for example, only the last 10 seconds of a waveform of 1 minute are used. In addition, a value obtained from the same time zone or a related time zone is adopted so as to obtain a measurement amount related to the interval of the state quantity A.

図5は正常時の音圧波形、図6は異常時(冷媒液バック)の音圧波形の一例を表したものである。図5、図6とも上の図は時系列波形データを意味するものであって、横軸は秒単位の時間が、縦軸は電気信号の波形変化値を示している。また下の図は時系列データを周波数ごとのデータに変換したもので横軸に周波数、縦軸に振幅スペクトラムを示す。時系列データから周波数データへの変換はFFT演算器によって処理を行なっており、特定時間、例えば数秒の時間波形データを取得し、得られた時間波形を周波数データに変換する。これにより同一時間帯の時間波形データと周波数データの比較処理が可能となる。これらの比較からもわかるように異常時は音圧時間波形の振幅が増大し、周波数ピークの値も大きくなるなど波形の特徴が明確に異なる。上記説明の特徴量パラメータはこのような波形の特徴を数値指標に置き換えるものであり、これらの特徴量パラメータを比較分析することにより圧縮機の異常を判別することが可能となる。また、状態量Aは冷凍サイクルの運転状態を表しており、異常が起こった際には状態量Aが変化する。従って、状態量Aと状態量Bを組合せ総合的に判断することにより、さらに正確な圧縮機異常判定が可能となる。又上記説明では時間波形をFFT処理し周波数データに変換する手法を説明したが、騒音解析で使用されるオクターブ分析や1/3オクターブ分析など別な手法を使用しても良いし、又ウェーブレット変換などの処理を行っても良く、時間波形に対する演算もしくはフィルター処理を行ったデータを用いて波形の特徴量を計算しても良い。   FIG. 5 shows an example of a sound pressure waveform in a normal state, and FIG. 6 shows an example of a sound pressure waveform in an abnormal state (refrigerant liquid back). The upper diagrams in FIGS. 5 and 6 mean time-series waveform data, where the horizontal axis indicates time in seconds and the vertical axis indicates the waveform change value of the electrical signal. The lower diagram shows time-series data converted into data for each frequency, with the horizontal axis representing frequency and the vertical axis representing amplitude spectrum. Conversion from time series data to frequency data is performed by an FFT computing unit. Time waveform data of a specific time, for example, several seconds is acquired, and the obtained time waveform is converted into frequency data. As a result, the time waveform data and frequency data in the same time zone can be compared. As can be seen from these comparisons, the characteristics of the waveform are clearly different such that the amplitude of the sound pressure time waveform increases and the value of the frequency peak increases when an abnormality occurs. The feature amount parameter described above replaces such a waveform feature with a numerical index. By comparing and analyzing these feature amount parameters, it is possible to determine a compressor abnormality. The state quantity A represents the operating state of the refrigeration cycle, and the state quantity A changes when an abnormality occurs. Therefore, by determining the state quantity A and the state quantity B in a comprehensive manner, a more accurate compressor abnormality determination can be performed. In the above description, the time waveform is FFT processed and converted to frequency data. However, other methods such as octave analysis and 1/3 octave analysis used in noise analysis may be used, and wavelet transform may be used. Such processing may be performed, and the feature amount of the waveform may be calculated using data obtained by performing computation or filtering on the time waveform.

次に、状態量Aと状態量Bを組み合わせて複合変数にする方法、およびその複合変数を用いて圧縮機の異常検知をする方法について説明する。複数の状態量を処理する方法の一例として、一般周知である、マハラノビスの距離、が挙げられる。、マハラノビスの距離、とは、例えば、1992年10月26日に東京図書株式会社から発行された「すぐわかる多変量解析」に記載があり、多変量解析の分野で使われている手法である。以下、マハラノビスの距離を用いて圧縮機の異常検知をする手法について説明する。なお劣化や故障などは破損したり絶縁短絡など明確に表面に現れる最終段階を除き特に初期段階ほど運転所量、データや表面に現れる現象は複雑である。これはデータなどが複雑な要因の組み合わせであり、これらを一元的に捉えるのではなく多元的に捉えることにより複雑な構造が単純化されてくることがあり、多変量解析と言う手法が取り入れられている。しかしながら、単に多変量解析を使用しただけでは目的の結果、例えば初期段階の不良を見つけることが出来ない。この発明は変量間の相関関係から実用的な診断の技術を得ることが出来たものである。   Next, a method for combining the state quantity A and the state quantity B into a composite variable and a method for detecting a compressor abnormality using the composite variable will be described. As an example of a method of processing a plurality of state quantities, there is a generally known Mahalanobis distance. , Mahalanobis distance, for example, is described in “Multivariate analysis that can be easily understood” issued by Tokyo Book Co., Ltd. on October 26, 1992, and is a technique used in the field of multivariate analysis. . Hereinafter, a method for detecting an abnormality of the compressor using the Mahalanobis distance will be described. Deterioration and failure are more complicated in the initial stage than in the final stage, such as breakage or insulation short-circuits, and the phenomenon that appears on the surface, data, and surface, especially in the initial stage. This is a combination of complex factors such as data, and the complex structure may be simplified by grasping them in a multiple rather than a unified way, and a technique called multivariate analysis is adopted. ing. However, simply using multivariate analysis cannot find the desired result, for example, an early stage defect. In the present invention, a practical diagnostic technique can be obtained from the correlation between variables.

冷凍サイクル運転状態を表す状態量Aおよび、音圧波形から求められた状態量B(特徴量パラメータ等)の合計数をmとし、各状態量をそれぞれ変数Xに割付け、X1〜Xmのm個の運転状態量を定義する。次に基準となる正常運転状態においてX1〜Xmの運転状態量を合計n組(2以上)の組合せ分の基準データを収集する。   The total number of state quantities A representing the refrigeration cycle operating state and state quantities B (feature quantity parameters, etc.) obtained from the sound pressure waveform is m, and each state quantity is assigned to a variable X. Define the operating state quantity of. Next, reference data is collected for a total of n (two or more) combinations of the operating state quantities X1 to Xm in the reference normal operating state.

そして、X1〜Xmのそれぞれの平均値miおよび標準偏差σi(基準データのバラツキ度合い)を、下記の(7)式と(8)式により求める。なお、iは項目数(パラメータの数)であって、ここでは1〜mに設定してX1〜Xmに対応する値を示す。此処での標準偏差とは変数とその平均値との差を2乗したものの期待値の正平方根を取り上げるとする。   And each average value mi and standard deviation (sigma) i (reference | standard variation degree) of X1-Xm are calculated | required by the following (7) Formula and (8) Formula. Note that i is the number of items (the number of parameters), and here, it is set to 1 to m and indicates a value corresponding to X1 to Xm. The standard deviation here is the square root of the expected value of the square of the difference between the variable and its average value.

Figure 0004265982
Figure 0004265982

Figure 0004265982
Figure 0004265982

次に、前述の平均値miおよび標準偏差σiを用いて元のX1〜Xmを、下記の(9)式によってX1〜Xmに変換するという基準化を行なう。すなわち変数を平均0、標準偏差1の確率変数に変換するものである。なお、下記の(9)式においてjは1〜nまでの何れかの値をとり、n個の各測定値に対応するものである。   Next, normalization is performed in which the original X1 to Xm are converted into X1 to Xm by the following equation (9) using the average value mi and the standard deviation σi. That is, the variable is converted into a random variable having an average of 0 and a standard deviation of 1. In the following equation (9), j takes any value from 1 to n and corresponds to each of n measured values.

Figure 0004265982
Figure 0004265982

次に、変量を平均0、分散1に標準化したデータで分析を行うため、分散共分散行列としてX1〜Xmの相関関係、すなわち変量の間の関連性を示す相関行列Rおよび相関行列の逆行列R−1を、下記の(10)式で定義付ける。なお、下記の(10)式においてkは項目数(パラメータの数)であり、ここではmとする。また、iやpは各項目での値を示し、ここでは1〜mの値をとる。 Next, in order to perform analysis using data with the variables normalized to mean 0 and variance 1, the correlation between X1 to Xm as the variance-covariance matrix, that is, the correlation matrix R indicating the relationship between the variables and the inverse matrix of the correlation matrix R −1 is defined by the following formula (10). In the following equation (10), k is the number of items (the number of parameters), and here it is m. Moreover, i and p show the value in each item, and take the value of 1-m here.

Figure 0004265982
Figure 0004265982

このような演算処理の後で、マハラノビスの距離を下記の(11)式に基づいて求める。なお、(11)式においてjは1〜nまでの何れかの値をとり、n個の各測定値に対応するものである。また、kは項目数(パラメータの数)であり、ここではmとする。また、a11〜akkは上記の(10)式の相関行列の逆行列の係数であり、マハラノビスの距離は基準データすなわち正常運転状態のときは約1となり4以下に収まるが、圧縮機運転状態が異常になると数値が大きくなり、異常の度合い(正常からの離れ度合い)に応じて距離が大きくなるという性質を有する。なお此処ではクラスター分析に必要な非類似度、すなわち距離としてマハラノビスの距離を使用したが、標準化ユークリッド距離やミンコフスキー距離などや他の最短距離方や最長距離法を使うなどの多変量解析手法でも良い。   After such calculation processing, the Mahalanobis distance is obtained based on the following equation (11). In the equation (11), j takes any value from 1 to n and corresponds to each of n measured values. Further, k is the number of items (number of parameters), which is m here. Further, a11 to akk are coefficients of the inverse matrix of the correlation matrix of the above equation (10), and the Mahalanobis distance is about 1 in the reference data, that is, in the normal operation state, and is within 4 or less. When an abnormality occurs, the numerical value increases, and the distance increases according to the degree of abnormality (degree of departure from normal). Although the dissimilarity required for cluster analysis, that is, Mahalanobis distance, is used here, multivariate analysis methods such as standardized Euclidean distance, Minkowski distance, and other shortest distance methods and longest distance methods may be used. .

Figure 0004265982
Figure 0004265982

ここで、マハラノビスの距離の概念および計算フローについて図7、図8を用いて説明する。図7はマハラノビスの距離とその出現率の関係を図示したものである。図のように、パラメータの数が幾つの場合においても演算したマハラノビスの距離が、基準データ群に対してどういう位置関係に存在するかを判断し、圧縮機の故障状態を確認できる。なお、基準データ群においてはマハラノビスの距離は平均値が約1となり、バラツキを考慮した場合でも4以下となる。   Here, the concept of Mahalanobis distance and the calculation flow will be described with reference to FIGS. FIG. 7 illustrates the relationship between Mahalanobis distance and its appearance rate. As shown in the figure, it is possible to determine the positional relationship of the calculated Mahalanobis distance with respect to the reference data group regardless of the number of parameters, and to confirm the failure state of the compressor. In the reference data group, the Mahalanobis distance has an average value of about 1 and is 4 or less even when variation is considered.

図8はマハラノビスの距離の計算フローチャートである。最初に基準データの平均値、標準偏差、相関行列の逆行列、項目数をセットし(ST1)、冷凍サイクル運転状態量を取得する(ST2)。次に、前記の(9)式に基づいてこれら取得データの基準化を行い(ST3)、この後でマハラノビスの距離を初期値として0、カウンターi、jを初期値の1にセットする(ST4)。そして、カウンターi、jが項目数kに至るまで変化させ、前記(11)式の演算をST5〜ST7の繰返し計算およびST8にて得られた積分値を項目数kで除することにより行い、マハラノビスの距離D2を求めることができる。 FIG. 8 is a flowchart for calculating the Mahalanobis distance. First, the average value of the reference data, the standard deviation, the inverse matrix of the correlation matrix, and the number of items are set (ST1), and the refrigeration cycle operation state quantity is acquired (ST2). Next, the acquired data is standardized based on the above equation (9) (ST3), and then the Mahalanobis distance is set to 0 as the initial value, and the counters i and j are set to the initial value 1 (ST4). ). Then, the counters i and j are changed until the number of items k is reached, and the calculation of the equation (11) is performed by repeating the calculation of ST5 to ST7 and dividing the integrated value obtained in ST8 by the number of items k. The Mahalanobis distance D 2 can be determined.

続いて、実機におけるマハラノビスの距離を用いた圧縮機異常検知の方法について、図9に示すフローチャートに沿って説明する。図9は、冷凍サイクル装置や送風機などの機器を設置現場へ据付した直後の運転を想定したものであり、最初にST21にて初期学習の有無を確認し、初期学習が必要であればST22にて正常運転を基準空間として学習し、ST23にて強制異常運転を行い異常空間として学習する。なお、ST23のステップは必ずしも必須ではなく、出荷前の工場試験やシミュレーション等で異常時の特徴を把握しておき、実機で測定した正常運転の状態を用いて補正することでも代用可能である。なお、正常運転の基準空間学習方法および異常空間の作成方法の詳細は後述する。そして、ST24にて基準空間と各異常空間とのマハラノビスの距離を算出し各異常に対する閾値を求める。   Next, a compressor abnormality detection method using Mahalanobis distance in an actual machine will be described with reference to a flowchart shown in FIG. FIG. 9 assumes operation immediately after installation of equipment such as a refrigeration cycle apparatus and a blower at the installation site. First, in ST21, the presence or absence of initial learning is confirmed. If initial learning is necessary, ST22 is performed. Thus, normal operation is learned as a reference space, and forced abnormal operation is performed at ST23 to learn as an abnormal space. Note that the step of ST23 is not necessarily required, and it can be substituted by grasping the characteristics at the time of abnormality by a factory test or simulation before shipping and correcting using the state of normal operation measured by an actual machine. The details of the normal operation reference space learning method and the abnormal space creation method will be described later. In ST24, the Mahalanobis distance between the reference space and each abnormal space is calculated to obtain a threshold value for each abnormality.

次に、ST25以降の初期学習終了後の異常検知の方法について説明する。ST25にて運転状態量を測定し、ST26にて運転状態量データの基準化を行なう。そしてST27にて基準空間、各異常空間それぞれに対するマハラノビスの距離D2の平方根を次の(12)式により算出し、ST28の(13)式にて各異常の発生確立を算出し、ST29にて各異常の発生確率から故障原因の評価・推定を行なう。ここで(12)式にてマハラノビスの距離D2を1/2乗している理由は、距離D2は2乗値であるため距離の増加に伴い2次式的に値が増加するが、平方根距離Dを用いることにより異常度合いに応じて距離が線形増加するため距離の増加と異常度合いの増加が比例し感覚的に扱い易いからである。また、(13)式において「初期D」とは初期正常状態データに対し異常空間を適用した場合のマハラノビスの距離であり、初期正常状態においては、異常を基準とした正常までの距離を表す。「現在のD」とは現在の測定データに対し異常空間を適用した場合の距離を表す。「現在のD」は初期正常状態では大きな値をとるが(異常状態と正常状態との差が大きいため)、異常の程度が進むにつれて「現在のD」は小さな値となり(徐々に正常から異常に近づくため)、異常発生確率は100%に近づいて行く。 Next, an abnormality detection method after the end of initial learning after ST25 will be described. In ST25, the operation state quantity is measured, and in ST26, the operation state quantity data is normalized. In ST27, the square root of the Mahalanobis distance D 2 for each of the reference space and each abnormal space is calculated by the following equation (12), and the occurrence probability of each abnormality is calculated by the equation (13) in ST28. Evaluate and estimate the cause of failure from the probability of occurrence of each abnormality. Here, the reason why the Mahalanobis distance D 2 is raised to the 1/2 power in the equation (12) is that the distance D 2 is a square value, and therefore the value increases quadratically as the distance increases. This is because by using the square root distance D, the distance linearly increases in accordance with the degree of abnormality, so that the increase in distance and the increase in degree of abnormality are proportional and easy to handle sensuously. In Expression (13), “Initial D” is the Mahalanobis distance when the abnormal space is applied to the initial normal state data. In the initial normal state, it represents the distance to normal based on the abnormality. “Current D” represents a distance when an anomalous space is applied to current measurement data. “Current D” takes a large value in the initial normal state (because the difference between the abnormal state and the normal state is large), but “Current D” becomes a small value as the degree of abnormality progresses (gradually from normal to abnormal) The probability of occurrence of anomaly approaches 100%.

Figure 0004265982
Figure 0004265982

Figure 0004265982
Figure 0004265982

評価の結果ST30にて正常であれば正常基準空間補充処理ST31(詳細後述)へ移り、正常でなければST32にて故障の画面表示、音による報知、遠隔地への異常通知などの出力を行なう。そして、故障の報知を受けたサービスマンが故障の修理、オーバーホールなどのメンテナンスを行ない、設備が正常な状態へ修復される。   If the result of evaluation is normal in ST30, the process proceeds to normal reference space supplement processing ST31 (details will be described later). . Then, the service person who has been notified of the failure performs repairs such as failure repair and overhaul, and the equipment is restored to a normal state.

なお、上記説明の図9のフローチャートにおける各処理は図2の演算手段18、記憶手段19、比較手段20、判断手段21、出力手段22にて行われている。ST21の初期学習有無判定は判断手段21、ST22およびST23、ST24の学習関連処理は演算手段18にて演算処理され、記憶手段19に記憶される。ST25〜ST28のマハラノビスの距離の演算処理は、演算手段18において記憶手段19に記憶されている基準空間、異常空間のデータを基に行われ、ST29〜ST30の故障判定は、比較手段20および判断手段21にて行われ、ST32の出力は出力手段22にて行われる。   Each process in the flowchart of FIG. 9 described above is performed by the calculation means 18, the storage means 19, the comparison means 20, the determination means 21, and the output means 22 of FIG. In ST21, whether or not the initial learning is present is determined by the determining means 21, ST22 and ST23 and ST24, and the learning related processing is calculated by the calculating means 18 and stored in the storage means 19. The calculation process of the Mahalanobis distance in ST25 to ST28 is performed based on the data of the reference space and the abnormal space stored in the storage unit 19 in the calculation unit 18, and the failure determination in ST29 to ST30 is performed by the comparison unit 20 and the determination. This is performed by the means 21, and the output of ST32 is performed by the output means 22.

上記説明の中でST21、ST22、ST23、ST24の正常状態に対する基準空間もしくは各異常状態に対する異常空間の学習を行なうという学習動作は、マハラノビスの距離を計算する上で必要となる基準値を測定データから算出し、基準値として記憶する動作のことを表し、具体的には前記説明の式(7)の平均値m、式(8)の標準偏差σ、式(9)の相関行列の逆行列R-1を算出することを示す。 In the above description, the learning operation of learning the reference space for the normal state of ST21, ST22, ST23, ST24 or the abnormal space for each abnormal state is performed by measuring the reference value necessary for calculating the Mahalanobis distance. Represents the operation of calculating and storing as a reference value, specifically, the average value m of equation (7), the standard deviation σ of equation (8), and the inverse matrix of the correlation matrix of equation (9) Indicates that R −1 is calculated.

なお、各異常空間には、各パラメータの平均値と標準偏差および各パラメータの相関係数が記憶されている。この各異常空間の各パラメータの平均値を用いて、正常基準空間とのマハラノビスの距離を求めることで基準空間と各異常空間の距離を求めることができ、ST24においては、これを閾値として設定している。   Each abnormal space stores an average value and standard deviation of each parameter and a correlation coefficient of each parameter. Using the average value of each parameter of each abnormal space, the distance between the reference space and each abnormal space can be obtained by calculating the Mahalanobis distance from the normal reference space. In ST24, this is set as a threshold value. ing.

ST25〜ST29は、実機運転においてデータ測定を行い、故障有無の判定を行なう動作を表した部分である。ST24にて求めた各異常空間と正常基準空間との距離(マハラノビスの距離の平方根)を初期D1、初期D2とおく。そして、測定された現在の運転状態量データと、正常基準空間との距離D0、各異常空間との距離D1、D2を求める。なお、D0は初期状態では2以下の値を取る。そして、式(13)より各異常空間への近づき度合いを算出し、各異常の発生確率を求める。そして、ST30にて各異常発生確率を比較し、故障原因の判断を行なう。なお、上記説明では、対象となる異常空間の数が2つの場合の説明を行ったが、異常空間の数は対象となる冷凍サイクル装置の特性にあわせ複数用意することが可能である。   ST25 to ST29 are portions representing an operation of performing data measurement in actual machine operation and determining whether or not there is a failure. The distance (square root of Mahalanobis distance) between each abnormal space obtained in ST24 and the normal reference space is set as initial D1 and initial D2. Then, the distance D0 between the measured current driving state quantity data and the normal reference space, and the distances D1 and D2 between the abnormal spaces are obtained. Note that D0 takes a value of 2 or less in the initial state. Then, the degree of approach to each abnormal space is calculated from equation (13), and the occurrence probability of each abnormality is obtained. Then, in ST30, the abnormality occurrence probabilities are compared to determine the cause of the failure. In the above description, the case where the number of target abnormal spaces is two has been described. However, a plurality of number of abnormal spaces can be prepared in accordance with the characteristics of the target refrigeration cycle apparatus.

以上のように、正常基準空間と異常空間を定義して各異常に対する発生確率を求めることにより、正常基準空間に対する距離(マハラノビスの距離もしくはマハラノビスの距離の平方根)の増加で異常度合いを把握することができ、各異常空間に対する距離(マハラノビスの距離もしくはマハラノビスの距離の平方根)の減少で異常原因の特定が可能となる。   As described above, by defining the normal reference space and the anomalous space and determining the probability of occurrence for each anomaly, grasp the degree of abnormality by increasing the distance to the normal reference space (Mahalanobis distance or square root of Mahalanobis distance) It is possible to identify the cause of the abnormality by reducing the distance (Mahalanobis distance or the square root of the Mahalanobis distance) to each anomalous space.

