JP4265847B2 - High-temperature pressurized hot water generator - Google Patents

High-temperature pressurized hot water generator Download PDF

Info

Publication number
JP4265847B2
JP4265847B2 JP32955999A JP32955999A JP4265847B2 JP 4265847 B2 JP4265847 B2 JP 4265847B2 JP 32955999 A JP32955999 A JP 32955999A JP 32955999 A JP32955999 A JP 32955999A JP 4265847 B2 JP4265847 B2 JP 4265847B2
Authority
JP
Japan
Prior art keywords
water
tank
temperature
pressurized
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32955999A
Other languages
Japanese (ja)
Other versions
JP2001147045A (en
Inventor
哲 井尻
芳和 藤田
泰三 川村
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seta Giken KK
Original Assignee
Seta Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seta Giken KK filed Critical Seta Giken KK
Priority to JP32955999A priority Critical patent/JP4265847B2/en
Publication of JP2001147045A publication Critical patent/JP2001147045A/en
Application granted granted Critical
Publication of JP4265847B2 publication Critical patent/JP4265847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として洗浄、殺菌、調理等の用途に使用される高温加圧熱水発生装置に関する。
【0002】
【従来の技術】
従来から例えば食品の加熱による加工調理の単位操作において、100℃以上の加熱に際し、エネルギーを多量に供給できる加圧高温熱水の利用が知られている。従来の加圧高温熱水器は、食品の加工室に内蔵された圧力センサーと、流量センサーと、湿度センサーと、温度センサーと、各センサーに連動して配設したそれぞれの圧力調整器と、流量調整器と、湿度調整器と、温度調整器とを備えており、食品の加工室内温度以上に加熱された加圧熱水を加工室に供給するようになっている(特開平11─89722)。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の加圧高温熱水器は、高温水の排出による管内圧力の低下とそれを補充する給水に伴う高温水の温度低下に対して、瞬時にこれを所定温度まで回復させる即応性のある熱効率の良い加熱ができないという問題があった。
【0004】
本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、加熱部の圧力を任意に調整できると共に、即応性があり、熱効率の良い加熱ができる高温加圧熱水発生装置を提供することである。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、水を蓄積するタンクと、前記水を供給する給水ポンプと、前記給水ポンプの下流側に設けられ、前記給水ポンプの給水により前記水を1〜5気圧の所定の値に保つリリーフ弁と、前記リリーフ弁の下流側に接続され、前記加圧水を加熱する電磁誘導加熱部と、前記電磁誘導加熱部の通路に接続してあり前記通路をノズルまたは前記タンクに接続する3方バルブとを備え、前記ノズルは前記通路に圧力を貯留するように所定の開度に絞った構成を備えるとともに、前記3方バルブとタンクの間には前記ノズルの開度と同程度の開度に絞った絞り弁を設けたことを特徴とする。これにより、加圧水の温度を圧力に応じた飽和液体温度以下の範囲で任意に調整できる。即ち、正確に温度制御された高温水を、必要な量だけ安定して供給できるため、洗浄、殺菌、調理などの各操作に応じて、また、各操作の処理プロセスに応じて、高温水の温度と量を適宜調整できる。このように、加圧水を加熱することにより、即応性があり、熱効率の良い加熱ができるため、調理時間の短縮や殺菌効率の向上、糊化度の向上などが図られる。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図1を参照しつつ説明する。図1は、高温加圧熱水発生装置1の機器構成図である。高温加圧熱水発生装置1は、タンク2と、給水ポンプ3と、リリーフ弁4と、電磁誘導加熱装置5と、安全弁13と、3方バルブ(切換手段)18とを有しており、高温加圧熱水を発生させるようになっている。
【0007】
タンク2は、給水ポンプ3を介して電磁誘導加熱装置5の通路に接続されており、被加熱物である水を蓄積するようになっている。このタンク2には、水位センサー6が設けられており、タンク2内の水位を検知するようになっている。また、タンク2の上流側には、図示されない給水源が接続されている。給水源は、水位センサー6の検知信号に基づいてバルブ7が開くと、タンク2内に給水するようになっている。
【0008】
給水ポンプ3は、タンク2の下流側にバルブ8を介して設けられており、タンク2内の水を給水することにより、所定の開度に絞られたノズル9との間で1.013×105 〜5.065×105 Pa(1〜5気圧)の所定の水圧をかけるようになっている。これにより、電磁誘導加熱装置5の通路14に、所定量の加圧水が供給されるようになる。また、タンク2、バルブ8、給水ポンプ3は、リリーフ弁4を介してループ状に接続されており、リリーフ弁4から出た加圧水がタンク2に戻るようになっている。