異常空間と正常空間のマハラノビスの距離の概念を図10に示す。図10において、正常基準空間は座標中心に、原点から離れた位置に各異常空間がそれぞれ存在するイメージ図である。なお、実際にはマハラノビスの距離は多次元空間となるため図10はこれを2次元に表したイメージ図である。正常基準空間と異常空間はそれぞれバラツキをもった領域を持つ空間であり、いずれの空間に属しているのかを判定することにより現在の運転状態が正常か、異常状態のいずれかを判定することが可能となる。各異常空間と正常空間との距離は、正常基準空間と異常空間の代表データ(平均値データ)とのマハラノビスの距離を求めることにより算出することができる。例えばこの距離が1000であれば、正常基準空間を用いて現在の冷凍サイクル運転状態量を計算し距離が1000であり、かつこの異常空間からの距離がゼロに近いときはこの異常である可能性が高い。各異常に対する閾値は、このように各異常における正常基準空間と各異常空間のマハラノビスの距離を演算し、例えばその異常を早期検知したいのであれば1/10をその異常に対する閾値に設定する、というように閾値を予め設定する。又異常空間のみを学習し初期状態を正常として異常への近づき度合いから異常の判別を行う方法や、正常空間のみを学習し正常空間からの離れ度合いから異常の度合いを判別する手法などを用いれば正常と異常の判別やそれぞれの程度の判断が可能である。すなわち必ずしも正常と異常の両方の空間を学習する必要は無い。   The concept of the Mahalanobis distance between the abnormal space and the normal space is shown in FIG. In FIG. 10, the normal reference space is an image diagram in which each abnormal space exists at a position away from the origin at the coordinate center. Since the Mahalanobis distance is actually a multidimensional space, FIG. 10 is an image diagram representing this two-dimensionally. The normal reference space and the abnormal space each have a region with variations, and it is possible to determine whether the current operating state is normal or abnormal by determining which space it belongs to It becomes possible. The distance between each abnormal space and the normal space can be calculated by obtaining the Mahalanobis distance between the normal reference space and the representative data (average value data) of the abnormal space. For example, if this distance is 1000, the current refrigeration cycle operating state quantity is calculated using the normal reference space, and the distance is 1000. If the distance from the abnormal space is close to zero, this may be abnormal. Is expensive. As for the threshold for each abnormality, the distance between the normal reference space in each abnormality and the Mahalanobis between each abnormality space is calculated as described above. For example, if it is desired to detect the abnormality early, 1/10 is set as the threshold for the abnormality. The threshold is set in advance as described above. In addition, if only the abnormal space is learned and the initial state is normal, a method of determining abnormality from the degree of approach to the abnormality, or a method of learning only the normal space and determining the degree of abnormality from the degree of separation from the normal space, etc. It is possible to discriminate between normal and abnormal and the degree of each. That is, it is not always necessary to learn both normal and abnormal spaces.

また、据付現場における故障模擬試験では、圧縮機破損に至るような極端に条件の悪い運転状態では試験ができないため、故障状態を数レベルに分け、各レベルに応じて異常空間の学習を行なうようにしてもよい。図10において異常空間1がその例を表しており、この例では異常度に応じて異常レベル1〜異常レベル3に分割しており、据付現場試験ではレベル1とレベル2の異常空間の学習を行なう。レベル3については実際に圧縮機破損に至るレベルであり、試験室にて予め測定を行なって学習を行なう異常空間である。   In addition, in the failure simulation test at the installation site, the test cannot be performed in extremely bad operating conditions that lead to compressor failure, so the failure condition is divided into several levels and the abnormal space is learned according to each level. It may be. In FIG. 10, an abnormal space 1 represents an example. In this example, the abnormal space 1 is divided into an abnormal level 1 to an abnormal level 3 according to the degree of abnormality, and the level 1 and level 2 abnormal spaces are learned in the installation site test. Do. Level 3 is a level that actually causes the compressor to break, and is an abnormal space in which measurement is performed in advance in the test room and learning is performed.

このように、異常を異常度に合わせてレベル分けすることにより、実機模擬運転が可能な異常度が小さいレベルの領域については現地にて実機現物合わせの異常空間を作成することが可能となり、実機に即した早期異常発見が可能となる。   In this way, by classifying abnormalities according to the degree of abnormality, it is possible to create an actual space in combination with the actual machine for an area with a low degree of abnormality that can be simulated by the actual machine. It is possible to detect early abnormalities in line with.

また、異常度のレベル分けを行い、各異常レベルを対象に異常空間を作成することにより、異常レベルが低い場合においても正確な故障予知が可能となり、他の異常との判別もし易くなるため、異常が起こり冷凍サイクル装置が故障に至る前の早期段階における故障の予知・故障原因の特定が可能となる。   In addition, by classifying the level of abnormality and creating an abnormal space for each abnormal level, accurate failure prediction is possible even when the abnormal level is low, and it is easy to distinguish from other abnormalities, It is possible to predict failure and identify the cause of failure at an early stage before an abnormality occurs and the refrigeration cycle apparatus breaks down.

次に、基準空間学習の内容について説明する。基準空間の学習は、図9のST31である正常基準空間の補充処理であり、図11に正常基準空間補充処理のフローチャートを示す。なお本発明は脈動状態量である連続した波形データを取り扱っている。この場合一定期間のデータを取りその期間内の特徴量を演算することになる。したがって冷凍サイクルの膨張弁や負荷の状態を変える制御などを行うと当然運転範囲が変化し測定条件が異なることになる。正常運転では冷凍サイクルの高圧、低圧運転範囲によりST41に示す表のように多岐な運転範囲に渡って運転が行なわれる。このため、故障診断の判定精度を高めるためには冷凍サイクルの高低圧運転状態に応じてそれぞれ正常基準空間を作成する必要がある。ST41は高低圧の運転範囲を表にし(Pd1は例えば1MPa〜1.2MPa、Ps1は0.1MPa〜0.2MPaのような圧力範囲を示す)、過去既に学習が行なわれた高低圧範囲は○印で、未学習の範囲は×印で表したものである。この表に照らし合わせ、現在運転状態の高低圧範囲が既に学習済みかどうかの判定をST41、ST42にて行なう。学習が済んでいない場合にはST43にて運転状態量を記憶手段へ記憶し、同一の高低圧範囲で運転が行われた回数がN回(Nは例えば100回)以上に達した時点でST45にて過去に記憶されたデータを用いて新規基準空間を作成し、ST46にて作成された新規基準空間を記憶し、ST47にて基準空間と各異常空間とのマハラノビスの距離を算出し各異常に対する閾値を求める。なお運転初期に行われる初期学習は、図11のフローチャートにおいて過去正常学習が一度も行なわれていない状態からの正常基準空間作成の処理にあたる。   Next, the contents of reference space learning will be described. The reference space learning is a normal reference space replenishment process which is ST31 in FIG. 9, and FIG. 11 shows a flowchart of the normal reference space replenishment process. The present invention deals with continuous waveform data which is a pulsation state quantity. In this case, data for a certain period is taken and the feature amount within that period is calculated. Therefore, when the control for changing the state of the expansion valve or load of the refrigeration cycle is performed, the operating range naturally changes and the measurement conditions differ. In normal operation, operation is performed over various operation ranges as shown in the table shown in ST41 depending on the high-pressure and low-pressure operation ranges of the refrigeration cycle. For this reason, in order to increase the determination accuracy of failure diagnosis, it is necessary to create normal reference spaces according to the high and low pressure operation states of the refrigeration cycle. ST41 is a table of high and low pressure operating ranges (Pd1 indicates a pressure range such as 1 MPa to 1.2 MPa, Ps1 indicates a pressure range of 0.1 MPa to 0.2 MPa, for example). The unlearned range is indicated by a mark. In light of this table, it is determined in ST41 and ST42 whether the high and low pressure range in the current operating state has already been learned. If the learning has not been completed, the operation state quantity is stored in the storage means in ST43, and when the number of times of operation in the same high and low pressure range reaches N times (N is 100 times, for example), ST45. A new reference space is created using the data stored in the past at ST46, the new reference space created at ST46 is stored, and the Mahalanobis distance between the reference space and each abnormal space is calculated at ST47 to calculate each abnormality. Find the threshold for. Note that the initial learning performed in the initial stage of operation corresponds to the normal reference space creation process from the state where the past normal learning has never been performed in the flowchart of FIG.

以上のように、実機冷凍サイクルの高圧、低圧運転範囲に応じた基準空間を作成することにより、機器個体差の完全吸収およびさまざまな運転状態に対応した正常基準空間を作成することが可能となる。   As described above, by creating a reference space according to the high-pressure and low-pressure operating ranges of the actual refrigeration cycle, it becomes possible to create a normal reference space corresponding to various operating conditions and complete absorption of individual device differences. .

次に、異常空間の学習について説明する。異常空間には、設置現場にて機器据付後、実機にて学習する方法と、予め試験室にて同一機種の故障状態を模擬して得られるデータを用いて異常空間を作成する2種類の方法がある。前者については、設置現場で故障状態を模擬できる故障状態を対象としており、例えば冷媒液バック、冷凍機油枯渇などを対象としている。これらの故障については、冷凍サイクルの膨張弁を開きぎみにして冷媒液バック状態を模擬、あるいは圧縮機底部から油を一時的に抜くなどの方法により、現場にて故障状態を模擬し、これらの運転状態から異常空間を作成する。作成された異常空間は記憶手段に記憶され、異常状態の判定に使用する。   Next, anomalous space learning will be described. There are two types of abnormal space: a method of learning with an actual machine after installation of the equipment at the installation site and a method of creating an abnormal space using data obtained by simulating the failure state of the same model in the test room in advance. There is. As for the former, a failure state that can simulate a failure state at an installation site is targeted, for example, a refrigerant liquid bag, a refrigerator oil depletion, and the like. For these failures, simulate the refrigerant liquid back state by opening the expansion valve of the refrigeration cycle, or temporarily evacuating oil from the bottom of the compressor. Create an anomalous space from operating conditions. The created abnormal space is stored in the storage means, and is used to determine an abnormal state.

後者の予め試験室にて故障模擬試験を行なう方法については、設置現場での故障模擬が困難な故障を対象としており、例えば、軸受け異常、モータ異常、歯あたりなどである。これらの故障については、異常状態を模擬可能な圧縮機を作成し、試験室にてこの圧縮機を搭載した冷凍サイクル装置の試験を行い、異常運転状態量データを採取し、このデータを用いて異常空間を作成する。このように予め用意された異常空間は、冷凍サイクル装置の出荷時に予め記憶手段に記憶しておくことにより、実機での適用が可能となる。また、故障模擬試験の一部はシミュレーションによっても代用可能である。   The latter method of performing a failure simulation test in advance in the test room is intended for failures that are difficult to simulate at the installation site, such as bearing abnormalities, motor abnormalities, and tooth contact. For these failures, a compressor that can simulate an abnormal condition is created, a refrigeration cycle device equipped with this compressor is tested in a test room, and abnormal operation state data is collected. Create an anomalous space. The abnormal space prepared in advance is stored in the storage unit in advance when the refrigeration cycle apparatus is shipped, so that it can be applied to an actual machine. Also, a part of the fault simulation test can be substituted by simulation.

また、その他の異常空間の学習方法として、対象となる故障が発生した場合に兆候が表れるパラメータが予め明確である場合には、正常基準空間学習後に、正常基準空間に使用した各パラメータのデータに対し、異常発生時に兆候が顕著に表れるパラメータの値のみを強制的に故障が発生したときに推定される値に変更し、異常運転状態量データを新たに作成する方法が考えられる。強制的に変更するパラメータの数は異常時に表れる現象に合せて決めれば良く1つのみでもあるいは複数でも構わない。例えば、波形のバラツキのみが大きくなる場合には波形を元に作成した特徴量パラメータの標準偏差を大きくすればよい。そして、正常基準空間のうちの一部の値をこの新たに作成された異常運転状態量データと置き換えて異常空間として定義する。なお、この異常空間の学習法を用いる場合には、正常基準空間ごとに対応する異常空間を作成する必要があるため、図11の正常基準空間補充処理を行い新たな正常基準空間を学習する度に上記手法により異常空間の学習を行う。   In addition, as another learning method for anomalous space, when parameters that show signs when a target failure occurs are clear in advance, after normal reference space learning, the data of each parameter used for the normal reference space On the other hand, a method is conceivable in which only the value of a parameter in which a sign appears remarkably when an abnormality occurs is forcibly changed to a value estimated when a failure occurs, and abnormal operation state quantity data is newly created. The number of parameters to be forcibly changed may be determined according to the phenomenon appearing at the time of abnormality, and it may be only one or plural. For example, when only the variation in the waveform increases, the standard deviation of the feature parameter created based on the waveform may be increased. Then, a part of values in the normal reference space is replaced with the newly created abnormal operation state quantity data to define the abnormal space. When this abnormal space learning method is used, it is necessary to create an abnormal space corresponding to each normal reference space. Therefore, every time the normal reference space supplement processing of FIG. 11 is performed to learn a new normal reference space. In addition, the abnormal space is learned by the above method.

これにより、異常が発生した場合に兆候が表れるパラメータが予め明確である場合には、実機の正常状態を基にした異常空間を作成することが可能となり、実機のバラツキによる個体差を完全に吸収することが可能となる。   This makes it possible to create an anomaly space based on the normal state of the actual machine, and to completely absorb individual differences due to variations in the actual machine, if the parameters that show signs in the event of an abnormality are clear in advance. It becomes possible to do.

冷凍サイクル装置の運転を続ける上で、当初予測していた異常空間ではカバーできない不測の故障が発生する場合がある。そのような場合の対応として、新規異常学習機能があり、その概念をフローチャート図12に示す。図において、ST51は異常発生の検出であり、故障原因評価判定フローにおいて故障原因が特定できないがマハラノビスの距離が大きくなり、冷凍サイクル装置に異常をきたしていると判断できる状態である。このような状態になった場合には、まず図1の表示手段6に表示される過去の時間帯の中から該当する異常の発生した時間帯を図1の入力装置7による操作により選択する。なお、過去数日のデータは常に記憶手段に記憶されており、ST52ではこのデータの中から任意箇所の選定を行なう。ST53では選択された時間帯の運転データ(異常データ)を用いて異常空間の学習を行なう。ST54では学習された異常空間を新規異常空間として記憶手段へ記憶する。新規異常空間が記憶された後の故障原因評価においては新規異常空間についても判定を行なう。   When the operation of the refrigeration cycle apparatus is continued, an unexpected failure that cannot be covered in the initially predicted abnormal space may occur. As a countermeasure for such a case, there is a new abnormality learning function, and its concept is shown in the flowchart of FIG. In the figure, ST51 is the detection of the occurrence of an abnormality, and the cause of the failure cannot be specified in the failure cause evaluation determination flow, but the Mahalanobis distance is increased and it can be determined that an abnormality has occurred in the refrigeration cycle apparatus. In such a state, first, a time zone in which a corresponding abnormality has occurred is selected from the past time zones displayed on the display means 6 in FIG. 1 by an operation using the input device 7 in FIG. Note that the data for the past several days is always stored in the storage means, and in ST52, an arbitrary location is selected from this data. In ST53, the abnormal space is learned using the operation data (abnormal data) in the selected time zone. In ST54, the learned abnormal space is stored in the storage means as a new abnormal space. In the failure cause evaluation after the new abnormal space is stored, the new abnormal space is also determined.

なお、上記説明は、実機冷凍サイクル装置の入力手段の操作装置における学習操作について説明したが、遠隔監視手段における遠隔地パソコンなどの情報端末による同様の学習操作も可能である。あるいは、入力手段は冷凍サイクル装置に常設しておく必要はなく、異常発生時に、サービスマンが、冷凍サイクル装置からのデータの吸い上げ、分析、冷凍サイクル装置への情報の書き込みができるメンテナンスツールのインストールされたパソコンを持ってメンテナンスに行くようにしてもよい。   In addition, although the said description demonstrated learning operation in the operating device of the input means of an actual refrigeration cycle apparatus, the same learning operation by information terminals, such as a remote personal computer, in a remote monitoring means is also possible. Alternatively, the input means does not need to be permanently installed in the refrigeration cycle apparatus, and in the event of an abnormality, a maintenance tool can be installed so that a service person can download data from the refrigeration cycle apparatus, analyze it, and write information to the refrigeration cycle apparatus. You may be allowed to go to maintenance with a personal computer.

以上のように、新たな故障に対しても追加学習機能を設けることにより、設計当初予測しえなかった故障に対しても後処理により的確な故障判定対処が可能となる。また、学習した新規異常空間の情報は機器診断装置や遠隔監視手段に蓄えられており、これらの情報を利用することにより、新たに出荷する同一機種あるいは類似の別機種の記憶手段に加えるなど同一多機種に展開することも可能である。   As described above, by providing an additional learning function even for a new failure, it is possible to accurately deal with failure determination by post-processing even for a failure that cannot be predicted at the beginning of design. In addition, the learned information on the new anomalous space is stored in the device diagnostic device and the remote monitoring means. By using such information, it can be added to the storage means of the same model to be shipped or a similar different model. It is also possible to deploy to many models.

図13は、横軸に時間、縦軸にD値(マハラノビスの距離の平方根)をとったグラフであり、ある異常が発生する場合の正常状態からのD値の時間経過による推移を表した図である。D値は、正常状態においては2以下の値であり、図のようにある異常に対し、D値は時間の推移に伴い次第に大きな値へと変化していく。従って、D値の増加傾向と故障の閾値との関係から故障に至るまでの時間が推測可能であり、推測された故障時期の前に的確なメンテナンスを行うことにより装置が異常停止することを未然に防ぐことが可能となる。例えば、初期の正常状態からD値が閾値の半分の値に到達するまでに1ヶ月かかったとすると、D値が閾値に至り故障状態に陥るまでにあと1ヶ月かかるものと予想できる。また、D値の変化の仕方が比例的でない場合、例えば、最近1週間のD値の増加速度が大きくなっている場合は、その1週間のD値の変化速度を用いて故障時期を予測することで、より正確な故障予知が可能となる。   FIG. 13 is a graph in which time is plotted on the horizontal axis and D value (square root of Mahalanobis distance) is plotted on the vertical axis, and shows the transition of the D value over time from a normal state when a certain abnormality occurs. It is. The D value is a value of 2 or less in a normal state, and the D value gradually changes to a larger value with the transition of time with respect to a certain abnormality as shown in the figure. Therefore, it is possible to estimate the time until failure from the relationship between the increasing tendency of the D value and the failure threshold, and it is possible to prevent the apparatus from being abnormally stopped by performing accurate maintenance before the estimated failure time. It becomes possible to prevent. For example, if it takes one month from the initial normal state until the D value reaches half of the threshold value, it can be predicted that it will take another month before the D value reaches the threshold value and falls into a failure state. Further, when the D value change method is not proportional, for example, when the increase rate of the D value in the last week has increased, the failure time is predicted using the change rate of the D value in the last week. This makes it possible to predict failure more accurately.

なお、上記説明では異常判定手段としてマハラノビスの距離を用い、多項目のパラメータをひとつの指標に変換して異常判定を行う方法について説明を行ったが、この他、例えば異常が表れる項目が予め特定できる場合には、標準偏差や歪度など特定の項目に注目して、この項目が閾値を越えるか否かにより異常の判別を行う方法や、FFT演算結果に対して軸回転周波数など特定周波数の高調波成分に注目して閾値判定を行う方法などでもよい。なお、空調機・冷凍機などの冷凍サイクル装置に搭載された圧縮機の異常判定に上記方法を適用する場合には、圧縮機の圧縮比(高圧と低圧の比)によって圧縮機軸受部などにかかるトルク条件が大きく変化するため、これに合わせて閾値を変更しなければならない。この方法として、正常運転状態の学習が有効であり、その内容は図11にて説明した正常基準空間補充処理のフローチャートとほぼ同様である。特定周波数の高調波成分に注目した場合を例に、図11に基づいて以下その内容を説明する。ST41、ST42にて現在の運転状態の高低圧範囲が既に学習済みかどうかの判定を行い、学習が済んでいない場合にはST43にて運転状態を記憶手段へ記憶する。同一の高低圧範囲で運転が行われた回数がN回(Nは例えば100回)以上に達した時点でST45にて過去に記憶されたデータを用いて、正常状態における異常が顕著に表れる高調波成分、例えば軸受周波数のZ次高調波(軸受周波数が50HzであればZ次高調波=50*Z(Hz))など、における音圧の平均値を記憶しこれを正常状態の基準値とする。次に、ST46にてこの基準値を高圧、低圧に関する関数として記憶する。閾値の設定は例えば基準状態のα倍などのように設定し、ST47にて閾値を算出する。以上のように、実機冷凍サイクルの高圧、低圧運転範囲に応じた基準値およびこれらに基づく閾値を設定することにより、機器個体差の完全吸収およびさまざまな運転状態に対応した閾値判定を行うことが可能となる。なお上記例では高調波成分の項目数をひとつとして説明したが、対象とする異常状態に応じ複数としても構わない。また、基準値は特定高調波における音圧値としたが、音圧オーバーオール値に対する比として無次元化するなどの処理を加えてもよい。   In the above description, the Mahalanobis distance is used as the abnormality determination means, and the method of performing abnormality determination by converting a multi-item parameter into one index has been described. If possible, pay attention to specific items such as standard deviation and skewness, and determine whether an abnormality is detected based on whether or not this item exceeds a threshold. A method of performing threshold determination by paying attention to harmonic components may be used. When the above method is applied to determine the abnormality of a compressor installed in a refrigeration cycle device such as an air conditioner / refrigerator, the compressor bearing section or the like may be used depending on the compression ratio of the compressor (ratio of high pressure to low pressure). Since such torque conditions change greatly, the threshold value must be changed accordingly. As this method, learning of the normal operation state is effective, and the content thereof is almost the same as the flowchart of the normal reference space supplement processing described with reference to FIG. The content will be described below with reference to FIG. 11, taking as an example the case where attention is paid to the harmonic component of the specific frequency. In ST41 and ST42, it is determined whether or not the high / low pressure range of the current operating state has already been learned. If the learning has not been completed, the operating state is stored in the storage means in ST43. When the number of operations in the same high and low pressure range reaches N (N is 100, for example) or more, the data stored in the past in ST45 is used to show a remarkable abnormality in the normal state. The average value of the sound pressure in the wave component, for example, the Z-order harmonic of the bearing frequency (Z-order harmonic = 50 * Z (Hz) if the bearing frequency is 50 Hz) is stored, and this is used as the reference value in the normal state. To do. Next, in ST46, this reference value is stored as a function relating to high pressure and low pressure. The threshold is set, for example, α times the reference state, and the threshold is calculated in ST47. As described above, by setting reference values according to the high and low pressure operating ranges of the actual refrigeration cycle and thresholds based on these, it is possible to perform complete absorption of individual device differences and threshold determination corresponding to various operating states. It becomes possible. In the above example, the number of harmonic component items has been described as one, but a plurality of items may be used depending on the target abnormal state. Moreover, although the reference value is the sound pressure value at the specific harmonic, processing such as non-dimensionalization as a ratio to the sound pressure overall value may be added.