【0009】
リリーフ弁4は、給水ポンプ3の下流側に接続されており、給水ポンプ3の給水による水が所定圧力以上に加圧されると、加圧水をタンク2に逃がして、給水ポンプ3からノズル9間の水を1.013×105 〜5.065×105 Pa(1〜5気圧)の所定の水圧を保つようになっている。また、リリーフ弁4の下流側には、圧力検出器10が接続されており、給水ポンプ3からノズル9間の水圧を検出するようになっている。
【0010】
電磁誘導加熱装置5は、チェックバルブ11を介して給水ポンプ3の下流側に接続されている。このチェックバルブ11は、電磁誘導加熱装置5により加熱された加圧熱水がリリーフ弁4を介してタンク2に流れ込まないように給水ポンプ3及びリリーフ弁4の下流側に設けられている。
【0011】
電磁誘導加熱装置5の通路14の先には、3方バルブ18を介してノズル9が設けられている。ノズル9は、給水ポンプ3により給水された水が給水ポンプ3とノズル9との間で1.013×105 〜5.065×105 Pa(1〜5気圧)の所定の圧力に加圧されるように、所定の開度に絞られている。また、ノズル9の付近には、温度センサー12が設けられている。温度センサー12は、電磁誘導加熱装置5の高周波電源15(図2参照)に接続されており、高温加圧熱水の温度を検出するようになっている。
【0012】
安全弁13は、電磁誘導加熱装置5の通路14の下流側が所定の圧力以上になると、水蒸気をタンク2へ逃がす弁であり、電磁誘導加熱装置5と3方バルブ18との間に接続されている。また、安全弁13は、タンク2、バルブ8、給水ポンプ3、チェックバルブ11、電磁誘導加熱装置5とループ状に接続されている。安全弁13は、安全弁13a、13bが並列に接続されて構成されているが、これに限られず、一つでも良い。
【0013】
3方バルブ18は、高温加圧熱水の進路をタンク2側又はノズル9側に切り換えるバルブであり、電磁誘導加熱装置5と安全弁13との接続部19の下流側に接続されている。また、3方バルブ18は、タンク2、バルブ8、給水ポンプ3、チェックバルブ11、電磁誘導加熱装置5とループ状に接続されており、タンク2側に切り換えると電磁誘導加熱装置5から出た高温加圧熱水をタンク2に戻し、ノズル9側に切り換えると、所望のタイミングでノズル9に高温加圧熱水を供給するようになっている。この3方バルブとタンク2の間には、図示されない絞り弁が設けられている。この絞り弁は、ノズル9と同様に、給水ポンプ3により給水された水が給水ポンプ3と絞り弁との間で1.013×105 〜5.065×105 Pa(1〜5気圧)の所定の圧力に加圧されるように、所定の開度に絞られている。これにより、3方バルブ18をタンク2側又はノズル9側のいずれの方に切り換えても、給水ポンプ3の下流側では、加圧水は1.013×105 〜5.065×105 Pa(1〜5気圧)の所定の圧力に加圧される。
【0014】
次に、実施形態の電磁誘導加熱装置5の詳細を説明する。図2に示すように、電磁誘導加熱装置5は、加圧水の通路部材14、高周波電源15、発熱体16、コイル17等で構成されている。通路部材14は、非磁性体で耐熱性に優れたセラミックス製のパイプで、その内孔が加圧水の通路となる。この通路部材14は、例えば、窒化珪素で形成されている。コイル17は、通路部材14の外周に巻かれている。
【0015】
発熱体16は、図3に示すように、例えば、ジグザグの山型に折り曲げられた第1金属板31と平らな金属板32とを交互に積層し、全体として円筒状の積層体に形成したものであり、各金属板31、32の材質としては、SUS447J1の如きマルテンサイト系ステンレスが用いられる。
【0016】
発熱体16は、図4に示すように、第1金属板31の山(又は谷)33を中心軸34に対して角度αだけ傾くように配設し、第2金属板32を挟んで隣り合う第1金属板31の山(又は谷)33は交差するように配設されている。そして、隣り合う第1金属板31における山(又は谷)33の交差点において、第1金属板31と第2金属板32とがスポット溶接で溶着され、電気的に導通可能に接合されている。
【0017】
これで、最外周の第1金属板31と第2金属板32との間には、角度αだけ傾いた第1小流路35が形成され、次の第2金属板32と第1金属板31との間は、角度−αだけ傾いた第2小流路36が形成され、この第1小流路35と第2小流路36は角度2×αで交差している。又第1金属板31や第2金属板32には、加圧水の乱流を生じさせるための第3小流路としての孔37が形成されている。更に、第1金属板31や第2金属板32の表面は平滑でなく、梨地加工又はエンボス加工によって微小な凹凸38が施されている。この凹凸38は山(又は谷)33の高さと比較して無視できる程度に小さい(図4参照)。
【0018】
この発熱体16を通路部材14に挿入し、コイル17に高周波電流を流して、発熱体16に高周波磁界を作用させると、磁力線を横切るように斜めに配置された第1金属板31と第2金属板32の全体に渦電流が生じ、発熱体16が発熱する。このときの温度分布は、第1金属板31と第2金属板32の長手方向に伸びた目玉型となり、外周辺部より中心部の方が発熱し、中央部を流れようとする加圧水の加熱に有利になっている。又発熱体16は、各金属板31、32を形成するSUS447J1等の磁気特性(キューリ点)で決まる温度(600℃程度)まで発熱することが可能となる。
【0019】
又図4のように、発熱体16内で交差する第1小流路35と第2小流路36で周辺と中央部との流体の拡散が行われ、加えて第3小流路となる孔37の存在によって、第1小流路35と第2小流路36間の厚み方向の拡散も行われる。従って、各小流路35、36、37によって発熱体16の全体にわたる流体のマクロ的な拡散、放散、揮散が生じると共に、表面の微小な凹凸38によってミクロ的な拡散、放散、揮散も生じる。この結果、発熱体16を通過する加圧水は略均一な流れになって、第1金属板31及び第2金属板32と加圧水との均一な接触機会が与えられ、均一な加熱が確保される。
【0020】