なお、以上の説明において、状態量Bは音圧を想定して説明を行ったが、これに変えて振動もしくは電流の波形でも同様の効果を得ることが可能である。振動の場合は、圧縮機の筐体もしくは圧縮機の吐出側配管もしくは吸入側配管のいずれかの位置の振動を測定する接触式もしくは非接触式の加速度測定手段もしくは変位測定手段等の振動計測素子にて振動波形を測定し、電流の場合は圧縮機への供給電源線に設けたコイルなどの電流測定手段を用いる事により電流波形を測定すればよい。また、圧縮機の供給電源から電流が測定しずらい構造の場合には、冷凍サイクル装置の電源線から電流を測定しても同様の効果が得られる。また、電流線の周りには磁束が発生しているため電流線のそばに磁束から渦電流を発生させ電流を測定できる非接触式の電流センサーを設置してもよい。上記説明は状態量Aと、状態量Bとの組み合わせで診断する技術を説明してきた。状態量Aは変化の時間遅れの大きな冷媒などに関する物理量や実行値を計測などして瞬時値とは無関係な電流などの計測量を求めている。一方状態量Bは比較的短時間の時間変化をも捉えられ、且つ一定時間の間の傾向としてデータを捉える波形データであり、この両者から求められる多くの変数を組み合わせることにより、機械的、電気的、あるいは、事故によらないほかからの影響を含め全体としての故障などの診断が可能になる。特に冷凍サイクルに使用される圧縮機は冷凍サイクルを流れる冷媒を吐出し吸入して循環させており、この冷媒の物理量などを含めた変数とすることが実用的な診断には有効である。同様なことが、駆動体を有し風の流れの物理量に関する送風機や水や食品、薬品の液体に関係するポンプなどの流体機械にもいえるし、FAXやプリンター、あるいは製造ラインなど物を動かす装置の駆動機器にも対応できる。特に冷凍サイクルに用いられた送風機の場合、上記説明と同様に流体として風の流れ以外に冷媒の物理量を計測してよいことは冷凍サイクルの性能、特性が変化することからも明らかである。このように状態量ABのデータの内図10に示す各種異常空間に特徴的なデータ、波形や数値のデータをピックアップして組合せて使用することにより異常の原因を的確に把握することが出来る。   In the above description, the state quantity B has been described on the assumption of sound pressure. However, the same effect can be obtained by using a vibration or current waveform instead. In the case of vibration, a vibration measuring element such as a contact-type or non-contact-type acceleration measuring means or a displacement measuring means for measuring the vibration at any position of the compressor casing or the discharge side piping or suction side piping of the compressor In the case of current, the current waveform may be measured by using a current measuring means such as a coil provided on the power supply line to the compressor. In the case where the current is difficult to measure from the power supply of the compressor, the same effect can be obtained by measuring the current from the power line of the refrigeration cycle apparatus. In addition, since a magnetic flux is generated around the current line, a non-contact type current sensor that can generate an eddy current from the magnetic flux and measure the current may be provided near the current line. The above description has explained the technique of diagnosing with the combination of the state quantity A and the state quantity B. As for the state quantity A, a measured quantity such as a current that is unrelated to the instantaneous value is obtained by measuring a physical quantity or an execution value related to a refrigerant having a large change time delay. On the other hand, the state quantity B is waveform data that captures a relatively short time change and captures data as a tendency for a certain period of time. By combining many variables obtained from both, mechanical, electrical, Diagnosis of failure as a whole, including effects from other sources not related to accidents. In particular, the compressor used in the refrigeration cycle discharges, sucks, and circulates the refrigerant flowing through the refrigeration cycle, and it is effective for practical diagnosis to use variables including the physical quantity of the refrigerant. The same applies to fluid machinery such as blowers related to physical quantities of wind flow and pumps related to water, food, and chemical liquids, and devices that move objects such as fax machines, printers, and production lines. It can also be used with other drive devices. In particular, in the case of a blower used in a refrigeration cycle, it is clear from the fact that the performance and characteristics of the refrigeration cycle change that the physical quantity of the refrigerant other than the flow of wind as the fluid may be measured as described above. As described above, the cause of the abnormality can be accurately grasped by picking up and using data characteristic of various abnormal spaces shown in FIG.

次に、これらの波形データは、機器の運転状態において運転の影響を受けて連続して発生する相互に関連する複数の波形データであれば特徴をつかむのに都合が良く、例えば騒音と振動は機械的損傷につながる接触などの不良時に相互に関連性のある特徴データを発生しやすく、正常時でも、異常時でもその特徴が明確に現れる。又騒音・振動と回転トルク、電力、電流などの瞬時値は製鉄ラインなどの様に製造ラインの負荷が変動するモーターや送風機や圧縮機など回転体とその駆動モーターにとっては関連性が深いので都合が良い。又、当然ながらその他の電気量、例えばモーターの固定子と回転子との間に発生する電磁力も瞬間的な速度変動をもたらしている。更にモーターにとって見ればアース電流や周囲に漏らすノイズ電波など、あるいは軸電圧等異なる現象の波形データは電気的に相互の関連があるばかりでなく、機械系などの事故との区別をつけるためにも相互に複数も受けたり、振動と漏れ電流との組み合わせのようにその特徴的な変化を得るのに有効な組み合わせにすると良い。あるいは更に、音を計測したとしても、圧縮機の軸受の周囲等機械的接触状況で類似のデータではあるが異なる現象となるごとく、相互の近傍など関連する異なる位置の同一現象を複数の波形データから集め、このデータをもとに特徴のあるデータとしての変数にすると正常時でも、異常時でもその特徴が明確に現れるため都合が良い。   Next, these waveform data are convenient for grasping characteristics if they are a plurality of mutually related waveform data that are continuously generated under the influence of operation in the operation state of the equipment. For example, noise and vibration are It is easy to generate feature data that are related to each other at the time of failure such as contact that leads to mechanical damage, and the feature clearly appears in both normal and abnormal situations. In addition, instantaneous values such as noise / vibration and rotational torque, electric power, and current are closely related to rotating motors such as steel production lines, fans, compressors, etc., and their drive motors. Is good. Of course, other electric quantities such as electromagnetic force generated between the stator and the rotor of the motor also cause instantaneous speed fluctuations. Furthermore, for motors, waveform data of different phenomena such as ground current, noise radio waves leaking to the surroundings, and shaft voltage are not only electrically related to each other, but also to distinguish them from accidents such as mechanical systems. A combination that is effective for obtaining a characteristic change such as a combination of vibration and leakage current is also acceptable. Or, even if the sound is measured, the same phenomenon at different positions, such as near each other, is similar to different data in the mechanical contact situation such as the circumference of the compressor bearing. It is convenient to collect the data from the data and make it a variable as characteristic data based on this data, because the characteristics clearly appear in both normal and abnormal conditions.

波形データとして電流のような駆動力、あるいは駆動トルクの波形データを使用する場合、圧縮機や送風機の回転変動、インバータの制御変動などの多くの影響を含むことになリ、単なる電流だけ、音圧だけ、振動だけでは故障判別は出来ない。例えば高調波を広いスペクトル分析しても複合された装置の場合は他の影響の分離が必要でこれを一つ一つ検討して行くととても実用的な診断装置を得ることが出来ない。本発明はこのような問題を簡単に解決できる。モーターに誘導電動機とDCブラシレスモーターを使用した場合高調波の出方が異なり、運転範囲の学習によるデータの分別が必要である。又圧縮機の圧縮室が複数あるものは1回転中に圧縮室分のトルク脈動があるのでこの分を除く必要がある。冷媒の脈動によるトルク脈動がかなり大きいため圧縮機やその他の機器の故障の影響と分離する必要があるし、圧縮機の圧縮比である高圧と低圧の比によりトルクが大きく変わるため、単に電流の高調波分だけでは故障の判別は出来ない。トルクや電流波形を計測中の冷媒状態量測定手段にて冷媒の高圧と低圧を計測し、圧縮比などにて区分けした運転範囲における正常時と異常時のデータを確認する必要がある。圧縮機を起動してから数十分は冷凍サイクルの高圧低圧が安定せず変化をする。圧縮機のトルクに起因する信号、あるいはトルクの影響を受ける歯あたりなどの故障信号はその間信号が変化していく。この性質を利用してトルクの影響を受ける信号と受けない信号、例えばコンデンサなどの電気系の故障などと区分けできるので判別が容易となる。冷凍サイクルの負荷側の機器の制御、例えば冷凍装置であるショーケースの場合熱源側の熱交換器、即ち凝縮器は一つで、負荷側の熱交換器、即ち蒸発器が複数存在し、個々の蒸発器への冷媒の流量を調整して温度調整を行うので、この調整用電磁弁の開閉などにより圧縮機の周波数が変わらなくとも、高圧低圧の冷凍サイクルの状態量は変化して、それにより圧縮機のトルクが変動する。この変動を考慮するため、基準状態をトルクや圧縮比との関係で記憶させるなど、運転範囲の学習を木目細かく行うとともに、一定時間の平均を取ったり、波形平均化の個数をふやし状態量の精度を上げることが必要である。なお故障診断を考えると冷凍サイクルの特殊な状態を故障に含めない様に冷媒の状態量から判断する必要がある。例えば異常の一種としてみるべき液バック運転時と、スーパーヒートがついている運転、即ち正常時で運転範囲として登録すべき運転とは圧縮機内での冷媒の圧力が異なる。即ちスーパーヒートがついている状態の運転範囲で圧縮機の異常と正常を区別する。   When driving data such as current or waveform data of driving torque is used as waveform data, it will include many effects such as compressor and blower rotation fluctuations, inverter control fluctuations, etc. Failure alone cannot be determined by pressure alone or vibration alone. For example, in the case of a combined device even if a spectrum of harmonics is analyzed over a wide spectrum, it is necessary to separate other influences, and if this is examined one by one, a very practical diagnostic device cannot be obtained. The present invention can easily solve such problems. When an induction motor and a DC brushless motor are used for the motor, the way of generating the harmonics is different, and it is necessary to sort the data by learning the operation range. In addition, when there are a plurality of compression chambers of the compressor, there is torque pulsation equivalent to the compression chamber during one rotation, so it is necessary to exclude this amount. Since the torque pulsation due to the pulsation of the refrigerant is quite large, it is necessary to separate it from the effects of the failure of the compressor and other equipment, and the torque varies greatly depending on the ratio of high pressure to low pressure, which is the compression ratio of the compressor. It is not possible to determine the failure by using only the harmonic components. It is necessary to measure the high and low pressures of the refrigerant with the refrigerant state quantity measuring means that is measuring the torque and current waveform, and to check the normal and abnormal data in the operation range divided by the compression ratio. For several tens of minutes after starting the compressor, the high and low pressures of the refrigeration cycle change without stability. The signal due to the torque of the compressor or a failure signal such as a tooth contact affected by the torque changes during that time. By using this property, it is possible to distinguish between signals that are affected by torque and signals that are not affected, such as failure of an electric system such as a capacitor. Control of equipment on the load side of the refrigeration cycle, for example, in the case of a showcase that is a refrigeration system, there is one heat exchanger on the heat source side, that is, a condenser, and there are multiple load side heat exchangers, that is, evaporators. Since the temperature is adjusted by adjusting the flow rate of the refrigerant to the evaporator, even if the frequency of the compressor does not change due to opening and closing of this adjusting solenoid valve, the state quantity of the high-pressure and low-pressure refrigeration cycle changes. As a result, the torque of the compressor varies. In order to take this fluctuation into account, the reference state is memorized in relation to the torque and compression ratio, etc., and the operation range is meticulously studied, the average over a certain period of time is taken, and the number of waveform averaging is increased It is necessary to increase accuracy. Considering the failure diagnosis, it is necessary to judge from the state quantity of the refrigerant so that the special state of the refrigeration cycle is not included in the failure. For example, the pressure of the refrigerant in the compressor is different between the liquid back operation that should be viewed as a kind of abnormality and the operation that is superheated, that is, the operation that should be registered as the operation range in the normal state. In other words, the compressor is distinguished from normal and abnormal in the operating range in which the superheat is on.

次に、圧縮機異常検知後の報知動作について説明する。圧縮機の異常もしくはその予兆を検知した場合には、設置現場にてその異常を報知する場合と遠隔監視室にてその情報を報知する場合の2つの場合がある。設置現場にて異常を報知する場合には図1の警告ランプ8またはスピーカー9にて異常報知を行う方法と、液晶ディスプレイなどの表示装置6に異常内容を表示する方法のいずれかもしくは両方併用が可能である。異常事態が緊急かつ重大である場合には警告ランプ8、スピーカー9および表示装置6の併用が有効であり、異常が小さい段階もしくは予知段階では表示装置6のみにて報知を行い、メンテナンス時にサービスマンがその異常傾向を確認できるように構成すれば、適切なメンテナンス時期を把握することが可能となる。表示装置6には圧縮機の異常検知に関する情報が表示される。この情報として例えば設置場所名、住所、連絡先、設備名称、圧縮機型名、仕様等の機器特定事項、圧縮機の正常異常判定結果の文字表示、異常度の数値表示及びグラフによる履歴表示、マハラノビスの距離の時間推移グラフ及び数値データ履歴、異常種別判定結果の文字表示、マハラノビスの距離の学習有無などの学習状況、各部圧力温度などの設備運転状態、音振動などの測定波形グラフ及びFFT演算結果グラフ、特徴量パラメータ演算結果及び履歴など、の測定量や演算した結果、判断した結果、運転状態の履歴画表示可能である。これらの表示は必要に応じて任意に選択できる複数の画面形式でも良い。   Next, the notification operation after the compressor abnormality is detected will be described. When an abnormality or a sign of the compressor is detected, there are two cases: the case where the abnormality is notified at the installation site and the case where the information is notified in the remote monitoring room. When notifying the abnormality at the installation site, either a method of notifying the abnormality with the warning lamp 8 or the speaker 9 in FIG. 1 and a method of displaying the abnormality content on the display device 6 such as a liquid crystal display or both of them are used. Is possible. When the abnormal situation is urgent and serious, the combined use of the warning lamp 8, the speaker 9 and the display device 6 is effective. In the stage where the abnormality is small or the prediction stage, only the display device 6 is used for notification, and a serviceman is used during maintenance. If it is configured so that the abnormal tendency can be confirmed, it is possible to grasp an appropriate maintenance time. The display device 6 displays information related to compressor abnormality detection. As this information, for example, installation location name, address, contact information, equipment name, compressor model name, specifications, etc., device specific items, compressor normal / abnormal judgment result character display, abnormality degree numerical display and history display by graph, Mahalanobis distance time transition graph and numerical data history, abnormality type judgment result text display, learning status such as Mahalanobis distance learning presence, equipment operating state such as pressure temperature of each part, measurement waveform graph such as sound vibration and FFT calculation It is possible to display a history image of a measured amount, a calculation result, a determination result, and an operation state such as a result graph, a feature parameter calculation result and a history. These displays may be in a plurality of screen formats that can be arbitrarily selected as necessary.

また、遠隔監視室への報知については、異常内容および異常度合を電話回線、LAN、無線などの通信手段により遠隔監視室に報知する。遠隔監視室では異常の状態に応じてサービスマンを派遣するが、この際異常原因が遠隔で把握できれば、現場に行く前に該当する異常に対処するために必要な部品を用意することができ、迅速なメンテナンスを行うことができる。この他、遠隔監視室へ報知するのと同時にサービスマンの携帯電話など情報受信手段へ直接情報を報知することも可能である。以上説明のように、冷凍サイクル装置の冷媒の圧力および温度と、音もしくは振動もしくは電流の状態量等から複合変数を演算し、学習を行った正常空間と異常空間との比較を行い圧縮機の異常を判断することにより、故障の早期予兆の検出、実機個体差の吸収、故障原因の特定が可能となる。 As for notification to the remote monitoring room, the contents and degree of abnormality are notified to the remote monitoring room by communication means such as a telephone line, LAN, and radio. In the remote monitoring room, a service person is dispatched according to the state of the abnormality, but if the cause of the abnormality can be grasped remotely, the necessary parts can be prepared to deal with the abnormality before going to the site, Rapid maintenance can be performed. In addition, it is also possible to notify the information directly to the information receiving means such as the mobile phone of the service person at the same time as informing the remote monitoring room. As explained above, the composite variable is calculated from the pressure and temperature of the refrigerant of the refrigeration cycle apparatus and the state quantity of sound, vibration or current, etc., and comparison is made between the normal space and the abnormal space where learning is performed. By determining the abnormality, it is possible to detect an early sign of failure, absorb individual machine differences, and identify the cause of failure.

本発明の複数の状態量Bを検出する構成について図14を用いて説明する。図14は、基本的には図2の実施の形態1の冷凍サイクル装置と同じであるが、圧縮機近傍に音圧と振動を検出する両方の手段がある点が異なる。図14の構成は、圧縮機11、凝縮器12、膨張弁13、蒸発器14を冷媒が循環しており、16は冷凍サイクル1の圧力、温度などの冷媒状態を検出する冷媒状態量検出手段、51は圧縮機の筐体もしくは圧縮機の吐出側配管もしくは圧縮機の吸入側配管のいずれかの位置における振動を検出する第一の脈動状態量検出手段、52は第一の脈動状態量検出手段51の近傍、例えば第一の脈動状態量検出手段51から1〜3cm程度離れた位置に設置し、第一の脈動状態量検出手段51で検出する振動測定位置の近傍の音圧を検出する第二の脈動状態量検出手段である。17は第一の脈動状態量検出手段51および第二の脈動状態量検出手段52の出力信号に対し増幅、A/D変換などの信号処理を行う信号処理手段、18は冷媒状態量検出手段16および第一の脈動状態量検出手段51および第二の脈動状態量検出手段52の検出結果を基に各種演算を行なう演算手段、19は過去の演算結果、基準値などを記憶する記憶手段、20は演算結果と記憶内容を比較する比較手段、21は比較の結果を踏まえて判断を行なう判断手段、22は判断結果を出力する出力手段である。なお、この例における全体概念図およびその他記号については図1、図2のものに同様である。   A configuration for detecting a plurality of state quantities B according to the present invention will be described with reference to FIG. FIG. 14 is basically the same as the refrigeration cycle apparatus of the first embodiment shown in FIG. 2 except that there are both means for detecting sound pressure and vibration near the compressor. In the configuration of FIG. 14, the refrigerant circulates through the compressor 11, the condenser 12, the expansion valve 13, and the evaporator 14, and 16 is a refrigerant state quantity detection unit that detects the refrigerant state such as the pressure and temperature of the refrigeration cycle 1. , 51 is a first pulsation state quantity detecting means for detecting vibration at any position of the compressor casing, the compressor discharge side pipe or the compressor suction side pipe, and 52 is the first pulsation state quantity detection. Installed in the vicinity of the means 51, for example, at a position about 1 to 3 cm away from the first pulsation state quantity detection means 51, and detects the sound pressure near the vibration measurement position detected by the first pulsation state quantity detection means 51. Second pulsation state quantity detection means. Reference numeral 17 denotes signal processing means for performing signal processing such as amplification and A / D conversion on the output signals of the first pulsation state quantity detection means 51 and the second pulsation state quantity detection means 52, and 18 denotes refrigerant state quantity detection means 16. And a calculation means for performing various calculations based on the detection results of the first pulsation state quantity detection means 51 and the second pulsation state quantity detection means 52, 19 a storage means for storing past calculation results, reference values and the like, 20 Is a comparison means for comparing the operation result with the stored content, 21 is a determination means for making a determination based on the comparison result, and 22 is an output means for outputting the determination result. The overall conceptual diagram and other symbols in this example are the same as those in FIGS.

図15は第一の脈動状態量検出手段51および第二の脈動状態量検出手段52の詳細を表した図であり、圧縮機11近傍の振動および音圧を検出するシステム構成を表したものである。51の第一の脈動状態量検出手段は例えばマイクなどの音圧を電気信号に変換する手段、52の第二の脈動状態量検出手段は例えば加速度ピックアップもしくは変位センサーなどの振動状態量を電気信号に変換する手段、32はフィルタ−およびアンプ、33はA/D変換器、34はFFT演算器を表す。本例では音圧と振動を同時に検出しているがその検出手法は図3のものに同じであり、本例では2ch対応となっている点が異なる。   FIG. 15 is a diagram showing details of the first pulsation state quantity detection means 51 and the second pulsation state quantity detection means 52, and shows a system configuration for detecting vibration and sound pressure in the vicinity of the compressor 11. is there. The first pulsation state quantity detection means 51 is a means for converting sound pressure such as a microphone into an electric signal, and the second pulsation state quantity detection means 52 is an electric signal for a vibration state quantity such as an acceleration pickup or a displacement sensor. , 32 is a filter and amplifier, 33 is an A / D converter, and 34 is an FFT calculator. In this example, sound pressure and vibration are detected at the same time, but the detection method is the same as that in FIG. 3, and this example is different in that it corresponds to 2ch.

続いて、本例の特徴である音圧と振動の同時検出後の演算手段18における信号処理動作について説明する。第一の脈動状態量検出手段51および第二の脈動状態量検出手段52より得られる音圧と振動の2つの時系列波形信号を用いて、式14により相関関数を求める。   Next, the signal processing operation in the computing means 18 after simultaneous detection of sound pressure and vibration, which is a feature of this example, will be described. Using the two time-series waveform signals of sound pressure and vibration obtained from the first pulsation state quantity detection means 51 and the second pulsation state quantity detection means 52, a correlation function is obtained by Expression 14.

Figure 0004265982
Figure 0004265982

ここで、x(t)、y(t)は時間tに関する時系列の信号波形、τは時間のズレ、Tは時間区間を表す。圧縮機が異常になると振動が発生し音が出るため、音圧波形と振動波形は基本的には同様の波形信号となるはずであるが、周囲の暗騒音が音圧波形に重畳したり、圧縮機の異常による振動とは無関係の圧縮機起動時の振動が振動波形に表れたりするため、どちらか一方の信号のみでは異常による波形の変化とノイズとが区別できない場合がある。そこで、音圧と振動の2つの時系列波形の相関関数を求めることにより、2つの信号に共通な成分のみが残り、ノイズ成分を除去し、より正確な脈動状態量の抽出が可能となる。この相関関数を用いてすでに説明した時間波形データに基く特徴量パラメータを求めることでノイズの影響を排除した分析が可能となる。なお、上記相関関数によるノイズ除去の方法は音圧波形と振動波形のみならず音圧波形と電流波形、もしくは振動と電流波形など他の波形データの複数の組合せについても同様の効果が得られる。電流波形計測はモーターの端子だけでなく接続された電源線の途中や電源端子などで計測しても良いことは当然である。   Here, x (t) and y (t) are time-series signal waveforms related to time t, τ is a time shift, and T is a time interval. When the compressor becomes abnormal, vibration is generated and sound is generated, so the sound pressure waveform and vibration waveform should basically be the same waveform signal, but the surrounding background noise is superimposed on the sound pressure waveform, Since the vibration at the time of starting the compressor unrelated to the vibration due to the abnormality of the compressor appears in the vibration waveform, the change in the waveform due to the abnormality and the noise may not be distinguished from only one of the signals. Therefore, by obtaining a correlation function of two time-series waveforms of sound pressure and vibration, only the common component remains in the two signals, the noise component is removed, and a more accurate pulsation state quantity can be extracted. By using this correlation function to obtain the feature parameter based on the time waveform data already described, it is possible to perform an analysis that eliminates the influence of noise. Note that the noise removal method using the correlation function can achieve the same effect not only with a sound pressure waveform and a vibration waveform but also with a plurality of combinations of other waveform data such as a sound pressure waveform and a current waveform, or a vibration and a current waveform. Naturally, the current waveform measurement may be performed not only at the motor terminal but also at the middle of the connected power line or at the power terminal.

冷媒状態量の演算処理手法、学習方法などについては上記の説明内容に同じであり、本例においても異常判定処理は上記のように図4〜図13を用いて説明を行った内容と同様の判定処理を行うことにより可能となる。   The refrigerant state quantity calculation processing method, learning method, and the like are the same as those described above, and in this example, the abnormality determination processing is the same as the content described using FIGS. 4 to 13 as described above. This is possible by performing the determination process.

なお、ここでは、音圧波形と振動波形から相関関数を求め、クロススペクトル処理を行うことを例に説明を行ったが、音圧波形のFFT結果と振動波形のFFT結果を掛けることによってもクロススペクトルを求めることができる。そして、クロススペクトル演算結果に逆FFT処理を施すことで時間領域波形に戻すことができ、このクロススペクトル演算結果および逆FFTによる時間領域波形算出結果を用いて特徴量パラメータ等、同様の処理を行うようにしても、同様にノイズの影響を排除した分析が可能となる。又クロススペクトル処理は音圧波形と振動波形からだけではなく、音圧波形と電流波形、電流波形と振動波形等の同一時間帯に測定した異なる脈動波形の組み合わせであればどんなものでも良い。   In this example, the correlation function is obtained from the sound pressure waveform and the vibration waveform and the cross spectrum processing is performed as an example. However, the cross result can also be obtained by multiplying the FFT result of the sound pressure waveform and the FFT result of the vibration waveform. A spectrum can be obtained. Then, by performing inverse FFT processing on the cross spectrum calculation result, it is possible to return to the time domain waveform, and using the cross spectrum calculation result and the time domain waveform calculation result by the inverse FFT, the same processing such as the feature amount parameter is performed. Even if it does, it will become possible to analyze the influence of noise similarly. The cross spectrum processing is not limited to the sound pressure waveform and the vibration waveform, but may be any combination of different pulsation waveforms measured in the same time zone such as the sound pressure waveform and the current waveform, and the current waveform and the vibration waveform.

また、ここでは、音圧波形と振動波形から相関関数を求めるようことを例に説明を行ったが、2個のマイクを用い、1つを圧縮機異常による音圧変化の大きい位置に設置し、もう1つを圧縮機異常による音圧変化の小さい位置に設置するように構成してもよい。そして、2つのマイクの測定波形の差分を取ることで、両方の波形に同じように表れる暗騒音を排除することができ、異常の影響のみが残った波形を得ることができる。このように構成しても、同様の異常判定処理が可能で、同様の効果を奏する。   In this example, the correlation function is obtained from the sound pressure waveform and the vibration waveform. However, two microphones are used and one is installed at a position where the sound pressure change due to the compressor abnormality is large. The other may be configured to be installed at a position where the change in sound pressure due to the compressor abnormality is small. Then, by taking the difference between the measured waveforms of the two microphones, the background noise that appears in the same manner in both waveforms can be eliminated, and a waveform in which only the influence of the abnormality remains can be obtained. Even if comprised in this way, the same abnormality determination process is possible and there exists the same effect.

また、この際、マイクは2個に限るものではなく、より多くの個数を用いるようにしてもよい。多点マイクを圧縮機周りに適用した設置例を図16に示す。圧縮機の内部では、モータおよび圧縮ロータが回転しているため、軸受けが損傷していれば、回転角に応じた異常音がでる。そこで、図16のように圧縮機の周囲を囲むようにマイク53を配置して置き、異常現象と複数のマイクの相関関係を求めて、それを元に異常判定を行うようにすると、1つのマイクでは把握できなかった異常を確実に把握することができるようになる。   At this time, the number of microphones is not limited to two, and a larger number may be used. FIG. 16 shows an installation example in which a multipoint microphone is applied around the compressor. Since the motor and the compression rotor are rotating inside the compressor, if the bearing is damaged, an abnormal sound corresponding to the rotation angle is generated. Therefore, as shown in FIG. 16, when the microphone 53 is placed so as to surround the compressor, the correlation between the abnormal phenomenon and the plurality of microphones is obtained, and abnormality determination is performed based on the correlation, one Abnormalities that could not be grasped by the microphone can be surely grasped.

また、本発明の説明では、冷凍サイクル装置の微妙な変化を捉えるために音圧もしくは振動の情報に加え、冷凍サイクル装置の圧力および温度の情報も併用して圧縮機の故障診断を行っているが、冷凍サイクル装置の圧力および温度の情報を用いずに圧縮機近傍の音圧と振動もしくは音圧のみまたは振動のみの情報によっても前記説明の信号処理方法を適用することにより圧縮機の故障診断を行うことが可能である。   In the description of the present invention, in order to capture subtle changes in the refrigeration cycle apparatus, in addition to the sound pressure or vibration information, the pressure and temperature information of the refrigeration cycle apparatus is also used in combination to diagnose the compressor failure. However, without using the pressure and temperature information of the refrigeration cycle apparatus, the failure diagnosis of the compressor can be performed by applying the signal processing method described above also based on the sound pressure and vibration near the compressor, or only the sound pressure or only the vibration information. Is possible.

以上説明のように、冷凍サイクル装置の圧力および温度と、振動およびその近傍場の音圧の状態量から複合変数を演算し、学習を行った正常空間と異常空間との比較を行い圧縮機の異常を判断することにより、振動もしくは音圧に含まれるノイズ成分を除去し、高精度な故障の早期予兆の検出、実機個体差の吸収、故障原因の特定が可能となる。この発明に関わる冷凍サイクル装置と圧縮機において、冷凍サイクル装置の圧力および温度からなる冷媒状態量検出手段と、圧縮機周囲の音もしくは振動もしくは、電流の少なくとも一つの状態量を検出する脈動状態量検出手段とを備え、これらの状態量から複合変数を演算し、複合変数を用いて圧縮機の異常を判断するものである。   As described above, the composite variable is calculated from the pressure and temperature of the refrigeration cycle apparatus and the state quantities of vibration and the sound pressure in the near field. By determining the abnormality, it is possible to remove a noise component included in vibration or sound pressure, detect an early sign of failure with high accuracy, absorb individual machine differences, and identify the cause of the failure. In the refrigeration cycle apparatus and compressor according to the present invention, a refrigerant state quantity detection means comprising the pressure and temperature of the refrigeration cycle apparatus, and a pulsation state quantity for detecting at least one state quantity of sound or vibration around the compressor or current And a detecting means for calculating a composite variable from these state quantities and determining an abnormality of the compressor using the composite variable.

またこの発明の冷凍サイクル装置は、圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させて冷凍サイクルを構成する冷凍サイクル装置において、圧縮機の吐出側から膨張手段に至る流路のいずれかの位置の冷媒の圧力すなわち高圧、高圧の飽和温度すなわち凝縮温度、圧縮機の吐出側から凝縮器に至る流路のいずれかの位置の冷媒の温度すなわち吐出温度から少なくとも1つの状態量、および膨張手段から圧縮機の吸入側に至る流路のいずれかの位置の冷媒の圧力すなわち低圧、低圧の飽和温度すなわち蒸発温度、圧縮機の吸入側から蒸発器に至る流路のいずれかの位置の冷媒の温度すなわち吸入温度から少なくとも1つの状態量を検出する冷媒状態量検出手段と、圧縮機の筐体もしくは圧縮機の吐出側の配管もしくは圧縮機の吸入側の配管のいずれかの位置の振動、圧縮機の周囲のいずれかの位置の空気の音圧、圧縮機の電源線に流れる電流から少なくとも1つの状態量を検出する脈動状態量検出手段とを備え、冷媒状態量検出手段および脈動状態量検出手段により検出される2つ以上の状態量を演算して複合変数を求める演算手段と、各状態量検出手段による検出値もしくはそれらから演算された複合変数などの演算値を記憶する記憶手段と、演算手段により求めた複合変数から圧縮機異常を判断する判断手段とを備えたものである。   Further, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein to constitute a refrigeration cycle. Refrigerant pressure or high pressure at any position in the flow path to the expansion means, high pressure saturation temperature or condensation temperature, refrigerant temperature or discharge temperature at any position in the flow path from the discharge side of the compressor to the condenser And at least one state quantity, and the pressure or low pressure of the refrigerant at any position in the flow path from the expansion means to the suction side of the compressor, the low pressure saturation temperature or evaporation temperature, and the suction side of the compressor to the evaporator A refrigerant state quantity detecting means for detecting at least one state quantity from the refrigerant temperature at any position in the flow path, that is, a suction temperature, and a compressor casing or a compressor discharge side pipe Or a pulsation that detects at least one state quantity from vibration at any position on the suction side of the compressor, sound pressure of air at any position around the compressor, and current flowing through the power line of the compressor A state quantity detection means, a calculation means for calculating two or more state quantities detected by the refrigerant state quantity detection means and the pulsation state quantity detection means, and obtaining a composite variable, and a detection value by each state quantity detection means or A storage means for storing a calculated value such as a composite variable calculated therefrom and a determination means for determining a compressor abnormality from the composite variable obtained by the calculating means are provided.

またこの発明の冷凍サイクル装置は、圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させて冷凍サイクルを構成する冷凍サイクル装置において、圧縮機の吐出側から膨張手段に至る流路のいずれかの位置の冷媒の圧力すなわち高圧、高圧の飽和温度すなわち凝縮温度、圧縮機の吐出側から凝縮器に至る流路のいずれかの位置の冷媒の温度すなわち吐出温度から少なくとも1つの状態量、および膨張手段から圧縮機の吸入側に至る流路のいずれかの位置の冷媒の圧力すなわち低圧、低圧の飽和温度すなわち蒸発温度、圧縮機の吸入側から蒸発器に至る流路のいずれかの位置の冷媒の温度すなわち吸入温度から少なくとも1つの状態量を検出する冷媒状態量検出手段と、圧縮機の筐体もしくは圧縮機の吐出側の配管もしくは圧縮機の吸入側の配管のいずれかの位置の振動を検出する第一の脈動状態量検出手段と、圧縮機の周囲のいずれかの位置の空気の音圧を検出する第二の脈動状態量検出手段とを備え、第二の脈動状態量検出手段を第一の脈動状態量検出手段の近傍に対応設置したの精度の良い状態を確保できる。又圧縮機を駆動する電流を計測する第三の脈動流測定手段を設けても良い。その場合は第一、第二、第三の脈動流測定手段をどのように組み合わせても良いし、すべてを使用して演算することでより精度を上げることもできる。   Further, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein to constitute a refrigeration cycle. Refrigerant pressure or high pressure at any position in the flow path to the expansion means, high pressure saturation temperature or condensation temperature, refrigerant temperature or discharge temperature at any position in the flow path from the discharge side of the compressor to the condenser And at least one state quantity, and the pressure or low pressure of the refrigerant at any position in the flow path from the expansion means to the suction side of the compressor, the low pressure saturation temperature or evaporation temperature, and the suction side of the compressor to the evaporator A refrigerant state quantity detecting means for detecting at least one state quantity from the refrigerant temperature at any position in the flow path, that is, a suction temperature, and a compressor casing or a compressor discharge side pipe Or a first pulsation state quantity detection means for detecting vibration at any position of the pipe on the suction side of the compressor, and a second pulsation for detecting sound pressure of air at any position around the compressor. It is possible to ensure a highly accurate state by providing the state quantity detection means and installing the second pulsation state quantity detection means in the vicinity of the first pulsation state quantity detection means. Moreover, you may provide the 3rd pulsating flow measurement means which measures the electric current which drives a compressor. In that case, the first, second, and third pulsating flow measuring means may be combined in any way, and the accuracy can be improved by calculating using all of them.

またこの発明の冷凍サイクル装置は、第一の脈動状態量検出手段と第二の脈動状態量検出手段とから関係変数を演算し、冷媒状態量検出手段および脈動状態量検出手段により検出される2つ以上の状態量もしくは関係変数を演算して複合変数を求める演算手段と、各状態量検出手段による検出値もしくはそれらから演算された複合変数などの演算値を記憶する記憶手段と、演算手段により求めた複合変数から圧縮機異常を判断する判断手段とを備えたので、異常の検出が簡単で確実である。   Further, the refrigeration cycle apparatus of the present invention calculates a relational variable from the first pulsation state quantity detection means and the second pulsation state quantity detection means, and is detected by the refrigerant state quantity detection means and the pulsation state quantity detection means 2 An arithmetic means for calculating a composite variable by calculating two or more state quantities or related variables, a storage means for storing a detection value by each state quantity detection means or an arithmetic value such as a composite variable calculated therefrom, and an arithmetic means Since it has a judging means for judging a compressor abnormality from the obtained composite variable, the abnormality detection is simple and reliable.

又この発明の冷凍サイクル装置は、圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させて冷凍サイクルを構成する冷凍サイクル装置において、圧縮機筐体もしくは圧縮機吐出側の配管もしくは圧縮機の吸入側の配管のいずれかの位置の振動を検出する第一の脈動状態量検出手段と、圧縮機の周囲のいずれかの位置の空気の音圧を検出する第二の脈動状態量検出手段とを備え、第二の脈動状態量検出手段を第一の脈動状態量検出手段の近傍に対応設置したので、信頼性の高い装置が得られる。   The refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein to constitute a refrigeration cycle. First pulsation state quantity detection means for detecting vibration at any position of the discharge pipe or compressor suction pipe, and the sound pressure of air at any position around the compressor Since the second pulsation state quantity detection means is provided and the second pulsation state quantity detection means is installed in the vicinity of the first pulsation state quantity detection means, a highly reliable device can be obtained.

またこの発明の冷凍サイクル装置は、第一の脈動状態量検出手段と第二の脈動状態量検出手段とから関係変数を演算し、脈動状態量検出手段により検出される2つ以上の状態量もしくは前記関係変数を演算して複合変数を求める演算手段と、状態量検出手段による検出値もしくはそれらから演算された複合変数などの演算値を記憶する記憶手段と、演算手段により求めた複合変数から圧縮機異常を判断する判断手段とを備えたものである。   Further, the refrigeration cycle apparatus of the present invention calculates a relational variable from the first pulsation state quantity detection means and the second pulsation state quantity detection means, and two or more state quantities detected by the pulsation state quantity detection means or Computation means for computing a composite variable by computing the relational variable, storage means for storing a computation value such as a detection value by the state quantity detection means or a composite variable computed from them, and compression from the composite variable obtained by the computation means And a determination means for determining a machine abnormality.

またこの発明の冷凍サイクル装置は、圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させて冷凍サイクルを構成する冷凍サイクル装置において、圧縮機筐体周辺もしくは圧縮機吐出側の配管もしくは圧縮機吸入側の配管のいずれかの位置の空気の音圧を検出する脈動状態量検出手段を備え、脈動状態量検出手段を測定対象の近傍に設置したものである。   Further, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein to constitute a refrigeration cycle. It is provided with a pulsation state quantity detection means for detecting the sound pressure of the air at either the compressor discharge side pipe or the compressor suction side pipe, and the pulsation state quantity detection means is installed in the vicinity of the measurement target. .

またこの発明の冷凍サイクル装置は、脈動状態量検出手段から関係変数を演算し、脈動状態量検出手段により検出される2つ以上の状態量もしくは関係変数を演算して複合変数を求める演算手段と、状態量検出手段による検出値もしくはそれらから演算された複合変数などの演算値を記憶する記憶手段と、演算手段により求めた複合変数から圧縮機異常を判断する判断手段とを備えたものである。   Further, the refrigeration cycle apparatus according to the present invention includes a calculation means for calculating a relational variable from the pulsation state quantity detection means and calculating two or more state quantities or relation variables detected by the pulsation state quantity detection means to obtain a composite variable. , A storage means for storing a detection value by the state quantity detection means or a calculation value such as a composite variable calculated therefrom; and a determination means for determining a compressor abnormality from the composite variable obtained by the calculation means. .

またこの発明の冷凍サイクル装置の診断方法は、記憶手段で記憶された各状態量検出手段による検出値もしくはそれらから演算された状態特徴値から、冷凍サイクル装置が正常に運転されている状態を抜き出し、学習するステップを有する。またこの発明の冷凍サイクル装置の診断方法は、学習された正常運転時の各状態量検出手段による検出値もしくはそれらから演算された状態特徴値のうちのいずれか1つを強制的に別の値に変換するステップと、その変換後に複合変数を新たに演算するステップと、その新たに演算された複合変数を判断手段が圧縮機異常を判断する際の閾値に設定するステップとを有する。   The refrigeration cycle apparatus diagnosis method of the present invention extracts the state in which the refrigeration cycle apparatus is operating normally from the detection values by the state quantity detection means stored in the storage means or the state feature values calculated from them. And learning. In the refrigeration cycle apparatus diagnosis method of the present invention, any one of a learned value detected by each state quantity detecting means during normal operation or a state feature value calculated from them is forced to another value. And a step of newly calculating a composite variable after the conversion, and a step of setting the newly calculated composite variable as a threshold value when the determination unit determines that the compressor is abnormal.

なお本発明の図9、図11、図12の学習方法を組合せることにより、既設機に対し、あるいは遠隔地点に存在する仕様も明確でない機器に対し、測定データ、即ち冷媒状態量と脈動状態量の測定データを連続的、且つ、直接あるいは通信を通してもらうことから先ず学習をスタートさせることが出来る。当初は精度の悪い診断となるが先ず運転データの記録から始まり、機器の仕様や据付け状態の情報入手、メンテナンス時の運転経歴調査や異常運転対応の記録チェックや模擬試験により本発明の構成及び動作により、比較的短期間で精度の良い診断までもっていくことが出来る。これによりインターネットなど通信を使用した冷凍サイクルや機器の故障診断を行う業務を、冷凍サイクルや機器の運転など使用する業務や冷凍サイクルや機器を製造する業務、あるいはメンテナンスする業務と切り離し独立に行うことが出来る。その場合、故障診断に必要な情報のやり取りは現在運転中の設備、機器の種類、仕様などとともにその設備、機器における計測装置の種類とそのデータだけで良い。もちろん故障予知まで含めるとしたら運転記録、故障経歴、メンテナンス記録なども必要になる。   In addition, by combining the learning methods of FIGS. 9, 11, and 12 of the present invention, measurement data, that is, refrigerant state quantity and pulsation state, for an existing machine or for a device whose specification at a remote location is not clear. Learning can be started first by receiving a quantity of measured data continuously and directly or through communication. Initially, the diagnosis is inaccurate, but it starts with recording of operation data, and then the configuration and operation of the present invention are obtained by obtaining information on equipment specifications and installation status, checking the operating history during maintenance, checking records for abnormal operation, and performing simulation tests. Thus, it is possible to obtain an accurate diagnosis in a relatively short period of time. As a result, work to diagnose failures of refrigeration cycles and equipment using communications such as the Internet should be performed separately from work used for refrigeration cycles and equipment operations, work for manufacturing refrigeration cycles and equipment, or maintenance work. I can do it. In this case, information necessary for failure diagnosis may be exchanged only with the currently operating equipment, the type of equipment, the specifications, and the like, as well as the type of measurement equipment and data for the equipment and equipment. Of course, if you want to include failure prediction, you will also need operation records, failure history, maintenance records, and so on.