尚、電磁誘導加熱装置は、電磁誘導加熱装置5のように非磁性体で形成されたセラミックス製のパイプを用いたものに限られず、加圧水が通過するための流路が形成された金属製の発熱体を直接加熱するものであってもよい。この場合、金属製の発熱体は、パイプ状のものや、貫通する複数の流路を備える柱状のもの等があり、通路部材14に相当するように加圧水の通路を形成する。
【0021】
上記の構成に基づいて、実施形態に係る高温加圧熱水発生装置1の動作を説明する。高温加圧熱水発生装置1が待機状態にあるときは、図1に示すように、3方バルブ18がタンク2側に切り換えられる。次に、バルブ8を開けて給水ポンプ3によりタンク2内の水を電磁誘導加熱装置5の通路14へ供給する。3方バルブ18とタンク2の間に設けられた図示されない絞り弁は、所定の開度に絞られているため、供給された水は、給水ポンプ3から絞り弁の間で1.013×105 〜5.065×105 Pa(1〜5気圧)の所望の圧力に加圧される。給水ポンプ3の給水により給水ポンプ3から絞り弁間の水圧が所望の圧力を越えると、リリーフ弁4が働き、余分な加圧水がタンク2へ戻るため、給水ポンプ3から絞り弁間の水圧は、所望の圧力に保たれる。そして、所望の圧力に保たれた加圧水は、電磁誘導加熱装置5の通路14内で高温に発熱した発熱体16により所望の温度に加熱され、タンク2へ戻る。このように、待機状態の場合には、高温加圧熱水は、タンク2、バルブ8、給水ポンプ3、チェックバルブ11、電磁誘導加熱装置5、3方バルブ18、タンク2間を循環する。
【0022】
高温加圧熱水発生装置1が通常の運転状態にあるときは、図1に示すように、3方バルブ18がノズル9側に切り換えられる。次に、バルブ8を開けて給水ポンプ3によりタンク2内の水を電磁誘導加熱装置5の通路14へ供給する。ノズル9は所定の開度に絞られているため、供給された水は、給水ポンプ3からノズル9の間で1.013×105 〜5.065×105 Pa(1〜5気圧)の所望の圧力に加圧される。給水ポンプ3の給水により給水ポンプ3からノズル9間の水圧が所望の圧力を越えると、リリーフ弁4が働き、余分な加圧水がタンク2へ戻るため、給水ポンプ3からノズル9間の水圧は、所望の圧力に保たれる。そして、所望の圧力に保たれた加圧水は、電磁誘導加熱装置5の通路14内で高温に発熱した発熱体16により所望の温度に加熱され、ノズル9へ向かう。
【0023】
このように、電磁誘導加熱装置5の通路14内には加圧水が流れるので、加圧水は、水蒸気にならず、圧力に応じて100℃〜150℃程度までの所望の温度まで昇温される。また、高周波電源15は、ノズル9に設けられた温度センサー12から高温加圧熱水の温度を取り込んで、加圧水を所望の温度まで昇温させるように発熱体16の温度を制御する。また、発熱体16の温度が上昇し、電磁誘導加熱装置5の通路14内で高温加圧熱水が水蒸気になった場合でも、安全弁13a、13bにより水蒸気をタンク2へ逃がすため、電磁誘導加熱装置5の下流側を所定圧力に保つことができる。
【0024】
給水ポンプ3がタンク2内の水を電磁誘導加熱装置5の通路14に送り、タンク2内の水位が一定値まで下がると、水位センサー6からの水位情報に基づいてバルブ7が開き、図示されない給水源から給水され、タンク2内が一定の水位に保たれる。
【0025】
【発明の効果】
請求項1記載の発明は、加圧水の温度を圧力に応じた飽和液体温度以下の範囲で任意に調整できる。即ち、正確に温度制御された高温水を、必要な量だけ安定して供給できるため、洗浄、殺菌、調理などの各操作に応じて、また、各操作の処理プロセスに応じて、高温水の温度と量を適宜調整できる。このように、加圧水を加熱することにより、即応性があり、熱効率の良い加熱ができるため、調理時間の短縮や殺菌効率の向上、糊化度の向上などが図られるという効果を奏する。
【図面の簡単な説明】
【図1】高温加圧熱水発生装置を説明する図である。
【図2】電磁誘導加熱装置を説明する図である。
【図3】発熱体を説明する図である。
【図4】発熱体を説明する図である。
【符号の説明】
1、高温加圧熱水発生装置
2、タンク
3、給水ポンプ
4、リリーフ弁
5、電磁誘導加熱装置
6、水位センサー
13、安全弁
18、3方バルブ(切換手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-temperature pressurized hot water generator mainly used for cleaning, sterilization, cooking and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it is known to use pressurized high-temperature hot water that can supply a large amount of energy when heating at 100 ° C. or higher, for example, in a unit operation of processing cooking by heating food. Conventional pressurized hot water heaters are equipped with pressure sensors, flow rate sensors, humidity sensors, temperature sensors, and pressure regulators that are arranged in conjunction with each sensor, and flow rate adjustments. , A humidity regulator, and a temperature regulator, and pressurized hot water heated to a temperature higher than the food processing chamber temperature is supplied to the processing chamber (JP-A-11-89722).
[0003]
[Problems to be solved by the invention]
However, conventional pressurized high-temperature water heaters have rapid thermal efficiency that instantaneously recovers the pressure drop in the pipe due to the discharge of high-temperature water and the temperature drop due to the water supply to replenish it to the predetermined temperature. There was a problem that good heating was not possible.
[0004]
The present invention has been made in view of the above-mentioned problems, and the object thereof is to generate high-temperature pressurized hot water that can adjust the pressure of the heating part arbitrarily and is responsive and capable of heating with high thermal efficiency. Is to provide a device.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is provided in a tank for accumulating water, a water supply pump for supplying the water, and a downstream side of the water supply pump, and the water is supplied from the water supply pump to a predetermined pressure of 1 to 5 atm. A relief valve that maintains the value, an electromagnetic induction heating unit that is connected to the downstream side of the relief valve and heats the pressurized water, and is connected to a passage of the electromagnetic induction heating unit, and the passage is connected to the nozzle or the tank. A three-way valve, and the nozzle is configured to have a predetermined opening degree so as to store pressure in the passage, and between the three-way valve and the tank, the opening degree of the nozzle is approximately the same. A throttling valve that is throttled to an opening is provided. Thereby, the temperature of pressurized water can be arbitrarily adjusted in the range below the saturated liquid temperature according to a pressure. That is, since the required amount of high-temperature water whose temperature is accurately controlled can be stably supplied, high-temperature water can be supplied according to each operation such as cleaning, sterilization, and cooking, and according to the processing process of each operation. The temperature and amount can be adjusted as appropriate. Thus, by heating the pressurized water, there is immediate response and heating with good thermal efficiency can be achieved, so that the cooking time can be shortened, the sterilization efficiency can be improved, and the gelatinization degree can be improved.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a device configuration diagram of a high-temperature pressurized hot water generator 1. The high-temperature pressurized hot water generator 1 has a tank 2, a water supply pump 3, a relief valve 4, an electromagnetic induction heating device 5, a safety valve 13, and a three-way valve (switching means) 18. High-temperature pressurized hot water is generated.