この発明の冷凍サイクル装置の診断方法は、正常状態での複合変数の値と演算手段による現在の複合変数の演算値と閾値もしくは事前にユーザーが設定した閾値と経過時間とから、圧縮機の異常度合が閾値に至るまでの時間を算出するステップすなわち故障を予知するステップを有する。   The diagnosis method of the refrigeration cycle apparatus according to the present invention is based on the value of the composite variable in the normal state and the calculated value of the current composite variable by the calculation means and the threshold value or the threshold value and elapsed time set by the user in advance. A step of calculating a time until the degree reaches a threshold value, that is, a step of predicting a failure.

この発明の冷凍サイクル装置は、圧縮機異常を判断する判断手段とは、圧縮機への冷媒液バック、圧縮機内部の冷凍機油枯渇・劣化、圧縮機の軸受け異常、圧縮機の振れ回り異常、圧縮機のモータ異常、圧縮機の弁やスクロール、ローターなどの圧縮室構成部品破損、圧縮機の歯あたりなど、圧縮機関連故障事象のいずれかあるいはこれらすべてを判別できる判断手段であることを特徴とする。もちろん圧縮機だけではなくモーターにより駆動される送風装置など他の機器、装置についても同様に故障を判別できる。以上説明してきた複合変数とは、マハラノビスの距離であることを特徴とする。   In the refrigeration cycle apparatus of the present invention, the judging means for judging the compressor abnormality includes refrigerant liquid back to the compressor, refrigeration oil depletion / deterioration inside the compressor, compressor bearing abnormality, compressor swinging abnormality, It is a judgment means that can discriminate any or all of compressor related failure events such as compressor motor abnormality, compressor valve / scroll, rotor compression chamber components such as rotor damage, compressor tooth contact, etc. And Of course, the failure can be similarly determined not only for the compressor but also for other devices and devices such as a blower driven by a motor. The composite variable described above is characterized by the Mahalanobis distance.

次に冷凍サイクルの異常として冷媒漏れを検知する方法を考える。冷媒漏れがある段階になると、凝縮器12と膨張手段13との間に設ける過冷却手段に流入する冷媒が二相冷媒になっているため、完全な液冷媒の時よりも過冷却手段での冷却能力が落ち、膨張手段13の入口での冷媒のサブクール(過冷却度)が、冷媒漏れがない状態あるいは冷媒漏れの初期段階に比べて小さくなる。そこで、このサブクールの変化を捉えられれば、冷媒漏れを特定することができる。又更に冷媒圧力の変動による冷媒圧力脈動波形を測定すれば冷媒漏れの兆候であるサブクールの低下による液冷媒中へのフラッシュガスである気泡混入を捉えることが可能である。又冷凍サイクル中の膨張弁周辺の音圧を測定すればサブクール低下に伴うフラッシュガス混入を音圧の変化により検知することも可能である。従って冷媒の物理的状態の変化を示す音や振動の変化を捉えて組合せればよいことになる。   Next, a method of detecting refrigerant leakage as a refrigeration cycle abnormality will be considered. When there is a refrigerant leak, the refrigerant flowing into the supercooling means provided between the condenser 12 and the expansion means 13 is a two-phase refrigerant. The cooling capacity is reduced, and the subcooling (supercooling degree) of the refrigerant at the inlet of the expansion means 13 becomes smaller than the state without refrigerant leakage or the initial stage of refrigerant leakage. Therefore, if the change in the subcool is captured, the refrigerant leakage can be specified. Further, if the refrigerant pressure pulsation waveform due to the fluctuation of the refrigerant pressure is measured, it is possible to catch the bubbles that are the flash gas in the liquid refrigerant due to the decrease in subcooling, which is a sign of refrigerant leakage. Further, if the sound pressure around the expansion valve during the refrigeration cycle is measured, it is possible to detect the flash gas mixture due to the subcool reduction by the change in the sound pressure. Therefore, it is only necessary to capture and combine changes in sound and vibrations indicating changes in the physical state of the refrigerant.

冷凍装置においては、外気温が異なると凝縮器12での熱交換量が異なる。また、ショーケースや冷蔵庫などの負荷側機器に内蔵されている蒸発器14の周囲空気温度は、膨張手段13の開度によって常時制御されている。更に、圧縮機11は冷凍サイクルが正常に運転するように容量制御、台数制御あるいはON/OFF制御を行っている。冷凍装置においては、配管内を冷媒が循環することで冷凍サイクルが形成されているため、冷凍サイクルの各状態量はお互いに相関を持って変化しており、これら運転状態の変化によって高圧、低圧、サブクールなどの冷凍サイクルの各状態量が変化する。   In the refrigeration apparatus, the heat exchange amount in the condenser 12 differs when the outside air temperature is different. Further, the ambient air temperature of the evaporator 14 built in the load side device such as a showcase or a refrigerator is constantly controlled by the opening degree of the expansion means 13. Further, the compressor 11 performs capacity control, number control, or ON / OFF control so that the refrigeration cycle operates normally. In the refrigeration system, since the refrigeration cycle is formed by circulating refrigerant in the piping, the state quantities of the refrigeration cycle change in correlation with each other. Each state quantity of the refrigeration cycle such as subcool changes.

すなわち、冷凍サイクルのサブクールは、凝縮器12での熱交換量、膨張手段13の制御状態、圧縮機11の制御状態、冷媒漏れ量のいずれの要因によっても変化し、サブクール以外の高圧や低圧などの他の冷凍サイクルの状態量も、同じように、凝縮器12での熱交換量、流路開閉手段36や膨張手段13の制御状態、圧縮機11の制御状態、冷媒漏れ量のいずれの要因によっても変化する。したがって、冷凍サイクルのサブクールの変化のみを測定しても、サブクールの変化が冷媒漏れによるものなのか、冷凍サイクルの運転状態の変化によるものなのか特定することができない。   That is, the subcool of the refrigeration cycle changes depending on any of the heat exchange amount in the condenser 12, the control state of the expansion means 13, the control state of the compressor 11, and the refrigerant leakage amount. Similarly, the state quantity of the other refrigeration cycle is also determined by any of the heat exchange amount in the condenser 12, the control state of the flow path opening / closing means 36 and the expansion means 13, the control state of the compressor 11, and the refrigerant leakage amount. It also changes depending on. Therefore, even if only the change in the subcool of the refrigeration cycle is measured, it cannot be specified whether the change in the subcool is due to refrigerant leakage or the change in the operating state of the refrigeration cycle.

しかし、冷媒漏れ以外の変化要因は、通常の冷凍装置の運転において発生するものであるため、冷媒漏れが生じていない運転状態において冷凍サイクルのサブクールを含む複数の状態量を測定し、これらを互いに相関を持った集合体として扱うことができれば、冷媒漏れが発生した場合はその集合体から外れるため、冷媒漏れを特定できることになる。このように、複数の状態量を集合体として捉える方法としては、既に説明したマハラノビスの距離を利用する方法がある。   However, since the change factors other than the refrigerant leakage are generated in the normal operation of the refrigeration apparatus, a plurality of state quantities including the subcool of the refrigeration cycle are measured in the operation state in which the refrigerant leakage does not occur, and these are mutually connected. If it can be handled as an assembly having a correlation, it will be separated from the assembly when a refrigerant leak occurs, so that the refrigerant leakage can be specified. As described above, as a method of capturing a plurality of state quantities as an aggregate, there is a method of using the Mahalanobis distance already described.

マハラノビスの方法を冷凍サイクルの冷媒漏れ検出に利用するとしたとき、検討の結果、冷凍装置の冷媒漏れの特徴量は、高圧、低圧およびサブクールであることがわかっている。特徴量とは、その現象が起きたときに、変化の現れる状態量のことである。今、冷凍サイクルの高圧をX、低圧をX、サブクールをXとし、冷媒漏れが生じていない状態でX〜X変化させて合計n個(2以上)の組み合わせを作り、それぞれにおけるX〜Xを測定する。その測定された測定値を基準データとする。そして、X〜Xそれぞれの平均値および標準偏差(データのばらつき度合い)は既に式1、式2で説明している。次に、これらを用いて式9のように基準化してもとのX〜Xをx〜xに変換する。なお、jは1〜nまでのいずれかの値をとり、n個の各測定値に対応するものである。式10のごとくx〜xの間の相関関係を示す相関行列Rと相関行列の逆行列R−1を求める。 When the Mahalanobis method is used for detecting refrigerant leakage in the refrigeration cycle, as a result of examination, it has been found that the characteristic quantities of refrigerant leakage in the refrigeration apparatus are high pressure, low pressure, and subcool. The feature amount is a state amount in which a change appears when the phenomenon occurs. Now, the high pressure of the refrigeration cycle is X 1 , the low pressure is X 2 , the subcool is X 3, and X 2 to X 3 are changed in a state where there is no refrigerant leakage to make a total of n (2 or more) combinations, X 1 to X 3 are measured. The measured value is used as reference data. The average values and standard deviations (data variation degrees) of X 1 to X 3 have already been described in Expressions 1 and 2. Then converted original X 1 to X 3 in x 1 ~x 3 are normalized as Equation 9 using them. Note that j takes any value from 1 to n and corresponds to each of n measured values. As shown in Expression 10, a correlation matrix R indicating a correlation between x 1 to x 3 and an inverse matrix R −1 of the correlation matrix are obtained.

この平均値、標準偏差、相関関係を示す行列によって、データをある分布をもった集合体として扱うことができる。このデータの集合体のことを単位空間と呼ぶ。そして、判断のベースとする正常状態、ここでは冷媒漏れなしの状態、に対する単位空間を基準空間と呼ぶ。また、この基準空間を構成するデータを基準データと呼ぶ。   Data can be handled as an aggregate having a certain distribution by the matrix indicating the average value, standard deviation, and correlation. This collection of data is called a unit space. A unit space with respect to a normal state as a base for judgment, here, a state without refrigerant leakage, is referred to as a reference space. Data constituting this reference space is referred to as reference data.

マハラノビスの距離Dは式11で定義されている。なお、式におけるjは1〜nまでのいずれかの値をとり、n個の各測定値に対応するものである。また、kは項目数(パラメータの数)でここでは3である。また、a11〜akkは相関行列の逆行列の係数であり、マハラノビスの距離は基準空間、すなわち冷媒漏れなしの時は、約1になる。そして、検知したい冷媒漏れ量に対応する高圧X、低圧X、サブクールXを測定し、上述によって冷媒漏れ状態におけるマハラノビスの距離を求め、これを閾値として記憶する。なお、この時、相関行列の逆行列は基準となる冷媒漏れなしの状態で求めたものを用いる。 The Mahalanobis distance D 2 is defined by Equation 11. Note that j in the equation takes any value from 1 to n and corresponds to each of the n measured values. K is the number of items (number of parameters), which is 3 here. Further, a 11 to a kk are coefficients of the inverse matrix of the correlation matrix, and the Mahalanobis distance is about 1 in the reference space, that is, when there is no refrigerant leakage. Then, the high pressure X 1 , the low pressure X 2 and the subcool X 3 corresponding to the refrigerant leakage amount to be detected are measured, and the Mahalanobis distance in the refrigerant leakage state is obtained as described above, and this is stored as a threshold value. At this time, the inverse matrix of the correlation matrix is obtained in a state where there is no refrigerant leakage as a reference.

マハラノビスの距離の概念を図17に示す。図17は高圧とサブクールの2つのパラメータの相関関係を示している。すなわち、高圧が上がればサブクールも大きくなる。そして、ばららつきはあるものの高圧とサブクールの間には相関関係があり、冷媒漏れがない状態においてはある範囲に収まる、これらを基準データとし、基準空間を作成する。その他の各状態量においても、この高圧とサブクールのように相関関係がある。そして、その基準空間(基準データ)に対して、判断すべきデータが正常か異常かをマハラノビスの距離によって判断するのである。   The concept of Mahalanobis distance is shown in FIG. FIG. 17 shows the correlation between two parameters, high pressure and subcool. That is, as the high pressure increases, the subcool increases. Although there is variation, there is a correlation between the high pressure and the subcool, and in a state where there is no refrigerant leakage, it falls within a certain range, and these are used as reference data to create a reference space. The other state quantities also have a correlation like the high pressure and the subcool. Then, with respect to the reference space (reference data), whether the data to be determined is normal or abnormal is determined based on the Mahalanobis distance.

また、既に図7で説明したようにマハラノビスの距離とその出現率は、パラメータが幾つの場合でも、計算されたマハラノビスの距離が基準空間に対してどういう位置関係にあるかで正常か異常かの判断ができる。なお、基準空間においては、マハラノビスの距離は平均が約1になり、バラツキを考慮しても、4以下になる性質がある。そして、実機においては、冷凍装置の各状態量を測定する測定手段を備えておき、これらの測定値を先の式にて処理して、マハラノビスの距離を求める。すると、このマハラノビスの距離の大きさが冷媒漏れ量と対応し、マハラノビスの距離の大きさから冷媒漏れを知ることができる。なお、マハラノビスの距離は基準空間(正常状態)においては通常は4以下の値になる。したがって、これを越えていた時に異常と見なす。しかし、実際には、検知誤差の問題もあるため、冷媒漏れを判断する閾値は4よりも大きい適切な値、例えば50に設定する。なお、閾値は冷凍サイクルが不冷に至る前の冷媒漏れのある段階の冷媒量に相当する値に設定する。   Further, as already explained in FIG. 7, the Mahalanobis distance and its appearance rate are normal or abnormal depending on the positional relationship of the calculated Mahalanobis distance with respect to the reference space, regardless of the number of parameters. Judgment can be made. In the reference space, the Mahalanobis distance has an average of about 1, and even when variation is taken into consideration, the distance is 4 or less. And in an actual machine, the measurement means which measures each state quantity of a freezing apparatus is provided, and these measured values are processed with a previous formula, and the Mahalanobis distance is calculated | required. Then, the magnitude of the Mahalanobis distance corresponds to the refrigerant leakage amount, and the refrigerant leakage can be known from the magnitude of the Mahalanobis distance. Note that the Mahalanobis distance is normally 4 or less in the reference space (normal state). Therefore, when it exceeds this, it is considered abnormal. However, in practice, there is also a problem of detection error, so the threshold value for judging refrigerant leakage is set to an appropriate value larger than 4, for example, 50. Note that the threshold value is set to a value corresponding to the refrigerant amount at a stage where refrigerant leakage occurs before the refrigeration cycle reaches uncooled.

なお、ここでは、冷媒漏れを、冷凍サイクルの高圧と低圧とサブクールの3つの状態量により推測することを例に説明を行ったが、これに限るものではない。高圧の代わりに凝縮温度(凝縮器の飽和温度)を使用してもよいし、低圧の代わりに蒸発温度(蒸発器の飽和温度)を使用してもよい。また、より多くの状態量を使用してマハラノビスの距離を求めるようにしてもよく、その方が検知精度が向上する。また、サブクールを求める液管温度検出手段は、過冷却手段の出口配管に設置されていれば良いが、これに限るものではなく、液配管であればどこに設置してもよく、同様の効果を奏する。ただし、液管温度検出手段を設置した位置でのサブクールがなるべく大きい方が、冷媒漏れの検知精度が高くなるため、高圧側でかつ膨張手段になるべく近い位置に設置することが、より好ましい。又これらの状態量として音や振動、圧力脈動でも良い。   In addition, although the explanation has been given here on the assumption that the refrigerant leakage is estimated based on the three state quantities of the high pressure, the low pressure, and the subcool of the refrigeration cycle, the present invention is not limited to this. The condensation temperature (condenser saturation temperature) may be used instead of the high pressure, and the evaporation temperature (evaporator saturation temperature) may be used instead of the low pressure. Further, the Mahalanobis distance may be obtained using a larger amount of state, which improves detection accuracy. Further, the liquid pipe temperature detecting means for obtaining the subcool may be installed in the outlet pipe of the supercooling means, but is not limited to this, and may be installed anywhere as long as it is a liquid pipe. Play. However, it is more preferable that the subcooling at the position where the liquid pipe temperature detection means is installed is as large as possible because the refrigerant leakage detection accuracy is high, and it is more preferable to install it on the high pressure side and as close as possible to the expansion means. These state quantities may be sound, vibration, or pressure pulsation.

また、ここでは、液溜を有する冷凍装置を例に説明を行ったが、液溜を有する空調機器など、他の機器でも液溜を有し液溜に余剰冷媒を溜めているものであれば、同様の原理で同様の効果を奏するのは言うまでもない。また、液溜に余剰冷媒を溜めるように構成されていればその他の機器構成が異なっても、同様のことが言え、例えば液溜とアキュムレータを有する冷凍装置においても、余剰冷媒は液溜に溜めているため、同様の原理で同様の効果を奏する。更に液溜のない装置では、余剰冷媒は凝縮器の内部に溜まり、回路内の冷媒量によって冷凍サイクルの高圧低圧などの状態量が変わることになり、この全体の変化を含めた判断が必要になる。このときの冷凍サイクルにおける冷媒状態量測定手段では高圧、低圧、サブクール、又はスーパーヒート又は吐出温度を測定すれば良い。なおサブクールは液管温度−凝縮温度で得られ、スーパーヒートは吸入温度−蒸発温度で得られる。   In addition, here, a refrigeration apparatus having a liquid reservoir has been described as an example. However, other equipment such as an air conditioner having a liquid reservoir has a liquid reservoir and stores excess refrigerant in the liquid reservoir. Needless to say, the same principle produces the same effect. In addition, if the apparatus is configured to store excess refrigerant in the liquid reservoir, the same can be said even if other equipment configurations are different. For example, in a refrigeration apparatus having a liquid reservoir and an accumulator, excess refrigerant is stored in the liquid reservoir. Therefore, the same effect is obtained by the same principle. Furthermore, in an apparatus without a liquid reservoir, excess refrigerant accumulates inside the condenser, and the amount of state such as high pressure and low pressure of the refrigeration cycle changes depending on the amount of refrigerant in the circuit, and judgment including this overall change is necessary. Become. The refrigerant state quantity measuring means in the refrigeration cycle at this time may measure high pressure, low pressure, subcool, superheat, or discharge temperature. The subcool is obtained from the liquid tube temperature-condensation temperature, and the superheat is obtained from the suction temperature-evaporation temperature.

また、マハラノビスの距離を冷媒漏れ量としてそのまま出力してもよい。マハラノビスの距離の平方根をD値と呼ぶものとし、限界冷媒漏れ量に相当するD値を求めておき、それを最大出力電圧例えば5Vと対応させ、冷媒漏れなし、漏れ量、小、漏れ量中、漏れ量大から限界冷媒漏れ量まで、D値と電圧とを対応させて出力手段22から出力するという方法も考えられる。マハラノビスの距離は各状態量の偏差の二乗に比例する値であるが、D値は各状態量の偏差に比例する値であり、電圧などと対応させるのに扱いやすい値である。   Further, the Mahalanobis distance may be output as it is as the refrigerant leakage amount. The square root of the Mahalanobis distance is called the D value, and a D value corresponding to the limit refrigerant leakage amount is obtained, and this is corresponded to the maximum output voltage, for example, 5 V, no refrigerant leakage, leakage amount, small amount, medium amount A method is also conceivable in which the output means 22 outputs the D value and the voltage in correspondence from the large leakage amount to the limit refrigerant leakage amount. The Mahalanobis distance is a value that is proportional to the square of the deviation of each state quantity, but the D value is a value that is proportional to the deviation of each state quantity, and is a value that can be easily handled to correspond to a voltage or the like.

また、マハラノビスの距離またはD値が変化する様子から、冷媒漏れ速度を推測し、限界冷媒漏れ量に至る時期を予測することもできる。すなわち、既に説明した図13に示すように、マハラノビスの距離またはD値が増加する傾向が続いている場合、まだ故障には至っていなくても、何らかの変調が続いていることが予想される。冷媒漏れは、一度発生すると、冷媒漏れの箇所を塞ぐか再充填しない限り冷媒漏れは止まらないため、マハラノビスの距離およびD値は増加の傾向を続ける。したがって、マハラノビスの距離またはD値の増加の傾向が続いている場合は冷媒漏れの可能性が高いと言え、マハラノビスの距離またはD値が閾値に至っていなくても、冷媒漏れと判断することができ、距離の変化速度から、閾値に至る時間、すなわち冷媒漏れが限界量に至る時間を予測することができる。なお、冷凍サイクルの状態量は常に変化しているため、マハラノビスの距離およびD値は冷媒漏れ量が変わらなくても変化する。したがって、ここでいう増加の傾向とは、単調増加でなければならないわけではないわけではなく、微小な増加あるいは減少は除いて、全体として増加傾向にあることを意味している。そして、その冷媒漏れが限界量に至る時間の予測に基づき、限界冷媒漏れ量に至る時期を電圧で出力手段から出力するようにしてもよい。例えば、5Vなら1日以内、3Vなら1週間以内、1Vなら1ヶ月以内、0Vなら冷媒漏れなしのように距離に時間を比例させて設定すればよい。   It is also possible to estimate the refrigerant leak rate from the state of Mahalanobis distance or D value changing, and to predict the time when the limit refrigerant leak amount is reached. That is, as shown in FIG. 13 described above, when the Mahalanobis distance or the D value continues to increase, it is expected that some modulation continues even if the failure has not yet occurred. Once the refrigerant leakage occurs, the refrigerant leakage does not stop unless the refrigerant leakage portion is closed or refilled, so the Mahalanobis distance and D value continue to increase. Therefore, if the Mahalanobis distance or D value continues to increase, it can be said that the possibility of refrigerant leakage is high. Even if the Mahalanobis distance or D value does not reach the threshold, it can be determined that the refrigerant leaks. In addition, the time to reach the threshold, that is, the time to reach the limit amount of the refrigerant leakage can be predicted from the change speed of the distance. Since the state quantity of the refrigeration cycle is constantly changing, the Mahalanobis distance and the D value change even if the refrigerant leakage amount does not change. Therefore, the increasing trend here does not necessarily have to be a monotonous increase, but means that it tends to increase as a whole except for a slight increase or decrease. Then, based on the prediction of the time until the refrigerant leakage reaches the limit amount, the time when the refrigerant leakage amount reaches the limit refrigerant leakage amount may be output from the output means as a voltage. For example, the time may be set in proportion to the distance so that it is within one day for 5V, within one week for 3V, within one month for 1V, and no refrigerant leakage for 0V.