[0007]
The tank 2 is connected to the passage of the electromagnetic induction heating device 5 through the water supply pump 3 and accumulates water as an object to be heated. The tank 2 is provided with a water level sensor 6 to detect the water level in the tank 2. A water supply source (not shown) is connected to the upstream side of the tank 2. The water supply source supplies water into the tank 2 when the valve 7 is opened based on the detection signal of the water level sensor 6.
[0008]
The water supply pump 3 is provided on the downstream side of the tank 2 via a valve 8, and 1.013 × between the nozzle 9 and the nozzle 9 squeezed to a predetermined opening degree by supplying water in the tank 2. A predetermined water pressure of 10 @ 5 to 5.065.times.10@5 Pa (1 to 5 atm) is applied. As a result, a predetermined amount of pressurized water is supplied to the passage 14 of the electromagnetic induction heating device 5. The tank 2, the valve 8, and the water supply pump 3 are connected in a loop through a relief valve 4, so that pressurized water discharged from the relief valve 4 returns to the tank 2.
[0009]
The relief valve 4 is connected to the downstream side of the water supply pump 3, and when the water supplied from the water supply pump 3 is pressurized to a predetermined pressure or higher, the pressurized water is released to the tank 2, and between the water supply pump 3 and the nozzle 9. The water is kept at a predetermined water pressure of 1.013 × 10 5 to 5.065 × 10 5 Pa (1 to 5 atm). A pressure detector 10 is connected to the downstream side of the relief valve 4 so as to detect the water pressure between the water supply pump 3 and the nozzle 9.
[0010]
The electromagnetic induction heating device 5 is connected to the downstream side of the feed water pump 3 via the check valve 11. The check valve 11 is provided on the downstream side of the feed water pump 3 and the relief valve 4 so that pressurized hot water heated by the electromagnetic induction heating device 5 does not flow into the tank 2 via the relief valve 4.
[0011]
A nozzle 9 is provided at the tip of the passage 14 of the electromagnetic induction heating device 5 via a three-way valve 18. In the nozzle 9, the water supplied by the water supply pump 3 is pressurized to a predetermined pressure of 1.013 × 10 5 to 5.065 × 10 5 Pa (1 to 5 atm) between the water supply pump 3 and the nozzle 9. As described above, the opening is reduced to a predetermined degree. A temperature sensor 12 is provided in the vicinity of the nozzle 9. The temperature sensor 12 is connected to a high-frequency power source 15 (see FIG. 2) of the electromagnetic induction heating device 5 and detects the temperature of the hot pressurized hot water.
[0012]
The safety valve 13 is a valve that allows water vapor to escape to the tank 2 when the downstream side of the passage 14 of the electromagnetic induction heating device 5 exceeds a predetermined pressure, and is connected between the electromagnetic induction heating device 5 and the three-way valve 18. . The safety valve 13 is connected to the tank 2, the valve 8, the feed water pump 3, the check valve 11, and the electromagnetic induction heating device 5 in a loop shape. The safety valve 13 is configured by connecting the safety valves 13a and 13b in parallel. However, the safety valve 13 is not limited to this and may be one.
[0013]
The three-way valve 18 is a valve that switches the course of the high-temperature pressurized hot water to the tank 2 side or the nozzle 9 side, and is connected to the downstream side of the connection portion 19 between the electromagnetic induction heating device 5 and the safety valve 13. The three-way valve 18 is connected to the tank 2, the valve 8, the feed water pump 3, the check valve 11, and the electromagnetic induction heating device 5 in a loop shape. When switched to the tank 2 side, the three-way valve 18 comes out of the electromagnetic induction heating device 5. When the hot pressurized hot water is returned to the tank 2 and switched to the nozzle 9 side, the hot pressurized hot water is supplied to the nozzle 9 at a desired timing. A throttle valve (not shown) is provided between the three-way valve and the tank 2. In this throttle valve, similarly to the nozzle 9, the water supplied by the feed water pump 3 is 1.013 × 10 5 to 5.065 × 10 5 Pa (1 to 5 atm) between the feed water pump 3 and the throttle valve. It is throttled to a predetermined opening so as to be pressurized to this pressure. Thus, even if the three-way valve 18 is switched to either the tank 2 side or the nozzle 9 side, the pressurized water is 1.013 × 10 5 to 5.065 × 10 5 Pa (1 to 5) on the downstream side of the feed water pump 3. Pressure).