また、ここでは用いるデータが一定値であるかのように説明したが、データが変化している状態であっても一定時間のデータの平均値を取れば同様に扱え、同様の効果を奏することは言うまでもない。また、ここでは複数の状態量を集合体として捉える方法として、マハラノビスの距離を使用することを例に説明を行ったが、他の方法を使用してもよい。   Although the data used here is described as if it were a constant value, even if the data is changing, if the average value of the data for a certain period of time is taken, it can be handled in the same way, and the same effect can be achieved. Needless to say. In addition, here, as an example of using a Mahalanobis distance as a method of capturing a plurality of state quantities as an aggregate, other methods may be used.

以上のように、正常状態におけるサブクール(もしくは液管温度)を、高圧(もしくは凝縮温度)および低圧(もしくは蒸発温度)または高圧と低圧との差(もしくは凝縮温度と蒸発温度との差)との関係で学習記憶しておき、その変化を見ることで、冷媒漏れを検知できる。   As described above, the subcool (or liquid tube temperature) in the normal state is the high pressure (or condensation temperature) and low pressure (or evaporation temperature) or the difference between the high pressure and low pressure (or the difference between the condensation temperature and evaporation temperature). It is possible to detect refrigerant leakage by learning and storing the relationship and observing the change.

また、いずれの方法によっても、冷凍装置の冷凍サイクル内を流れる冷媒はどんなものでも良く、例えば、R22やR32などの単一成分の冷媒、R407Cのように3成分系からなる混合冷媒、R410Aのように2成分系からなる混合冷媒、プロパンなどのHC冷媒やCOなどの自然冷媒などが使用できる。地球環境保護に悪い影響を与える冷媒は漏れが少しでも始まれば冷媒交換を行うことができる。又可燃性冷媒の漏れに対しては規格などで定められた安全上の限界値を表示するようにしておけば問題発生前に事前に処理することができる。更に、可燃性冷媒や可燃性成分を少なからず含む冷媒、例えばプロパン、R32やR410Aなど、を冷媒として使用する冷凍装置においては、安全性の意味から、冷媒漏れは非常に危険であり、冷媒漏れを検知し、電圧などの電気信号または通信コードとして出力する際に、他の冷凍装置の異常に優先して出力する必要がある。そして、出力手段を電圧出力または電流出力とし、警報機に接続し、音や光で警報を発することにより、冷媒漏れを早期に通達することができる。 In any method, any refrigerant may flow in the refrigeration cycle of the refrigeration apparatus. For example, a single component refrigerant such as R22 or R32, a three-component mixed refrigerant such as R407C, Thus, a mixed refrigerant composed of two components, an HC refrigerant such as propane, a natural refrigerant such as CO 2, or the like can be used. Refrigerants that have a negative impact on global environmental protection can be replaced if leakage begins even a little. In addition, the leakage of the flammable refrigerant can be processed in advance before the problem occurs if the safety limit value determined by the standard or the like is displayed. Furthermore, in a refrigeration system using a flammable refrigerant or a refrigerant containing a considerable amount of flammable components, such as propane, R32 or R410A, as a refrigerant, the refrigerant leakage is extremely dangerous from the viewpoint of safety. Is detected and output as an electric signal such as a voltage or a communication code, it is necessary to give priority to the output of another refrigeration apparatus. And it can notify a refrigerant | coolant leak early by making an output means into voltage output or electric current output, connecting to an alarm device, and issuing a warning by sound or light.

このように圧縮機などの異常とは、機器の故障だけではなく、機器の劣化などの経時変化をも含んでおり、運転状態が変わるものであればどんなものでも検知できる。例えば、圧縮機11の寿命による劣化や液バック、凝縮器12や蒸発器14の汚れや破損、凝縮器12の送風装置や蒸発器の送風装置の劣化や故障、冷媒循環回路の配管途中に設けた塵収集用のストレーナや冷媒乾燥用のドライヤの詰り、圧縮機11に使用される冷凍機油の劣化(配管の詰り、圧縮機の潤滑不良、伝熱量の変化などで検知)などを、同様の構成にて検知、判別できる。   As described above, the abnormality such as the compressor includes not only a failure of the device but also a time-dependent change such as a deterioration of the device, and any object whose operation state changes can be detected. For example, deterioration due to the life of the compressor 11 or liquid back, dirt or breakage of the condenser 12 or the evaporator 14, deterioration or failure of the blower of the condenser 12 or the blower of the evaporator, or provision in the piping of the refrigerant circulation circuit Clogging of dust collection strainer and refrigerant drying dryer, deterioration of refrigeration oil used in compressor 11 (detected by clogging of piping, poor lubrication of compressor, change in heat transfer, etc.) Can be detected and discriminated by configuration.

また、演算上の単位空間は、各特徴量の平均値、標準偏差、相関係数で構成されるが、これらは、制御装置や電気品としても受けられた基板上のメモリに記憶される。実機でこれら全部もしくは一部を学習する場合は、書き換え可能なメモリに格納されている必要がある。   In addition, the unit space for calculation includes an average value, a standard deviation, and a correlation coefficient of each feature amount, and these are stored in a memory on a substrate that is also received as a control device or an electrical product. In order to learn all or a part of the actual machine, it must be stored in a rewritable memory.

また、図10のような単位空間の異なる場合に対して、データとしては、振動、音圧、駆動力など以外は高圧、低圧、吐出温度、スーパーヒート、サブクールの5つのデータが各異なる組み合わせで説明を行ったが、これに限るものではない。また、冷凍サイクル装置においては、高圧が低くなりすぎると機器の信頼性上好ましくないため高圧維持手段を具備しているものもある。この場合は、高圧の高い夏期と高圧の低い冬期では高圧維持手段が働くか否かが異なり、冷凍サイクルの動作の異なったものとなる。そのため、年間を通じて同じ基準空間および異常空間を使用すると異常の判別精度が悪化することがある。そのような場合は、図18のように、年間で複数の基準空間および異常空間を持っておき、季節によってこれを使い分けるとよい。なお、この季節の使い分けは外気温度によって行ってもよいが、実機においては、外気温度検出手段を具備していないことが多く、その場合は高圧の範囲によって、使い分ける。図18は縦軸に外気温度を横軸に年間を通しての時間の経過を記載しており、冬場に据え付けたときの基準空間を1とし、夏場の外気温度が暑いときの基準空間を4とするごとく外気温度の変化に応じて複数の基準空間を設けた説明が記載されている。   In addition, in the case where the unit spaces are different as shown in FIG. 10, the data includes five data of high pressure, low pressure, discharge temperature, superheat, and subcool except for vibration, sound pressure, driving force, etc. in different combinations. Although explained, it is not limited to this. In some refrigeration cycle apparatuses, if the high pressure is too low, it is not preferable in terms of the reliability of the equipment, and therefore, there is a refrigeration cycle apparatus provided with a high pressure maintaining means. In this case, whether or not the high-pressure maintaining means works is different in the summer when the high pressure is high and in the winter when the high pressure is low, and the operation of the refrigeration cycle is different. Therefore, if the same reference space and anomalous space are used throughout the year, anomaly discrimination accuracy may deteriorate. In such a case, as shown in FIG. 18, it is preferable to have a plurality of reference spaces and anomalous spaces every year and use them according to the season. It should be noted that the proper use of this season may be performed according to the outside air temperature, but the actual machine often does not have an outside air temperature detecting means, and in that case, it is properly used depending on the high pressure range. In FIG. 18, the vertical axis represents the outside air temperature and the horizontal axis represents the passage of time throughout the year. The reference space when installed in winter is 1 and the reference space when the outdoor temperature is high in summer is 4. Thus, an explanation is provided in which a plurality of reference spaces are provided according to changes in the outside air temperature.

又本発明は以上のように構成することで、機器の異常(故障及び劣化)を遠隔で監視することが可能となるため、現地に行かなくても機器の異常を発見することができ、異常の早期検知が可能となる。そして、従来は、まず現場に行って異常原因を把握した後、後日対策を施すという2段階必要だったのに対し、本発明の構成とすることで、現場に行かなくても遠隔で異常原因が特定できるため、事前に準備をして現場に行くことができ、復旧までの時間を短縮することができる。例えば、圧縮機不良が起きた時、遠隔でそれが分かるため、予備の圧縮機を準備して現場に出動できる。   Moreover, since the present invention is configured as described above, it is possible to remotely monitor the abnormality (failure and deterioration) of the device, so that the abnormality of the device can be found without going to the site. Can be detected early. And in the past, it was necessary to go to the site first to understand the cause of the abnormality and then take countermeasures later. Therefore, it is possible to prepare in advance and go to the work site, and to shorten the time to recovery. For example, when a compressor failure occurs, it can be detected remotely, so a spare compressor can be prepared and dispatched to the site.

本発明の演算手段にて演算した値から、機器や冷凍サイクルの異常度合いを判断し、安定運転を継続できなくなる限界時期を予測するので、安心した運転が行える。例えば予め記憶された冷却能力を維持できる限界時期を予測するもので、予測された限界時期を電圧または電流の大小などの電気信号で出力する出力手段を備えており、この出力手段により出力する電気信号が所定の冷却能力が維持できる限界異常量を最大値とする異常度合いに応じた電圧出力または電流出力であり誰でも異常の状態を知ることが出来メンテナンスも容易になる。   The degree of abnormality of the equipment and the refrigeration cycle is judged from the value calculated by the calculation means of the present invention, and the limit time when stable operation cannot be continued is predicted, so that safe operation can be performed. For example, it predicts a limit time that can maintain a pre-stored cooling capacity, and includes output means for outputting the predicted limit time as an electric signal such as the magnitude of voltage or current. The signal is a voltage output or a current output according to the degree of abnormality with the maximum amount of limit abnormality that can maintain a predetermined cooling capacity as a maximum value, and anyone can know the state of abnormality and maintenance is easy.

又、1つの異常原因に対し機器の異常度に応じて複数の異常状態を定義し、機器の現在の運転状態と複数の異常状態との距離の変化から、機器の異常度を推測することで様様な状態での運転の継続など使い勝手の良い診断装置が得られる。更に機器の正常状態を、実運転データから抜き出し学習する手段を有し確実な判断が得られる。又、機器の異常を判断する演算される演算結果である値または距離とは、マハラノビスの距離またはマハラノビスの距離を加工した数値であり精度の良いデータで判断できる。   Also, by defining multiple abnormal states according to the degree of abnormality of the device for one abnormality cause, and estimating the degree of abnormality of the device from the change in distance between the current operating state of the device and the plurality of abnormal states An easy-to-use diagnostic device such as continuation of driving in various states can be obtained. Furthermore, it has a means for extracting and learning the normal state of the equipment from the actual operation data, so that a reliable judgment can be obtained. Further, the value or distance which is a calculation result for determining the abnormality of the device is a numerical value obtained by processing the Mahalanobis distance or the Mahalanobis distance, and can be determined by accurate data.

本発明の機器監視システムは、機器の運転状態において運転の影響を受けて連続して発生する複数の波形データを計測し、この計測した波形データを各波形に関連した平均値、標準偏差など各波形データ毎に複数のパラメータに処理する波形データ処理手段と、波形データ処理手段にて得られた複数のパラメータを複数の変数として組み合わせ相互に関連させた演算により機器運転時の状態量を算出する演算手段と、演算手段の演算した状態量が設定された範囲内かどうかを比較して機器が正常な運転状態かどうかもしくは異常度合いを判断する判断手段と、機器と通信手段を介して情報のやり取りを行う遠隔監視装置と、を備え、情報は計測した波形データ、波形データ処理手段の処理する処理結果、演算手段の算出する状態量及び判断手段の判断した判断結果の少なくとも一つであるのて、確実な機器監視が可能となり使用者は安心して運転を行うことができる。   The device monitoring system of the present invention measures a plurality of waveform data continuously generated under the influence of operation in the operation state of the device, and the measured waveform data is averaged, standard deviation, etc. related to each waveform. A waveform data processing means for processing a plurality of parameters for each waveform data, and a plurality of parameters obtained by the waveform data processing means are combined as a plurality of variables to calculate a state quantity during operation of the equipment. Comparing the calculation means with the determination means for comparing whether the state quantity calculated by the calculation means is within the set range, whether the equipment is in a normal operating state or the degree of abnormality, and the information of the information through the equipment and the communication means A remote monitoring device for exchanging information, the information being measured waveform data, the processing result processed by the waveform data processing means, the state quantity calculated by the computing means, and the judgment Determination and Te in the range of at least one of the determination results, can be reliably equipment monitoring and becomes the user can perform driving with peace of mind.

本発明の機器監視システムは機器の運転状態において運転の影響を受けて連続して発生する波形データを計測し、この計測した波形データを波形に関連した平均値、標準偏差などの複数のパラメータに処理する波形データ処理手段と、波形データ処理手段にて得られた複数のパラメータを複数の変数として組み合わせ相互に関連させた演算にて機器運転時の状態量を算出する演算手段と、演算手段にて演算された機器の現在の運転状態における演算結果と機器が正常な状態で運転されている時の演算結果あるいは機器が異常な状態で運転されている時もしくは異常運転と推測されたときの演算結果間の距離を求め、求められた距離が機器の運転経過時間に対し予め設定された機器運転限界値となるまでの時間あるいは異常度合いを推定する故障予知推定手段と、機器と通信手段を介して接続され機器の運転状態を監視する遠隔監視装置と、を備え、遠隔監視装置に故障予知推定手段が推定した時間を送信すると共に遠隔監視装置にこの推定した時間を表示するので、機器を管理する管理者は無理の無い運転を継続できるとともにメンテナンスの予定を把握できる。   The device monitoring system of the present invention measures waveform data continuously generated under the influence of operation in the operation state of the device, and the measured waveform data is converted into a plurality of parameters such as an average value and a standard deviation related to the waveform. A waveform data processing means to be processed, a calculation means for calculating a state quantity at the time of operation of the device by a combination of a plurality of parameters obtained by the waveform data processing means as a plurality of variables, and a calculation means; The calculation result in the current operation state of the device and the calculation result when the device is operating in the normal state, or the calculation when the device is operating in the abnormal state or when it is estimated to be abnormal operation The distance between the results is obtained, and the time or the degree of abnormality until the obtained distance reaches the preset device operation limit value with respect to the elapsed operation time of the device is estimated. And a remote monitoring device connected to the device via the communication means and monitoring the operating state of the device. The time estimated by the failure prediction estimating device is transmitted to the remote monitoring device and this is transmitted to the remote monitoring device. Since the estimated time is displayed, the administrator who manages the device can continue the operation without difficulty and can grasp the maintenance schedule.

本発明の遠隔監視システムは、ネットワークもしくは公衆回線を介した遠隔装置に測定データまたは演算値を伝送するように構成したので、どのような問題が起こっても対処が簡単で運転の継続に有効である。また異常を電気信号として出力または通信コードとして他と通信するための出力手段とをネットワークもしくは公衆回線を介した遠隔装置と接続することにより安心した運転が可能である。   The remote monitoring system of the present invention is configured to transmit measurement data or calculation values to a remote device via a network or a public line, so that any problem can be easily dealt with and effective in continuing operation. is there. In addition, safe operation is possible by connecting an output means for outputting an abnormality as an electrical signal or communicating with others as a communication code to a remote device via a network or a public line.

以上のように本発明の、記憶手段で記憶された各測定手段の測定値またはそれらから演算された演算値から、機器や装置が正常に運転されている状態を抜き出し学習する手段を有しているので、常に安定したデータが得られる。また記憶手段で記憶された各測定手段の測定値またはそれらから演算された演算値のうちのいずれか1つを強制的に別の値に変換するステップと、その変換後に前記複合変数を新たに演算するステップと、その新たに演算された複合変数を前記判断手段が流体漏れを判断する際の閾値に設定するステップとを有するので、簡単に異常の範囲を判断する閾値を設定できる。又予め実験したデータからこの閾値を決めることも出来る。   As described above, the present invention has means for extracting and learning the state in which a device or apparatus is normally operated from the measured values stored in the storage means or the calculated values calculated from them. Therefore, stable data can always be obtained. Further, a step of forcibly converting any one of the measured values stored in the storage means or the calculated values calculated from them into another value, and after the conversion, newly adding the composite variable Since there is a step of calculating and a step of setting the newly calculated composite variable as a threshold value when the determining means determines fluid leakage, a threshold value for easily determining the range of abnormality can be set. It is also possible to determine this threshold value from data obtained by experimenting in advance.

本発明は、機器が正常に運転している時の状態量または状態量からの演算値を記憶する複数の手段と、機器に異常が生じた異常状態での状態量または状態量からの演算値を推測する手段または機器の異常状態を再現する手段と、正常状態と異常状態と機器の現在の運転状態との距離を演算する手段と、機器の現在の運転状態と正常状態との距離または異常状態との距離の変化から機器の正常状態または異常状態または異常度または異常原因を推定する手段とを冷凍サイクル装置の近辺またはネットワークもしくは公衆回線を介した遠隔に備え、ネットワークまたは公衆回線を介して測定データまたは演算値を伝送するように構成したので、安心して機器の運転を行うことが出来る。更に、予測された異常限界に至る時期を電圧または電流の大小などの電気信号で出力する出力手段を備えることで、発見した異常を早期に伝達することができる。   The present invention relates to a plurality of means for storing a state quantity or a calculated value from the state quantity when the device is operating normally, and a calculated value from the state quantity or the state amount in an abnormal state where the device has an abnormality. Means for estimating the device or means for reproducing the abnormal state of the device, means for calculating the distance between the normal state, the abnormal state, and the current operating state of the device, and the distance or abnormality between the current operating state of the device and the normal state Means for estimating the normal state, abnormal state, degree of abnormality, or cause of abnormality of a device from the change in distance from the state, provided in the vicinity of the refrigeration cycle apparatus or remotely via a network or public line, and via the network or public line Since it is configured to transmit measurement data or calculation values, it is possible to operate the equipment with peace of mind. Further, by providing output means for outputting the time when the predicted abnormality limit is reached by an electric signal such as a voltage or current magnitude, the detected abnormality can be transmitted at an early stage.

本発明の実施の形態1の全体概念図である。It is a whole conceptual diagram of Embodiment 1 of this invention. 本発明の実施の形態1の構成図である。It is a block diagram of Embodiment 1 of this invention. 本発明の実施の形態1の音圧を検出する脈動状態量検出手段詳細図である。It is detail drawing of the pulsation state amount detection means which detects the sound pressure of Embodiment 1 of this invention. 本発明の実施の形態1の圧縮機異常判定の制御ブロック図である。It is a control block diagram of the compressor abnormality determination of Embodiment 1 of this invention. 本発明の実施の形態1の正常時の音圧波形データ説明図である。It is sound pressure waveform data explanatory drawing at the time of normal of Embodiment 1 of this invention. 本発明の実施の形態1の異常時の音圧波形データ説明図である。It is sound pressure waveform data explanatory drawing at the time of abnormality of Embodiment 1 of this invention. 本発明の実施の形態1のマハラノビスの距離とその出現率の関係を説明する説明図である。It is explanatory drawing explaining the relationship between the distance of Mahalanobis of Embodiment 1 of this invention, and its appearance rate. 本発明の実施の形態1のマハラノビスの距離の計算フローチャートである。It is a calculation flowchart of the Mahalanobis distance of Embodiment 1 of the present invention. 本発明の実施の形態1の実機におけるマハラノビスの距離を用いた圧縮機異常検知の方法を表したフローチャートである。It is a flowchart showing the compressor abnormality detection method using the Mahalanobis distance in the real machine of Embodiment 1 of the present invention. 本発明の実施の形態1の異常空間と正常空間のマハラノビスの距離の概念を表した説明図である。It is explanatory drawing showing the concept of the Mahalanobis distance of the abnormal space and normal space of Embodiment 1 of this invention. 本発明の実施の形態1の正常基準空間補充処理内容を表したフローチャートである。It is a flowchart showing the normal reference space replenishment processing content of Embodiment 1 of this invention. 本発明の実施の形態1の新規異常学習機能内容を表したフローチャートである。It is a flowchart showing the novel abnormality learning function content of Embodiment 1 of this invention. 本発明の実施の形態1のマハラノビスの距離の時間推移を表した説明図である。It is explanatory drawing showing the time transition of the Mahalanobis distance of Embodiment 1 of this invention. 本発明の実施の形態1の別の構成図である。It is another block diagram of Embodiment 1 of this invention. 本発明の実施の形態1の音圧および振動を検出する脈動状態量検出手段詳細図である。It is a pulsation state quantity detection means detail drawing which detects the sound pressure and vibration of Embodiment 1 of this invention. 本発明の実施の形態1の音圧を多点検出する脈動状態量検出手段詳細図である。It is a pulsation state quantity detection means detail drawing which detects the sound pressure of Embodiment 1 of this invention in multiple points. 本発明の実施の形態1のマハラノビスの距離の概念を示す図である。It is a figure which shows the concept of the Mahalanobis distance of Embodiment 1 of this invention. 本発明の実施の形態1の年間での基準空間の分割方法を示す図である。It is a figure which shows the division | segmentation method of the reference space in the year of Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 冷凍サイクル装置、 2 マイコン、 3 電話回線またはLAN、 4 遠隔監視室、 5 コンピュータ、 6 表示装置、 7 入力装置、 8 警告ランプ、 9 スピーカー、 11 圧縮機、 12 凝縮器、 13 膨張弁、 14 蒸発器、 15 脈動状態量検出手段、 16 冷媒状態量検出手段、 17 信号処理手段、18 演算手段、 19 記憶手段、 20 比較手段、 21 判断手段、 22 出力手段、 32 フィルターアンプ、 33 A/D変換器、 34 FFT、 51 第一の脈動状態量検出手段、 52 第二の脈動状態量検出手段、 53 マイク。   DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus, 2 Microcomputer, 3 Telephone line or LAN, 4 Remote monitoring room, 5 Computer, 6 Display apparatus, 7 Input apparatus, 8 Warning lamp, 9 Speaker, 11 Compressor, 12 Condenser, 13 Expansion valve, 14 Evaporator, 15 pulsation state quantity detection means, 16 refrigerant state quantity detection means, 17 signal processing means, 18 calculation means, 19 storage means, 20 comparison means, 21 judgment means, 22 output means, 32 filter amplifier, 33 A / D Converter, 34 FFT, 51 1st pulsation state quantity detection means, 52 2nd pulsation state quantity detection means, 53 Microphone.