[0014]
Next, the detail of the electromagnetic induction heating apparatus 5 of embodiment is demonstrated. As shown in FIG. 2, the electromagnetic induction heating device 5 includes a pressurized water passage member 14, a high-frequency power source 15, a heating element 16, a coil 17, and the like. The passage member 14 is a non-magnetic material and a ceramic pipe excellent in heat resistance, and its inner hole becomes a passage of pressurized water. The passage member 14 is made of, for example, silicon nitride. The coil 17 is wound around the outer periphery of the passage member 14.
[0015]
As shown in FIG. 3, the heating element 16 is formed, for example, by alternately laminating first metal plates 31 and flat metal plates 32 that are bent in a zigzag mountain shape to form a cylindrical laminate as a whole. As the material of the metal plates 31 and 32, martensitic stainless steel such as SUS447J1 is used.
[0016]
As shown in FIG. 4, the heating element 16 is disposed such that a crest (or valley) 33 of the first metal plate 31 is inclined by an angle α with respect to the central axis 34, and is adjacent to the second metal plate 32. The peaks (or valleys) 33 of the matching first metal plates 31 are arranged so as to intersect. And the 1st metal plate 31 and the 2nd metal plate 32 are welded by spot welding in the intersection of the peak (or trough) 33 in the adjacent 1st metal plate 31, and it joins so that electrical conduction | electrical_connection is possible.
[0017]
Thus, the first small flow path 35 inclined by the angle α is formed between the outermost first metal plate 31 and the second metal plate 32, and the next second metal plate 32 and first metal plate are formed. A second small flow path 36 that is inclined by an angle −α is formed between the first small flow path 35 and the first small flow path 36 and an angle 2 × α. The first metal plate 31 and the second metal plate 32 are formed with a hole 37 as a third small flow path for generating a turbulent flow of pressurized water. Furthermore, the surface of the 1st metal plate 31 or the 2nd metal plate 32 is not smooth, and the fine unevenness | corrugation 38 is given by the satin finish processing or the embossing. The unevenness 38 is small enough to be ignored as compared with the height of the mountain (or valley) 33 (see FIG. 4).
[0018]
When the heating element 16 is inserted into the passage member 14 and a high-frequency current is applied to the coil 17 to cause a high-frequency magnetic field to act on the heating element 16, the first metal plate 31 and the second metal plate 31 arranged obliquely so as to cross the lines of magnetic force. An eddy current is generated in the entire metal plate 32, and the heating element 16 generates heat. The temperature distribution at this time is an eyeball shape extending in the longitudinal direction of the first metal plate 31 and the second metal plate 32, and heat is generated in the central portion from the outer peripheral portion and heated in the central portion to flow through the central portion. It has become advantageous. Further, the heating element 16 can generate heat up to a temperature (about 600 ° C.) determined by the magnetic characteristics (Curie point) such as SUS447J1 forming the metal plates 31 and 32.
[0019]
Further, as shown in FIG. 4, the first small flow path 35 and the second small flow path 36 intersecting in the heating element 16 diffuse the fluid between the periphery and the central portion, and in addition, the third small flow path is formed. Due to the presence of the holes 37, diffusion in the thickness direction between the first small flow path 35 and the second small flow path 36 is also performed. Accordingly, macro diffusion, diffusion, and volatilization of the fluid over the entire heating element 16 are generated by the small flow paths 35, 36, and 37, and micro diffusion, diffusion, and volatilization are generated by the minute unevenness 38 on the surface. As a result, the pressurized water passing through the heating element 16 has a substantially uniform flow, and a uniform contact opportunity between the first metal plate 31 and the second metal plate 32 and the pressurized water is given, and uniform heating is ensured.