Claims (14)

機器運転中に前記機器が吸引し吐出する変化に時間遅れがある冷媒等の流体の物理量及び前記機器を駆動する駆動機器の電流実効値等の物理量から複数の運転状態量を計測する第1の計測手段と、前記機器若しくは前記機器に接続される配管などの流体関連機器から直接に又は前記機器等の近傍にて、前記機器運転中に瞬時値等の短時間の時間変化を含む脈動する脈動状態量を計測する第2の計測手段と、前記第1の計測手段にて計測された複数の計測量をそれぞれ平均値、標準偏差など演算処理し第1の状態量にするとともに、前記第2の計測手段にて計測された計測量を時間波形データ又は周波数データとして歪度、尖度、交差頻度など演算処理し第2の状態量にし、演算処理された各演算値を変数として組合せ集合体に纏め前記複数の計測量の特徴を有する状態量を演算する演算手段と、前記演算手段の演算した前記複数の計測量の特徴を有する状態量とあらかじめ記憶した記憶内容と比較して前記機器が正常な運転状態かどうかを判断する判断手段と、を備え、前記第1の計測手段の計測する測定間隔にあわせて前記第2の計測手段の計測及び演算処理を行い一定時間ごとに前記第1の状態量と前記第2の状態量の値を揃えるようにしたことを特徴とする機器診断装置。 A first operating state quantity is measured from a physical quantity of a fluid such as a refrigerant having a time delay in a change in suction and discharge by the equipment during operation of the equipment and a physical quantity such as a current effective value of a driving equipment that drives the equipment. Pulsating pulsation including a short time change such as an instantaneous value during operation of the device, directly from or in the vicinity of the measuring device and the fluid-related device such as the pipe connected to the device or the device A second measuring means for measuring a state quantity and a plurality of measured quantities measured by the first measuring means are each subjected to arithmetic processing such as an average value and a standard deviation to obtain a first state quantity. The measurement amount measured by the measurement means is subjected to arithmetic processing such as skewness, kurtosis, and crossing frequency as time waveform data or frequency data to obtain the second state quantity, and the combination aggregate using the calculated arithmetic values as variables. Summarized in the plurality of Computation means for computing a state quantity having surveying characteristics; whether or not the device is in a normal operating state by comparing the state quantities having the characteristics of the plurality of measurement quantities computed by the computation means with the stored content stored in advance Determination means for determining the first state quantity and the first state at regular intervals by performing measurement and calculation processing of the second measurement means in accordance with a measurement interval measured by the first measurement means. A device diagnostic apparatus characterized in that the value of the state quantity of 2 is made uniform. 機器運転中に前記機器が吸引し吐出する変化に時間遅れがある冷媒等の流体の物理量及び前記機器を駆動する駆動機器の電流実効値等の物理量から複数の運転状態量をそれぞれ異なる個所にて計測する第1の計測手段と、
前記機器若しくは前記機器に接続される配管などの流体関連機器から直接に又は前記機器等の近傍にて、前記機器運転中に瞬時値等の短時間の時間変化を含む脈動する複数の脈動状態量を関連する位置にて計測する第2の計測手段と、
前記第1の計測手段にて計測された複数の計測量をそれぞれ平均値、標準偏差、など演算処理するとともに、前記第2の計測手段にて計測された複数の計測量を時間波形データ又は周波数データとして歪度、尖度、交差頻度など演算処理し、各演算値を変数として組合せ集合体に纏め前記複数の計測量の特徴を有する状態量を演算する演算手段と、
前記機器の運転が正常と判断される際に計測された前記複数の計測量から前記演算手段にて演算された前記状態量を前記機器の正常状態の状態量として記憶し、且つ、前記機器がそれぞれ異なる異常状態と判断される際に計測されたもしくはそれぞれ異なる異常状態が得られるようにそれぞれ異なる異常状態に応じて設定された、それぞれ異なる複数の異常状態に対応した複数の計測量から前記演算手段にて演算されたそれぞれ異なる複数の前記状態量を前記機器の複数の異常状態の状態量として記憶する状態量記憶手段と、前記機器の運転中に前記計測手段にて計測されたそれぞれ異なる複数の異常状態に対応した複数の計測量を変数として前記演算手段で演算した運転中のそれぞれの複数の状態量と前記正常状態の状態量もしくは前記複数の異常状態の状態量との間の差を比較しそれぞれ異なる複数の異常状態から異常の原因を判断する判断手段と、を備えることを特徴とする機器診断装置。
A plurality of operating state quantities are determined at different points from the physical quantity of a fluid such as a refrigerant having a time delay in the change in suction and discharge of the equipment during operation of the equipment and the physical quantity such as the current effective value of the driving equipment that drives the equipment. A first measuring means for measuring;
A plurality of pulsating state quantities that pulsate including a short time change such as an instantaneous value during operation of the device, directly or in the vicinity of the device such as a pipe connected to the device or a pipe connected to the device Second measuring means for measuring at a relevant position;
The plurality of measurement quantities measured by the first measurement means are each subjected to arithmetic processing such as an average value and standard deviation, and the plurality of measurement quantities measured by the second measurement means are converted to time waveform data or frequency. An arithmetic means for performing arithmetic processing such as skewness, kurtosis, and intersection frequency as data, and calculating each state value as a variable in a combined set and calculating a state quantity having the characteristics of the plurality of measurement quantities;
The state quantity calculated by the calculating means from the plurality of measured quantities measured when the operation of the equipment is determined to be normal is stored as a state quantity in the normal state of the equipment, and the equipment is The calculation is performed from a plurality of measurement amounts corresponding to a plurality of different abnormal states, which are measured when determined to be different from each other, or set according to different abnormal states so as to obtain different abnormal states. State quantity storage means for storing a plurality of different state quantities calculated by the means as state quantities of a plurality of abnormal states of the equipment, and a plurality of different quantities measured by the measuring means during operation of the equipment. A plurality of state quantities during operation calculated by the calculation means using a plurality of measurement quantities corresponding to the abnormal state as a variable and the state quantity in the normal state or the compound quantity in the normal state. Device diagnostic apparatus characterized by comprising: a determination means for determining the cause of the abnormality from a plurality of abnormal conditions which differ respectively comparing the difference between the state quantity of the abnormal state of the.
前記機器が正常に運転されている状態における前記演算手段の演算した状態量を正常な運転状態として学習し記憶させる、又は、前記機器が異常に運転されている状態における前記演算手段の演算した状態量を異常な運転状態として学習し記憶させることを特徴とする請求項1または2に記載の機器診断装置。 A state quantity calculated by the calculation means in a state where the device is normally operated is learned and stored as a normal operation state, or a state calculated by the calculation means in a state where the device is abnormally operated The apparatus diagnosis apparatus according to claim 1, wherein the device diagnosis apparatus learns and stores the quantity as an abnormal driving state. 前記第2の計測手段にて計測した脈動状態量を、時間の関数から周波数の関数へ変換する、またはオクターブ分析する、またはウエーブレット変換する等にて演算処理することを特徴とする請求項1または2に記載の機器診断装置。 2. The pulsation state quantity measured by the second measuring means is calculated by converting from a function of time to a function of frequency, performing octave analysis, or wavelet transform. Or the apparatus diagnostic apparatus of 2. 前記機器が正常な運転状態か異常な運転状態かの判断は、可燃性流体や人体に有害な流体を取り扱う圧縮機、ポンプ、送風機などの流体機器、又はこの流体機器の駆動機器の運転状態が正常か異常かを判断するものであることを特徴とする請求項1乃至3のいずれかに記載の機器診断装置。 Whether the device is in a normal operating state or an abnormal operating state is determined by whether the operating state of a fluid device such as a compressor, a pump, or a blower that handles a flammable fluid or a fluid harmful to the human body, or a driving device of this fluid device. 4. The apparatus diagnosis apparatus according to claim 1, wherein the apparatus diagnosis apparatus determines whether it is normal or abnormal. 前記機器の運転中の演算された状態量の比較は、前記計測手段にて計測されたそれぞれ異なる複数の異常状態に対応した複数の計測量を変数として前記演算手段で演算した運転中のそれぞれの複数の状態量と前記複数の異常状態の状態量との間の比較であって、この比較により、前記機器が異常であるという判断は、前記機器内部の潤滑油枯渇、潤滑油劣化等による前記機器の軸受け部異常、前記機器駆動用モータ部異常、前記機器の固定部と回転部の接触、前記機器の回転部あるいは固定部の破損、前記回転部の振れ回り及び液バックのいずれかを判断する、あるいはこれらの異常のいずれかが含まれていると言う判断であることを特徴とする請求項1乃至3のいずれかに記載の機器診断装置。 The comparison of the state quantities calculated during operation of the device is based on each of the operating quantities calculated by the calculating means using a plurality of measured quantities corresponding to a plurality of different abnormal states measured by the measuring means as variables. It is a comparison between a plurality of state quantities and state quantities of the plurality of abnormal states, and by this comparison, the determination that the device is abnormal is based on the lack of lubricating oil in the device, the deterioration of lubricating oil, etc. Judgment of equipment bearing part abnormality, equipment drive motor part abnormality, contact between fixed part and rotating part of the equipment, breakage of rotating part or fixing part of the equipment, swiveling of the rotating part, and liquid back The device diagnosis apparatus according to claim 1, wherein the device diagnosis apparatus determines whether or not any of these abnormalities is included. 前記機器の運転中に計測する電気量は、駆動電流、電磁力、電波、漏れ電流、軸電圧などから選択した数値もしくは波形であることを特徴とする請求項1乃至6のいずれかに記載の機器診断装置。 The amount of electricity measured during operation of the device is a numerical value or a waveform selected from drive current, electromagnetic force, radio wave, leakage current, shaft voltage, and the like, according to any one of claims 1 to 6. Equipment diagnostic device. 複数の変数として組み合わせ相互に関連させた演算にて前記機器の運転中の前記状態量を演算する際に、計測もしくは演算処理により得られた数値の1つ以上を強制的に別の値に変換し、その変換後の値を複合変数として得られた状態量から、異常状態と判断する閾値を得ることを特徴とする請求項1乃至請求項6のいずれかに記載の機器診断装置。 When calculating the state quantity during operation of the device by calculation related to each other as a combination of multiple variables, forcibly convert one or more of the numerical values obtained by measurement or calculation processing to another value The device diagnosis apparatus according to claim 1, wherein a threshold value for determining an abnormal state is obtained from a state quantity obtained by using the converted value as a composite variable. 前記判断手段は前記演算手段の演算結果が正常と判断される範囲かどうかで前記機器が正常な運転状態かどうかを判断するものであって、正常と判断される範囲内におけるこの計測時の演算結果とあらかじめ設定された閾値との関係により前記機器の故障時期を推測するものであることを特徴とする請求項1乃至8のいずれかに記載の機器診断装置。 The determination means determines whether or not the device is in a normal operating state based on whether or not the calculation result of the calculation means is normal, and the calculation at the time of measurement within the range determined to be normal 9. The device diagnosis apparatus according to claim 1, wherein the failure time of the device is estimated based on a relationship between a result and a preset threshold value. 圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させる冷凍サイクルと、
前記圧縮機の吐出側から前記膨張手段に至る流路のいずれかの位置の冷媒の高圧圧力、前記高圧圧力位置での冷媒の凝縮温度、前記圧縮機の吐出側から前記凝縮器に至る流路のいずれかの位置の冷媒の吐出温度、の内の少なくとも1つの計測量、および、前記膨張手段から前記圧縮機の吸入側に至る流路のいずれかの位置の冷媒の低圧圧力、前記低圧圧力位置の冷媒の蒸発温度、前記圧縮機の吸入側から前記蒸発器に至る流路のいずれかの位置の冷媒の吸入温度の内の少なくとも1つの計測量、の2つの計測量の少なくとも一方を計測する冷媒状態量計測手段と、
前記圧縮機の筐体もしくは前記圧縮機の吐出側の配管もしくは前記圧縮機の吸入側の配管のいずれかの位置の振動、前記圧縮機の周囲のいずれかの位置の空気の音圧、前記圧縮機を駆動する電気量、の内の少なくとも1つの脈動状態量を計測する脈動状態量計測手段と、
前記冷媒状態量計測手段にて計測された複数の計測量をそれぞれ平均値、標準偏差など演算処理するとともに、前記脈動状態量測定手段により計測された脈動状態量を時間波形データ又は周波数データとして歪度、尖度、交差頻度など演算処理し、演算処理された各演算値を変数として組合せ集合体に纏め前記複数の計測量および脈動状態量の特徴を有する状態量を演算する演算手段と、を備え、
前記冷媒状態量測定手段の計測する測定間隔にあわせて前記脈動状態量計測手段の計測及び演算処理を行う前記演算手段の演算結果から前記冷凍サイクルの運転状態を判断することを特徴とする冷凍サイクル装置。
A refrigeration cycle in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein;
High pressure of refrigerant at any position of flow path from discharge side of compressor to expansion means, condensation temperature of refrigerant at high pressure position, flow path from discharge side of compressor to condenser At least one of the discharge temperature of the refrigerant at any of the positions, and the low pressure of the refrigerant at any position of the flow path from the expansion means to the suction side of the compressor, the low pressure Measure at least one of two measured quantities: the refrigerant evaporation temperature at the position, and at least one measured quantity of the refrigerant suction temperature at any position in the flow path from the suction side of the compressor to the evaporator. Refrigerant state quantity measuring means,
Vibration at any position of the compressor casing, the discharge side pipe of the compressor, or the suction side pipe of the compressor, the sound pressure of air at any position around the compressor, the compression A pulsation state quantity measuring means for measuring at least one pulsation state quantity of the electric quantity for driving the machine;
A plurality of measured quantities measured by the refrigerant state quantity measuring means are each subjected to arithmetic processing such as an average value and standard deviation, and the pulsating state quantities measured by the pulsating state quantity measuring means are distorted as time waveform data or frequency data. Calculating means for calculating the state quantity having the characteristics of the plurality of measured quantities and pulsating state quantities by calculating the degrees, kurtosis, crossing frequency, etc. Prepared,
The refrigeration cycle is characterized in that an operating state of the refrigeration cycle is determined from a calculation result of the calculation means that performs measurement and calculation processing of the pulsation state quantity measurement means in accordance with a measurement interval measured by the refrigerant state quantity measurement means. apparatus.
前記脈動状態量計測手段は、前記圧縮機の筐体もしくは前記圧縮機の吐出側配管もしくは前記圧縮機の吸入側配管のいずれかの位置の振動を計測する第一の脈動状態量計測手段、前記圧縮機の周囲のいずれかの位置の空気の音圧を計測する第二の脈動状態量計測手段、前記圧縮機を駆動する電流を計測する第三の脈動状態量計測手段、の内の少なくとも2つを有し、前記冷媒状態量計測手段から得られた冷媒状態量、及び、少なくとも2つの脈動状態量計測手段から得られた脈動状態量とを組み合わせ相互に関連させた演算にて前記冷凍サイクルの運転状態を判断することを特徴とする請求項10に記載の冷凍サイクル装置。 The pulsation state quantity measuring means is a first pulsation state quantity measuring means for measuring vibration at any position of the compressor casing, the compressor discharge side pipe or the compressor suction side pipe, At least two of the second pulsation state quantity measuring means for measuring the sound pressure of air at any position around the compressor, and the third pulsation state quantity measuring means for measuring the current for driving the compressor The refrigeration cycle is calculated by combining the refrigerant state quantity obtained from the refrigerant state quantity measuring means and the pulsating state quantity obtained from at least two pulsating state quantity measuring means in association with each other. The refrigeration cycle apparatus according to claim 10, wherein an operation state of the refrigeration cycle is determined. 前記冷媒状態量計測手段が計測する計測量の代わりに、あらかじめ設定された数値あるいは前記機器の運転状態から読み取りもしくは推測された数値を使用することを特徴とする請求項10または11に記載の冷凍サイクル装置。 The refrigeration according to claim 10 or 11, wherein a numerical value set in advance or a numerical value read or estimated from an operating state of the device is used instead of the measurement amount measured by the refrigerant state quantity measuring means. Cycle equipment. 圧縮機と凝縮器と膨張手段と蒸発器とを配管で接続しその内部に冷媒を流通させる冷凍サイクルと、
前記圧縮機の吐出側から前記膨張手段に至る流路のいずれかの位置の冷媒の高圧圧力、前記高圧圧力位置での冷媒の凝縮温度、前記圧縮機の吐出側から前記凝縮器に至る流路のいずれかの位置の冷媒の吐出温度、の内の少なくとも1つの計測量、および、前記膨張手段から前記圧縮機の吸入側に至る流路のいずれかの位置の冷媒の低圧圧力、前記低圧圧力位置の冷媒の蒸発温度、前記圧縮機の吸入側から前記蒸発器に至る流路のいずれかの位置の冷媒の吸入温度の内の少なくとも1つの計測量、の2つの計測量の少なくとも一方を計測する冷媒状態量計測手段と、
前記圧縮機の筐体もしくは前記圧縮機の吐出側の配管もしくは前記圧縮機の吸入側の配管のいずれかの位置の振動、前記圧縮機の周囲のいずれかの位置の空気の音圧、前記圧縮機を駆動する電気量、の内の少なくとも1つの脈動状態量を計測する脈動状態量計測手段と、
前記冷媒状態量計測手段にて計測された複数の計測量をそれぞれ平均値、標準偏差など演算処理するとともに、前記脈動状態量測定手段により計測された脈動状態量を時間波形データ又は周波数データとして歪度、尖度、交差頻度など演算処理し、演算処理された各演算値を変数として組合せ集合体に纏め前記複数の計測量および脈動状態量の特徴を有する状態量を演算する演算手段と、
前記冷凍サイクルの運転が正常と判断される際に前記冷媒状態量計測手段にて計測された前記複数の計測量および前記脈動状態量計測手段にて計測された脈動状態量から前記演算手段にて演算された前記状態量を前記機器の正常状態の状態量として記憶し、且つ、前記冷凍サイクルがそれぞれ異なる異常状態と判断される際に計測されたもしくはそれぞれ異なる異常状態が得られるようにそれぞれ異なる異常状態に応じて設定された、それぞれ異なる複数の異常状態に対応した複数の計測量および前記脈動状態量から前記演算手段にて演算されたそれぞれ異なる複数の前記状態量を前記機器の複数の異常状態の状態量として記憶する状態量記憶手段と、
前記冷凍サイクルの運転中に前記冷媒状態量計測手段および前記脈動状態量計測手段にて計測されたそれぞれ異なる複数の異常状態に対応した複数の計測量を変数として前記演算手段で演算した運転中のそれぞれの複数の状態量と前記正常状態の状態量もしくは前記複数の異常状態の状態量との間の差を比較しそれぞれ異なる複数の異常状態から異常の原因を判断する判断手段と、を備え、
前記冷凍サイクルの運転中のそれぞれの複数の状態量と前記正常状態の状態量もしくは前記複数の異常状態の状態量との間の差の距離を求め、求められた前記距離があらかじめ設定された閾値内かどうかを比較して前記冷凍サイクル装置が正常な運転状態かどうかおよび異常度合いを判断した結果の少なくとも一つとともに、前記異常の原因を通信手段を介して遠隔監視装置へ伝送することを特徴とする冷凍サイクル監視システム。
A refrigeration cycle in which a compressor, a condenser, an expansion means, and an evaporator are connected by piping and a refrigerant is circulated therein;
High pressure of refrigerant at any position of flow path from discharge side of compressor to expansion means, condensation temperature of refrigerant at high pressure position, flow path from discharge side of compressor to condenser At least one of the discharge temperature of the refrigerant at any of the positions, and the low pressure of the refrigerant at any position of the flow path from the expansion means to the suction side of the compressor, the low pressure Measure at least one of two measured quantities: the refrigerant evaporation temperature at the position, and at least one measured quantity of the refrigerant suction temperature at any position in the flow path from the suction side of the compressor to the evaporator. Refrigerant state quantity measuring means,
Vibration at any position of the compressor casing, the discharge side pipe of the compressor, or the suction side pipe of the compressor, the sound pressure of air at any position around the compressor, the compression A pulsation state quantity measuring means for measuring at least one pulsation state quantity of the electric quantity for driving the machine;
A plurality of measured quantities measured by the refrigerant state quantity measuring means are each subjected to arithmetic processing such as an average value and standard deviation, and the pulsating state quantities measured by the pulsating state quantity measuring means are distorted as time waveform data or frequency data. Computing means for computing degrees, kurtosis, intersection frequency, etc., and computing the state quantities having the characteristics of the plurality of measured quantities and pulsation state quantities by combining the computed values as variables into a combined set;
When the operation of the refrigeration cycle is determined to be normal, the calculation means calculates the plurality of measurement quantities measured by the refrigerant state quantity measurement means and the pulsation state quantities measured by the pulsation state quantity measurement means. The calculated state quantity is stored as a state quantity of the normal state of the device, and each is measured so that the refrigeration cycle is determined to be different from each other, or different from each other so that different abnormal states can be obtained. A plurality of measured amounts corresponding to a plurality of different abnormal states set according to the abnormal state and a plurality of different state amounts calculated by the calculating means from the pulsating state amount are set to a plurality of abnormalities of the device. State quantity storage means for storing the state quantity as a state;
During operation of the refrigeration cycle, the calculation unit calculates a plurality of measurement amounts corresponding to a plurality of different abnormal states measured by the refrigerant state amount measurement unit and the pulsation state amount measurement unit during operation of the refrigeration cycle. A judgment means for comparing the difference between each of the plurality of state quantities and the state quantity of the normal state or the state quantities of the plurality of abnormal states and judging the cause of the abnormality from a plurality of different abnormal states, and
The distance between each of the plurality of state quantities during operation of the refrigeration cycle and the state quantity in the normal state or the state quantities in the abnormal state is obtained, and the obtained distance is a preset threshold. The cause of the abnormality is transmitted to the remote monitoring device via the communication means together with at least one of the result of judging whether the refrigeration cycle apparatus is in a normal operation state and the degree of abnormality by comparing whether or not Refrigeration cycle monitoring system.
前記冷凍サイクルが現在の運転状態において演算された演算結果と前記冷凍サイクルが正常な状態で運転されている時の演算結果もしくは前記冷凍サイクルが異常な状態で運転されている時の演算結果の間の距離を求め、求められた前記距離が前記冷凍サイクルの運転経過時間に対し予め設定された運転限界値となるまでの時間を推定する故障予知推定手段と、を備え、
前記故障予知推定手段が推定した時間を通信手段を介して接続され機器の運転状態を監視する遠隔監視装置に表示することを特徴とする請求項13に記載の冷凍サイクル監視システム。
Between the calculation result when the refrigeration cycle is calculated in the current operating state and the calculation result when the refrigeration cycle is operating in a normal state or the calculation result when the refrigeration cycle is operating in an abnormal state A failure prediction estimating means for estimating a time until the determined distance reaches an operation limit value set in advance with respect to the operation elapsed time of the refrigeration cycle,
14. The refrigeration cycle monitoring system according to claim 13, wherein the time estimated by the failure prediction estimation unit is displayed on a remote monitoring device that is connected via a communication unit and monitors an operation state of the device.
JP2004049585A 2004-02-25 2004-02-25 Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system Expired - Lifetime JP4265982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049585A JP4265982B2 (en) 2004-02-25 2004-02-25 Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049585A JP4265982B2 (en) 2004-02-25 2004-02-25 Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system