[0020]
The electromagnetic induction heating device is not limited to the one using a ceramic pipe formed of a non-magnetic material like the electromagnetic induction heating device 5, but is made of metal in which a flow path for passing pressurized water is formed. The heating element may be directly heated. In this case, the metal heating element includes a pipe-like one and a columnar one provided with a plurality of passages therethrough, and forms a passage of pressurized water so as to correspond to the passage member 14.
[0021]
Based on said structure, operation | movement of the high temperature pressurization hot water generator 1 which concerns on embodiment is demonstrated. When the high-temperature pressurized hot water generator 1 is in a standby state, the three-way valve 18 is switched to the tank 2 side as shown in FIG. Next, the valve 8 is opened and the water in the tank 2 is supplied to the passage 14 of the electromagnetic induction heating device 5 by the water supply pump 3. A throttle valve (not shown) provided between the three-way valve 18 and the tank 2 is throttled to a predetermined opening, so that the supplied water is 1.013 × 10 5 between the feed water pump 3 and the throttle valve. The pressure is increased to a desired pressure of ˜5.065 × 10 5 Pa (1 to 5 atm). When the water pressure between the water supply pump 3 and the throttle valve exceeds the desired pressure due to the water supply from the water supply pump 3, the relief valve 4 operates and excess pressurized water returns to the tank 2, so the water pressure between the water supply pump 3 and the throttle valve is The desired pressure is maintained. The pressurized water maintained at a desired pressure is heated to a desired temperature by the heating element 16 that has generated heat to a high temperature in the passage 14 of the electromagnetic induction heating device 5, and returns to the tank 2. Thus, in the standby state, the hot pressurized hot water circulates between the tank 2, the valve 8, the feed water pump 3, the check valve 11, the electromagnetic induction heating device 5, the three-way valve 18, and the tank 2.
[0022]
When the high-temperature pressurized hot water generator 1 is in a normal operation state, the three-way valve 18 is switched to the nozzle 9 side as shown in FIG. Next, the valve 8 is opened and the water in the tank 2 is supplied to the passage 14 of the electromagnetic induction heating device 5 by the water supply pump 3. Since the nozzle 9 is throttled to a predetermined opening, the supplied water is between 1.013 × 10 5 to 5.065 × 10 5 Pa (1 to 5 atm) between the feed water pump 3 and the nozzle 9. Pressurized to pressure. When the water pressure between the water supply pump 3 and the nozzle 9 exceeds the desired pressure due to the water supply from the water supply pump 3, the relief valve 4 operates and excess pressurized water returns to the tank 2, so the water pressure between the water supply pump 3 and the nozzle 9 is The desired pressure is maintained. The pressurized water maintained at a desired pressure is heated to a desired temperature by the heating element 16 that generates heat to a high temperature in the passage 14 of the electromagnetic induction heating device 5, and travels toward the nozzle 9.
[0023]
Thus, since pressurized water flows in the passage 14 of the electromagnetic induction heating device 5, the pressurized water does not become water vapor but is heated to a desired temperature of about 100 ° C. to 150 ° C. according to the pressure. Further, the high frequency power supply 15 takes in the temperature of the high-temperature pressurized hot water from the temperature sensor 12 provided in the nozzle 9 and controls the temperature of the heating element 16 so as to raise the pressurized water to a desired temperature. In addition, even when the temperature of the heating element 16 rises and the hot pressurized hot water becomes steam in the passage 14 of the electromagnetic induction heating device 5, the steam is released to the tank 2 by the safety valves 13a and 13b. The downstream side of the device 5 can be maintained at a predetermined pressure.
[0024]
When the water supply pump 3 sends the water in the tank 2 to the passage 14 of the electromagnetic induction heating device 5 and the water level in the tank 2 falls to a certain value, the valve 7 opens based on the water level information from the water level sensor 6 and is not shown. Water is supplied from a water supply source, and the inside of the tank 2 is kept at a constant water level.
[0025]
【The invention's effect】
According to the first aspect of the present invention, the temperature of the pressurized water can be arbitrarily adjusted within the range of the saturated liquid temperature or less according to the pressure. That is, since the required amount of high-temperature water whose temperature is accurately controlled can be stably supplied, high-temperature water can be supplied according to each operation such as cleaning, sterilization, and cooking, and according to the processing process of each operation. The temperature and amount can be adjusted as appropriate. Thus, by heating the pressurized water, there is an immediate response and heating with high thermal efficiency can be performed, so that the cooking time can be shortened, the sterilization efficiency can be improved, and the gelatinization degree can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a high-temperature pressurized hot water generator.
FIG. 2 is a diagram illustrating an electromagnetic induction heating device.
FIG. 3 is a diagram illustrating a heating element.
FIG. 4 is a diagram illustrating a heating element.
[Explanation of symbols]
1. High-temperature pressurized hot water generator 2, tank 3, water supply pump 4, relief valve 5, electromagnetic induction heater 6, water level sensor 13, safety valve 18, three-way valve (switching means)

Claims (1)

水を蓄積するタンクと、
前記水を供給する給水ポンプと、
前記給水ポンプの下流側に設けられ、前記給水ポンプの給水により前記水を1〜5気圧の所定の値に保つリリーフ弁と、
前記リリーフ弁の下流側に接続され、前記加圧水を加熱する電磁誘導加熱部と、
前記電磁誘導熱部の通路に接続してあり前記通路をノズルまたは前記タンクに接続する3方バルブとを備え、前記ノズルは前記通路に圧力を貯留するように所定の開度に絞った構成を備えるとともに、前記3方バルブとタンクの間には前記ノズルの開度と同程度の開度に絞った絞り弁を設けたことを特徴とする高温加圧熱水発生装置。
A tank that accumulates water,
A water supply pump for supplying the water;
A relief valve provided on the downstream side of the water supply pump and maintaining the water at a predetermined value of 1 to 5 atm by the water supply of the water supply pump;
An electromagnetic induction heating unit connected to the downstream side of the relief valve and heating the pressurized water;
Wherein a three-way valve to connect the electromagnetic induction Yes connected in the path of the pressurized hot portion the passage nozzle or the tank, the nozzle is narrowed to a predetermined opening degree so as to store the pressure in the passage forming And a high-temperature pressurized hot water generator, characterized in that a throttle valve is provided between the three-way valve and the tank, the throttle valve being throttled to the same degree as the nozzle.
JP32955999A 1999-11-19 1999-11-19 High-temperature pressurized hot water generator Expired - Lifetime JP4265847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32955999A JP4265847B2 (en) 1999-11-19 1999-11-19 High-temperature pressurized hot water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32955999A JP4265847B2 (en) 1999-11-19 1999-11-19 High-temperature pressurized hot water generator

Publications (2)

Publication Number Publication Date
JP2001147045A JP2001147045A (en) 2001-05-29
JP4265847B2 true JP4265847B2 (en) 2009-05-20

Family

ID=18222721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32955999A Expired - Lifetime JP4265847B2 (en) 1999-11-19 1999-11-19 High-temperature pressurized hot water generator

Country Status (1)

Country Link
JP (1) JP4265847B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685955A (en) * 2012-05-14 2012-09-19 国电联合动力技术(连云港)有限公司 Bearing and bearing pedestal heating device for wind generating set
CN103938481B (en) * 2014-04-30 2016-08-24 安徽热速达电子科技有限责任公司 A kind of corrugated paper electromagnetic induction heater and using method thereof

Also Published As

Publication number Publication date
JP2001147045A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
US8107803B1 (en) Non-scaling flow through water heater
US8787742B2 (en) On-demand water heating system
JP6802034B2 (en) Infusion system
USRE48470E1 (en) Garment steaming device
US6445880B1 (en) Water heating system with automatic temperature control
JP4407687B2 (en) Human body local cleaning equipment
US10883743B2 (en) Water heater with flow bypass
JP2008519625A (en) Method and apparatus for supplying hot water
CN102727070B (en) Heating device
JP4265847B2 (en) High-temperature pressurized hot water generator
EP1584273A2 (en) Device for the temperature control of the dispenser groups in a machine for preparing coffee
KR200420244Y1 (en) Device for steam generation
JP3671168B2 (en) Food cooking equipment
JPH11108301A (en) Food processing apparatus and method
JPH1194203A (en) Steam producing equipment
JP7217928B2 (en) Heat exchanger and its usage
CN101839543B (en) Liquid heater with low power consumption, control method and manufacturing method thereof
JPH09178103A (en) Induction type super heated steam generator
JP4454877B2 (en) Steam dryness or wetness control device
JPH1194202A (en) Steam producing equipment
JP4923258B2 (en) Superheated steam generator and superheated steam generation method
JP2007046812A (en) Fluid heating device
JPH08135903A (en) Steam heating apparatus
JP3684616B2 (en) Steam generator
AU2002245998B2 (en) Ironing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19991119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Ref document number: 4265847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term