Publications (2)

Publication Number Publication Date
JP2005241089A JP2005241089A (en) 2005-09-08
JP4265982B2 true JP4265982B2 (en) 2009-05-20

Family

ID=35023005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049585A Expired - Lifetime JP4265982B2 (en) 2004-02-25 2004-02-25 Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system

Country Status (1)

Country Link
JP (1) JP4265982B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564568A (en) * 2011-12-29 2012-07-11 华北电力大学 Early fault search method for large rotary machinery under complicated working conditions
CN105675320A (en) * 2016-01-06 2016-06-15 山东大学 Method for real time monitoring mechanical system operation status on the basis of acoustic signal analysis
CN107209054A (en) * 2015-07-07 2017-09-26 三菱电机株式会社 Inspection method and check device

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505475B1 (en) 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
US6668240B2 (en) 2001-05-03 2003-12-23 Emerson Retail Services Inc. Food quality and safety model for refrigerated food
US6892546B2 (en) 2001-05-03 2005-05-17 Emerson Retail Services, Inc. System for remote refrigeration monitoring and diagnostics
US6889173B2 (en) 2002-10-31 2005-05-03 Emerson Retail Services Inc. System for monitoring optimal equipment operating parameters
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
EP1851959B1 (en) 2005-02-21 2012-04-11 Computer Process Controls, Inc. Enterprise control and monitoring system
JP4417318B2 (en) * 2005-10-17 2010-02-17 三菱電機株式会社 Equipment diagnostic equipment
US7752853B2 (en) 2005-10-21 2010-07-13 Emerson Retail Services, Inc. Monitoring refrigerant in a refrigeration system
US7665315B2 (en) * 2005-10-21 2010-02-23 Emerson Retail Services, Inc. Proofing a refrigeration system operating state
US7752854B2 (en) 2005-10-21 2010-07-13 Emerson Retail Services, Inc. Monitoring a condenser in a refrigeration system
JP4663534B2 (en) * 2006-01-26 2011-04-06 サンデン株式会社 Heat pump water heater
JP4638359B2 (en) * 2006-01-31 2011-02-23 三菱電機株式会社 Air conditioner inspection service system
JP4625777B2 (en) * 2006-02-28 2011-02-02 株式会社東芝 Pump soundness evaluation system, pump soundness evaluation device and its evaluation method, evaluation program
JP2007240373A (en) * 2006-03-09 2007-09-20 Toshiba It & Control Systems Corp Membrane damage detection device and method for filtration system for water treatment
JP2007256153A (en) * 2006-03-24 2007-10-04 Hitachi Ltd System for detecting railway vehicle truck abnormality
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
BRPI0702369A2 (en) * 2007-05-29 2009-01-20 Whirlpool Sa Diagnostic system and method by capturing mechanical waves in refrigeration and / or household appliances
JP5146008B2 (en) * 2007-06-11 2013-02-20 日本精工株式会社 Abnormality diagnosis apparatus and abnormality diagnosis method
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
JP4902457B2 (en) * 2007-08-03 2012-03-21 三菱電機株式会社 refrigerator
EP2039939B2 (en) * 2007-09-20 2020-11-18 Grundfos Management A/S Method for monitoring an energy conversion device
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
JP4875661B2 (en) * 2008-05-14 2012-02-15 三菱重工業株式会社 Aircraft soundness diagnosis apparatus and method, and program
DE102008025596B4 (en) * 2008-05-28 2020-06-10 Robert Bosch Gmbh Procedure for operating a facility
JP2009300192A (en) * 2008-06-11 2009-12-24 Kanto Auto Works Ltd Crack detecting device and crack detecting method
JP2010133788A (en) * 2008-12-03 2010-06-17 Toshiba Corp Method of diagnosing deterioration of lubricant and viscous substance
BRPI1014993A8 (en) 2009-05-29 2016-10-18 Emerson Retail Services Inc system and method for monitoring and evaluating equipment operating parameter modifications
SG177278A1 (en) * 2009-06-23 2012-02-28 Carrier Corp Performance and position monitoring of a mobile hvac&r unit
US8838324B2 (en) 2010-01-28 2014-09-16 Hitachi Construction Machinery Co., Ltd. Monitoring and diagnosing device for working machine
CN102844721B (en) 2010-02-26 2015-11-25 株式会社日立制作所 Failure cause diagnostic system and method thereof
CN101985927B (en) * 2010-11-03 2012-07-04 西安交通大学 Data processing method of chip for fault detection and diagnosis in multistage reciprocating compressor
JP5699675B2 (en) * 2011-02-22 2015-04-15 栗田工業株式会社 Dirty evaluation method for cooling water line in refrigeration system
CA2828740C (en) 2011-02-28 2016-07-05 Emerson Electric Co. Residential solutions hvac monitoring and diagnosis
JP5832258B2 (en) * 2011-11-30 2015-12-16 三菱電機株式会社 Elevator abnormality diagnosis device
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
JP5892867B2 (en) * 2012-06-04 2016-03-23 三菱電機ビルテクノサービス株式会社 Equipment inspection plan support device and program
JP5910428B2 (en) 2012-09-13 2016-04-27 オムロン株式会社 Monitoring device, monitoring method, program, and recording medium
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
WO2014073427A1 (en) * 2012-11-06 2014-05-15 ナガセテクノエンジニアリング株式会社 Refrigerator status determination device and refrigerator status determination method
JP5490277B2 (en) * 2013-03-05 2014-05-14 三菱重工業株式会社 Plant operating condition monitoring method
CA2904734C (en) 2013-03-15 2018-01-02 Emerson Electric Co. Hvac system remote monitoring and diagnosis
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
CN106030221B (en) 2013-04-05 2018-12-07 艾默生环境优化技术有限公司 Heat pump system with refrigerant charging diagnostic function
JP6400355B2 (en) * 2013-07-05 2018-10-03 株式会社東芝 Lubricant deterioration diagnosis method
TWI601923B (en) * 2013-08-19 2017-10-11 住友重機械工業股份有限公司 Monitoring methods and cooling system
DE102013111218A1 (en) 2013-10-10 2015-04-16 Kaeser Kompressoren Se Electronic control device for a component of the compressed air generation, compressed air preparation, compressed air storage and / or compressed air distribution
JP6038347B2 (en) * 2013-11-08 2016-12-07 三菱電機株式会社 Abnormal sound diagnosis device
JP6159827B2 (en) * 2014-01-23 2017-07-05 株式会社日立製作所 X-ray tube failure sign detection apparatus, X-ray tube failure sign detection method, and X-ray apparatus
WO2016035187A1 (en) * 2014-09-04 2016-03-10 三菱電機株式会社 Abnormality detection device and abnormality detection method
JP6468806B2 (en) * 2014-10-31 2019-02-13 株式会社総合車両製作所 Collision detection device and collision detection method
JP6425803B2 (en) * 2015-04-28 2018-11-21 三菱電機株式会社 Heat transfer device monitoring apparatus and method
JP6596244B2 (en) * 2015-06-23 2019-10-23 株式会社総合車両製作所 Laser welding method
CN104993973A (en) * 2015-06-25 2015-10-21 小米科技有限责任公司 Method and apparatus for monitoring state of compressor of terminal
GB2553972B (en) * 2015-07-09 2021-07-21 Mitsubishi Electric Corp Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and fault determination method
JP6690151B2 (en) * 2015-08-03 2020-04-28 ダイキン工業株式会社 Judgment device
JP6288008B2 (en) 2015-08-27 2018-03-07 横河電機株式会社 Device system, information processing apparatus, terminal device, and abnormality determination method
JP6212529B2 (en) * 2015-11-11 2017-10-11 株式会社 ナンバ Refrigerant leak detection device in refrigeration cycle
JP6396943B2 (en) * 2016-04-27 2018-09-26 株式会社日本製鋼所 Failure diagnosis apparatus and method by non-contact vibration measurement
JP6121075B1 (en) * 2016-05-17 2017-04-26 三菱電機株式会社 Refrigeration cycle equipment
US11209487B2 (en) 2016-06-13 2021-12-28 Hitachi, Ltd. Rotor diagnostic apparatus, rotor diagnostic method, and rotor diagnostic program
WO2018043417A1 (en) * 2016-08-30 2018-03-08 コニカミノルタ株式会社 Piping evaluation device, piping evaluation method, and piping evaluation program
WO2018042616A1 (en) * 2016-09-02 2018-03-08 株式会社日立製作所 Diagnostic device, diagnostic method, and diagnostic program
JP6630653B2 (en) * 2016-10-06 2020-01-15 株式会社神戸製鋼所 Rotating machine abnormality detecting device and method and rotating machine
CN106644547B (en) * 2017-01-03 2024-05-17 无锡塔尔基热交换器科技有限公司 Pulse simulator
JP6763793B2 (en) * 2017-01-23 2020-09-30 東海旅客鉄道株式会社 Defect detection device, defect detection method and program
JP6860406B2 (en) * 2017-04-05 2021-04-14 株式会社荏原製作所 Semiconductor manufacturing equipment, failure prediction method for semiconductor manufacturing equipment, and failure prediction program for semiconductor manufacturing equipment
JPWO2018198221A1 (en) * 2017-04-26 2020-01-09 三菱電機株式会社 Deterioration diagnosis device and air conditioner
JP6380628B1 (en) * 2017-07-31 2018-08-29 株式会社安川電機 Power conversion apparatus, server, and data generation method
CN107607321B (en) * 2017-09-06 2019-11-05 成都大汇物联科技有限公司 A kind of equipment fault accurate positioning method
DE102017122126A1 (en) * 2017-09-25 2019-03-28 Vaillant Gmbh Leakage detection
CN111164526B (en) * 2017-11-28 2023-10-13 株式会社安川电机 Abnormality determination system, motor control device, and abnormality determination method
JP7057205B2 (en) * 2018-05-01 2022-04-19 三菱重工業株式会社 Abnormality diagnosis method for hydraulic equipment and abnormality diagnosis system for hydraulic equipment
JP6628833B2 (en) * 2018-05-22 2020-01-15 三菱電機株式会社 Refrigeration cycle device
US11703845B2 (en) 2018-07-06 2023-07-18 Panasonic Intellectual Property Management Co., Ltd. Abnormality predicting system and abnormality predicting method
JP6638788B1 (en) 2018-09-28 2020-01-29 ダイキン工業株式会社 Abnormality determination apparatus for transport refrigeration apparatus, transport refrigeration apparatus provided with this abnormality determination apparatus, and abnormality determination method for transport refrigeration apparatus
CN109612173A (en) * 2018-11-15 2019-04-12 南京航空航天大学 A kind of assessment of fault and diagnostic method of vapor cycle refrigeration system
CN109635677B (en) * 2018-11-23 2022-12-16 华南理工大学 Compound fault diagnosis method and device based on multi-label classification convolutional neural network
KR102095389B1 (en) * 2018-12-24 2020-03-31 강릉원주대학교산학협력단 Fault diagnosis system of a faculty using energy
CN109707615B (en) * 2019-02-26 2019-11-19 东北石油大学 Reciprocating compressor method for diagnosing faults based on fine multi-fractal
JP7283947B2 (en) * 2019-04-03 2023-05-30 三菱重工サーマルシステムズ株式会社 DETECTION DEVICE, CONTROLLER, DETECTION SYSTEM, DETECTION METHOD AND PROGRAM
JP7316871B2 (en) * 2019-08-01 2023-07-28 株式会社クボタ Management data acquisition method, pump device condition evaluation method, and pump device
JP6792131B2 (en) * 2019-11-11 2020-11-25 株式会社安川電機 Motor control system
CN110779612A (en) * 2019-11-13 2020-02-11 深圳天祥质量技术服务有限公司 Method and device for measuring pipeline of refrigeration system
JP7292423B2 (en) * 2019-12-20 2023-06-16 三菱電機株式会社 Outdoor unit of refrigeration cycle equipment
CN111259730B (en) * 2019-12-31 2022-08-23 杭州安脉盛智能技术有限公司 State monitoring method and system based on multivariate state estimation
JP6731562B1 (en) * 2020-02-07 2020-07-29 株式会社高田工業所 Fluid system abnormality monitoring and diagnosis method for fluid rotating machinery
JP7369353B2 (en) * 2020-03-19 2023-10-26 株式会社島津製作所 Abnormality diagnosis system and abnormality diagnosis method
JP2021197158A (en) * 2020-06-15 2021-12-27 三菱パワー株式会社 Sign determination device, sign determination system, sign determination method and program
JP7451340B2 (en) * 2020-07-31 2024-03-18 三菱重工業株式会社 Diagnostic equipment, diagnostic methods, and diagnostic programs for rotating machinery
JP7453875B2 (en) * 2020-07-31 2024-03-21 三菱重工業株式会社 Diagnostic equipment, diagnostic methods, and diagnostic programs for rotating machinery
CN115917223A (en) * 2020-08-31 2023-04-04 三菱电机株式会社 Refrigeration cycle system
JP7550618B2 (en) 2020-11-27 2024-09-13 株式会社荏原製作所 Pump system and monitoring device
JP2022090739A (en) * 2020-12-08 2022-06-20 アクア株式会社 Inspection method for accumulator
CN112924206B (en) * 2021-01-28 2024-01-23 广东美的制冷设备有限公司 Fault detection method, device, equipment and storage medium
JP7521461B2 (en) 2021-03-09 2024-07-24 株式会社明電舎 Equipment abnormality diagnosis device and abnormality diagnosis method
CN113609964A (en) * 2021-08-03 2021-11-05 西安市双合软件技术有限公司 Motor abnormal vibration early warning method and system
JP7261270B2 (en) * 2021-08-27 2023-04-19 Imv株式会社 Vibration test equipment
JP7261271B2 (en) * 2021-08-27 2023-04-19 Imv株式会社 Vibration test support network system
CN114383875B (en) * 2021-12-16 2024-02-09 深圳市前海能源科技发展有限公司 Dual-working-condition water chiller performance test method, system and storage medium
CN114878198B (en) * 2022-06-06 2023-05-30 珠海格力电器股份有限公司 Fault detection circuit and method and air conditioning equipment
DE102022130713A1 (en) 2022-11-21 2024-05-23 Vaillant Gmbh Acoustic leak detection in the heat pump housing
CN116151806B (en) * 2023-03-30 2023-06-30 厦门微亚智能科技有限公司 Management system and management device for equipment maintenance service
CN116929749B (en) * 2023-09-01 2023-11-21 理文科技(山东)股份有限公司 Detection device for electronic expansion valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297975A (en) * 1987-05-29 1988-12-05 株式会社東芝 Method and device for detecting abnormality of heat pump
JPH0692913B2 (en) * 1989-02-03 1994-11-16 株式会社日立製作所 Abnormality diagnosis system for sliding motion part
JPH0331667A (en) * 1989-06-28 1991-02-12 Mitsubishi Electric Corp Operation state monitoring device for freezer air conditioner
JPH08247077A (en) * 1995-03-14 1996-09-24 Matsushita Refrig Co Ltd Fluid compression diagnosing device for compressor
JP3656148B2 (en) * 1997-04-10 2005-06-08 株式会社日立製作所 Air conditioner with life prediction device
JP3108405B2 (en) * 1998-07-23 2000-11-13 核燃料サイクル開発機構 Device diagnosis method
JP2000259222A (en) * 1999-03-04 2000-09-22 Hitachi Ltd Device monitoring and preventive maintenance system
JP3896804B2 (en) * 2001-04-26 2007-03-22 富士ゼロックス株式会社 Signal judgment device
JP3982266B2 (en) * 2002-01-16 2007-09-26 三菱電機株式会社 Refrigerated air conditioner and operation control method thereof
JP2004020029A (en) * 2002-06-14 2004-01-22 Sharp Corp Abnormality diagnostic device and abnormality diagnostic method for refrigeration machine
JP2004036985A (en) * 2002-07-03 2004-02-05 Fujitsu General Ltd Method of detecting leakage of refrigerant in refrigerant circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564568A (en) * 2011-12-29 2012-07-11 华北电力大学 Early fault search method for large rotary machinery under complicated working conditions
CN102564568B (en) * 2011-12-29 2013-10-16 华北电力大学 Early fault search method for large rotary machinery under complicated working conditions
CN107209054A (en) * 2015-07-07 2017-09-26 三菱电机株式会社 Inspection method and check device
CN107209054B (en) * 2015-07-07 2019-07-19 三菱电机株式会社 Inspection method and check device
CN105675320A (en) * 2016-01-06 2016-06-15 山东大学 Method for real time monitoring mechanical system operation status on the basis of acoustic signal analysis
CN105675320B (en) * 2016-01-06 2018-02-16 山东大学 A kind of mechanical system running status method for real-time monitoring based on acoustic signal analysis

Also Published As

Publication number Publication date
JP2005241089A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4265982B2 (en) Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system
JP4396286B2 (en) Device diagnostic device and device monitoring system
JP4151679B2 (en) Refrigeration cycle equipment
US11927506B2 (en) Systems and methods for monitoring, inferring state of health, and optimizing efficiency of refrigeration systems
JP4151680B2 (en) Refrigeration cycle monitoring system
JP2005351618A (en) Hydraulic circuit diagnosis method
Rogers et al. A review of fault detection and diagnosis methods for residential air conditioning systems
CN1243202C (en) Maintenance system and method for air conditioner
JP2010532021A (en) Diagnosis system and diagnosis method based on detection of mechanical wave in cooling system and / or home appliance
US20160290671A1 (en) Hvac compressor prognostics
JP7445533B2 (en) Abnormality detection equipment, programs and electrical equipment systems
CN113934191A (en) Fault diagnosis system for water chilling unit
CN109099555B (en) A kind of vacuum degree measurement judgment method, device and air conditioner
KR101549754B1 (en) Fault diagnosis method of variable Speed Refrigeration System
CN113669839B (en) Method for detecting refrigerant leakage, computer readable storage medium and air conditioner
Rueda et al. Fault detection and diagnosis in liquid chillers
Ejenakevwe et al. Investigation of an IoT-Based Approach for Automated Fault Detection in Residential HVAC Systems.
US20230304713A1 (en) Refrigerant Quantity Diagnosis Device, Refrigerant System, and Refrigerant Quantity Diagnosis Method
US20240142125A1 (en) Air conditioning system, abnormality estimation method for air conditioning system, air conditioner, and abnormality estimation method for air conditioner
JP7112039B2 (en) diagnostic system
BR102020005468A2 (en) DETECTION, DIAGNOSTIC AND PROGNOSIS SYSTEM OF FAILURES IN HERMETIC COMPRESSORS, THROUGH VIBRATION ANALYSIS AND NON-INVASIVE MEASUREMENTS
CN116997757A (en) Air conditioning system, method for estimating amount of refrigerant in air conditioning system, air conditioner, and method for estimating amount of refrigerant in air conditioner
Parikh Development of an Automated Fault Detection and Diagnostic Tool for Unitary HVAC Systems at Industrial Energy Audits
CN117006596A (en) Refrigerant leakage detection method, control device and storage medium in air conditioning system
CN110411086A (en) A kind of plugged filter determination method, multi-unit air conditioner and readable medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Ref document number: 4265982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term